
Domains and Event Structures for Fusions
Paolo Baldan

University of Padova
Andrea Corradini, Fabio Gadducci

University of Pisa

Abstract—Stable event structures, and their duality with prime
algebraic domains arising as partial orders of configurations, are
a landmark of concurrency theory, providing a clear character-
isation of causality in computations. They have been used for
defining a concurrent semantics of several formalisms, from Petri
nets to (linear) graph rewriting systems, which in turn lay at the
basis of many visual modelling frameworks. Stability however is
restrictive when dealing with formalisms with “fusion”, i.e., where
a computational step can not only consume and produce but also
merge parts of the state. This happens, e.g., for graph rewriting
systems with non-linear rules, which are needed to cover some
relevant applications (such as the graphical encoding of calculi
with name passing). Guided by the need of capturing the
semantics of formalisms with fusion we leave aside stability and
we characterise, as a natural generalisation of prime algebraic
domains, a class of domains, referred to as weak prime domains.
We then identify a corresponding class of event structures, that
we call connected event structures, via a duality result formalised
as an equivalence of categories. We show that connected event
structures are exactly the class of event structures that arise as the
semantics of non-linear graph rewriting systems. Interestingly,
the category of general unstable event structures coreflects into
our category of weak prime domains, so that our result provides
a characterisation of the partial orders of configurations of such
event structures.

Index Terms—Event structures, fusions, graph rewriting, pro-
cess calculi.

I. INTRODUCTION

For a long time stable/prime event structures and their
duality with prime algebraic domains have been considered
one of the landmarks of concurrency theory, providing a clear
characterisation of causality in software systems. They have
been used to provide a concurrent semantics to a wide range
of foundational formalisms, from Petri nets [1] to linear graph
rewriting systems [2]–[4] and process calculi [5]–[7]. They
are one of the standard tools for the formal treatment of (true,
i.e., non-interleaving) concurrency. See, e.g., [8] for a reasoned
survey on the use of such causal models. Recently, they
have been used in the study of concurrency in weak memory
models [9]–[11] and for process mining and differencing [12].

In order to endow a chosen formalism with an event struc-
ture semantics, a standard construction consists in viewing the
class of computations as a partial order. An element of the
order is some sort of configuration, i.e., an execution trace
up to an equivalence that identifies traces differing only for
the order of independent steps (e.g., interchange law [13] in
term rewriting, shift equivalence [14] in graph rewriting or
permutation equivalence [15] in λ-calculus), and the order
relates two computations when the latter is an extension of

a.c | b
c | b a.c | 0

0 | b c | 0
0 | 0

(a)

∅
{a} {b}

{a, c} {a, b}
{a, b, c}

(b)

Fig. 1: The (a) transition system and (b) domain of configu-
rations of the process a.c | b.

the former. Events are then identified with configurations
consisting of a maximal computation step (e.g., a transition of
a CCS process or a firing for a Petri net) with all its causes.
As a simple example, consider the CCS process a.c | b. The
corresponding transition system is depicted in Fig. 1a. We can
identify the states of the computation with the sets of actions
executed and obtain the partial order depicted in Fig. 1b.
The fact that each computation step in a configuration has
a uniquely determined set of causes, a property that for event
structures is called stability, allows one to characterise such
elements, order theoretically, as the prime elements: if they
are included in a join they must be included in one of the
elements that are joined. For example, in Fig. 1b, the events
correspond to configurations {a} (transition a with empty set
of causes), {a, c} (transition c caused by a) and {b} (transition
b with empty set of causes). Each element of the partial order
of configurations can be reconstructed uniquely as the join
of the primes under it, so that the partial order is prime
algebraic. This duality between event structures and domains
of configurations can be nicely formalised in terms of an
equivalence between the categories of prime event structures
and prime algebraic domains [1], [16].

The set up described so far fails when moving to formalisms
where a computational step can merge parts of the state. This
happens, e.g., in nominal calculi where, as a result of name
passing, the received name is identified with a local one at
the receiver [17], [18] or in the modelling of bonding in
biological/chemical processes [19]. Whenever we think of the
state of the system as some kind of graph with the dynamics

ar
X

iv
:1

70
1.

02
39

4v
3

 [
cs

.L
O

]
 1

8
N

ov
 2

02
0

described by graph rewriting, this means that rewriting rules
are non-linear (more precisely, in the jargon of the double
pushout approach [20], left-linear but possibly not right-
linear). In general terms, the point is that, in the presence of
fusions, the same event can be enabled by different minimal
sets of events, thus preventing the identification of a proper
notion of causality.

c

b̄
ā

in

ν

ν̄

c

ȳ

ν

ν̄

c, ν

ν̄
py

c, ν

in
ν̄

c, ν

ν̄
pc

(a) The start graph Gs and the rules py (y ∈ {a, b}) and pc.

Gs

c, v

ā
ν̄

inGa

c, v

b̄
ν̄

in

Gb

c, ν

ν̄
in

Gab

c, ν

ā
ν̄

Gac

c, ν

b̄
ν̄

Gbc

c, ν

ν̄

Gc

pa

pb
pa

pc

pb

pc

pc

pa

pb

(b) The possible rewrites.

∅

{a} {b}

{a, b}
{a, c} {b, c}

{a, b, c}

(c) The domain of configurations.

Fig. 2: A graph rewriting system with fusions.

As an example, consider the graph rewriting system in
Fig. 2. The start graph Gs and the rewriting rules pa, pb,
and pc are reported in Fig. 2a. Observe that rules py , where
y can be either a or b, delete edge ȳ and merge nodes c and
ν. The possible rewrites are depicted in Fig. 2b. For instance,

(νc)(ā(c) | b̄(c) | c())

ā(c) | c()

b̄(c) | c()

c()

ā(c)

b̄(c)

0

ā(c)

b̄(c) ā(c)

c()

b̄(c)

c()

c()

ā(c)

b̄(c)

Fig. 3: The possible transitions of the π-calculus process
(νc)(ā(c) | b̄(c) | c()).

applying pa to Gs we get the graph Gb. Now, pb can still be
applied to Gb matching its left-hand side non-injectively, thus
getting graph Gab. Similarly, we can apply first pb and then pa,
obtaining again Gab. Observe that at least one between pa and
pb must be applied to enable pc, since the latter rule requires
nodes c and ν to be merged. Note also that in a situation where
all the three rules pa, pb, and pc are applied, since pa and pb
are independent, it is not possible to define a proper notion
of causality. We only know that at least one between pa and
pb must be applied before pc. The corresponding domain of
configurations, reported in Fig. 2c, is naturally derived from
the possible rewrites in Fig. 2b.

The graph rewriting system of Fig. 2a is a (simplified)
representation of the π-calculus process (νc)(ā(c) | b̄(c) | c()).
Rules py , for y ∈ {a, b}, represent the execution of ȳ(c) that
outputs on channel y the restricted name c. The first rule that is
executed extrudes name c, while the second is just a standard
output. The name c is available outside the scope only after the
extrusion, and after that the input prefix c() can be consumed.
Figure 3 shows the possible transitions of the process, which
correspond one-to-one to the possible rewrites of Fig. 2b.

The impossibility of modelling these situations with stable
event structures is well-known (see, e.g., [16] for a general
discussion, [2] for graph rewriting systems or [17] for the π-
calculus). One has to drop the stability requirement and replace
causality by an enabling relation `. More precisely, in the
specific case we would have ∅ ` a, ∅ ` b, {a} ` c, {b} ` c.

The questions that we try to answer is: what can be
retained of the duality between events structures and domains,
when dealing with formalisms with fusions? Which are the
properties of the domain of computations that arise in this
setting? What are the event structure counterparts?

The domain of configurations of the example suggests that
in this context an event is still a computation that cannot
be decomposed as the join of other computations. Hence, in
order theoretical terms, it is an irreducible. However, due to
unstability, irreducibles are not necessarily primes: two differ-
ent irreducibles can represent the same computation step with
different minimal enablings, in a way that an irreducible can be
included in a computation that is the join of two computations
without being included in any of the two. For instance, in
the example above, {a, c} is an irreducible, corresponding
to the execution of c enabled by a, and it is included in
{a} t {b, c} = {a, b, c}, although neither {a, c} ⊆ {a} nor
{a, c} ⊆ {b, c}. Uniqueness of decomposition of an element
in terms of (downward closed sets of) irreducibles also fails,
e.g., {a, b, c} = {a} t {b} t {a, c} = {a} t {b} t {b, c}: the
irreducibles {a, c} and {b, c} can be used interchangeably in
the decomposition of {a, b, c}.

Building on the previous observation, we introduce an
equivalence on irreducibles identifying those that can be used
interchangeably in the decompositions of an element (intu-
itively, different minimal enablings of the same computation
step). This is used to define a weaker notion of primality (up
to interchangeability) that allows us to characterise the class

of domains suited for modelling the semantics of formalisms
with fusions as the class of weak prime algebraic domains.

Given a weak prime algebraic domain, a corresponding
event structure can be obtained by taking as events the set
of irreducibles, quotiented under the (transitive closure of
the) interchangeability relation. The resulting class of event
structures is a (mild) restriction of the general event structures
in [16] that we call connected event structures. Categorically,
we get an equivalence between the category of weak prime
algebraic domains and the one of connected event structures,
generalising the equivalence between prime algebraic domains
and prime event structures.

We also show that, in the same way as prime algebraic
domains/prime event structures are exactly what is needed for
Petri nets/linear graph rewriting systems, weak prime algebraic
domains/connected event structures are exactly what is needed
for non-linear graph rewriting systems: each rewriting system
maps to a connected event structure and conversely each
connected event structure arises as the semantics of some
rewriting system. This supports the adequateness of weak
prime algebraic domains and connected event structures as
semantics structures for formalisms with fusions.

Interestingly, we can also show that the category of general
event structures [16] coreflects into our category of weak
prime algebraic domains. Therefore our notion of weak prime
algebraic domain can be seen as a novel characterisation of
the partial order of configurations of such event structures
that is alternative to those based on intervals in [21], [22]. It
represents a natural generalisation of the one for prime event
structures, with irreducibles (instead of primes) having a tight
connection with events. The correspondence is established, at
a categorical level, as a coreflection of categories: to the best of
our knowledge, this has not been done before in the literature.

As mentioned above, weak prime domains, corresponding to
possibly unstable event structures, satisfy the same conditions
as prime domains, corresponding to stable event structures, up
to an equivalence on irreducibles. This suggests the possibility
of viewing unstable event structures as stable ones up to an
equivalence on events. We show how this can be formalised
with a set up closely related to the framework of prime event
structures with equivalence recently devised in [23], [24].

Event structures and their domains have been also stud-
ied in relation with automata with concurrency [25], [26],
a form of automata endowed with a concurrency relation
on transitions (local to each state). On a similar line, the
transition graphs of prime event structures have been given
a characterisation in terms of local axioms in [27], answering
a question posed in [28]. Recently, in connection with the
abstract theory of rewriting and concurrent games, a slightly
different but equivalent characterisation has been rediscovered
in [29], where prime event structures are shown to correspond
exactly to a suitable class of asynchronous graphs. Roughly, an
asynchronous graph is a transition system where some squares
are declared to commute, meaning that the coinitial edges of
the square are concurrent and each one can follow the other.
Asynchronous graphs correspond to prime event structures that

satisfy the cube axiom, consisting of two parts: the forward
and the backward cube axioms, the latter often referred to as
the stability axiom. We show that asynchronous graphs that
verify only the forward part of the cube axiom are exactly the
transition systems of weak prime domains.

The rest of the paper is structured as follows. In Section II
we recall the basics of (prime) event structures and their cor-
respondence with prime algebraic domains. In Section III we
introduce weak prime algebraic domains and connected event
structures, and we characterise their relation categorically. In
Section IV we present a characterisation of our proposal in
terms of a formalism reminiscent of prime event structures
with equivalence of [23], [24]. We also discuss and formalise
the relation of our work with alternative characterisations
of the domains of event structures based on intervals and
on asynchronous graphs. In Section V we show the inti-
mate connection between weak prime algebraic domains (or
equivalently, connected event structures) and non-linear graph
rewriting systems. Finally, in Section VI we wrap up the main
contributions of the paper and we sketch further advances and
some connections with related works.

The paper is rounded up with an appendix extending our
characterisation results to event structures with non-binary
conflict [22]. We also discuss the relation with a proposal
based on labelled event structures for modelling the concurrent
computations of name passing process calculi [17].

This is a revised and extended version of the conference
paper [30].

II. BACKGROUND: DOMAINS AND EVENT STRUCTURES

In this section we review the basics of event structures, as
introduced in [16], and their duality with partial orders.

A. Event Structures

For the sake of presentation, we focus on event structures
with binary conflict. Most results can be easily rephrased for
event structures with non-binary conflict expressed by means
of a consistency predicate (This is explicitly discussed in
Appendix A). Given a set X we denote by 2X and 2Xfin the
powerset and the set of finite subsets of X , respectively. For
m,n ∈ N, we denote by [m,n] the set {m,m+ 1, . . . , n}.

Definition 1 (event structure) An event structure (ES for
short) is a tuple 〈E,`,#〉 such that
• E is a set of events;
• ` ⊆ 2Efin × E is the enabling relation, satisfying X ` e

and X ⊆ Y implies Y ` e;
• # ⊆ E × E is the conflict relation.

A subset X ⊆ E is consistent if ¬(e#e′) for all e, e′ ∈ X .

An ES 〈E,`,#〉 is often denoted simply by E. Computa-
tions are captured by the notion of configuration.

Definition 2 (configuration, live event structure) Let 〈E,`
,#〉 be an ES. A configuration of E is a consistent subset
C ⊆ E that is secured, i.e., such that for all e ∈ C there are
e1, . . . , en ∈ C with en = e such that {e1, . . . , ek−1} ` ek for

all k ∈ [1, n] (in particular, ∅ ` e1). The set of configurations
of an ES E is denoted by Conf (E) and the subset of finite
configurations by ConfF (E). An ES is live if conflict is
saturated, i.e., for all e, e′ ∈ E, if there is no C ∈ Conf (E)
such that {e, e′} ⊆ C then e#e′, and moreover for all e ∈ E
it holds ¬(e#e).

Remark 1 In live ES, the fact that conflict is saturated cor-
responds to inheritance of conflict in prime event structures.
Moreover, the absence of self-conflicts implies that each event
appears in some configuration (intuitively, it is executable).
In the rest of the paper, we restrict to live ES, hence the
qualification “live” is omitted.

In this setting, two events are concurrent when they are
consistent and enabled by the same configuration.

Since the enabling predicate is over finite sets of events, we
can consider minimal sets of events enabling a given one.

Definition 3 (minimal enabling) Let 〈E,`,#〉 be an ES.
Given a configuration C ∈ Conf (E) and an event e ∈ E
we write C `0 e and call it a minimal enabling for e, when
C∪{e} ∈ Conf (E) (hence C∪{e} consistent and C ` e), and
for any other configuration C ′ ⊆ C, if C ′ ` e then C ′ = C.

The classes of stable and prime ES represent our starting
point and play an important role in the paper.

Definition 4 (stable and prime event structures) An ES
〈E,`,#〉 is stable if X ` e, Y ` e, and X ∪ Y ∪ {e}
consistent imply X ∩ Y ` e. It is prime if X ` e and Y ` e
imply X ∩ Y ` e.

For stable ES, given a configuration C and an event e ∈ C,
there is a unique minimal configuration C ′ ⊆ C such that
C ′ `0 e. The set C ′ can be seen as the set of causes of
the event e in the configuration C. This gives a well-defined
notion of causality that is local to each configuration. In a
prime ES, for any event e there is a unique minimal enabling
C `0 e, thus providing a global notion of causality. In general,
in possibly unstable ES, due to the presence of consistent or-
enablings, there might be distinct minimal enablings in the
same configuration.

Example 1 A simple example of unstable ES is the one asso-
ciated with the running example discussed in the introduction
(see Fig. 2). The set of events is {a, b, c}, the conflict relation
is the empty one and the minimal enablings are ∅ `0 a,
∅ `0 b, {a} `0 c, and {b} `0 c. Thus, event c has two
minimal enablings and these are consistent, hence {a, b} ` c.
The corresponding configurations are reported in Fig. 2c.

The class of ES can be turned into a category.

Definition 5 (category of event structures) A morphism of
ES f : E1 → E2 is a partial function f : E1 → E2 such that
for all C1 ∈ Conf (E1) and e1, e

′
1 ∈ E1 with f(e1), f(e′1)

defined
• if f(e1)#f(e′1) then e1#e′1;
• if f(e1) = f(e′1) then e1 = e′1 or e1#e′1;

• if C1 `1 e1 then f(C1) `2 f(e1).
We denote by ES the category of ES and their morphisms and
by sES and pES, respectively, the full subcategories of stable
and prime ES.

B. Domains
A preordered or partially ordered set 〈D,v〉 is often denoted

simply as D, omitting the (pre)order relation. We denote by
� the immediate predecessor relation, i.e., for x, y ∈ D, we
write x � y whenever x v y and for all z ∈ D if x v z v y
then z ∈ {x, y}. A subset X ⊆ D is consistent if it has an
upper bound d ∈ D (i.e., x v d for all x ∈ X), while it
is pairwise consistent if every two elements subset of X is
consistent. A subset X ⊆ D is directed if X 6= ∅ and every
pair of elements in X has an upper bound in X . We say that
D is complete if every directed subset has a least upper bound
in D.

A subset X ⊆ D is an ideal if it is directed and downward
closed. Given an element x ∈ D, we write ↓x to denote the
principal ideal {y ∈ D | y v x} generated by x. Given a
partial order D, its ideal completion, denoted by Idl(D), is
the set of ideals of D, ordered by subset inclusion. The least
upper bound and the greatest lower bound of a subset X ⊆ D
(if they exist) are denoted by

⊔
X and

d
X , respectively.

Definition 6 (domains) A partial order D is coherent if for
all pairwise consistent X ⊆ D the least upper bound

⊔
X

exists. An element d ∈ D is compact if for all directed
X ⊆ D, d v

⊔
X implies d v x for some x ∈ X . The set

of compact elements of D is denoted by K(D). A coherent
partial order D is algebraic if for every x ∈ D we have
x =

⊔
(↓x∩K(D)). We say that D is finitary if for every

element a ∈ K(D) the set ↓a is finite. We refer to algebraic
finitary coherent partially ordered sets as domains.

Note that every domain has a bottom element (indeed ⊥ =⊔
∅), and that in a domain all non-empty subsets have a meet.

In fact, if ∅ 6= X ⊆ D, then
d
X =

⊔
L(X) where L(X) =

{y | ∀x ∈ X. y v x} is the set of lowerbounds of X , which
is pairwise consistent since it is dominated by any x ∈ X .
And it is easy to see that finite joins of compact elements are
compact.

For a domain D we can think of its elements as “pieces of
information” expressing the states of evolution of a process.
Compact elements represent states that are reached after a
finite number of steps. Thus algebraicity essentially says
that infinite computations can be approximated with arbitrary
precision by finite ones. More formally, when D is algebraic,
it is determined by K(D), i.e., D ' Idl(K(D)).

For an ES, the configurations ordered by subset inclusion
form a domain. When the ES is stable, if a minimal enabling
is included in the join of different configurations, then it is
necessarily included in one of the configurations. In order-
theoretic terms, minimal enablings are prime elements, and
thus they represent the building blocks of computations.

Definition 7 (primes and prime algebraicity) Let D be a
domain. A complete prime is an element p ∈ D such that

for any pairwise consistent X ⊆ D, if p v
⊔
X then p v x

for some x ∈ X . The set of complete prime elements of D
is denoted by pr(D). The domain D is prime algebraic (or
simply prime) if for all x ∈ D we have x =

⊔
(↓x∩ pr(D)).

Prime domains can be also characterised as coherent finitary
distributive complete partial orders [16]. Note that complete
primes are compact (since each directed set is pairwise consis-
tent). Since we will only use complete primes, the qualification
“complete” will be omitted.

Prime domains are the domain theoretical counterpart of
stable and prime ES. For a stable ES 〈E,#,`〉, the partial
order 〈Conf (E),⊆〉 is a prime domain, denoted DS(E).
Conversely, given a prime domain D, the triple 〈pr(D),#,`〉,
where p#p′ if {p, p′} is not consistent and X ` p when
(↓p∩ pr(D)) \ {p} ⊆ X , is a prime ES, denoted ES(D).

This correspondence can be elegantly formulated at the cat-
egorical level [16]. We recall the notion of domain morphism.

Definition 8 (category of prime domains) Let D1, D2 be
prime domains. A morphism f : D1 → D2 is a total function
such that for all consistent X1 ⊆ D1 and d1, d

′
1 ∈ D1

1) if d1 � d′1 then f(d1) � f(d′1);
2) f(

⊔
X1) =

⊔
f(X1);

3) if X1 6= ∅ then f(
d
X1) =

d
f(X1);

We denote by pDom the category of prime domains and their
morphisms.

The correspondence is then captured by the result below.

Theorem 1 (duality) There are functors DS : sES → pDom
and ES : pDom→ sES establishing a coreflection. It restricts
to an equivalence of categories between pDom and pES.

III. WEAK PRIME DOMAINS AND CONNECTED EVENT
STRUCTURES

In this section we show that, relaxing the stability assump-
tion, we can generalise the duality result described in the
previous section, linking suitably defined classes of domains
and ES. These can be proven to properly capture the semantics
of computational formalisms with fusions.

A. Weak Prime Algebraic Domains

We show that domains arising in absence of stability can
be characterised by resorting to a weakened notion of prime
element. We start recalling the notion of irreducible element.

Definition 9 (irreducibles) Let D be a domain. A complete
irreducible of D is an element x ∈ D such that, for any
pairwise consistent X ⊆ D, if x =

⊔
X then x ∈ X . The set

of complete irreducibles of D is denoted by ir(D) and, for
d ∈ D, we define ir(d) = ↓d∩ ir(D).

Observe that complete irreducibles in a domain are compact.
In fact, if i is a complete irreducible, by algebraicity, i =⊔
↓ i∩K(D) whence i ∈ ↓ i∩K(D). Conversely, we have the

following.

Lemma 1 (irreducibility and compactness) Let D be a do-
main. If d ∈ K(D) then d is a complete irreducible iff for all
x, y ∈ D, consistent, d = x t y implies d = x or d = y.

Proof: Let d ∈ K(D). Assume that for all x, y ∈ D,
consistent, d = x t y implies d = x or d = y. Assume
that d =

⊔
X for some pairwise consistent X . It is easy to

see that X ′ = {
⊔
Y | Y ∈ 2Xfin} is directed and moreover⊔

X ′ =
⊔
X = d. Since d is compact, there is x′ ∈ X ′ such

that d v x′, hence d = x′. By definition of X ′, this means
that there exists Y ∈ 2Xfin such that d =

⊔
Y . Now, using the

hypothesis, an inductive reasoning allows us to conclude that
d ∈ Y ⊆ X , as desired.

The converse implication is trivial: if d ∈ ir(D) and d v
x t y then, by definition of complete irreducible, d ∈ {x, y},
i.e., either d = x or d = y, as desired.

Since in this paper we will refer only to complete irre-
ducibles, the qualification “complete” will be omitted.

Irreducibles in domains have a simple characterisation.

Lemma 2 (unique predecessor for irreducibles) Let D be
a domain and i ∈ D. Then i ∈ ir(D) iff it has a unique
immediate predecessor.

Proof: Assume that i ∈ D has a unique immediate
predecessor d ≺ i, and let X ⊆ D be pairwise consistent
and such that i =

⊔
X . Hence for any x ∈ X we have

x v i. Assume by contradiction that i 6∈ X . This implies
that for all elements x ∈ X we have x v d, and therefore
i =

⊔
X v d ≺ i, which is a contradiction. Hence it must be

i ∈ X , which means that i is irreducible.
Vice versa, let i be irreducible and let d1, d2 ≺ i be

immediate predecessors. Since D is a domain and {d1, d2} is
consistent, we can take d = d1td2 and we know d1 v d v i.
Since i is irreducible it cannot be d = i, therefore d = d1 and
thus d1 = d2. Thus we conclude that i has a unique immediate
predecessor.

The unique predecessor of an irreducible will play an
important role, hence we introduce a notation.

Definition 10 (immediate predecessor) Let D be a domain
and i ∈ ir(D). We denote by p(i) the (unique) immediate
predecessor of i.

We next observe that any domain is actually irreducible
algebraic, namely it can be generated by the irreducibles.

Proposition 1 (domains are irreducible algebraic) Let D
be a domain. Then for any d ∈ D it holds d =

⊔
ir(d).

Proof: We first prove that for any compact element
d ∈ K(D) it holds that d =

⊔
(↓d∩ ir(D)). The thesis

then immediately follows from algebraicity of D. Since D is
a domain, ↓d is finite, hence we can proceed by induction
on | ↓d |. When | ↓d | = 1, we have that d = ⊥, hence
↓d∩ ir(D) = ∅ and indeed ⊥ =

⊔
∅. When | ↓d | = k > 1

consider the immediate predecessors of d and denote them
d1, . . . , dn ≺ d. Since D is a domain and {d1, . . . , dn} is

consistent, there exists
⊔
{d1, . . . , dn} = d′ and di v d′ v d.

There are two cases

• d′ = di, for all i ∈ [1, n], i.e., d has a unique immediate
predecessor, hence it is an irreducible and thus clearly
d =

⊔
(↓d∩ ir(D)) or

• d = d′ =
⊔
{d1, . . . , dn}. Since, in turn, by inductive

hypothesis di =
⊔

(↓di ∩ ir(D)) and ↓d∩ ir(D) =⋃n
i=1(↓di ∩ ir(D)), we immediately get the thesis.

We next observe that every prime is an irreducible and,
if D is a prime domain, then also the converse holds, i.e.,
irreducibles coincide with primes.

Proposition 2 (irreducibles vs. primes) Let D be a domain.
Then pr(D) ⊆ ir(D). Moreover, D is a prime domain iff
pr(D) = ir(D).

Proof: Let D be a domain. We show that pr(D) ⊆ ir(D).
Let d ∈ pr(D). Assume that d =

⊔
X for some pairwise

consistent set X . By primality, since d v
⊔
X there must be

x ∈ X such that d v x. We have also x v
⊔
X = d and thus

d = x ∈ X .

For the second part, let us assume that D is a prime domain.
We have to prove that pr(D) = ir(D). We already know that
pr(D) ⊆ ir(D). For the converse inclusion, let i ∈ ir(D). By
prime algebraicity i =

⊔
(↓ i∩ pr(D)). Since i is irreducible,

there exists p ∈ ↓ i∩ pr(D) such that i = p, hence i is a
prime.

Vice versa, if D is a domain, by Proposition 1 we know
that D is irreducible algebraic. Hence, if pr(D) = ir(D), we
immediately conclude that D is prime.

Quite intuitively, in the domain of configurations of an ES
the irreducibles are minimal enablings of events. For instance,
in the domain depicted in Fig. 2c the irreducibles are {a},
{b}, {a, c}, and {b, c}. For stable ES, the domain is prime and
thus, as observed above, irreducibles coincide with primes.
This fails in unstable ES, as we can see in our running example:
while {a} and {b} are primes, the two minimal enablings of c,
namely {a, c} and {b, c}, are not. In fact, {a, c} ⊆ {a}t{b, c},
but neither {a, c} ⊆ {a} nor {a, c} ⊆ {b, c}.

The key observation is that in general an event corresponds
to a class of irreducibles, like {a, c} and {b, c} in our
example. Additionally, two irreducibles corresponding to the
same event can be used, to a certain extent, interchangeably
for building the same configuration. For instance, {a, b, c} =
{a, b} t {a, c} = {a, b} t {b, c}. We next formalise this
intuition, i.e., we interpret irreducibles in a domain as minimal
enablings of some event and we identify classes of irreducibles
corresponding to the same event.

We start by observing that, in a prime domain, any element
admits a unique decomposition in terms of downward closed
sets of irreducibles (or, equivalently, of primes).

Lemma 3 (unique decomposition in prime domains) Let
D be a prime domain and let X,X ′ ⊆ ir(D) be downward
closed sets of irreducibles. If

⊔
X =

⊔
X ′ then X = X ′.

Proof: Let X,X ′ ⊆ ir(D) be downward closed sets of
irreducibles such that

⊔
X =

⊔
X ′. Take any i′ ∈ X ′. Then

i′ v
⊔
X . Since the domain is prime algebraic, and thus i′

is prime, there must exist i ∈ X such that i′ v i and thus
i′ ∈ X . Therefore X ′ ⊆ X . By symmetry also the converse
inclusion holds, whence equality.

The result above no longer holds in domains arising in
the presence of fusions. For instance, in the domain in
Fig. 2c, X = {{a}, {b}, {a, c}}, X ′ = {{a}, {b}, {b, c}}
and X ′′ = {{a}, {b}, {b, c}, {a, c}} are all decompositions
for {a, b, c}. The idea is to identify irreducibles that can be
used interchangeably in a decomposition.

Definition 11 (interchangeability) Let D be a domain and
i, i′ ∈ ir(D). We write i↔ i′ if {i, i′} consistent and for all
X ⊆ ir(D) such that X ∪ {i} and X ∪ {i′} are downward
closed and consistent we have

⊔
(X ∪ {i}) =

⊔
(X ∪ {i′}).

In words, i ↔ i′ means that i and i′ produce the same
effect when added to a decomposition that already includes
their predecessors. Hence, intuitively, i and i′ correspond to
the execution of the same event with different and consistent
enablings.

We first observe that distinct irreducibles related by the
interchangeability relation are necessarily incomparable.

Lemma 4 (↔ vs v) Let D be a domain and let i, i′ ∈
ir(D). If i↔ i′ and i v i′ then i = i′.

Proof:
Let i↔ i′ and i v i′. If i 6= i′ and we let X = ir(p(i′)), it

turns out that X ∪ {i} = X and X ∪ {i′} are consistent and
downward closed. Moreover

⊔
X ∪ {i} =

⊔
X = p(i′) 6=⊔

X ∪ {i′} = i′, contradicting i↔ i′.
We next give some characterisations of interchangeability.

Lemma 5 (characterising ↔) Let D be a domain and i, i′ ∈
ir(D). Then the following are equivalent

1) i↔ i′;
2) {i, i′} consistent and for all d ∈ K(D) if p(i), p(i′) v d

then d t i = d t i′;
3) {i, i′} consistent and i t p(i′) = p(i) t i′.

Proof:
(1 → 2) Assume that i ↔ i′. By definition, {i, i′} is

consistent. Let d ∈ K(D) be such that p(i), p(i′) v d. If
we let X = ir(d) we have that ir(i) \{i} ⊆ X and similarly
ir(i′) \{i′} ⊆ X . This implies that X ∪ {i} and X ∪ {i′} are
downward closed and consistent. Hence d t i =

⊔
X t i =⊔

(X ∪ {i}) =
⊔

(X ∪ {i′}) =
⊔
X t i′ = d t i′.

(2→ 3) Assume (2). Let p = p(i)tp(i′), which is in K(D)
since p(i), p(i′) ∈ K(D). Clearly, p(i), p(i′) v p. Therefore
itp(i′) = itp(i)tp(i′) = itp = pt i′ = p(i)tp(i′)t i′ =
p(i) t i′.

(3 → 1) Assume (3). Let X ⊆ ir(D) be such that X ∪
{i} and X ∪ {i′} are downward closed and consistent sets
of irreducibles. This implies that ir(p(i)) ⊆ X and similarly

⊥

p(i) p(i1) p(i′)

i • i1 • i′

• •

Fig. 4: Interchangeability need not be transitive.

⊥

p(i) p(i1) p(i2) p(i′)

i
p(i) t p(i1)

i1
p(i1) t p(i2)

i2
p(i2) t p(i′)

i′

i t i1 i1 t i2 i2 t i′

i t p(i′) p(i) t i′

p(i) t p(i′)

i t i′

Fig. 5: A domain which is not interchangeable , since Defini-
tion 12(1) is violated.

ir(p(i′)) ⊆ X . Hence, if we let P = ir(p(i))∪ ir(p(i′)), we
have

P ⊆ X and
⊔
P = p(i) t p(i′).

Therefore ⊔
(X ∪ {i}) =
= (

⊔
X \ P) t

⊔
P t i =

= (
⊔
X \ P) t p(i) t p(i′) t i =

= (
⊔
X \ P) t i t p(i′) =

= (
⊔
X \ P) t p(i) t i′ =

= (
⊔
X \ P) t p(i) t p(i′) t i′ =

= (
⊔
X \ P) t

⊔
P t i′ =

=
⊔

(X ∪ {i′})

The interchangeability relation is clearly reflexive and sym-
metric, but not transitive in general: in the domain of Fig. 4,
using the characterisation in Lemma 5(3) one can easily see
that i↔ i1 and i1 ↔ i′ but not i↔ i′, simply because {i, i′}
is not consistent. More interestingly, in the domain of Fig. 5,
we have i ↔ i1, i1 ↔ i2, i2 ↔ i′, hence i ↔∗ i′. However,
despite the fact that {i, i′} is consistent, it does not hold i↔ i′,
since p(i) t i′ 6= i t p(i′). This shows that the intuition that
interchangeable irreducibles correspond to the execution of the
same event with different and consistent enablings is still not
properly captured. Since i and i′ represent the execution of
the same event and they are consistent, one would expect that
they are interchangeable.

The next definition formalises two additional properties that
a domain must enjoy to provide ↔ the intended meaning.

Definition 12 (interchangeable domain) Let D be a do-
main. We say that D is interchangeable when

⊥

p(i′) p(i) p(j) p(j′)

i′

p(i′) t p(i)

i
p(i) t p(j)

j

p(j) t p(j′)

j′

i′ t i
i t p(j) j t p(i)

j t j′

i′ t p(j′) p(i′) t j′

p(i′) t p(j′)

i′ t j′

Fig. 6: A domain which is not interchangeable, since Defini-
tion 12(2) is violated.

1) for all i, i′ ∈ ir(D), if {p(i), p(i′)} consistent and i↔∗
i′ then i↔ i′;

2) for all i, i′, j, j′ ∈ ir(D), if i↔∗ i′, j ↔∗ j′, and {i′, j′},
{p(i), j}, {p(j), i} consistent then {i, j} consistent.

Property (1) is motivated by the discussion above. It intu-
itively asks that whenever i and i′ represents the execution
of the same event and they are consistent, then they are
interchangeable. Property (2) can be read as follows: if i, i′

and j, j′ represent the same events and i′, j′ are consistent,
the only source of inconsistency between i and j is in their
enablings. In other words, either i and j are consistent or it
must be that p(i) is inconsistent with j, or i is inconsistent
with p(j). A situation in which this property fails is illustrated
in Fig. 6.

We now introduce weak primes: they weaken the property of
prime elements, requiring that it holds up to interchangeability.

Definition 13 (weak prime) Let D be a domain. A weak
prime of D is an element i ∈ ir(D) such that for all pairwise
consistent X ⊆ D, if i v

⊔
X then there exist i′ ∈ ir(D) and

d ∈ X such that i ↔ i′ and i′ v d. We denote by wpr(D)
the set of weak primes of D.

Clearly, since interchangeability is reflexive, any prime is
a weak prime. Moreover, in prime domains interchangeability
turns out to be the identity and thus also the converse holds.

Lemma 6 (weak primes in prime domains) Let D be a
prime domain. Then ↔ is the identity and wpr(D) = pr(D).

Proof: Let i, i′ ∈ ir(D) be such that i↔ i′.
If i and i′ are comparable, i.e., i v i′ or i′ v i, by Lemma 4

we deduce i = i′ and we are done.
Otherwise, let X = (ir(i) \{i}) ∪ (ir(i′) \{i′}). Note that

X∪{i} and X∪{i′} are consistent, since, by definition of↔,
i and i′ are so. Moreover X ∪{i} and X ∪{i′} are downward
closed, and thus, from i ↔ i′, we deduce

⊔
(X ∪ {i}) =⊔

(X ∪ {i′}). Since D is prime, by Lemma 3, this implies
that X ∪ {i} = X ∪ {i′}. Since i and i′ are uncomparable,
i, i′ 6∈ X and we conclude i = i′.

We argue that the domain of configurations arising in the
presence of fusions can be characterised domain-theoretically

as interchangeable domains where all irreducibles are weak
primes, i.e., that the domain is algebraic with respect to weak
primes.

Definition 14 (weak prime algebraic domains) Let D be
an interchangeable domain. It is weak prime algebraic (or
simply weak prime) if for all d ∈ D it holds d =⊔

(↓d∩wpr(D)).

Observe that weak prime domains are assumed to be in-
terchangeable. This hypothesis will actually play a role only
when relating weak prime domains and event structures in
Section III-C. However, in order to simplify the presentation
we preferred to assume it since the beginning.

In the same way as prime domains are domains where all
irreducibles are primes (see Proposition 2), we can provide a
characterisation of weak prime domains in terms of coinci-
dence between irreducibles and weak primes.

Proposition 3 (weak prime domains, again) Let D be an
interchangeable domain. It is weak prime iff all irreducibles
are weak primes.

Proof: Let D be an interchangeable domain. We know,
by Lemma 1, that D is irreducible algebraic. If all irreducibles
are weak primes, then clearly D is also weak prime algebraic.
Conversely, if it is weak prime algebraic, then for any irre-
ducible i ∈ ir(D), we have that i =

⊔
(↓ i∩wpr(D)). Since

i is irreducible, this implies i ∈ ↓ i∩wpr(D) ⊆ wpr(D), as
desired.

A domain is often built as the ideal completion of its
compact elements. We next provide a characterisation of
domains and weak prime domains based on the generators.

Lemma 7 (weak prime domains from generators)
Let (P,v) be a finitary partial order such that for all
d, d′, d′′ ∈ P , if {d, d′, d′′} is pairwise consistent then d t d′
exists and is consistent with d′′. Then Idl(P) is a domain
with K(Idl(P)) = {↓d | d ∈ P} ' P .

Additionally, let P be interchangeable and for all i ∈ ir(P),
d, d′ ∈ P consistent, if i v d t d′ then there is i′ ∈ ir(P),
i ↔ i′ such that i′ v d or i′ v d′. Then Idl(P) is a weak
prime domain.

Proof: Let (P,v) be a finitary partial order such that for
all d, d′, d′ ∈ P ′, if {d, d′, d′′} is pairwise consistent then dtd′
exists and is consistent with d′′.

The fact that Idl(P) is a complete algebraic finitary partial
order with K(Idl(P)) = {↓d | d ∈ P} ' P is a standard
result. Moreover, let X ⊆ Idl(P) pairwise consistent. Consider
A =

⋃
{I | I ∈ X}. Observe that for any finite Y ⊆ A there

exists
⊔
Y in P . In fact, let Y = {y1, . . . , yn}. This means that

there are I1, . . . , In such that yi ∈ Ii for each i ∈ [1, n]. Since
X is pairwise consistent in Idl(P), we deduce that Y is pair-
wise consistent in P . Since y1, y2 are consistent and both are
consistent with y3, . . . , yn, by hypothesis there exists y1 t y2

and it is consistent with y3, . . . , yn, i.e., {y1 t y2, y3, . . . , yn}
is again pairwise consistent. Iterating the reasoning we get the
existence of y1 t y2 t . . . t yn =

⊔
Y , as desired. Now, if

we define I ′ = {
⊔
Y | Y ⊆fin A}, then I ′ is an ideal and

I ′ =
⊔
X .

Let us consider the second part. It is easy to see that
ir(Idl(P)) = {↓ i | i ∈ ir(P)}. Moreover, for i, i′ ∈ ir(P)
we have i ↔ i′ in P if and only if ↓ i ↔ ↓ i′ in Idl(P). This
immediately implies that Idl(P) is interchangeable, because so
is P by assumption.

We need to show that, under the hypotheses, if I ∈
ir(Idl(P)) and X ⊆ Idl(P) pairwise consistent and I ⊆

⊔
X

then there exists I ′ ↔ I and A ∈ X such that I ′ ⊆ A.
Thus let I = ↓ i for some i ∈ ir(P). The fact that
I = ↓ i ⊆

⊔
X =

⊔
{↓d | d ∈

⋃
X}, since ↓ i is finite,

means that ↓ i ⊆ ↓d1 ∪ . . . ∪ ↓dn for some finite subset
{d1, . . . , dn} ⊆

⋃
X and thus i v

⊔
{d1, . . . , dn}. Since

i v d1t
⊔
{d2, . . . , dn}, by the hypothesis there is i1 ↔ i such

that i1 v d1 or i1 v
⊔
{d2, . . . , dn} = d2 t

⊔
{d3, . . . , dn}.

In the second case, again by the hypotheses, there are two
possibilities. The first is that there is i2 ↔ i1, such that
i2 v d2. Note that, since p(i) and p(i2) are clearly consistent
(they are dominated by

⊔
{d1, . . . , dn}), by property (1) of

well-interchangeability (Definition 12), we get i2 ↔ i. The
second possibility is that i2 v

⊔
{d3, . . . , dn}, and we can

iterate the reasoning. In the end, we get the existence of
some i′ ↔ i and j ∈ [1, n] such that i′ v dj . Recalling
that dj ∈

⋃
X , there is A ∈ X such that dj ∈ A, hence

↓ i′ ⊆ ↓dj ⊆ A. Since i ↔ i′ in P implies ↓ i ↔ ↓ i′ in
Idl(P), we conclude.

We finally introduce a category of weak prime domains by
defining a notion of morphism.

Definition 15 (category of weak prime domains) Let D1,
D2 be weak prime domains. A weak prime domain morphism
f : D1 → D2 is a total function such that for all consistent
X1 ⊆ D1 and d1, d

′
1 ∈ D1

1) if d1 � d′1 then f(d1) � f(d′1);
2) f(

⊔
X1) =

⊔
f(X1);

3) if d1, d
′
1 consistent and d1 u d′1 � d1 then f(d1 u d′1) =

f(d1) u f(d′1);
We denote by wDom the category of weak prime domains and
their morphisms.

Compared with the notion of morphism for prime domains
in Definition 8 (from [16]), we still require the preservation of
� and t of consistent sets (conditions (1) and (2)). However,
the third condition, i.e., preservation of u, is weakened to
preservation in some cases. General preservation of meets is
indeed not expected in the presence of fusions. Consider, e.g.,
the ES in Example 1. Take another ES E′ = {c} with ∅ ` c and
the morphism f : E → E′ that forgets a and b, i.e., f(c) = c
and f(a), f(b) undefined. Then f({a, c})u f({b, c}) = {c}u
{c} = {c} 6= f({a, c} u {b, c}) = f(∅) = ∅. Intuitively, the
condition d1ud′1 ≺ d1 means that d′1 includes the computation
modelled by d1 apart from a final step, hence d1ud′1 coincides
with d1 when such step is removed. Since domain morphisms
preserve immediate precedence (i.e., single steps), also f(d1)
differs from f(d′1) for the execution of a final step and the

meet f(d1) u f(d′1) is f(d1) without such step, and thus it
coincides with f(d1 u d′1).

In general we only have

f(
d
X1) v

d
f(X1)

In fact, for all x1 ∈ X1, we have
d
X1 v x1, hence

f(
d
X1) v f(x1) and thus f(

d
X1) v

d
f(X1). Still, when

restricted to prime domains, also the converse inequality holds
and our notion of morphism boils down to the original one,
i.e., the full subcategory of wDom having prime domains as
objects is pDom.

Theorem 2 (pDom as a subcategory of wDom) The cate-
gory of prime domains pDom is the full subcategory of wDom
having prime domains as objects.

Proof: We just need to show that weak prime domain
morphisms preserve meets on prime domains, i.e., that if D1,
D2 are prime domains and f : D1 → D2 is a weak prime
domain morphism then f(

d
X1) =

d
f(X1) for all X1 ⊆ D1

pairwise consistent.
We first show that for d1, d

′
1 ∈ K(D1), consistent, it holds

that f(d1 u d′1) = f(d1)u f(d′1). We proceed by induction on
k = | ↓d1 ∩ pr(D) |.

When k = 0 we have d1 = ⊥. Since f preserves joins, we
have that f(⊥) = f(

⊔
∅) =

⊔
f(∅) =

⊔
∅ = ⊥. Hence

f(d1 u d′1) = f(⊥ u d′1) = f(⊥) = ⊥ = ⊥ u f(d′1) =
f(⊥) u f(d′1) = f(d1) u f(d′1).

Suppose now k > 0. We distinguish two subcases. If d1

is not prime then, recalling that in a prime domain, primes
and irreducibles coincide, d1 is not irreducible and thus d1 =
e1 t f1 with d1 6= e1, f1 6= ⊥. It is immediate to see that
| ↓e1 ∩ pr(D) | < k and | ↓f1 ∩ pr(D) | < k. Moreover, since
any prime algebraic domain is distributive we have d1 u d′1 =
(e1 t f1) u d′1 = (e1 u d′1) t (f1 u d′1). Summing up

f(d1 u d′1) =

= f((e1 u d′1) t (f1 u d′1))

[Preservation of t]

= f(e1 u d′1) t f(f1 u d′1)

[Inductive hypothesis]

= (f(e1) u f(d′1)) t (f(f1) u f(d′1))

[Distributivity]

= (f(e1) t f(f1)) u f(d′1)

[Preservation of t]

= f(e1 t f1) u f(d′1) =

= f(d1) u f(d′1)

If instead d1 is prime then note that if d1 v d′1 the thesis
is immediate: by monotonicity f(d1) v f(d′1). Thus f(d1 u
d′1) = f(d1) = f(d1) u f(d′1) as desired. Therefore, let us
assume that d1 6v d′1. In this case d1 u d′1 = p(d1)u d′1, since

the set of lower bounds of {d1, d
′
1} and of {p(d1), d′1} is the

same. Observe that

p(d1) = d1 u (p(d1) t d′1) (1)

In fact, the join exists since d1, d′1 are consistent. Moreover,
by distributivity, d1u(p(d1)td′1) = (d1up(d1))t(d1ud′1) =
p(d1) t (p(d1) u d′1) = p(d1).

Therefore

f(d1 u d′1) =

= f(p(d1) u d′1)

[Inductive hypothesis]

= f(p(d1)) u f(d′1)

[Using (1)]

= f(d1 u (p(d1) t d′1)) u f(d′1)

[By Definition 15(3)]

= f(d1) u f(p(d1) t d′1)) u f(d′1)

[Preservation of t]

= f(d1) u f(d′1)

as desired. This extends to the meet of finite sets of compact
elements, by associativity of u, and to infinite sets of compacts
by observing that, given an infinite set X , by finitariness we
can identify a finite subset F ⊆ X such that

d
X =

d
F . The

last assertion can be proved by induction on k = min{| ↓d | :
d ∈ X}. In fact, let d ∈ X be an element such that | ↓d | = k.
If k = 1 then d = ⊥ and thus

d
X = ⊥ =

d
{d}, as desired.

If k > 1, then we distinguish two possibilities. If for all d′ ∈ X
it holds d u d′ = d then

d
X = d =

d
{d}. If instead, there

is d′ ∈ X such that d u d′ @ d then recall that the meet of
compact elements is compact and consider X ′ = X ∪ {d u
d′}. We have that

d
X =

d
X ′. Moreover | ↓d u d′ | < k,

hence we can apply the inductive hypothesis to X ′ and get a
finite subset F ′ ⊆ X ′ such that

d
X ′ =

d
F ′. We conclude

observing that
d
X =

d
X ′ =

d
F ′ =

d
((F ′ \ {d u d′}) ∪

{d, d′}). Therefore we can take F = (F ′ \ {du d′})∪ {d, d′}
and we conclude.

B. From Event Structures to Weak Prime Domains

We show that the set of configurations of an ES, ordered
by subset inclusion, is a weak prime domain where the
compact elements are the finite configurations. Moreover, the
correspondence can be lifted to a functor. We also identify a
subclass of ES that we call connected ES and that are the exact
counterpart of weak prime domains (in the same way as prime
ES correspond to prime algebraic domains).

Definition 16 (configurations of an event structure, ordered)
Let E be an ES. We define D(E) = 〈Conf (E),⊆〉.
Given an ES morphism f : E1 → E2, its
image D(f) : D(E1) → D(E2) is defined as
D(f)(C1) = {f(e1) | e1 ∈ C1}.

We need some technical facts, collected in the following
lemma. Recall that in the setting of unstable ES we can

have distinct consistent minimal enablings for an event. The
following notation will be useful.

Definition 17 (connected enablings) Let E be an ES,
C,C ′ ∈ Conf (E) and e ∈ E. When C `0 e, C ′ `0 e, and
C ∪ C ′ ∪ {e} is consistent, we write C e

_ C ′. We denote by
e
_
∗

the transitive closure of the relation e
_.

Note that, whenever C `0 e and C ′ `0 e, requiring C ∪
C ′ ∪ {e} consistent amounts to require C ∪ C ′ consistent,
since conflict is binary.

Lemma 8 (properties of the domain of configurations)
Let 〈E,`, Con〉 be an ES. Then

1) D(E) is a domain, K(D(E)) = ConfF (E), join is union
and C ≺ C ′ iff C ′ = C ∪ {e} for some e ∈ E \ C;

2) C ∈ Conf (E) is irreducible iff C = C ′ ∪{e} and C ′ `0

e; in this case we denote C as 〈C ′, e〉;
3) for C ∈ Conf (E), we have ir(C) = {〈C ′, e′〉 | e′ ∈

C ∧ C ′ ⊆ C ∧ C ′ `0 e
′}; moreover p(〈C ′, e′〉) = C ′;

4) for 〈C1, e1〉, 〈C2, e2〉 ∈ ir(D(E)), we have 〈C1, e1〉 ↔
〈C2, e2〉 iff e = e1 = e2 and C1

e
_ C2;

5) D(E) is interchangeable.

Proof:

1) We first observe that, given a pairwise consistent set
of configurations X ⊆ Conf (E), the join is the union⊔
X =

⋃
X . The fact that

⋃
X is a configuration, i.e.,

that it is consistent and secured immediately follows from
the fact that each C ∈ X is.
Let C ∈ Conf (E) be a configuration. For every event
e ∈ E, since C is secured, we can consider a set Ce =
{e1, . . . , en} ⊆ C such that en = e and {e1, . . . , ek−1} `
ek for all k ∈ [1, n]. It is immediate to see that Ce ∈
ConfF (E) and clearly C =

⊔
e∈C Ce.

From the above it is almost immediate to conclude that
the compact elements of D(E) are the finite configura-
tions K(D(E)) = ConfF (E) and that D(E) is algebraic.
Moreover, D(E) is finitary, since the number of subsets
of a finite configurations is clearly finite. Hence D(E) is
a domain.
Concerning immediate precedence, let C,C ′ ∈
ConfF (E). If C ′ = C ∪ {e} with e 6∈ C then
clearly C ≺ C ′, since the order is subset inclusion.
Conversely, if C ≺ C ′ by definition C ⊆ C ′ and it
must be |C ′ \ C| = 1. In fact, C ⊆ C ′ and C 6= C ′,
hence C ′ \ C 6= ∅. Let e, e′ ∈ C ′ \ C. Let us prove
that e = e′. Since C ′ is secured there is a set of
events D = {e1, . . . , en} ⊆ C ′, such that en = e
and {e1, . . . , ek−1} ` ek for all k ∈ [1, n]. Now, if
e′ 6∈ D, observe that C ∪ D is a configuration and
C ⊂ C ∪ D ⊂ C ′, contradicting C ≺ C ′. Assume that,
instead, e′ ∈ D. If e′ = ek for k < n we would have
that D′ = {e1, . . . , ek} is a configuration and we could
replace D by D′ in the contradiction above. Hence it
must be e = e′, as desired.

2) Let C ∈ Conf (E) be a configuration and assume that
C = C ′ ∪ {e} with C ′ `0 e. Then C is a finite
configuration, and thus a compact element. Moreover, if
C = C1 ∪C2 for C1, C2 ∈ Conf (E), then e must occur
either in C1 or in C2. If e ∈ C1, since C1 is secured,
there exists C ′1 ⊆ C1 \ {e} such that C ′1 ` e. Hence, by
monotonicity of enabling, C1 \ {e} ` e. Since C ′ `0 e
and C1 \{e} ⊆ C ′ it follows that C1 \{e} = C ′ and thus
C1 = C. Therefore, by Lemma 1, C is an irreducible.
Vice versa, let C ∈ Conf (E) be an irreducible. It is
compact, hence finite. Hence we can consider a secured
execution 〈e1, . . . , en〉 of configuration C. Note that for
any k ∈ [1, n− 1] it must be {e1, . . . , ek−1} 6` en.
Otherwise, if it were {e1, . . . , ek−1} ` en for some
k ∈ [1, n− 1], we would have that C ′ = {e1, . . . , ek, en}
and C ′′ = {e1, . . . , en−1} are two proper subconfig-
urations of C such that C = C ′ ∪ C ′′, violating the
fact that C is irreducible. But this means exactly that
{e1, . . . , en−1} `0 en, as desired.

3) Immediate.

4) Let Ij = 〈Cj , ej〉 ∈ ir(D(E)) for j ∈ {1, 2} be irre-
ducibles. Assume I1 ↔ I2. By Lemma 5(3), observing
that p(Ij) = Cj , we must have I1∪C2 = C1∪I2, namely
C1∪{e1}∪C2 = C1∪C2∪{e2}, from which we conclude
that it must be e1 = e2, i.e., as desired Ij = 〈Cj , e〉,
where e = e1 = e2 for j ∈ {1, 2}. Additionally, I1
and I2 are consistent, by definition of ↔, meaning that
C1

e
_ C2.

For the converse, consider two irreducibles I1 = 〈C1, e〉
and I2 = 〈C2, e〉, such that C1

e
_ C2. Hence C1 `0 e,

C2 `0 e and C = C1 ∪ C2 ∪ {e} is consistent. Since
I1, I2 ⊆ C, they are consistent in D(E). Moreover,
p(I1) = C1, p(I2) = C2 and I1 ∪ C2 = I2 ∪ C1 = C.
Hence by Lemma 5(3) we have I1 ↔ I2, as desired.

5) We have to show that D(E) satisfies the conditions of
Definition 12. Concerning condition (1), let I1 = 〈C1, e1〉
and I2 = 〈C2, e2〉 such that I1 ↔∗ I2 and p(I1) =
C1, p(I2) = C2 consistent. From I1 ↔∗ I2, by the above
result, we deduce e1 = e2. Since, C1, C2 consistent, we
deduce C1

e
_ C2 and thus, again by the same result,

I1 ↔ I2.
As for Condition (2), consider the irreducibles I , I ′,
J and J ′ such that I ↔∗ I ′, J ↔∗ J ′, and {I ′, J ′},
{p(I), J} and {p(J), I} consistent. From I ↔∗ I ′ and
J ↔∗ J ′ we deduce that I = 〈C, e〉, I ′ = 〈C ′, e〉,
J = 〈D, f〉 and J ′ = 〈D′, f〉. Moreover, we have
p(I) = C and p(J) = D, hence the hypotheses say
{C, J} and {D, I} consistent. From the consistency of
{I ′, J ′} we deduce that {e, f} consistent. Therefore we
have that I = 〈C, e〉 and J = 〈D, f〉 are consistent.

Concerning point 1, observe that the meet in the domain
of configurations is C u C ′ =

⋃
{C ′′ ∈ Conf (E) | C ′′ ⊆

C ∧ C ′′ ⊆ C ′}, which is usually smaller than the intersection.
For instance, in Fig. 2, {a, c}u{b, c} = ∅ 6= {c}. Point 2 says

that irreducibles are configurations of the form C ∪ {e} that
admits a secured execution in which the event e appears as
the last one and cannot be switched with any other. In other
words, irreducibles are minimal enablings of events. Point 3
characterises the irreducibles in a configuration. According to
point 4, two irreducibles are interchangeable when they are
different minimal enablings for the same event.

Proposition 4 (the domain of configurations is weak prime)
Let E be an ES. Then D(E) is a weak prime domain.
Moreover, given two ES E1 and E2, and a morphism
f : E1 → E2, its image D(f) : D(E1) → D(E2) is a weak
prime domain morphism.

Proof: We know that D(E) is a domain (Lemma 8(1))
and that it is interchangeable (Lemma 8(5)).

In order to show that D(E) is a weak prime domain, we
exploit the characterisation in Proposition 3, i.e., we prove
that all irreducibles are weak primes. Consider an irreducible
I , which by Lemma 8(2) is of the shape I = 〈C, e〉 with
C `0 e, and suppose that I ⊆

⊔
X for some X ⊆ D(E). In

particular, this means that e ∈
⊔
X and thus there is C ′ ∈ X

such that e ∈ C ′. In turn, we can consider a minimal enabling
of e in C ′, i.e., a minimal C ′′ ⊆ C ′ such that C ′′ `0 e, and
we have that I ′′ = 〈C ′′, e〉 is an irreducible I ′′ ⊆ C ′. Since I
and I ′′ are consistent, as they are both included in

⊔
X , then

C
e
_ C ′′ and by Lemma 8(4) I ↔ I ′′.

We next prove that given an ES morphism f : E1 → E2,
its image D(f) : D(E1) → D(E2) is a weak prime domain
morphism.
• C1 � C ′1 implies D(f)(C1) � D(f)(C ′1)

Since D(f)(Ci) = {f(di) | di ∈ Ci} and by Lemma 8(1)
C1 � C ′1 iff C ′1 = C1 ∪ {e1} for some event e1, the
result follows immediately.

• for X1 ⊆ D(E1) consistent, D(f)(
⊔
X1) =⊔

D(f)(X1)
Since D(f) takes the image as set and

⊔
on consistent

sets is union, the result follows.

• for C1, C
′
1 ∈ D(E1) consistent such that C1 u C ′1 ≺ C1

it holds f(C1 u C ′1) = f(C1) u f(C ′1)
Since C1uC ′1 ≺ C1, by Lemma 8(1) we have that C1 =
(C1 u C ′1) ∪ {e1} for some e1 6∈ C1 u C ′1. Clearly e1 6∈
C ′1, otherwise we would have C1 ⊆ C ′1 and thus C1 u
C ′1 = C1. Therefore in this case, the meet coincides with
intersection, C1 u C ′1 = C1 ∩ C ′1 = C1 \ {e1}. Since for
the events in C1 ∪ C ′1, by definition of event structure
morphism, f is injective, we have that f(C1)∩ f(C ′1) =
f(C1∩C ′1). As a general fact, f(C1)uf(C ′1) ⊆ f(C1)∩
f(C ′1). Therefore, putting things together, we conclude
f(C1) u f(C ′1) ⊆ f(C1) ∩ f(C ′1) = f(C1 ∩ C ′1) =

f(C1 u C ′1)

The converse inequality holds in any domain (as observed
after Definition 15) and thus the result follows.

A special role is played by the subclass of connected ES
which will be shown to be exact counterpart of weak prime
domains.

Definition 18 (connected event structure) An ES is con-
nected if whenever C `0 e and C ′ `0 e then C

e
_
∗
C ′. We

denote by cES the full subcategory of ES having connected
ES as objects.

In words, different minimal enablings for the same event
must be pairwise connected by a chain of consistency. Equiv-
alently, for each event e the set of minimal enablings, say
Me = {C | C `0 e}, endowed with the relation e

_ is a
connected graph. Intuitively, as discussed in more detail below,
if Me were not connected, then we could split event e into
different instances, one for each connected component, without
changing the associated domain.

For instance, the ES in Example 1 is a connected ES. Only
event c has two minimal enablings {a} `0 c and {b} `0 c and
obviously {a} c

_ {b}. Clearly, prime ES are also connected
ES. More precisely, we have the following.

Proposition 5 (primality = stability + connectedness) Let
E be an ES. Then E is prime iff it is stable and connected.

Proof: The fact that a prime ES is stable and connected
follows immediately from the definitions. Conversely, let E be
a stable and connected ES. We show that E is prime, i.e., each
e ∈ E has a unique minimal enabling. Let C,C ′ ∈ Conf (E)
be minimal enablings for e, i.e., C `0 e and C ′ `0 e. Since
E is connected C e

_
∗
C ′. Let C e

_ C1
e
_ . . .

e
_ Cn

e
_ C ′.

Then by stability we get that C = C1 = . . . = Cn = C ′.
The defining property of connected ES allows one to recog-

nise that two minimal enablings are relative to the same event
by only looking at the partially ordered structure and thus, as
we will see, from the domain of configurations of a connected
ES we can recover an ES isomorphic to the original one and
vice versa (see Theorem 3). In general, this is not possible.
For instance, consider the ES E′ with events E′ = {a, b, c},
and where a#b and the minimal enablings are again ∅ `0 a,
∅ `0 b, {a} `0 c, and {b} `0 c. Namely, event c has two
minimal enablings, but differently from what happens in the
running example, these are not consistent, hence {a, b} 6` c.
The resulting domain of configurations is depicted on the left
of Fig. 7. Intuitively, it is not possible to recognise that {a, c}
and {b, c} are different minimal enablings of the same event.
In fact, we would get an isomorphic domain of configurations
by considering the ES E′′ with events E′′ = {a, b, c1, c2} such
that a#b and the minimal enablings are again ∅ `0 a, ∅ `0 b,
{a} `0 c1, and {b} `0 c2.

C. From Weak Prime Domains to Connected Event Structures

We show how to get an ES from a weak prime domain.
As anticipated, events are equivalence classes of irreducibles,
where the equivalence is (the transitive closure of) interchange-
ability.

∅

{a} {b}

{a, c} {b, c}

∅

{a} {b}

{a, c1} {b, c2}

Fig. 7: Non-connected ES do not uniquely determine a domain.

In order to properly relate domains to the corresponding ES
we need to prove some properties of irreducibles and of the
interchangeability relation in weak prime domains.

Domains are irreducible algebraic (see Proposition 1), hence
any element is determined by the irreducibles under it. The
difference between two elements is thus somehow captured
by the irreducibles that are under one element and not under
the other. This motivates the following definition.

Definition 19 (irreducible difference) Let D be a domain
and d, d′ ∈ K(D) such that d v d′. Then we define
δ(d′, d) = ir(d′) \ ir(d).

The immediate precedence relation intuitively relates do-
main elements corresponding to configurations that differ for
the execution of a single event. In order to formalise this fact
we first need a preliminary technical lemma.

Lemma 9 (immediate precedence and irreducibles/1) Let
D be a weak prime domain, d ∈ K(D), and i ∈ ir(D) such
that d, i are consistent and p(i) v d. Then

1) for all i′ ∈ δ(d t i, d) minimal, it holds i↔ i′;
2) d � d t i.

Proof:

1) Clearly, if d = dt i then δ(d t i, d) = ∅ and the property
trivially holds. Assume d 6= dti and take i′ ∈ δ(d t i, d)
minimal. Note that minimality implies that p(i′) v d. In
fact, for all i′1 ∈ ir(p(i′)) we have i′1 @ i

′ v dt i. Hence
i′1 v d, otherwise i′1 ∈ δ(d t i, d), violating minimality
of i′. Therefore p(i′) =

⊔
ir(p(i′)) v d.

Now, from i′ v d t i, since D is a weak prime domain
and thus irreducibles are weak primes, there must be i′′ ∈
ir(D), i′′ ↔ i′ such that i′′ v d or i′′ v i. We first note
that it cannot be i′′ v d, otherwise d = d t i′′ = d t i′,
the last equality motivated by Lemma 5(2), which implies
that i′ v d, contradicting the hypothesis. Hence it must
be i′′ v i, which by Lemma 2 means that either i′′ = i
or i′′ v p(i). Since p(i) v d by hypothesis, the latter
case would contradict i′′ 6v d, hence i′′ = i which means
that i′ ↔ i, as desired.

2) Let us assume that d 6= d t i (otherwise the property is
trivial), and consider d′ such that d ≺ d′ v dti: we prove
that d′ = dt i. Since d ≺ d′, hence d 6= d′, we know that
δ(d′, d) is not empty. Take a minimal i′ ∈ δ(d′, d). Thus
i′ is minimal also in δ(d t i, d), and thus, by point (1),
i↔ i′. By minimality of i′ we deduce also that p(i′) v d.
Since also p(i) v d by hypothesis, using Lemma 5(2),

we have dt i = dt i′. Observing that dt i′ v d′ v dt i
we conclude that d′ = d t i, as desired.

We can now show that whenever d ≺ d′ the irreducible
difference of d′ and d consists of a set of irreducibles which
are pairwise interchangeble, hence, intuitively corresponding
to the same event.

Lemma 10 (immediate precedence and irreducibles/2)
Let D be a weak prime domain and d, d′ ∈ D such that
d � d′. Then for all i, i′ ∈ δ(d′, d)

1) d′ = d t i;
2) if i v i′ then i = i′;
3) i↔ i′.

Proof: If d = d′ all properties hold trivially.
1) Let i ∈ δ(d′, d). Then d v d t i v d′. It follows that

either d t i = d or d t i = d′. The first possibility can
be excluded for the fact that it would imply i v d, while
we know that i 6∈ ir(d). Hence we get the thesis.

2) Let i, i′ ∈ δ(d′, d), with i v i′. Let us first assume i
minimal in δ(d′, d), hence p(i) v d. Then i′ v d′ =
d t i. Since i′ is a weak prime, there exists i′′ ∈ ir(D)
such that i′ ↔ i′′ and either i′′ v i or i′′ v d. The
second possibility is excluded. In fact, if i′′ v d, then we
would have p(i), p(i′′) v d and thus, by Lemma 5(2),
d′ = d t i = d t i′′ = d, contradicting d 6= d′. Hence it
must be i′′ v i. Since i v i′, by transitivity i′′ v i′ and
since i′ ↔ i′′, by Lemma 4, i′′ = i′ and thus i′′ = i = i′.
If instead, i is not minimal in δ(d′, d), take i1 v i
minimal. By the argument above, we have that i1 ↔ i′,
and thus, by Lemma 4, i1 = i′. Recalling that i1 v i v i′
we conclude i = i′, as desired.

3) Let i, i′ ∈ δ(d′, d) be irreducibles. By (1) we have d′ =
d t i, hence i′ ∈ δ(d t i, d). By (2) i′ is minimal in
δ(d t i, d). Therefore, by Lemma 9(1), we conclude i↔
i′ .

We next show another technical result, i.e., that chains of
immediate precedence are generated in essentially a unique
way by sequences of irreducibles. Given a domain D and an
irreducible i ∈ ir(D), we denote by [i]↔∗ the corresponding
equivalence class. For X ⊆ ir(D) we define [X]↔∗ = {[i]↔∗ |
i ∈ X}.

Lemma 11 (chains of immediate precedence) Let D be a
weak prime domain, d ∈ K(D) and ir(d) = {i1, . . . , in} such
that the sequence i1, . . . , in is compatible with the order (i.e.,
for all h, k if ih v ik then h ≤ k). If we let dk =

⊔k
h=1 ih for

k ∈ {1, . . . , n} we have

⊥ = d0 � d1 � . . . � dn = d

Vice versa, given a chain ⊥ = d0 ≺ d1 ≺ . . . ≺ dn and
taking ih ∈ δ(dh, dh−1) for h ∈ {1, . . . , n} we have

dn =
⊔n
h=1 ih and ∀i ∈ ir(dn) . ∃h ∈ [1, n]. i↔ ih.

Therefore [{i1, . . . , in}]↔∗ = [ir(dn)]↔∗ .

Proof: For the first part, observe that for k ∈ {1, . . . , n}
we have that

p(ik) v dk−1

In fact, recalling that ir(ik) ⊆ ir(d), we have that irreducibles
in ir(p(ik)) = ir(ik) \{ik}, which are smaller than ik, must
occur before in the list hence

ir(p(ik)) = ir(ik) \{ik} ⊆ {i1, . . . , ik−1}.

Therefore p(ik) =
⊔
ir(p(ik)) v

⊔
{i1, . . . , ik−1} = dk−1.

Thus we use Lemma 9(2) to infer dk−1 � dk−1 t ik = dk.

For the second part, we proceed by induction on n.
• (n = 0) Note that d0 =

⊔
∅ = ⊥ and ir(⊥) = ∅, hence

the thesis trivially holds.
• (n > 0) By induction hypothesis

dn−1 =
⊔n−1
h=1 ih and

∀i ∈ ir(dn−1) . ∃h ∈ [1, n− 1]. i↔ ih.
Since by construction in ∈ δ(dn, dn−1), by Lemma 10(1)
we deduce

dn = in t dn−1 =
⊔n
h=1 ih

Moreover, for all i ∈ δ(dn, dn−1), we have i v dn =
in t dn−1. By definition of weak prime domain, there
exists i′ ↔ i such that i′ v dn−1 or i′ v in. In the first
case, since i′ v dn−1, by the inductive hypothesis there
is h ∈ [1, n− 1] such that i′ ↔ ih. Since i ↔ i′ ↔
ih, and i, ih v dn are consistent, by using the fact that
D is interchangeable we deduce i ↔ ih, as desired. If,
instead, we are in the second case, namely i′ v in, by
Lemma 10(2) it follows that in = i′ ↔ i, as desired.

In a prime domain, an element admits a unique decomposi-
tion in terms of primes (see Lemma 3). Here the same holds
for irreducibles but only up to interchangeability.

Proposition 6 (unique decomposition up to ↔) Let D be
a weak prime domain, let d ∈ K(D), and let X ⊆ D be
a downward closed and consistent set such that [X]↔∗ ⊆
[ir(d)]↔∗ . Then d =

⊔
X iff [X]↔∗ = [ir(d)]↔∗ .

Proof: (⇒) Let d =
⊔
X . By hypothesis [X]↔∗ ⊆

[ir(d)]↔∗ . Hence we only need to prove that [ir(d)]↔∗ ⊆
[X]↔∗ . Let i ∈ ir(d). Hence i v d =

⊔
X . By definition

of weak prime domain, this implies that there exists i′ ↔ i
and x ∈ X such that i′ v x. Since X is downward closed,
necessarily i′ ∈ X and thus [i]↔∗ ∈ [X]↔∗ , as desired.

(⇐) Let [X]↔∗ = [ir(d)]↔∗ . We can prove that
⊔
X = d by

induction on k(X) = |(ir(d) \X)∪ (X \ ir(d) |. If k(X) = 0
then X = ir(d) and thus, by Proposition 1, we conclude that
d =

⊔
X . If k(X) > 0 we distinguish two subcases.

• First assume ir(d) \X 6= ∅. Then take a minimal element
i ∈ ir(d) \X . Therefore X ′ = X ∪ {i} is downward
closed and, by minimality of i, we have p(i) v

⊔
X .

Since [X]↔∗ = [ir(d)]↔∗ , there is i′ ∈ X such that i↔∗

i′ and thus, since p(i), p(i′) v
⊔
X are consistent and

D is interchangeable, i↔ i′. Therefore⊔
X ′ =

⊔
X ∪ {i} =

⊔
X ∪ {i′} =

⊔
X. (2)

Since [X ′]↔∗ = [X]↔∗ = [ir(d)]↔∗ and | ir(d) \X ′| =
| ir(d) \X| − 1, we have k(X ′) < k(X), and thus by
inductive hypothesis

⊔
X ′ = d. Hence, using (2), we get⊔

X = d, as desired.
• If instead ir(d) \X = ∅, i.e., ir(d) ⊆ X , since k(X) > 0,

it must be X \ ir(d) 6= ∅. Consider a maximal element
i ∈ X \ ir(d), and let X ′ = X \ {i}. Clearly, X ′ is
downward closed because so are X and ir(d). Since
[X]↔∗ = [ir(d)]↔∗ , there is i′ ∈ ir(d) ⊆ X such that
i↔∗ i′. Since X is consistent and D is interchangeable,
i↔ i′. Therefore⊔

X =
⊔
X ′ ∪ {i} =

⊔
X ′ ∪ {i′} =

⊔
X ′. (3)

Since by construction k(X ′) = k(X) − 1, the inductive
hypothesis gives us

⊔
X ′ = d. Hence, using (3), we get⊔

X = d, as desired.

We explicitly observe that, by the above result, whenever
X = [ir(d)]↔∗ for some d ∈ K(D) then d is uniquely
determined by X .

We now have all the tools needed for mapping our domains
to an ES.

Definition 20 (event structure for a weak prime domain)
Let D be a weak prime domain. The ES E(D) = 〈E,#,`〉
is defined as follows
• E = [ir(D)]↔∗ ;
• e#e′ if there is no d ∈ K(D) such that e, e′ ∈ [ir(d)]↔∗ ;
• X ` e if there is i ∈ e such that [ir(i) \{i}]↔∗ ⊆ X .
Given a morphism f : D1 → D2, its image E(f) :
E(D1)→ E(D2) is defined for [i1]↔∗ ∈ E1 as E(f)([i1]↔∗) =
[i2]↔∗ , where i2 ∈ δ(f(i1), f(p(i1))), and E(f)([i1]↔∗) is
undefined if f(p(i1)) = f(i1).

The events in E(D) are equivalence classes of irreducibles.
Two events e, e′ are consistent (not in conflict) when there is
some compact element d such that e, e′ ∈ [ir(d)]↔∗ . Spelled
out, this means that there are irreducibles i ∈ e and i′ ∈ e′ such
that i, i′ v d, i.e., there are minimal enablings of the events e
and e′ in the same configuration. Finally, an event e is enabled
by a set X when X includes, up to intechangeability, all the
predecessors of e.

Note that the definition above is well-given: in particular,
there is no ambiguity in the definition of the image of a
morphism, since by Lemma 10(3) we easily conclude that for
all i2, i′2 ∈ δ(f(i1), f(p(i1))), it holds i2 ↔ i′2 (this is argued
in detail in the proof of Lemma 13).

In the following we often use a technical lemma that holds
in any domain.

Lemma 12 Let D be a domain and a, b, c ∈ D such that
c v a and c � b. Then either b v a or c = a u b.

Proof: Recall that in a domain the meet of non-empty
sets exists. Since c is a lower bound for a and b, necessarily
c v a u b v b. If it were c 6= a u b then we would have
a u b = b, hence b v a, as desired.

Lemma 13 (from weak prime domains to event structures)
Let D be a weak prime domain. Then E(D) is an ES.
Moreover, given two weak prime domains D1, D2 and a
morphism f : D1 → D2, its image E(f) : E(D1)→ E(D2) is
an ES morphism.

Proof:
We first show that E(D) is a live ES. In fact, it is an ES:

if X ` e and X ⊆ Y then Y ` e. In fact, by definition, if
X ` e then there exists i ∈ e such that [ir(i) \{i}]↔∗ ⊆ X .
Hence if X ⊆ Y it immediately follows that Y ` e.
Moreover E(D) is live. The fact that conflict is saturated
follows immediately by the definition of conflict and the
characterisation of configurations provided later in Lemma 14.
Conflict is irreflexive since for any e ∈ E(D), if e = [i]↔∗ then
e ∈ [ir(i)]↔∗ , which is a configuration again by Lemma 14.1

Given a morphism f : D1 → D2, its image E(f) :
E(D1)→ E(D2) is defined for [i1]↔∗ ∈ E1 as E(f)([i1]↔∗) =
[i2]↔∗ , where i2 ∈ δ(f(i1), f(p(i1))), and E(f)([i1]↔∗) is
undefined if f(p(i1)) = f(i1). First observe that E(f)([i1]↔∗)
does not depend on the choice of the representative. In fact, let
i2, i
′
2 ∈ δ(f(i1), f(p(i1))). Since p(i1) ≺ i1, by definition of

domain morphism, f(p(i1)) ≺ f(i1). Thus, by Lemma 10(3),
i2 ↔ i′2.

We next show that E(f) is an ES morphism.
• If E(f)(e1)#E(f)(e′1) then e1#e′1.

We prove the contronominal, namely if e1, e
′
1 consistent

then E(f)(e1), E(f)(e′1) consistent.
The fact that e1, e

′
1 consistent means that there exists

d1 ∈ K(D1) such that e1, e
′
1 ∈ [ir(d1)]↔∗ . We show that

E(f)(e1), E(f)(e′1) ∈ [ir(f(d1))]↔∗ (note that f(d1) is a
compact, since f is a domain morphism).
Let us show, for instance, that E(f)(e1) ∈ [ir(f(d1))]↔∗ .
The fact that e1 ∈ [ir(d1)]↔∗ means that e1 = [i1]↔∗ for
some i1 v d1. By definition E(f)(e1) = [i2]↔∗ , where
i2 ∈ δ(f(i1), f(p(i1))) (since E(f)(e1) is defined the
irreducible difference cannot be empty). Now, since i1 v
d1 we have that f(i1) v f(d1), whence i2 v f(i1) v
f(d1) and E(f)([i1]↔∗) = [i2]↔∗ ∈ [ir(f(d1))]↔∗ , as
desired.

• If E(f)(e1) = E(f)(e′1) and e1 6= e′1 then e1#e′1.
We prove the contronominal, namely if e1, e

′
1 consistent

and E(f)(e1) = E(f)(e′1) then e1 = e′1.
Assume e1, e

′
1 consistent and E(f)(e1) = E(f)(e′1). By

the first condition and the definition of conflict, there must
be d1 ∈ K(D1) such that e1, e

′
1 ∈ [ir(d1)]↔∗ , namely

e1 = [i1]↔∗ and e′1 = [i′1]↔∗ with i1, i′1 v d1.

1This forward reference is only useful to simplify the structure of the
presentation and to avoid breaking the statement in two parts, but it introduces
no cyclic dependency.

Moreover, E(f)([i1]↔∗) = [i2]↔∗ and E(f)([i′1]↔∗) =
[i′2]↔∗ where i2 and i′2 are in δ(f(i1), f(p(i1))) and
δ(f(i′1), f(p(i′1))), respectively, and [i2]↔∗ = [i′2]↔∗ ,
which means i2 ↔∗ i′2, and in turn, being i2 and i′2
consistent, by the fact that D is interchangeable, implies
i2 ↔ i′2.
We distinguish two cases.

A. If i1 and i′1 are comparable, e.g., if i1 v i′1, then
i1 = i′1 and we are done. In fact, otherwise, if i1 6= i′1
we have p(i1) ≺ i1 v p(i′1) ≺ i′1. By monotonicity
of f we have f(p(i1)) ≺ f(i1) v f(p(i′1)) ≺ f(i′1)
(where strict inequalities ≺ are motivated by the defini-
tion of E(f), since both E(f)([i1]↔∗) and E(f)([i′1]↔∗)
are defined). Now notice that p(i2) v i2 v f(i1) v
f(p(i′1)). Moreover, i′2 ∈ δ(f(i′1), f(p(i′1))), therefore
p(i′2) v i′2 v f(p(i′1)). Hence, using the fact that
i2 ↔ i′2, by Lemma 5(2) we have
f(p(i′1)) = f(p(i′1)) t i2 = f(p(i′1)) t i′2 = f(i′1)

contradicting the fact that f(p(i′1)) ≺ f(i′1).

B. Assume now that i1 and i′1 are uncomparable: we show
that this leads to a contradiction. Let p = p(i1)tp(i′1).
We can also assume i1, i′1 6v p. In fact, otherwise, e.g.,
if i1 v p, then, by the defining property of weak prime
domains, we derive the existence of i′′1 ↔ i1 such
that i′′1 v p(i1) or i′′1 v p(i′1). The first possibility
can be excluded because it would imply i′′1 v i1.
Hence, since i′′1 ↔ i1, by Lemma 4, we would get
i1 = i′′1 , contradicting i′′1 v p(i1). Then it should
be i′′1 v p(i′1) v i′1. Therefore, if we take i′′1 as
representative of the equivalence class we are back to
case A above.
Using the fact that i1, i′1 6v p and p(i1), p(i′1) v p, by
Lemma 9(2) we deduce that p ≺ pt i1 and p ≺ pt i′1.
Hence f(p) ≺ f(p t i1) with strict inequality again
motivated by the definition of E(f), since E(f)([i1]↔∗)
is defined.
By Lemma 10(1), since i2 ∈ δ(f(i1), f(p(i1))) and
i′2 ∈ δ(f(i′1), f(p(i′1))), we have

f(p(i1)) t i2 = f(i1) f(p(i′1)) t i′2 = f(i′1) (4)

Now, observe that
f(p t i1) =
= f(p(i1) t p(i′1) t i1)
= f(p(i′1) t i1)
= f(p(i′1)) t f(i1) [preservation of t]
= f(p(i′1)) t f(p(i1)) t i2 [by (4)]
= f(p(i′1)) t f(p(i1)) t i′2 [by Lemma 5(2),

since i2 ↔ i′2]
= f(i′1) t f(p(i1)) [by (4)]
= f(p(i1) t i′1) [preservation of t]
= f(p(i1) t p(i′1) t i′1)
= f(p t i′1)

Since p ≺ p t i1 and p ≺ p t i′1, by Lemma 12,
we have (p t i1) u (p t i′1) = p. Therefore, on the
one hand f((p t i1) u (p t i′1)) = f(p). On the other

hand, since the meet is an immediate predecessor, by
definition of weak domain morphism (Definition 15),
it is preserved: f((pti1)u(pti′1)) = f(pti1)uf(pt
i′1) = f(p t i1) = f(p t i′1). Putting things together,
f(p) = f(p t i1) = f(p t i′1), contradicting the fact
that f(p) ≺ f(p t i1).

• if C1 `1 [i1]↔∗ and E(f)([i1]↔∗) is defined then
E(f)(C1) `2 E(f)([i1]↔∗)
Recall that C1 `1 [i1]↔∗ means that [ir(i′1) \{i′1}]↔∗ =
[ir(p(i′1))]↔∗ ⊆ C1 for some i′1 ↔ i1.
By definition, E(f)([i1]↔∗) = [i2]↔∗ where i2 ∈
δ(f(i′1), f(p(i′1))). We show that E(f)(C1) `2 [i2]↔∗ ,
namely that

[ir(i2) \{i2}]↔∗ = [ir(p(i2))]↔∗ ⊆ E(f)(C1) (5)

Observe that since i2 ∈ δ(f(i′1), f(p(i′1))) and dis-
tinct elements in δ(f(i′1), f(p(i′1))) are incomparable by
Lemma 10(2), it holds p(i2) v f(p(i′1)). Therefore, we
have

ir(p(i2)) ⊆ ir(f(p(i′1)))

Hence, in order to conclude (5), it suffices to show that

[ir(f(p(i′1)))]↔∗ ⊆ E(f)(C1) (6)

In order to reach this result, first note that, by Lemma 11,
if ir(p(i′1)) = {j1

1 , . . . , j
n
1 } is a sequence of irreducibles

compatible with the order, we can obtain a �-chain
⊥ = d0

1 � d1
1 � . . . � dn1 = p(i′1) ≺ i′1

We can extract a strictly increasing subsequence
⊥ = d′01 ≺ d′11 ≺ . . . ≺ d′m1 = p(i′1) ≺ i′1

and, if we take irreducibles j′11 , . . . , j
′m
1 in δ(d′i1 , d

′i−1
1),

again by Lemma 11 we know that

[ir(p(i′1))]↔∗ = [{j′11 , . . . , j′m1 }]↔∗ (7)

Since f is a domain morphism, it preserves �, namely
⊥ = f(d′01) � f(d′11) � . . . � f(d′m1) = f(p(i′1)) ≺

f(i′1)

where the last inequality is strict since E(f)([i′1]↔∗) =
[i2]↔∗ is defined. Moreover, whenever f(d′h−1

1) ≺
f(d′h1), then E(f)([j′h1]↔∗) = [`h2]↔∗ where `h2 is any irre-
ducible in δ(f(d′h1), f(d′h−1

1)), otherwise E(f)([j′h1]↔∗)
is undefined.
Once more by Lemma 11 we know that

[ir(f(p(i′1)))]↔∗ = [{`12, . . . , `m2 }]↔∗ =
E(f)([{j′11 , . . . , j′m1 }]↔∗),

thus, using (7)

[ir(f(p(i′1)))]↔∗ = E(f)([ir(p(i′1))]↔∗). (8)

Hence, recalling that, by hypothesis, [ir(p(i′1))]↔∗ ⊆ C1,
we conclude the desired inclusion (6).

Since in a prime domain irreducibles coincide with primes
(Proposition 2), ↔ is the identity (Lemma 6) and δ(d′, d) is
a singleton when d ≺ d′, the construction above produces the
prime ES pES(D) as defined in Section II.

Given a weak prime domain D, the finite configurations
of the ES E(D) exactly correspond to the elements in K(D).
Moreover, in such ES we have a minimal enabling C `0 e
when there is an irreducible in e (recall that events are
equivalence classes of irreducibles) such that C contains all
and only (the equivalence classes of) its predecessors.

Lemma 14 (compacts vs. configurations) Let D be a weak
prime domain and C ⊆ E(D) a finite set of events. Then C is
a configuration in the ES E(D) iff there exists a unique d ∈
K(D) such that C = [ir(d)]↔∗ . Moreover, for any e ∈ E(D)
we have that C `0 e iff C = [ir(i) \{i}]↔∗ for some i ∈ e.

Proof: The left to right implication of the first part follows
by proving that, given a configuration C ∈ ConfF (E(D)),
there exists X ⊆ ir(D) downward closed and consistent such
that [X]↔∗ = C. Hence, if we let d =

⊔
X , by Proposition 6,

we have that C = [X]↔∗ = [ir(d)]↔∗ . Moreover, d is uniquely
determined, since, by the same proposition we have that for
any other X ′ such that [X ′]↔∗ = C, since [X ′]↔∗ = C =
[X]↔∗ = [ir(d)]↔∗ , necessarily d =

⊔
X ′.

Let us thus prove the existence of X ⊆ ir(D) consistent
and downward closed such that [X]↔∗ = C. We proceed by
induction on the cardinality of C.
• if |C| = 0, namely C = ∅ then we can take X = ∅, and

trivially conclude.
• if |C| > 0, since C is secured, there is [i]↔∗ ∈ C such

that C ′ = C \ {[i]↔∗} ` [i]↔∗ . By inductive hypothesis
there is X ′ ⊆ ir(D), downward closed and consistent
such that [X ′]↔∗ = C ′.
The fact that C ′ = C \ {[i]↔∗} ` [i]↔∗ means that
for some i′ ∈ ir(D) such that i′ ↔∗ i, it holds
[ir(i′) \{i′}]↔∗ = [ir(p(i′))]↔∗ ⊆ C ′. Therefore, there
is X ′′ ⊆ X ′ such that [X ′′]↔∗ = [ir(p(i))]↔∗ and thus,
by Proposition 6, p(i′) v

⊔
X ′. We can assume, without

loss of generality that ir(p(i′)) ⊆ X ′. If not, we can
replace X ′ by X ′∪ir(p(i′)). By the consideration above,
it is consistent and it has the same join of X ′.
Now, an induction on the cardinality k of X ′ \ ir(p(i′))
allows us to show that {i′, j} consistent for all j ∈ X ′.
If k = 0 then X ′ \ ir(p(i′)) = ∅ and the thesis is trivial.
Otherwise, consider j′ ∈ X ′ \ ir(p(i′)) maximal and
X ′′ = X ′ \ {j′}. Since |X ′ \ ir(p(i′)) | = k − 1, by
inductive hypothesis, for all j ∈ X ′′, we have {j, i′}
consistent. Now, since j, p(i) v

⊔
X ′, we have that

{j, p(i)} is consistent. Moreover, since ir(j′) \{j′} =
ir(p(j′)) ⊆ X ′′, we have that {i, p(j′)} is consistent.
Finally, recalling that, since C is consistent, we have
that ¬([j′]↔∗#[i′]↔∗), i.e., there is d ∈ K(D) such
that {[j′]↔∗ , [i′]↔∗} ⊆ [ir(d)]↔∗ . More explicitly, this
means that there are j′′, i′′ ∈ ir(D) such that j′′ ↔∗ j′,
i′′ ↔∗ i′ and j′, i′′ consistent. Since D is interchangeable,
by condition (2) of Definition 12, we conlcude j′, i′

consistent.
We can thus conclude that X = X ′ ∪ {i′} is consistent,
and downward closed since ir(p(i′)) ⊆ X ′. Hence we
conclude.

For the converse, let C = [ir(d)]↔∗ . Let ⊥ = d0 ≺ d1 ≺
. . . dn−1 ≺ dn = d be a chain of immediate precedence and
for each h ∈ {1, . . . , n} take ih ∈ δ(dh, dh−1). By Lemma 11,
d =

⊔
{i1, . . . , in} and [ir(d)]↔∗ = [{i1, . . . , in}]↔∗ . More-

over, for all h ∈ {1, . . . , n}, we have [ir(ih) \{ih}]↔∗ ⊆
[ir(dh−1)]↔∗ , hence [ir(dh−1)]↔∗ ` [ih]↔∗ . Therefore C is
secured. Moreover, it is clearly consistent and thus C ∈
Conf (E(D)).

The second part follows immediately by Definition 20.
Given the lemma above, it is now possible to state how

weak prime domains relate to connected ES.

Proposition 7 (from weak prime domains to connected ES)
Let D be a weak prime domain. Then E(D) is a connected
ES.

Proof: We have to show that if X `0 e and X ′ `0 e,
then X

e
_
∗
X ′. Note that, by Lemma 14, from X `0 e

and X ′ `0 e, we deduce that there exists i, i′ ∈ e such that
[ir(i) \{i}]↔∗ = X and [ir(i′) \{i′}]↔∗ = X ′. Since i, i′ ∈ e
we deduce that i↔∗ i′, namely i = i0 ↔ i1 ↔ . . .↔ in = i′.
We proceed by induction on n. The base case n = 0 is trivial.
If n > 0 then from i ↔ i1 ↔∗ i′ we have that i1 ∈ e and,
if we let X1 = [ir(i1) \{i1}]↔∗ , then X1 `0 e. By inductive
hypothesis, we know that X1

e
_
∗
X ′. Moreover, since i↔ i1,

the irreducibles i and i1 are consistent. Hence, by definition
of conflict in E(D), also X∪X1∪{e} is consistent and hence
X

e
_ X1. Therefore X e

_
∗
X ′, as desired.

D. Relating Categories of Models

We show that, at a categorical level, the constructions taking
a weak prime domain to an ES and an ES to a domain (the
domain of its configurations) establish a coreflection between
the corresponding categories. This becomes an equivalence
when it is restricted to the full subcategory of connected ES.

Theorem 3 (coreflection of ES and wDom) The functors
D : ES → wDom and E : wDom → ES form a coreflection
E a D. It restricts to an equivalence between wDom and
cES.

Proof: Let E be an ES. Recall that the corresponding
domain of configurations is D(E) = 〈Conf (E),⊆〉. Then,
E(D(E)) = 〈E′,#′,`′〉, where the set of events E′ is defined
as

E′ = [ir(D(E))]↔∗ = {[〈C, e〉]↔∗ | C `0 e}

By Lemma 8(4), the equivalence class of an irreducible
〈C, e〉 consists of all minimal enablings of event e which are
connected. Therefore we can define a morphism, which is the
counit of the adjunction, as follows:

θE : E(D(E)) → E
[〈C, e〉]↔∗ 7→ e

Observe that θE is surjective. In fact E is live and thus any
event e ∈ E has at least a minimal enabling C `0 e. If we let
I = 〈C, e〉, then [I]↔∗ ∈ E(D(E)) and θE([I]↔∗) = e. The

mapping θE is clearly a morphism of event structures. In fact,
observe that

• For I1, I2 ∈ ir(D(E)), if θE([I1]↔∗)#θE([I2]↔∗) then
[I1]↔∗#

′[I2]↔∗ .
Let I1 = 〈C1, e1〉 and I2 = 〈C2, e2〉. If θE([I1]↔∗) =
e1#e2 = θE([I2]↔∗), then there cannot be any configu-
ration C ∈ Conf (E) such that I1, I2 ⊆ C. Hence, by def-
inition of conflict in E(D(E)), we have [I1]↔∗#

′[I2]↔∗ .

• For I1, I2 ∈ ir(D(E)), with [I1]↔∗ 6= [I2]↔∗ , we have
that θE([I1]↔∗) = θE([I2]↔∗) implies [I1]↔∗#

′[I2]↔∗ .
In fact, by Lemma 8(2), the irreducibles I1 and I2 are
of the kind I1 = 〈C1, e1〉 and I2 = 〈C2, e2〉. We show
that if [I1]↔∗ and [I2]↔∗ are consistent and θE([I1]↔∗) =
θE([I2]↔∗) then [I1]↔∗ = [I2]↔∗ .
Assume θE([I1]↔∗) = θE([I2]↔∗), hence e1 = e2.
Since [I1]↔∗ and [I2]↔∗ are consistent, there exists k ∈
K(D(E)) such that [I1]↔∗ , [I2]↔∗ ∈ [ir(k)]↔∗ . Compacts
in D(E) are finite configurations, hence the condition
amounts to the existence of C ∈ ConfF (E) such that
[I1]↔∗ , [I2]↔∗ ∈ [ir(C)]↔∗ , i.e., there are I ′1, I

′
2 with

Ii ↔∗ I ′i for i ∈ {1, 2}, such that I ′1, I
′
2 ⊆ C. Since the

choice of the representatives is irrelevant, we can assume
that I1 = I ′1 and I2 = I ′2. Summing up, I1 and I2 are
consistent minimal enablings of the same event, hence by
Lemma 8(4), I1 ↔ I2, i.e., [I1]↔∗ = [I2]↔∗ , as desired.

• For the enabling relation, we have to show that if
X `′ [〈C, e〉]↔∗ then θE(X) ` θ([〈C, e〉]↔∗) = e.
Assume X `′ [〈C, e〉]↔∗ . According to the definition of
the functor E , this means that there exists i ∈ [〈C, e〉]↔∗
such that [ir(i) \{i}]↔∗ ⊆ X . Let such i ∈ [〈C, e〉]↔∗ be
i = 〈C ′, e〉 with C ′ `0 e. We have

ir(〈C ′, e〉) \{〈C ′, e〉} = ir(C ′) = {[〈C ′′, e′′〉]↔∗ |
〈C ′′, e′′〉 ⊆ C ′}.

Therefore from [ir(〈C ′, e′〉) \{〈C ′, e′〉}]↔∗ ⊆ X we
deduce

θE([ir(〈C ′, e′〉) \{〈C ′, e′〉}]↔∗) = C ′ ⊆ θE(X).
Since C ′ `0 e, by monotonicity of enabling, we conclude
θE(X) ` e, as desired.

We prove the naturality of θ by showing that the diagram
below commutes.

E(D(E1)) E1

E(D(E2)) E2

E(D(f))

θE1

f

θE2

Consider [〈C1, e1〉]↔∗ ∈ E(D(E1)). Recall that
E(D(f))([〈C1, e1〉]↔∗) is computed by considering the
image of the irreducible 〈C1, e1〉 and of its predecessor,
namely

D(f)(C1) = f(C1) and D(f)(〈C1, e1〉) = f(C1 ∪ {e1})

If f(e1) is defined, then f(C1) ≺ f(C1 ∪ {e1})
and E(D(f))([〈C1, e1〉]↔∗) = f(e1), otherwise

E(D(f))([〈C1, e1〉]↔∗) is undefined. This means that in
all cases, as desired

E(D(f))([〈C1, e1〉]↔∗) = f(e1) = f(θE1
([〈C1, e1〉]↔∗)).

Vice versa, let D be a weak prime domain. Recall from
Definition 20 that E(D) = 〈E,#,`〉 is defined as:
• E = [ir(D)]↔∗

• e#e′ if there is no d ∈ K(D) such that e, e′ ∈ [ir(d)]↔∗ ;
• X ` e if there exists i ∈ e such that [ir(i) \{i}]↔∗ ⊆ X .

and consider D(E(D)). Elements of K(D(E(D))) are config-
urations of C ∈ ConfF (E(D)). We can define the unit of the
adjunction as

ηD : K(D) → K(D(E(D)))
d 7→ [ir(d)]↔∗

Observe that it is well defined, since by Lemma 14, [ir(d)]↔∗

is a finite configuration of E(D) and thus a compact element in
K(D(E(D))). The function is clearly monotone and bijective
with inverse η−1

D : K(D(E(D))) → K(D) defined, for C ∈
K(D(E(D))) = ConfF (E(D)) by letting η−1

D (C) = d, where
d is the unique element, given by Lemma 14, such that C =
[ir(d)]↔∗ . By algebraicity of the domains, this function thus
uniquely extends to an isomorphism ηD : D → D(E(D)).

Finally, we prove the naturality of ηD. It is convenient
to prove the naturality of the inverse, i.e., to show that the
diagram below commutes.

D(E(D1)) D1

D(E(D2)) D2

D(E(f))

η−1
D1

f

η−1
D2

Let C1 ∈ K(D(E(D1))), namely C1 ∈ ConfF (E(D1)), and
let η−1

D1
(C1) = d1 be the element such that C1 = [ir(d1)]↔∗ .

The construction offered by Lemma 11 provides a chain

d0
1 = ⊥ ≺ d1

1 ≺ d2
1 ≺ . . . ≺ dn1 = d1

and, by the same lemma, if we take an irreducible ih1 ∈
δ(dh1 , d

h−1
1) for 1 ≤ h ≤ n we have that C1 = [ir(d1)]↔∗ =

[{i11, . . . , in1}]↔∗ . Therefore the image

D(E(f))(C1) = {E(f)([j1]↔∗) | [j1]↔∗ ∈ C1} =
{E(f)([ih1]↔∗) | h ∈ [1, n]}

is the set of equivalence classes of irreducibles i12, . . . , i
k
2

corresponding to

f(d0
1) = ⊥ ≺ f(d1

1) ≺ f(d2
1) ≺ . . . ≺ f(dn1) = f(d1)

namely ij2 ∈ δ(f(dj1), f(dj−1
1)), and, again, by Lemma 11,

[{i12, . . . , ik2}]↔∗ = [ir(f(d1))]↔∗ . Summing up

η−1
D2

(D(E(f))(C1)) = η−1
D2

({[ih2]↔∗ | 1 ≤ h ≤ k}}) =

f(d1) = f(η−1
D1

(C1))

as desired.
We finally show that the above coreflection restricts to an

equivalence between wDom and cES. For this, just observe

that, in the proof above, when E is a connected ES, then the
morphism θE defined as

θE : E(D(E)) → E
[〈C, e〉]↔∗ 7→ e

is an isomorphism. We already know that it is surjective. We
next show that it is also injective. In fact, if θE([I]↔∗) =
θE([I ′]↔∗) then I and I ′ are minimal enablings of the same
event, i.e., I = [〈C, e〉]↔∗ and I ′ = [〈C ′, e〉]↔∗ . Since E is
a weak prime domain, C e

_
∗
C ′ and thus, by Lemma 8(4),

I ↔∗ I ′, i.e., [I]↔∗ = [I ′]↔∗ . Proving that also the inverse is
an ES morphism is immediate, by exploiting the fact that the
ES is live.

The above result indirectly provides a way of turning a
general ES into a connected ES.

Corollary 1 (from general to connected ES) The functors
C : ES → cES defined by C = E ◦ D and the inclusion
I : cES→ ES form a coreflection.

Proof: Immediate consequence of Theorem 3.
Explicitly, for any event structure E the corresponding

connected ES C(E) = 〈E′,`′,#′〉 is defined as follows. The
set of events is E′ = {[〈C, e〉]∼ | C `0 e}, where ∼ is
the least equivalence such that 〈C, e〉 ∼ 〈C ′, e〉 if 〈C, e〉
and 〈C ′, e〉 are consistent. Moreover [〈C, e〉]∼#′[〈C ′, e′〉]∼ if
for all 〈C1, e〉 ∼ 〈C, e〉 and 〈C ′1, e′〉 ∼ 〈C ′, e′〉 the minimal
enablings 〈C1, e〉 and 〈C ′1, e′1〉 are not consistent. Finally, for
X ⊆ E′, X `′ [〈C, e〉]∼ if there exists 〈C ′, e〉 ∼ 〈C, e〉 such
that C ′ ⊆ {e′′ | [〈C ′′, e′′〉]∼ ∈ X}.

An overall picture of the results discussed up to now can be
found in Fig. 8. The arrows from classes of event structures to
domains are restrictions of the functor D(·), while the converse
arrows are restrictions of the functor E(·). The Venn diagram
stresses the fact that prime ES are exactly the ES which are
stable and connected (see Lemma 5) showing how the notion
of connectedness naturally emerges in the framework.

IV. RELATED CHARACTERISATIONS

In this section we present a characterisation of our proposal
in terms of a formalism reminiscent of the prime event struc-
tures with equivalence of [23], [24]. Moreover, we discuss and
formalise the relation of our work with alternative characteri-
sations of the domains of (prime) event structures proposed in
the literature, based on intervals and on asynchronous graphs.

A. Prime Event Structures with Equivalence

The previous sections showed that the domains of configura-
tions of unstable ES are weak prime domains, i.e., they satisfy
the same conditions as those of prime domains but only up to
the equivalence induced by interchangeability. Symmetrically,
this suggests the possibility of viewing unstable ES as stable
ones up to some equivalence on events. In this section we
consider a formalisation for such a view, leading to a set up
that is closely related to the framework devised in [23], [24],
which we also call prime event structures with equivalence for
the space of this article, since no confusion can arise.

pDom

sES pES

wDom

ES cES

⊥

∼

⊥

∼

(a)

sES

pES

cES

ES

>

pDom
∼

wDom
∼

⊥

(b)

Fig. 8: A summary of the relations among classes of ES and
domains.

In Section II-A we mentioned that in prime ES a global
notion of causality can be used in place of the enabling. We
next recall the formal definition. We also introduce a notation
for direct (i.e., non-inherited) conflict that will play a role later.

Definition 21 (causality/direct conflict in prime event structures)
Let P = 〈E,`,#〉 be a prime ES. Given an event e ∈ E,
the unique C ∈ Conf (P) such that C `0 e is called the set
of strict causes of e and denoted by

�

e , while the set of
causes is ↓e =

�

e ∪ {e}. The strict causality relation < is
defined by e′ < e if e′ ∈

�

e , and, as usual, we denote by ≤
the reflexive closure of <. We say that e, e′ ∈ E are in direct
conflict, written e#de

′, when e#e′ and

�

e ∪ {e′},

�

e′ ∪ {e}
are consistent.

We next introduce our notion of prime ES with equivalence.
Given a prime ES P with an equivalence over the set of events
∼ ⊆ E×E, we say that a subset X ⊆ E is ∼-saturated if for
all e ∈ X and e′ ∈ E, if e ∼ e′ and

�

e′ ⊆ X then e′ ∈ X .
Since the intersection of saturated sets is saturated, given a set
X we can always consider the smallest saturated superset of
X , called the saturation of X and denoted X̃ .

Definition 22 (prime event structures with equivalence)
A prime ES with equivalence (EPES for short) is a pair 〈P,∼〉
where P = 〈E,`,#〉 is a prime ES and ∼ is an equivalence
on E such that for all e, e′, e1, e

′
1 ∈ E

1) if [↓e]∼ ⊆ [↓e′]∼ then e ≤ e′; if in addition e ∼ e′ then
e = e′;

2) if e ∼ e′ and

�

e∪

�

e′ consistent then ¬(e#e′).
3) if e ∼ e′, e1 ∼ e′1, and e#de1 then e′#e′1.

We say that 〈P,∼〉 is connected if ∼ = (∼ \#)∗. A morphism
of EPES f : 〈P1,∼1〉 → 〈P2,∼2〉 is an ES morphism f : P1 →
P2 such that for all e1, e

′
1 ∈ P1, e1 ∼1 e

′
1 iff f(e1) ∼2 f(e′1).

We denote by epES the corresponding category.

An ES with equivalence is thus just an ES equipped with
an equivalence on events. Condition (1) essentially says that
an event is determined by the equivalence classes of events in
its causal history. In particular, as a consequence, if

�

e ⊆

�

e′

and e ∼ e′ then e = e′, which intuitively means that distinct
equivalent events must correspond to different enablings of
the same event. Moreover, it implies that the set ↓ e is ∼-
saturated and thus it is a configuration (see Definition 23
and Lemma 15). Conditions (2) and (3) essentially say that
equivalent events can have different conflicts only for the
fact that their minimal enablings have different conflicts.
Connectedness amounts to the fact that equivalent events
must be connected by a chain of equivalences going through
consistent events. We next introduce a notion of configuration.

Definition 23 (configurations) Let 〈P,∼〉 be an EPES. Then
Conf (〈P,∼〉) = {C | C ∈ Conf (P) ∧ C ∼-saturated}.

In words, a configuration of a prime ES with equivalence is
a configuration C of the underlying event structure, where all
events enabled in C that are equivalent to some event already
in C are also in C. Thus equivalent events may have different
minimal enablings, but whenever a configuration contains the
causes of two equivalent events, their executions cannot be
taken apart.

Lemma 15 (histories are configurations) Let 〈P,∼〉 be a
EPES. For all e ∈ E, ↓e is a configuration.

Proof: Let e ∈ E be any event. We have to show that
↓e is saturated. If there are e′ ∈↓e and e′′ ∼ e′ such that�

e′′ ⊆↓e then [↓e′′]∼ ⊆ [↓e]∼ and hence, by condition (1) in
Definition 22, e′′ ≤ e which means e′′ ∈↓e.

As an example, the connected ES of our running example
(see Fig. 2), corresponds to the prime ES with equivalence in
Fig. 9a, where we have two distinct copies of event c, namely
ca ∼ cb, corresponding to the possibile minimal enablings.
Graphically, causality is represented by a straight directed line.
The corresponding domain of configurations is depicted in
Fig. 9b. Note that C = {a, b, ca} is not a configuration despite
the fact that it is downward closed, since it is not ∼-saturated:
event cb is missing, but its causes {b} are in C.

Our definition of EPES is similar to that in [23], [24].
Concerning configurations, while [23], [24] identifies unam-
biguous configurations where there is a unique representative

a b

ca ∼ cb

(a)

∅

{a} {b}

{a, b}
{a, ca} {b, cb}

{a, b, ca, cb}

(b)

Fig. 9: A prime ES with equivalence and its domain of
configurations.

for each equivalence class, here instead we saturate including
all equivalent events that are not in conflict.

We finally observe that the constructions above can be
“translated” into constructions that relate directly EPES and
weak prime domains.

Proposition 8 (weak prime domain for EPES) Let 〈P,∼〉
be a EPES. Then Deq(〈P,∼〉) = 〈Conf (〈P,∼〉),⊆〉 is a weak
prime domain. Conversely, if D is a weak prime domain then
Eeq(D) = 〈〈ir(D),#,`〉,↔∗〉 with conflict and enabling
defined by
• i1#i2 if {i1, i2} not consistent;
• X ` i if X ⊇ ir(i) \{i}.

is an EPES.

Proof: Let 〈P,∼〉 be a EPES. Then it is easy to see that
the irreducibles of Deq(〈P,∼〉) are the minimal enablings ↓e
for e ∈ E. Moreover, given a set of pairwise consistent con-
figurations X ⊆ Conf (〈P,∼〉), the join

⊔
X is the saturation

of their union. Interchangeability is given by ↓ e ↔↓ e′ if
e ∼ e′ and ¬(e#e′). Using these fact it is almost immediate to
conclude that Deq(〈P,∼〉) is a weak prime domain. Let us first
observe that Deq(〈P,∼〉) is interchangeable (Definition 12):
• Condition (1) requires that for all e, e′ ∈ P if ↓e↔∗ ↓e′

and

�

e∪

�

e′ consistent then ↓e ↔↓e′. Observe that
↓e ↔∗ ↓e′ implies e ∼ e′. Moreover, by condition (2)
in Definition 22,

�

e∪

�

e′ consistent implies ¬(e#e′).
Hence we conclude ↓e↔↓e′.

• Condition (2) is an easy consequence of condition (3)
of Definition 22. In fact, let e, e′, e1, e

′
1 ∈ E such that

↓ e ↔∗ ↓ e′, ↓ e1 ↔∗ ↓ e′1, i.e., e ∼ e′ and e1 ∼ e′1.
Assume moreover that the sets { ↓e′, ↓e′1}, { ↓e,

�

e1 },
{

�

e , ↓ e1} are consistent, meaning that ↓ e′∪ ↓ e′1, ↓
e∪

�

e1 ,

�

e∪ ↓e1 are so. From the consistency of ↓
e′∪ ↓e′1 we have ¬(e′#e′1). Moreover, the consistency of
↓e∪

�

e1 ,

�

e∪ ↓e1 implies that if e#e1 then the conflict

would be direct and this would violate condition (3) of
Definition 22. Hence we must have ¬(e#e1), i.e., { ↓e, ↓
e1} consistent, as desired.

Finally, we show that all irreducibles are weak prime. Let
e ∈ P , consider the irreducible ↓e and a consistent set of
configurations X ⊆ Conf (〈P,∼〉). Assume that ↓e ⊆

⊔
X .

This means that e is in the saturation of
⋃
X , which in turn

means that there is C ∈ X and e′ ∈ C, whence ↓e′ ⊆ C,
such that e′ ∼ e. Since e, e′ ∈

⊔
X , they are consistent, hence

↓e↔↓e′. Summing up ↓e′ ⊆ C and e ∼ e′, as desired.
Conversely, let D be a weak prime domain. Observe that the

causal order in Eeq(D) is the restriction of the domain order
to irreducibles. Condition (1) in Definition 22 is an immediate
consequence of Proposition 6.

Condition (2) is immediately implied by condition (1) in
the definition of interchangeable domain (Definition 12).

Concerning condition (3), observe that it becomes: for
i, i′, i1, i

′
1 ∈ ir(D), if i ↔∗ i′, i1 ↔∗ i′1, i, i1 not

consistent and i′, i′1 consistent then either ir(p(i))∪{i1} or
ir(p(i1))∪{i} not consistent. In turn this is easily seen to be
equivalent to condition (2) in the definition of interchangeable
domain (Definition 12).

The correspondence above can be translated to an analogous
correspondence between EPES and unstable ES. It is however
impossible to make such correspondence functorial essentially
for the same reason why [23], [24] resorts to a pseudo-
adjunction. We try to enucleate the problem by showing a
correspondence between (unstable) event structures and EPES.

Definition 24 (from ES to EPES and back) Let 〈P,∼〉 be
an EPES, where P = 〈E,`,#〉. The corresponding ES is
M(〈P,∼〉) = 〈E∼,`∼,#∼〉, with `∼ and #∼ defined by
• [X]∼`∼[e]∼ when X ` e;
• [e]∼#∼[e′]∼ when e1#e′1 for all e1 ∈ [e]∼ and e′1 ∈ [e′]∼.

Conversely, given an ES P = 〈E,`,#〉 the corresponding
EPES is U(P) = 〈Q,∼〉, with Q = 〈E′,`′,#′〉 defined by
• E′ = {〈C, e〉 | C ∈ Conf (E) ∧ e ∈ E ∧ C `0 e};
• X `′ 〈C, e〉 if C ⊆

⋃
{C ′ ∪ {e′} | 〈C ′, e′〉 ∈ X};

• 〈C, e〉#′〈C ′, e′〉 if C ∪ C ′ ∪ {e, e′} is not consistent.
and the equivalence is defined by 〈C, e〉 ∼ 〈C ′, e〉 for all C,C ′

such that C `0 e and C ′ `0 e.

We can easily show, exploiting Proposition 8, that the
constructions above produce well-defined structures and map
connected structures to connected structures. Moreover, the
two constructions are inverse of each other.

Proposition 9 Let 〈P,∼〉 be an EPES. Then 〈P,∼〉 and
U(M(〈P,∼〉)) are isomorphic. Dually, let P = 〈E,`,#〉 be
an ES. Then M(U(P)) and P are isomorphic.

Proof: Let 〈P,∼〉 be an EPES. Recall that events in
U(M(〈P,∼〉)) are minimal enablings inM(〈P,∼〉). By defi-
nitions ofM(〈P,∼〉), for all e ∈ P we have [X]∼ `M(〈P,∼〉)
[e]∼ when X ` e. Therefore [

�

e]∼ `M(〈P,∼〉) [e]∼, and
this enabling is minimal since, by Definition 22(1), whenever
e′ ∼ e and [

�

e′]↔∗ ⊆ [

�

e]↔∗ we have e = e′. And,

again relying on the definition of enabling, one sees that all
minimal enablings are of this shape. Therefore we can define
c : 〈P,∼〉 → U(M(〈P,∼〉)) by c(e) = 〈[

�

e]∼, [e]∼〉. By the
previous arguments it is a bijection and it can be shown c to
be an isomorphism of EPES.

Conversely, let 〈E,`,#〉 be an an ES. According to the
definition, events in U(E) are minimal enablings 〈C, e〉 in E,
and they are equivalent when they are minimal enablings of
the same event. Then events inM(U(E)) are just equivalence
classes of events in U(E). Therefore we can define u : E →
M(U(E)) by u(e) = {〈C, e〉 | C ∈ Conf (E) ∧ C `0 e}. It
is immediate to see that it is a bijection and an isomorphism
of ES.

Observe that the construction from EPES to ES can be
easily turned into a functor M : epES → ES. In fact,
given a morphism f : 〈P1,∼1〉 → 〈P2,∼2〉 we can let
M(f)([e1]∼1

) = [f(e1)]∼2
.

Instead, making the converse construction from ES to EPES
functorial is problematic. In fact, consider the ES of the
running example E = {a, b, c}, with ∅ `0 a, ∅ `0 b
and {a, b} `0 c and the ES with events E′ = {a′, b′, c′}
with ∅ `0 a′, ∅ `0 b′ and {a′} `0 c′ and {b′} `0 c′

and the morphism f : E → E′ with f(x) = x′ for
x ∈ {a, b, c}. Then U(E) = {〈∅, a〉, 〈∅, b〉, 〈{a, b}, c〉} and
U(E′) = {〈∅, a′〉, 〈∅, b′〉, 〈{a′}, c′〉, 〈{b′}, c′〉}. Observe that,
while clearly U(f)(〈∅, a〉) = 〈∅, a′〉 and U(f)(〈∅, b〉) =
〈∅, b′〉, when we come to U(f)(〈{a, b}, c〉) we can define it
as one of the two equivalent events 〈{a′}, c′〉 and 〈{b′}, c′〉.

The solution offered by [23], [24] is to move towards
pseudo-functors, i.e., considering two EPES morphisms g, g′ :
P1 → P2 equivalent if g(e1) ∼2 g′(e1) for all e1 ∈ P1

and requiring that functors are defined only up-to morphism
equivalence. Indeed, it is easy to see that the two possible
choices for f above lead to equivalent morphisms.

B. Relation with Interval Based Characterisations

The correspondence between event structures and domains
has been often studied in the literature by relying on the notion
of interval [1], [16], [21], [22].

Definition 25 (interval) Let D be a domain. An interval is
a pair [d, d′] of elements of D such that d ≺ d′. The set
of intervals of D is denoted by Int(D). Given two intervals
[c, c′], [d, d′] ∈ Int(D) we define

[c, c′] ≤ [d, d′] if (c = c′ u d) ∧ (c′ t d = d′),

and we let ∼ be the equivalence obtained as the symmetric
and transitive closure of ≤.

It can be shown that ≤ is a partial order on intervals and
thus ∼ is indeed an equivalence. An interval represents a pair
of elements differing only for a “quantum” of information,
intuitively the execution of an event. The equivalence ∼ is
intended to identify intervals corresponding to the execution of
the same event in diffent states. Indeed, in [1] it is shown that
for prime domains there is a bijective correspondence between
∼-classes of intervals and complete primes. In weak prime

domains we can establish a similar correspondence, with ↔∗-
classes of irreducibles playing the role of the primes.

Lemma 16 (intervals vs. irreducibles) Let D be a weak
prime domain. Define ζ : Int(D)∼ → ir(D)↔∗ by

ζ([d, d′]∼) = [i]↔∗ ,

where i is any element in δ(d′, d). Then ζ is a bijection, whose
inverse is ι : ir(D)↔∗ → Int(D)∼ defined by

ι([i]↔∗) = [p(i), i]∼.

Proof: We first observe that ζ is well-defined, i.e., if
[c, c′] ∼ [d, d′] are equivalent intervals then for all i ∈ δ(c′, c),
i′ ∈ δ(d′, d) it holds i ↔ i′. This follows by noting that if
[c, c′] ≤ [d, d′], i ∈ δ(c′, c) and i′ ∈ δ(d′, d) then i ↔ i′. In
order to prove the last assertion, observe that since i ∈ ir(c′)
we have i v c′ v d′, thus i ∈ ir(d′). Moreover, i 6∈ ir(d),
otherwise, by i v d, i v c′ and c = d u c′, we would get
i v c, contradicting the assumption that i ∈ δ(c′, c). Hence
i ∈ δ(d′, d) and by Lemma 10(3) we conclude.

Also the converse map ι is well-defined. This follows
from the observation that for all irreducibles i, i′ ∈ ir(D)
if i ↔ i′ then [p(i), i], [p(i′), i′] ≤ [p(i) t p(i′), i t i′] and
thus [p(i), i] ∼ [p(i′), i′]. Let us prove, for instance, that

[p(i), i] ≤ [p(i) t p(i′), i t i′].

Since i ↔ i′, surely p(i) v p(i) t p(i′) and p(i) ≺ i, hence
by Lemma 12, we deduce i v p(i) t p(i′) or p(i) = i u
(p(i) t p(i′)). The first possibility, i v p(i) t p(i′), by the
fact that i is irreducible leads to i v p(i′) (since i v p(i) is
clearly false). Thus it p(i′) = p(i′) ≺ i′ v p(i)t i′, that, by
Lemma 5(3), contradicts i↔ i′. Hence the second possibility
must hold, i.e., p(i) = i u (p(i) t p(i′)). Moreover, again
by Lemma 5(3), we have i t (p(i) t p(i′)) = i t i′. Hence
[p(i), i] ≤ [p(i) t p(i′), i t i′] as desired.

The two maps are inverse each other.
• If [d, d′] ∈ Int(D) and i ∈ δ(d′, d) then [d, d′] ∼ [p(i), i].

Observe that d t i = d′ by Lemma 10(1). Moreover, in
order to show that d u i = p(i), note that, since i ∈
δ(d′, d) and, by Lemma 10(2), the set δ(d′, d) is flat, we
have that p(i) v d. Moreover p(i) ≺ i, therefore by
Lemma 12, p(i) = d u i, as desired.

• If i ∈ ir(D) and i′ ∈ [p(i), i] then i↔ i′.
Just observe that i ∈ [p(i), i] and then use Lemma 10(3).

In [21], [22] the domain of configurations of general event
structures with binary conflict is characterised in terms of
intervals. It is shown (see, e.g., [21, Theorem 3.3.3]), that
given a an event structure with binary conflict, the domain
of configuration is an algebraic complete partial order where
the following axioms hold

(F) for all d ∈ K(D) the set ↓d is finite;
(C) for all x, y, z ∈ K(D), if x ≺ y, x ≺ z, {y, z}

consistent, and y 6= z then there exists y t z and
y ≺ y t z and z ≺ y t z;

(R) for all intervals [x, y], [x, z] if [x, y] ∼ [x, z] then
y = z;

(V) for all x, x′, y, y′, x′′, y′′ ∈ K(D) if [x, x′] ∼ [y, y′],
[x, x′′] ∼ [y, y′′], and {x′, x′′} consistent then y′, y′′

consistent.

Conversely, in [22] an explicit construction of the ES
corresponding to a domain is provided. Given d ∈ K(D), let
s(d) = {[c, c′]∼ | c′ v d}.

Definition 26 (event structure from a domain [22]) Given
a domain D satisfying the axioms (F), (C), (R), (V),
the corresponding ES with binary conflict is defined as
Ewd(D) = (E,#,`) where

• E = Int(D)∼;
• [c, c′]∼#[d, d′]∼ if for all [c1, c

′
1], [d1, d

′
1] such that

[c1, c
′
1] ∼ [c, c′] and [d1, d

′
1] ∼ [d, d′] the set {c′1, d′1}

is not consistent;
• for X ⊆ E, X ` [c, c′]∼ if s(c1) ⊆ X for some interval

[c1, c
′
1] ∼ [c, c′].

The above construction produces an event structure with
binary conflict that is mapped back to the original domain
(see, e.g., [22, Corollary 2.10]).

Theorem 4 Let D be a domain satisfying axioms (F), (C),
(R), (V). Then D(Ewd(D)) is isomorphic to D.

We can build on the above results to show that the domains
satisfying axioms (F), (C), (R) and (V) are exactly the weak
prime domains.

Proposition 10 (weak prime domains and intervals) Let
D be a domain. Then D is a weak prime domain iff D
satisfies axioms (F), (C), (R) and (V).

Proof: Let D be a domain satisfying axioms (F), (C),
(R) and (V). By Theorem 4, D(Ewd(D)) ' D. Since, by
Proposition 4, the set of configurations of any event structure
forms a weak prime domain, we conclude that D is weak
prime.

For the converse, let D be a weak prime domain. By
Theorem 3, we have that D(E(D)) ' D and thus, since
by [21], [22], the domain of configuration of an event structure
with binary conflict satisfies axioms (F), (C), (R) and (V), we
conclude.

Moreover, relying on Lemma 16, we can show that the event
structures associated with a domain in [22] (Definition 26) and
in our work (Definition 20) coincide.

Proposition 11 Let D be a weak prime domain. Then E(D)
and Ewd(D) are isomorphic.

Proof: By Lemma 16, the function ζ : Int(D)∼ →
ir(D)↔∗ is a bijection. Note that Int(D)∼ and ir(D)↔∗ are
the sets of events respectively of E(D) and Ewd(D). We next
show that ζ is an isomorphism of event structures.

Let e1, e2 be events in Ewd(D). We show that e1#e2 iff
ζ(e1)# ζ(e2).

If ¬(e1#e2), from Definition 26, we get that there exist
[c1, c

′
1] ∈ e1 and [c2, c

′
2] ∈ e2 such that {c′1, c′2} is consistent.

Let d ∈ D be an upper bound, i.e., c′1, c
′
2 v d. Now, ζ(ej) =

[ij]↔∗ for ij ∈ δ(cj , c
′
j), for j ∈ {1, 2}. Clearly, i1, i2 ∈

ir(d) whence [i1]↔∗ , [i2]↔∗ ⊆ [ir(d)]↔∗ and thus, according
to Definition 20, we have ¬([i1]↔∗#[i2]↔∗), as desired. The
argument can be reversed to prove that if ¬(ζ(e1)# ζ(e2))
then ¬(e1#e2).

Concerning the enabling relation, we show that X ` e in
Ewd(D) iff ζ(X) ` ζ(e) in E(D). Assume that X ` e in
Ewd(D). This means that there exists [c, c′] ∈ e such that
s(c) = {[d, d′]∼ | d′ v c} ⊆ X . Now, recall that ζ(e) =
[i]↔∗ with i ∈ δ(c′, c). In order to show that ζ(X) ` ζ(e),
according to Definition 20, we prove that [ir(i) \{i}]↔∗ ⊆
ζ(X). Let j ∈ ir(i) \{i}. Clearly j ∈ δ(j, p(j)) and thus
[j]↔∗ = ζ([p(j), j]∼). Moreover, by Lemma 10(2) the set
δ(c′, c) is flat and thus, since j @ i necessarily j 6∈ δ(c′, c).
Since j ∈ ir(c′) we conclude that j ∈ ir(c), namely j v c.
This implies that [p(j), j]∼ ∈ s(c) and thus

[j]↔∗ = ζ([p(j), j]∼)
⊆ ζ(s(c))
⊆ ζ(X) [since s(c) ⊆ X]

We thus conclude that [ir(i) \{i}]↔∗ ⊆ ζ(X) as desired.
Also in this case, the argument can be easily reversed to

prove the converse implication.
The paper by Droste [22] considers also the case of event

structures with a general consistency relation (rather than a
binary conflict). The correspondence with our approach can
be extended to this setting, as further detailed in Appendix A.

C. Relation with Asynchronous Graphs

A characterisation of prime ES in terms of their transition
graph has been given in [27]. A slightly different, yet equiva-
lent formalisation has been rediscovered in [29], in the context
of the work on the abstract theory of rewriting and concurrent
games. Here we show that an analogous characterisation can
be obtained for (connected) event structures. For our devel-
opment we refer to the formalisation in [29]. Given a graph
G = 〈N,U, s, t〉, a sequence of edges w = u1; . . . ;un ∈ U∗
is a path whenever each edge has a target that coincide with
the source of the subsequent edge, i.e., for all i ∈ [1, n− 1],
t(ui) = s(ui+1). Let us denote by P2(G) the set of paths
of length 2, i.e., P2(G) = {u1;u2 | u1, u2 ∈ E}. Note that
two paths of length 2 with the same source and target can be
seen as a “square” in the graph. An asynchronous graph is
then a transition system where some squares are declared to
commute.

Definition 27 (asynchronous graph) An asynchronous
graph is a tuple A = 〈G,n0,'〉 where G = 〈N,U, s, t〉 is a
directed graph, n0 ∈ N is the origin and ' ⊆ P2(G)×P2(G)
is an equivalence relation on coinitial and cofinal paths of
length 2 (i.e., if u1;u2 ' v1; v2 then s(u1) = s(v1) and
t(u2) = t(v2)) such that the following axioms hold (in
pictures, all squares depicted are assumed to commute)

1) if u1;u2 ' v1; v2 and u2 6= v2 then u1 6= v1;
•

• •
•u1 v1

u2 v2

2) if u;u1 ' v1; v2 and u;u′1 ' v′1; v′2 then (u1 = u′1 iff
v1 = v′1);

•
• •

•u v1

u1 v2

and
•

• •
•u v′1

u′1 v′2

3) Cube
•

• •

•• •

•u1 v1

u2 v2

u3 v3

(a)⇒
(b)⇐

•

• ••

• •

•u1 v1

u2 v2

u3 v3

4) Coherence axiom

•• •

•• •

•u1 v1

u2 v2 ⇒

•

• ••

• •

•u1 v1

u2 v2

Given an asynchronous graph, we denote by the same
symbol ' the extension of the equivalence to all paths
by contextual closure, i.e., w1;w;w2 ' w1;w′;w2 for all
w1, w2, w, w

′ ∈ U∗ with w ' w′. The equivalence classes
of paths from the origin can be ordered by prefix, leading to
a partial order P (A). Then it can be shown that the partial
orders of finite configurations of prime ES exactly correspond
to asynchronous graphs such that all cofinal paths from the
origin are equivalent.

Definition 28 (prime asynchronous graph) An
asynchronous graph A = 〈G,n0,'〉 is called prime if
all cofinal paths from the origin n0 are equivalent.

It can be seen that the requirement of having all cofinal
paths equivalent amounts to that of having all coinitial and
cofinal paths of length 2 (squares) equivalent. This is indeed
how the condition is formalised in [27].

Theorem 5 (asynchronous graphs/prime ES [29]) Let
A be a prime asynchronous graph. The ideal completion
Idl(P (A)) is a prime domain. Conversely, each prime domain
is isomorphic to Idl(P (A)) for some prime asynchronous
graph A.

With respect to [29], we added the coherence axiom (4) in
the definition of asynchronous graph, which is going to be
pivotal in our later characterisation of weak prime domains
(Proposition 12). This is actually necessary already for having
a correspondence with prime domains and ES.2

2In a personal communication, Paul Andrée Melliès agreed that condition
(4) is necessary for the correctness of Theorem 3 of Section 2.6 of [29],
rephrased here as Theorem 5.

The correspondence established by Theorem 5 generalises
to connected ES and what we call weak asynchronous graphs,
i.e., asynchronous graphs where only the forward part of the
cube axiom holds, while the converse implication (indeed
sometimes referred to as stability axiom) may fail.

Definition 29 (weak asynchronous graphs) A weak asyn-
chronous graph is defined as in Definition 27, but omitting
the stability axiom (3a). It is called weak prime if additionally
all cofinal paths from the origin are equivalent.

Then we can prove that weak prime domains are exactly the
partial orders generated by weak prime asynchronous graphs
(which in turn correspond to connected ES).

Proposition 12 (weak asynchronous graphs and domains)
Let A be a weak prime asynchronous graph. The ideal
completion Idl(P (A)) is a weak prime domain. Conversely,
each weak prime domain is isomorphic to Idl(P (A)) for
some weak prime asynchronous graph A.

Proof: First observe that in a weak asynchronous graph
A = 〈G,n0,'〉 with G = 〈N,U, s, t〉 such that all the cofinal
paths from the origin are equivalent we have that all the
squares are commuting. Thus axioms (1) and (2) imply that
the graph is simple, that there are at most two different paths
of length 2 with the same source and target, and that there is
at most one way of closing a square.

Now, let D be a weak prime domain and consider the subset
of compact elements K(D). It can be seen as an (acyclic)
graph by taking compact elements as nodes and intervals as
edges, with source and target functions being the obvious ones
s([c, c′]) = c and t([c, c′]) = c′. Then taking ∅ as origin and
letting all the squares commute, we get a weak asynchronous
graph where all the paths are equivalent. In detail, as observed
above, axiom (1) follows from the fact that the graph is simple.
Axiom (2) says that there are at most two paths of length 2
between the same source and target. Assume that this is not
the case, i.e., K(D) contains a substructure as below, with
y1, y2, y3 pairwise distinct.

z

y1 y2 y3

x

Then we would have that y1 is an irreducible which is not a
weak prime. In fact y1 v y2 t y3, but it is not the case that
either y1 ↔ y2 or y1 ↔ y3.

Axiom (3a) follows from bounded completeness and the fact
that if x ≺ y1 and x ≺ y2, with y1 6= y2 then y1 ≺ y1 t y2

and y2 ≺ y1 t y2.
Axiom (4) is an immediate consequence of coherence.
Finally, we have to prove that all the paths from ∅ to the

same target are equivalent. We prove more generally that all
coinitial and cofinal paths are equivalent. First notice that given
two paths w = y1 . . . yn and w′ = y′1 . . . y

′
m with y1 = y′1

and yn = y′m then n = m = |[ir(yn)]↔∗ \ [ir(y1)]↔∗ |, by

Lemma 11. We prove by induction on n = m that the two
paths are equivalent. The base cases n = 1 and n = 2 are
obvious. In the inductive case, consider z = y2 t y′2.

yn = y′n

y3 y′3
z

y2 y′2

y1 = y′1

Then, as already observed, y2 ≺ z and y′2 ≺ z. Then

y1y2z ' y′1y′2z (9)

Moreover, since z v yn = y′n there is a path y2z . . . yn
of length n − 1 in a way that we can apply the inductive
hypothesis to prove that y2y3 . . . yn ' y2z . . . yn. Similarly,
on the left side, we get y′2y

′
3 . . . yn ' y′2z . . . y

′
n. Therefore,

together with (9), we conclude that w = y1y2y3 . . . yn '
y1y2z . . . yn ' y′1y′2z . . . y′n ' y′1y′2y′3 . . . y′n = w′.

Conversely, let A = 〈G,n0,'〉 where G = 〈N,U, s, t〉 is
a weak asynchronous graph such that all the paths from the
origin are equivalent. Then, in particular, all the squares are
commuting and, by axiom (1), the graph is simple, i.e., we can
think of edges as a relation on nodes. This allows us to view
A as a concurrent automata (Q,Σ, T, (‖q)q∈Q) in the sense
of [25] as follows. Define an equivalence on edges by u ≡ u′
if there are v, v′ ∈ U such that uv ∼ v′u′ (namely, u, u′ are
the opposite edges of a square). Then take nodes as states Q =
N , equivalence classes of edges as labels Σ = U≡, transition
relation T = {(s(u), u, t(u)) | u ∈ U} and local concurrency
given by [u]≡ ‖n [v]≡ when u, v are such that s(u) = s(v) =
n and there are u′, v′ ∈ E such that uu′ ∼ vv′. The fact
that ‖n is well-defined uses in an essential way axioms (3a)
and (4). Then an immediate adaptation of [25, Theorem 10]
to asynchronous graphs shows that P (A) is a domain that
satisfies axioms (F), (C), and (R) in Subsection IV-B. Finally,
observe that axiom (V) is a “global” version of the axiom
(1). The fact that the latter implies the former can be proved
by exploiting the fact that each bounded subset of P (A) is a
semimodular lattice [26, Theorem 3.1]. Hence D is a weak
prime domain.

V. DOMAIN AND EVENT STRUCTURE SEMANTICS FOR
GRAPH REWRITING

In this section we consider graph rewriting systems where
rules are left-linear but possibly not right-linear and thus, as
an effect of a rewriting step, some items can be merged. We
argue that weak prime domains and connected ES are the
right tool for providing a concurrent semantics to this class
of rewriting systems. More precisely, in Subsection V-A we
review the basics of graph rewriting and we generalise the
notion of independence between rule applications to graph
rewriting with left-linear rules. Then in Subsections V-B and

V-C we show that the domain associated with a graph rewriting
system by a generalisation of a classical construction is a
weak prime domain and vice versa that each connected ES and
thus each weak prime domain arise as the semantics of some
graph rewriting system. Finally, in Subsection V-D we show
how a prime event structure semantics for a graph rewriting
system can be recovered by imposing suitable restriction on
rule application.

A. Graph rewriting and concatenable traces

We first review the basic definitions about graph rewriting in
the double-pushout approach [20]. We recall graph grammars
and then introduce a notion of trace, which provides a repre-
sentation of a sequence of rewriting steps that abstracts from
the order of independent rewrites. This requires an original
generalisation of the notion of independence between rewriting
steps to the case of left-linear rules. Traces are then turned into
a category Tr(G) of concatenable derivation traces [31].

Definition 30 A (directed) graph is a tuple G = 〈N,E, s, t〉,
where N and E are sets of nodes and edges, and s, t : E → N
are the source and target functions. The components of a graph
G are often denoted by NG, EG, sG, tG. A graph morphism
f : G → H is a pair of functions 〈fN : NG → NH , fE :
EG → EH〉 such that fN ◦s = s′◦fE and fN ◦t = t′◦fE . We
denote by Graph the category of graphs and graph morphisms

An abstract graph [G] is an isomorphism class of graphs.
We work with typed graphs, i.e., graphs which are “labelled”
over some fixed graph. Formally, given a graph T , the category
of graphs typed over T , as introduced in [32], is the slice
category (Graph ↓ T), also denoted GraphT .

Definition 31 (graph grammar) A (T -typed graph) rule is a
span (L

l← K
r→ R) in GraphT where l is mono and not epi.

The typed graphs L, K, and R are called the left-hand side,
the interface, and the right-hand side of the rule, respectively.
A (T -typed) graph grammar is a tuple G = 〈T,Gs, P, π〉,
where Gs is the start (typed) graph, P is a set of rule names,
and π maps each rule name in P into a rule.

Sometimes we write p : (L
l← K

r→ R) for denoting the
rule π(p). When clear from the context we omit the word
“typed” and the typing morphisms. Note that we consider
only consuming grammars, i.e., grammars where for every rule
π(p) the morphism l is not epi. Also note that rules are, by
default, left-linear, i.e., the morphism l is mono. When also
the morphism r is mono, the rule is called right-linear.

An example of graph grammar has been discussed in the
introduction (see Fig. 2a). The type graph was left implicit: it
can be found in the top part of Fig. 10. The typing morphisms
for the start graph and the rules are implicitly represented by
the labelling. Also observe that for the rules only the left-hand
side L and the right-hand side R were reported. The same rules
with the interface graph explicitly represented are in Fig. 10.

Definition 32 (direct derivation) Let G be a typed graph, let
p : (L

l← K
r→ R) be a rule, and let mL be a match, i.e.,

c, v

ā

b̄ ν̄
in

T

c

ȳ

ν

ν̄

c ν

ν̄

c, ν

ν̄

py (y ∈ {a, b})

c, ν

in
ν̄

c, ν

ν̄

c, ν

ν̄

pc

Fig. 10: The type graph and the rules of the grammar in
Fig. 2a.

L

mL ��

K
loo r //

mK��

R

mR��

G D
l∗
oo

r∗
// H

Fig. 11: A direct derivation.

a typed graph morphism mL : L → G. A direct derivation δ
from G to H via p (based on mL) is a diagram as in Fig. 11,
where both squares are required to be pushouts in GraphT . We

write δ : G
p/m
=⇒ H , where m = 〈mL,mK ,mR〉, or simply

δ : G
p

=⇒ H .

Since pushouts are defined only up to isomorphism, given

isomorphisms κ : G′ → G and ν : H → H ′, also G′
p/m′

=⇒ H

with m′ = 〈κ−1 ◦mL,mK ,mR〉 and G
p/m′′

=⇒ H ′ with m′′ =
〈mL,mK , ν ◦mR〉 are direct derivations, denoted by κ · δ and
δ · ν, respectively. Informally, the rewriting step removes (the
image of) the left-hand side from G and replaces it by (the
image of) the right-hand side R. The interface K (the common
part of L and R) specifies what is preserved. For example, the
transitions in Fig. 2b are all direct derivations. When rules are
not right-linear, some items in the (image of the) interface are
merged. This happens, e.g., for pa and pb.

Definition 33 (derivations) Let G = 〈T,Gs, P, π〉 be a graph
grammar. A derivation ρ : G0 =⇒∗G Gn over G is a (possibly
empty) sequence of direct derivations {Gi−1

pi
=⇒ Gi}i∈[1,n]

where pi ∈ P for i ∈ [1, n]. The graphs G0 and Gn are
called the source and the target of ρ, and denoted by s(ρ) and
t(ρ), respectively. The length of ρ is |ρ| = n. The derivation
is called proper if |ρ| > 0. Given two derivations ρ and ρ′

such that t(ρ) = s(ρ′), their sequential composition ρ ; ρ′ :
s(ρ) =⇒∗ t(ρ′) is defined in the obvious way.

When irrelevant/clear from the context, the subscript G is
omitted. If ρ : G =⇒∗ H is a proper derivation and κ : G′ →
G, ν : H → H ′ are graph isomorphisms, then κ · ρ : G′ =⇒∗
H and ρ · ν : G =⇒∗ H ′ are defined as expected.

In the double pushout approach to graph rewriting, it is

pi : Li

mLi

		

m′Li ��

Ki
lioo

ri //

mKi

		

m′Ki ��

Ri

mRi

m′Ri ��

G′0 G′i−1 D′il′∗i
oo r′∗i

// G′i G′n

C(G0)

α′
44

α %%

C(Gn)

ω′ee

ωtt
G0

θG0

??

Gi−1

θGi−1

;;

Di
l∗i

oo
r∗i

//

θDi

;;

Gi

θGi

==

Gn

θGn

@@

Fig. 12: Abstraction equivalence of decorated derivations.

natural to consider graphs and derivations up to isomorphism.
However some structure must be imposed on the start and end
graphs of an abstract derivation in order to have a meaningful
notion of sequential composition. In fact, isomorphic graphs
are, in general, related by several isomorphisms, while in
order to concatenate derivations keeping track of the flow of
causality one must specify how the items of the source and
target isomorphic graphs should be identified. We follow [2],
inspired by the theory of Petri nets [33]: we choose for each
class of isomorphic typed graphs a specific graph, named the
canonical graph, and we decorate the source and target graphs
of a derivation with isomorphisms from the corresponding
canonical graphs to such graphs.

Let C denote the operation that associates with each (T -
typed) graph its canonical graph, thus satisfying C(G) ' G
and if G ' G′ then C(G) = C(G′).

Definition 34 (decorated derivation) A decorated deriva-
tion ψ : G0 =⇒∗ Gn is a triple 〈α, ρ, ω〉, where ρ : G0 =⇒∗
Gn is a derivation and α : C(G0) → G0, ω : C(Gn) → Gn
are isomorphisms. We define s(ψ) = C(s(ρ)), t(ψ) = C(t(ρ))
and |ψ| = |ρ|.

Definition 35 (sequential composition) Let ψ = 〈α, ρ, ω〉,
ψ′ = 〈α′, ρ′, ω′〉 be decorated derivations such that t(ψ) =
s(ψ′). Their sequential composition ψ;ψ′ is defined, if ψ and
ψ′ are proper, as 〈α, (ρ · ω−1); (α′ · ρ′), ω′〉. Otherwise, if
|ψ| = 0 then ψ;ψ′ = 〈α′ ◦ ω−1 ◦ α, ρ′, ω′〉, and similarly,
if |ψ′| = 0 then ψ;ψ′ = 〈α, ρ, ω ◦ α′−1 ◦ ω′〉.

We next define an abstraction equivalence that identifies
derivations that differ only in representation details.

Definition 36 (abstraction equivalence) Let ψ = 〈α, ρ, ω〉,
ψ′ = 〈α′, ρ′, ω′〉 be decorated derivations with ρ : G0 =⇒∗
Gn and ρ′ : G′0 =⇒∗ G′n′ (whose ith step is depicted in
the lower rows of Fig. 12). They are abstraction equivalent,
written ψ ≡a ψ′, if n = n′, pi = p′i for all i ∈ [1, n], and
there exists a family of isomorphisms {θXi : Xi → X ′i | X ∈
{G,D}, i ∈ [1, n]}∪ {θG0

} between corresponding graphs in
the two derivations such that (1) the isomorphisms relating the
source and target commute with the decorations, i.e., θG0

◦α =
α′ and θGn ◦ ω = ω′; and (2) the resulting diagram (whose
ith step is represented in Fig. 12) commutes.

Equivalence classes of decorated derivations with respect to
≡a are called abstract derivations and denoted by [ψ]a, where
ψ is an element of the class.

From a concurrent perspective, also derivations that only
differ for the order in which two independent direct derivations

L1

mL1

��

K1

l1oo
r1 //

mK1

��

R1

mR1

��

i1
!!

L2

mL2

��

i2
}}

K2

l2oo
r2 //

mK2

��

R2

mR2

��
G D1

l∗1

oo
r∗1

// H D2
l∗2

oo
r∗2

// M

Fig. 13: Sequential independence for ρ = G
p1/m1
=⇒ H

p2/m2
=⇒

M .

are applied should not be distinguished. This is classically
formalised by a notion of sequential independence between
rewrites inducing the so-called shift equivalence on deriva-
tions. When working with rules which are only left-linear, we
need to refine the notion of independence as discussed below.

Definition 37 (sequential independence) Consider a deriva-
tion G

p1/m1
=⇒ H

p2/m2
=⇒ M as in Fig. 13. Then, its compo-

nents are weakly sequentially independent if there exists an
independence pair among them, i.e., two graph morphisms
i1 : R1 → D2 and i2 : L2 → D1 such that l∗2 ◦ i1 = mR1 ,
r∗1 ◦ i2 = mL2 . They are sequentially independent if the
independence pair is unique.

Intuitively, when the independence pair is not unique, we
can think that the first rewrite has performed some fusions
that the second rewrite is using in an essential way. Hence
the steps should not considered independent. Note that when
dealing with linear rules, the independence pair, if it exists, is
always unique. Hence the two notions independence coincide
and reduce to the classical one in [14].

Proposition 13 (interchange operator) Let ρ = G
p1/m1
=⇒

H
p2/m2
=⇒ M be a derivation whose components are se-

quentially independent via an independence pair ξ. Then, a

derivation ICξ(ρ) = G
p2/m

∗
2=⇒ H∗

p1/m
∗
1=⇒ M can be uniquely

constructed. The interchange is called proper when it produces
a derivation that is again sequentially independent.

We explicitly observe that the result of the interchange of
two sequentially independent rewrites is still weak sequentially
independent, but, differently from what happens for linear
rules, it could fail to be sequentially independent due to non-
uniqueness of the independence pair. This motivates the notion
of proper interchange.

The interchange operator is used to introduce a notion of
shift equivalence [14], identifying (as for the analogous permu-
tation equivalence of λ-calculus) those derivations which differ
only for the scheduling of independent steps. Due to the fact
that the interchange of a sequential independence derivation is
not necessarily sequential independent some care must be put
for making the relation symmetric.

Definition 38 (shift equivalence) The derivations ρ and ρ′

are shift equivalent, written ρ ≡sh ρ′, if ρ′ can be obtained
from ρ by repeated proper interchanges of pairs of sequentially
independent rewrite steps.

If we are interested in the way ρ′ is obtained from ρ, we write
ρ ≡shσ ρ′, for σ : [1, n] → [1, n] the associated permutation.
It is easy to see that, due to the requirement that interchanges
are proper, the relation ≡sh is indeed symmetric.

For instance, in Fig. 2b it is easy to see that the derivation
Gs

pa
=⇒ Gb

pb
=⇒ Gab consists of sequentially independent

direct derivations. It is shift equivalent to Gs
pb

=⇒ Ga
pa

=⇒ Gab,
via the permutation σ = {(1, 2), (2, 1)}.

Two decorated derivations are said to be shift equiva-
lent when the underlying derivations are, i.e., 〈α, ρ, ω〉 ≡sh
〈α, ρ′, ω〉 if ρ ≡sh ρ′. Then the equivalence of interest arises
by joining abstraction and shift equivalence.

Definition 39 (concatenable traces) We denote by ≡c the
equivalence on decorated derivations arising as the transitive
closure of the union of the relations ≡a and ≡sh. Equivalence
classes of decorated derivations with respect to ≡c are denoted
as [ψ]c and are called concatenable (derivation) traces.

We will sometimes annotate ≡c with the permutation relating
the equivalent permutations. Formally, ≡cσ can be defined
inductively as: if ψ ≡a ψ′ then ψ ≡cid ψ′ , if ψ ≡shσ ψ′ then
ψ ≡cσ ψ′, and if ψ ≡cσ ψ′ and ψ′ ≡cσ′ ψ′′ then ψ ≡cσ′◦σ ψ′′.

Several proofs concerning concatenable traces exploit a
property of equivalence ≡c presented in [2, Sec. 3.5], that
we summarize and adapt here to our framework.

If ψ and ψ′ are decorated derivations, then a consistent
permutation between their steps relates two direct derivations
if they consume and produce the same items, up to an
isomorphism that is consistent with the decorations.

Definition 40 (consistent permutation) Given a decorated
derivation ψ = 〈α, ρ, ω〉 : G0 =⇒∗ Gn, we denote by col(ψ)
the colimit of the corresponding diagram in category GraphT ,
and by inXcol(ψ) the injection of X into the colimit, for any
graph X in ρ. Given two such decorated derivations ψ and ψ′

of equal length n, a consistent permutation σ from ψ to ψ′ is
a permutation σ on [1, n] such that

1) there exists an isomorphism ξ : col(ψ)→ col(ψ′);
2) for each i ∈ [1, n] the direct derivations δi of ψ and δσ(i)

of ψ′ use the same rule;
3) for each i ∈ [1, n], let p : (L

l← K
r→ R) be the rule

used by direct derivations δi : Gi−1
p/m
=⇒ Gi and δ′σ(i) :

G′σ(i)−1

p/m′

=⇒ G′σ(i); then

• ξ ◦ inGi−1

col(ψ) ◦m
L = in

Gσ(i)−1

col(ψ′) ◦m
′L, and

• ξ ◦ inGicol(ψ) ◦m
R = in

Gσ(i)
col(ψ′) ◦m

′R;

4) [α-consistency] ξ ◦ inG0

col(φ) ◦ α = in
G′0
col(φ′) ◦ α

′;

5) [ω-consistency] ξ ◦ inGncol(φ) ◦ ω = in
G′n
col(φ′) ◦ ω

′;

A permutation σ from ψ to ψ′ is called left-consistent if it
satisfies conditions (1)-(4), but possibly not ω-consistency. It
is easy to show, by induction on the length of derivations, that
the isomorphism ξ : col(ψ)→ col(ψ′) is uniquely determined
by conditions (2)-(4), if it exists.

In the case of linear rules the existence of a consistent
permutation is a characterisation of equivalence ≡c. Here, it
just provides a necessary condition.

Lemma 17 Let ψ, ψ′ be decorated derivations.
1) if ψ ≡cσ ψ′ then |ψ| = |ψ′| and σ is a consistent

permutation on [1, |ψ|] between them. We write ψ ≡cσ ψ′
in this case.

2) If ψ;ψ1 ≡cσ ψ′;ψ′1 and ψ ≡cσ0
ψ′, then σ0 is the

restriction of σ to [1, |ψ|]. In this case it also holds
ψ1 ≡cσ1

ψ′1, with σ1(i) = σ(i+ |ψ|)− |ψ|.
3) If ψ ≡c ψ′, then there is a unique consistent permutation

σ such that ψ ≡cσ ψ′.

Proof: [sketch]
1) This holds by [2, Thm. 3.5.3]. Just note that the proof of

this direction does not use linearity of rules.
2) Suppose by absurd that j be the smallest index in [1, |ψ|]

such that σ(j) 6= σ0(j). Let p : (L
l← K

r→ R)
be the rule used in δj and let x ∈ L \ l(K) be an
item consumed by it, which exists because all rules are
consuming. By Definition 40 we deduce that both direct
derivations δ′σ(j) and δ′σ0(j) of ψ′;ψ′1 use the same rule
p (say, with matches m′ and m′′), and that the items
m′

L
(x) ∈ G′σ(j)−1 and m′′

L
(x) ∈ G′σ0(j)−1 which are

consumed by δ′σ(j) and δ′σ0(j), respectively, are identified
in the colimit col(ψ′;ψ′1) (actually, from ψ ≡cσ0

ψ′ we
know that there is a morphism G′σ0(j)−1 → col(ψ′), but
we can compose it with the obvious – not necessarily
injective – morphism col(ψ′) → col(ψ′;ψ′1)). But given
the shape of the derivation diagram determined by the
left-linearity of rules, and the properties of colimits in
Graph, this is not possible, because there is no undirected
path of morphisms relating the images of element x ∈ L
in G′σ(j)−1 and G′σ0(j)−1 respectively. Therefore σ and
σ0 must coincide on [1, |ψ|].
For the second part, by the fact just proved clearly σ1

is a well-defined permutation on [1, |ψ1|]. Then the fact
that ψ1 ≡cσ1

ψ′1 is almost immediate. Only commutation
of the source decorations is not obvious, but it follows
from commutation of the target for ψ ≡cσ0

ψ′ and
Definition 35.

3) Direct consequence of the previous point, considering
zero-length decorated derivations ψ1 and ψ′1.

The sequential composition of decorated derivations lifts to
composition of derivation traces so that we can consider the
corresponding category.

Definition 41 (category of concatenable traces) Let G be a
graph grammar. The category of concatenable traces of G,
denoted by Tr(G), has abstract graphs as objects and con-
catenable traces as arrows.

B. A weak prime domain for a grammar

For a grammar G we obtain a partially ordered repre-
sentation of its derivations starting from the initial graph

by considering the concatenable traces ordered by prefix.
Formally, as done in [2], [3] for linear grammars, we consider
the category ([Gs] ↓ Tr(G)), which, by definition of sequential
composition between traces, is easily shown to be a preorder.

Proposition 14 Let G be a graph grammar. Then the category
([Gs] ↓ Tr(G)) is a preorder.

Proof: Let [ψ] : [Gs] → [G], [ψ′] : [Gs] → [G′] be
concatenable traces and let [ψ1], [ψ2] : [ψ] → [ψ′] be arrows
in the slice category. Spelled out, this means that ψ1, ψ2 :
G→ G′ are such that ψ;ψ1 ≡c ψ;ψ2 ≡c ψ′. By point (2) of
Lemma 17, using the fact that ψ ≡c ψ we can conclude that
ψ1 ≡c ψ2, as desired.

Explicitly, elements of the preorder are concatenable traces
[ψ]c : [Gs] → [G] and, for [ψ′]c : [Gs] → [G′], we have
[ψ]c v [ψ′]c if there is ψ′′ : G → G′ such that ψ;ψ′′ ≡c ψ′.
Note that, given two concatenable traces [ψ]c : [Gs]→ [G] and
[ψ′]c : [Gs]→ [G′], if [ψ]c v [ψ′]c v [ψ]c then ψ can be ob-
tained from ψ′ by composing it with a zero-length trace. Hence
the elements of the partial order induced by ([Gs] ↓ Tr(G))
intuitively consist of classes of concatenable traces whose
decorated derivations are related by an isomorphism that has to
be consistent with the decoration of the source. Once applied
to the grammar in Fig. 2a, this construction produces a domain
isomorphic to that in Fig. 2c.

Lemma 18 Let G be a graph grammar. The partial order
induced by ([Gs] ↓ Tr(G)), denoted P(G), has as elements
〈ψ〉c = {[ψ · ν]c | ν : t(ψ)

∼→ t(ψ)} and 〈ψ〉c v 〈ψ′〉c if
ψ;ψ′′ ≡c ψ′ for some decorated derivation ψ′′.

Proof: Immediate.
The domain of interest is then obtained by ideal completion

of P(G), with (the principal ideals generated by) the elements
in P(G) as compact elements. In order to give a proof for this,
we need a preliminary technical lemma that essentially proves
the existence and provides the shape of the least upper bounds
in the domain of traces.

Lemma 19 (properties of ≡c) Let ψ and ψ′ be decorated
derivations. Then the following hold:

1) Let ψ1, ψ
′
1 be such that ψ;ψ1 ≡cσ ψ′;ψ′1 and let n =

|{j ∈ [|ψ|, |ψ;ψ1| − 1] | σ(j) < |ψ′|}|. Then for all
φ2, φ

′
2 such that ψ;φ2 ≡c ψ′;φ′2 it holds |φ2| ≥ n and

there are ψ2, ψ
′
2, ψ3 such that

• ψ;ψ1 ≡c ψ;ψ2;ψ3

• ψ;ψ2 ≡c ψ′;ψ′2
• |ψ2| = n

2) Let ψ1, ψ
′
1, ψ2, ψ

′
2 be such that ψ;ψ1 ≡cσ1

ψ′;ψ′1 and
ψ;ψ2 ≡cσ2

ψ′;ψ′2 with ψ1, ψ2 of minimal length. Then
ψ1 ≡cσ ψ2 · ν, where ν : t(ψ2) → t(ψ2) is some graph
isomorphism and σ(j) = σ−1

2 (σ1(j + |ψ|))− |ψ| for j ∈
[0, |ψ1| − 1].

Proof:
1) We first observe that if ψ,ψ′ are derivation traces and

ψ1, ψ
′
1 are such that ψ;ψ1 ≡cσ ψ′;ψ′1, with |ψ| = k,

|ψ′| = k′, |ψ;ψ1| = |ψ′;ψ′1| = h then there is a φ1 such
that ψ;ψ1 ≡c ψ;φ1 ≡cσ1

ψ′;ψ′1 and
for i, j ∈ [|ψ|, h− 1], i ≤ j implies σ1(i) ≤ σ1(j). (†)
In order to prove this, we can proceed by induction on
the number of inversions x = |{(i, j) ∈ [|ψ|, h− 1] |
i ≤ j ∧ σ(i) > σ(j)}|, i.e., on the number of
pairs (i, j) in the interval of interest that do not re-
spect the monotonicity condition. When x = 0 the
thesis immediately holds. Assume that x > 0. Then
there are certainly indices j ∈ [|ψ|, h− 2] such that
σ(j) > σ(j + 1). Among these, take the index i such
that σ(i+1) is minimal. Then it can be shown that direct
derivations at position i and i+ 1 in ψ1 are sequentially
independent, and thus they can be switched, i.e., there
is φ2 such that ψ;φ2 ≡cid[i7→i+1,i+17→i] ψ;ψ1. Therefore
ψ;φ2 ≡cσ◦id[i 7→i+1,i+17→i] ψ

′;ψ′1. This reduces the num-
ber of inversions and thus the inductive hypothesis allows
us to conclude.
In the same way, we can prove that there is a φ′1 such
that ψ;φ1 ≡cσ2

ψ′;φ′1 ≡c ψ′;ψ′1 and
for i, j ∈ [|ψ′|, h−1], if i ≤ j then σ−1

2 (i) ≤ σ−1
2 (j) (‡)

Putting conditions (†) and (‡) together we derive that
ψ;ψ1 ≡c ψ;φ1 ≡cσ′= ψ′;φ′1 ≡c ψ′;ψ′1. Now let y ∈
[|ψ|, h− 1] be the largest index such that σ′(y) < |ψ′|
(or y = |ψ| if it does not exist), let l3 = h − y and
consider decorated derivations ψ2, ψ3, ψ

′
2, ψ
′
3 such that

|ψ3| = |ψ′3| = l3 and ψ;ψ2;ψ3 = ψ;φ1 ≡cσ′ ψ′;φ′1 =
ψ′;ψ′2;ψ′3. By construction we obtain that |ψ2| = n and
that σ′ restricts to a permutation σ′2 on [0, |ψ;ψ2| − 1].
Commutation with the target decoration can be obtained,
if necessary, by changing the ω decoration of ψ2, affect-
ing only the α decoration of ψ3. Thus we conclude that
ψ;ψ2 ≡c ψ′;ψ′2.
Finally, notice that by the definition of y and the
properties of σ′, it follows that σ′(j) < |ψ′| for all
j ∈ [|ψ|, |ψ;ψ2| − 1] and σ′(j) ≥ |ψ′| for all j ∈
[|ψ;ψ2|, h− 1]. That is, the direct derivations in ψ2 match
all direct derivations of ψ′ that are not matched in ψ. This
implies that there cannot exist a derivation φ2 shorter than
n such that ψ;φ2 ≡c ψ′;φ′2 for some φ′2.

2) Let n = |ψ| and m = |ψ1| = |ψ2|, which must have the
same length. By the last part of the proof of the previous
point, since both ψ1 and ψ2 are of minimal length, we
have that for all j ∈ [n, n+m− 1] it holds σ1(j) < |ψ′|
and σ2(j) < |ψ′|. Furthermore, σ1([n, n+m− 1]) =
σ2([n, n+m− 1]), because both ψ1 and ψ2 consist of
direct derivation that match those of ψ′ which are not
matched in ψ.
Thus σ(j) = σ−1

2 (σ1(j + |ψ|)) − |ψ| is a well-defined
permutation on [0, |ψ1| − 1] from ψ1 to ψ2. It is easy
to see that the only condition that can be violated for
concluding ψ1 ≡cσ ψ2 is commutation of the target
decorations. This can be reestablished by post-composing
ψ2 with a graph isomorphism.

Relying on the results above we can easily prove that the
ideal completion of the partial order of traces is a domain.

Proposition 15 (domain of traces) Let G be a graph gram-
mar. Then D(G) = Idl(P(G)) is a domain.

Proof: By Lemma 7 it is sufficient to prove (1) that
↓〈ψ〉c is finite for every 〈ψ〉c ∈ P(G), and (2) that if
{〈ψ1〉c, 〈ψ2〉c, 〈ψ3〉c} is pairwise consistent then 〈ψ1〉ct〈ψ2〉c
exists and is consistent with 〈ψ3〉c.

1) Let 〈ψ′〉c v 〈ψ〉c. By Lemma 18 we know that ψ′;ψ′′ ≡cσ
ψ for some decorated derivation ψ′′ and a permutation σ.
Now suppose that ψ′1 and ψ′2 are decorated derivations
such that ψ′1;ψ′′1 ≡cσ1

ψ and ψ′2;ψ′′2 ≡cσ2
ψ for some

ψ′′1 , ψ′′2 , and that σ1([0, |ψ′1|]) = σ2([0, |ψ′2|]) ⊆ [0, |ψ|].
Then σ−1

2 ◦ σ1 is a permutation on [0, |ψ′1|] from ψ′1 to
ψ′2 witnessing ψ′1 ≡cσ−1

2 ◦σ1
ψ′2; ν for some isomorphism

ν. Therefore 〈ψ′1〉c = 〈ψ′2〉c. As a consequence, the
cardinality of ↓〈ψ〉c is bound by 2|ψ|.

2) Given two consistent elements 〈ψ1〉c and 〈ψ2〉c of
P(G), there exists 〈ψ〉c = 〈ψ1〉c t 〈ψ2〉c, where ψ
is the minimal common extension of ψ1 and ψ2, pro-
vided by Lemma 19(1). Uniqueness of 〈ψ〉c follows by
Lemma 19(2) because minimal common are essentially
unique (up to ≡c and right-composition with isomor-
phisms). Suppose further that 〈ψ3〉c is compatible with
both 〈ψ1〉c and 〈ψ2〉c: we have to show that it is com-
patible with 〈ψ〉c. Let 〈ψ′〉c = 〈ψ2〉c t 〈ψ3〉c. Then there
exist φ1, φ and φ′ such that ψ1;φ1 ≡cσ1

ψ2;φ ≡cσ ψ and
ψ2;φ′ ≡cσ′ ψ′ for suitable permutations σ1, σ and σ′.
We conclude by showing that either 〈ψ〉c and 〈ψ′〉c are
compatible, or 〈ψ1〉c t 〈ψ3〉c and 〈ψ′〉c are compatible,
both of which are equivalent and imply the thesis. We
proceed by induction on k = |ψ1| + |ψ3|. If |ψ1| = 0,
i.e. ψ1 is a zero-length decorated derivation, hence, by
Lemma 19, also φ is so and thus 〈ψ〉c = 〈ψ2〉c, and the
latter is compatible with 〈ψ′〉c. If |ψ3| = 0 we conclude
analogously. If k > 0, let δ be the last derivation step
in ψ1, i.e., ψ1 = ψ′1; δ. If σ1(|ψ1| − 1) < |ψ2|, namely
if step δ is already in ψ2, then by Lemma 19 we get
that 〈ψ〉c = 〈ψ′1〉c t 〈ψ2〉c. Since |ψ′1| < k we conclude
by inductive hypothesis that ψ and ψ′ are compatible. If
instead, σ1(|ψ1| − 1) ≥ |ψ2| then, again by Lemma 19,
we can write ψ as ψ ≡cσ′′ ψ2;φ′′; δ′, where 〈ψ2;φ′′〉c =
〈ψ′1〉ct〈ψ2〉c and σ′′(|ψ1|−1) = |ψ|−1, i.e., δ is mapped
to δ′. Hence, by inductive hypothesis ψ2;φ′′ and ψ′ are
compatible.
Now, since 〈ψ1〉c and 〈ψ3〉c are compatible (thus
ψ1;φ′1 ≡cσ3

ψ3;φ′3 for suitable derivations φ′1, φ
′
3 and

permutation σ3), either step δ is already in ψ3 (thus
σ3(|ψ1|−1) < |ψ3|), or it isn’t, and σ3(|ψ1|−1) ≥ |ψ3|.
In the first case δ is related to a step in ψ′, and it
follows that 〈ψ′〉c t 〈ψ2;φ′′〉c = 〈ψ′〉c t 〈ψ2;φ′′; δ′〉c
and we conclude. If instead δ is not a step in ψ3, we can
write ψ3;φ′3 as ψ3;φ′′3 ; δ′′, where step δ′′ matches step
δ of ψ1. By inductive hypothesis we have that ψ3;φ′′3

and ψ′ are compatible, and we get 〈ψ3;φ′′3〉c t 〈ψ′〉c =
〈ψ2;φ′′〉c t 〈ψ′〉c. Since both steps δ′ and δ′′ are related
by suitable permutations to step δ of ψ1, we can extend
uniformly the two derivations preserving consistency,
obtaining 〈ψ3;φ′′3 ; δ′′〉c t 〈ψ′〉c = 〈ψ2;φ′′; δ′〉c t 〈ψ′〉c =
〈ψ〉c t 〈ψ′〉c, as desired.

We can show that D(G) is a weak prime domain. The proof
relies on the fact that irreducibles are (the principal ideals
of) elements of the form 〈ε〉c, where ε = ψ; δ is a decorated
derivation such that its last direct derivation δ cannot be shifted
back, i.e., minimal traces enabling some direct derivation.
These are called pre-events in [2], [3], where graph grammars
are linear and thus, consistently with Lemma 2, such elements
provide the primes of the domain. Two irreducibles 〈ε〉c and
〈ε′〉c are interchangeable when they are different minimal
traces for the same direct derivation.

Theorem 6 (weak prime domains from graph grammars)
Let G be a graph grammar. Then D(G) is a weak prime
domain.

Proof: We know by Proposition 15 that D(G) is a domain.
Hence, recalling Definition 14, we have to show that D(G) is
weak prime algebraic.

We will exploit the characterisation in Lemma 7. First
provide a characterisation of irreducibles and of the inter-
changeability relation among them. As usual, we confuse
compact elements of D(G) with the corresponding generators
in P(G).

As mentioned above, irreducibles in D(G) are, in the
terminology of [2], [3], pre-events, namely elements of the
form 〈ε〉c, where ε = ψ; δ is a decorated derivation such that
its last direct derivation δ cannot be switched back. Formally,
〈ε〉c is a pre-event if letting n = |ε| then for all ε = ψ; δ ≡cσ ψ′
it holds σ(n) = n.

In fact, assume that 〈ε〉c = 〈ψ1〉c t 〈ψ2〉c, and let ε ≡cσ
ψ1;ψ′1 ≡cσ′ ψ2;ψ′2 for suitable ψ′1, ψ

′
2 of minimal length. Since

ε is a pre-event, we have that if n = |ψ; δ| = |ψ1;ψ′1| =
|ψ2;ψ′2|, then σ′(n) = n. This implies that |ψ′1| = 0 (and thus
〈ε〉c = 〈ψ1〉c) or |ψ′2| = 0 (and thus 〈ε〉c = 〈ψ2〉c), as desired.

Two irreducibles 〈ε〉c and 〈ε′〉c are interchangeable iff the
corresponding traces are compatible and whenever ε;ψ1 ≡cσ
ε′;ψ′1 with ψ1, ψ

′
1 of minimal length (thus 〈ε;ψ1〉c =

〈ε′;ψ′1〉c = 〈ε〉c t 〈ε′〉c), then σ(|ε|) = |ε′|.
In fact, assume that 〈ε〉c = 〈ψ; δ〉c and 〈ε′〉c = 〈ψ′; δ′〉c

are interchangeable, and ε;ψ1 ≡cσ ε′;ψ′1 with ψ1, ψ
′
1 of

minimal length. By the proof of Lemma 19(1) we have that
σ maps steps in ψ1 to ε′ and, analogously, σ−1 maps steps
in ψ′1 to ε (formally, σ(j) < |ε′| for j ≥ |ε| and, dually,
if σ(j) ≥ |ε′| then j < |ε|). By Lemma 5(3) we have
that 〈ε〉c t 〈ε′〉c = 〈ψ〉c t 〈ε′〉c = 〈ε〉c t 〈ψ′〉c. Hence we
can view the previous equivalence of decorated derivations
as ψ; (δ;ψ1) ≡cσ (ψ′; δ′);ψ′1, with δ;ψ1 and ψ′1 of minimal
length. This means that σ maps steps in δ;ψ1 to ε′ and, with

a dual argument, steps in δ′;ψ′1 to ε. Putting all this together
we get that necessarily σ(|ε|) = |ε′|, as desired.

For the converse, assume that 〈ε〉c, 〈ε′〉c are compatible,
that 〈ψ〉c = 〈ε〉c t 〈ε′〉c, and that ψ ≡c ε;ψ1 ≡cσ ε′;ψ′1 where
σ(|ε|) = |ε′|. Then, reverting the reasoning above, we get that
〈ψ〉ct〈ε′〉c = 〈ε〉ct〈ψ′〉c, and thus we conclude that 〈ε〉c, 〈ε′〉c
are interchangeable by Lemma 5(3).

We conclude that D(G) is a weak prime domain, relying
on Lemma 7. Let 〈ε〉c with ε = ψ; δ be an irreducible, and
〈ε〉c v 〈ψ1〉c t 〈ψ2〉c. Let ψ′1 and ψ′2 be decorated derivations
of minimal length such that ε;ψ ≡cσ ψ1;ψ′1 ≡cσ1

ψ2;ψ′2 for
some ψ. If σ(|ε|) ∈ [0, |ψ1| − 1] then consider φ1 such that
ψ1;ψ′1 ≡cσ′ φ1;ψ′1 and σ′(σ(|ε|)) is minimal. Then 〈φ1〉c
is an irreducible, 〈φ1〉c and 〈ε〉c are interchangeable, and
clearly 〈φ1〉c v 〈ψ1〉c. If instead σ(|ε|) ≥ |ψ1| we have that
σ1(σ(|ε|)) < |ψ2|, and we can conclude, in the same way, the
existence of 〈φ2〉c v 〈ψ2〉c irreducible and interchangeable
with 〈ε〉c.

Note that when the rules are right-linear the domain and
ES semantics specialises to the usual prime event structure
semantics (see [2]–[4]), since the construction of the domain
in the present paper is formally the same as in [2].

C. Any connected ES is generated by some grammar

By Theorem 6, given a graph grammar G the domain D(G)
is weak prime. We next show that also the converse holds,
i.e., any connected ES (and thus any weak prime domain)
is generated by a suitable graph grammar. This shows that
weak prime domains and connected ES are precisely what is
needed to capture the concurrent semantics of non-linear graph
grammars, and thus strengthen our claim that they represent
the right structure for modelling formalisms with fusions.
Construction (graph grammar for a connected ES)
Let 〈E,#,`〉 be a connected ES. The grammar GE =
〈T, P, π,Gs〉 is defined as follows.

First, for every element e ∈ E, we define the following
graphs, which are then used as basic building blocks
• Ie and Se as shown in Fig. 14(a) and Fig. 14(b);
• let Ue denote the set-theoretical product of the minimal

enablings of e, i.e., Ue = Π{X ⊆ E | X `0 e}; for every
tuple u ∈ Ue we define the graph Lu,e as in Fig. 14(c).

Moreover, for every pair of events e, e′ ∈ E such that e#e′,
we define a graph Ce,e′ as in Fig. 14(d).

The set of productions is P = E, i.e., we add a rule for
every event e ∈ E, and we define such rule in a way that
• it deletes Ie and Ce,e′ for each e′ ∈ E such that e#e′.
• it preserves the graph Se ∪

⋃
u∈Ue Lu,e

• for all e′ ∈ E, for all graphs Lu,e′ such that e occurs in
u, it merges the corresponding nodes and that of Se′ into
one.

The graph Se ∪
⋃
u∈Ue Lu,e arises from Se and Lu,e, u ∈ Ue

by merging all the nodes (we use
⋃

and
⊎

to denote union
and disjoint union, respectively, with a meaning illustrated in
Fig. 14(f) and Fig. 14(g).) Hence, there is a match for the rule
e only if Se and all Lu,e for u ∈ Ue have been merged and

this happens if and only if at least one minimal enabling of e
has been entirely executed. The deletion of the graphs Ce,e′
establishes the needed conflicts. The rule is consuming since
it deletes the node of graph Ie. Formally, the rule for e has
as left-hand side the graph

Ie∪(
⋃
e′∈E
e#e′

Ce,e′)∪(
⋃
e′∈E

(Se′]
⊎
u′∈Ue′
e∈u′

Lu′,e′))∪(Se∪
⋃
u∈Ue

Lu,e)

while the right-hand side is

(Se ∪
⋃
u∈Ue

Lu,e) ∪ (
⋃
e′∈E

(Se′ ∪
⋃
u′∈Ue′
e∈u′

Lu′,e′))

The rule is schematised in Fig. 14(e), where it is intended that
e occurs in u1

j , . . . , u
nj
j for uij ∈ Uej , i ∈ [1, nj], j ∈ [1, k].

Moreover e′1, . . . , e
′
h are the events in conflict with e and,

finally, Ue = {u1, . . . , un}.
The start graph is just the disjoint union of all the basic

graphs introduced above

Gs = (
⋃
e#e′

Ce,e′) ∪
⋃
e∈E

(Ie ∪ Se]
⊎
u∈Ue

Lu,e)

Then the type graph is

T = (
⋃
e#e′

Ce,e′) ∪
⋃
e∈E

(Ie ∪ Se ∪
⋃
u∈Ue

Lu,e)

Note that the interfaces of the rules are not given explicitly.
They can be deduced from the left and right-hand side, and
the labelling. The same applies to the type graph.

It is not difficult to show that the grammar GE generates
exactly the ES E.

Theorem 7 (connected ES from graph grammars) Let
〈E,#,`〉 be a connected ES. Then, E and E(D(GE)) are
isomorphic.

Proof: First observe that any rule in GE is executed at
most once in a derivation since it consumes an item (the node
of graph Ie) that is generated by no other rule. If we consider
D(GE), then the irreducibles are minimal 〈ε〉c with ε = ψ; δ.
By the shape of rule e, the derivation ψ must contain the
occurrences of a minimal set of rules such that the graphs Se
and Lu,e for u ∈ Ue are merged along the common node. By
construction, in order to merge all such graphs, if we denote by
Xψ the set of rules applied in ψ, it must be Xψ ⊇ C for some
C ∈ ConfF (E) such that C `0 e. Therefore by minimality we
conclude that Xψ `0 e. Relying on this observation, a routine
induction on the |C| shows that minimal enablings C `0 e in
E are in one to one correspondence with irreducibles 〈ε〉c in
D(GE). Recalling, that, in turn, irreducibles in D(E) are again
minimal enablings, i.e., 〈C, e〉 with C ∈ ConfF (E) such that
C `0 e we obtain a bijection between irreducibles in D(GE)
and D(E).

The fact that the correspondence preserves and reflects the
order is, again, almost immediate by construction. In fact,
consider two irreducibles 〈ε〉c and 〈ε′〉c in D(GE) and the

ie

(a) Ie

e

e

(b) Se

e

u

(c) Lu,e

e#e′

(d) Ce,e′

ie e#e′1 e#e′h ee

u1 un

e1

e1

e1

u1
1

e1

un1
1

ek

ek

ek

u1
k

ek

unkk

ee

u1 un

e1
e1

u1
1 un1

1

ek
ek

u1
k unkk

e

(e) rule e

e

e

e

u1

e

u2

(f) Se] Lu1,e] Lu2,e

ee

u1 u2

(g) Se ∪ Lu1,e ∪ Lu2,e

Fig. 14: Some graphs illustrating the construction of GE .

corresponding irreducibles 〈C, e〉 and 〈C ′, e′〉 in D(E). If
〈C, e〉 ⊆ 〈C ′, e′〉, take X = 〈C ′, e′〉 \ 〈C, e〉. Then ε can be
extended with the rules corresponding to the events in X , thus
showing the existence of a derivation ψ such that ε;ψ ≡c ε′. In
fact, if this were not possible, there would be an event e′′ ∈ X
such that the corresponding rule compete for deleting some
item of the start graph with a rule e1 in ε, hence e1 ∈ 〈C, e〉.
By construction, the only possibility is that the common item
is Ce′′,e1 . But this would mean that e′′#e1. This contradicts
the fact that {e1, e

′′} ⊆ 〈C ′, e′〉. The converse, i.e., the fact
that if 〈ε〉c v 〈ε′〉c then 〈C, e〉 ⊆ 〈C ′, e′〉 is immediate.

Recalling that domains are irreducible algebraic (Proposi-
tion 1), we conclude that D(GE) and D(E) are isomorphic.
Since E is connected ES, by Theorem 3, E ' E(D(E)) and
thus E(D(GE)) and E are isomorphic, as desired.

Example 2 Consider the running example ES, from Exam-
ple 1, with set of events {a, b, c}, empty conflict relation
and the minimal enablings by {a} `0 c and {b} `0 c. The
associated grammar is depicted in Fig. 15.

As a further example, consider an ES E1 with events
{a, b, c, d, e}. The conflict relation # is given by e#d and
minimal enablings ∅ `0 a, ∅ `0 b, ∅ `0 c, ∅ `0 e, {a, b} `0 d
and {c} `0 d. The grammar is in Fig. 16.

D. A prime ES semantics for grammars with fusions

A possibility for recovering a notion of causality based
on prime ES also for graph grammars with fusions is to
introduce suitable restrictions on the concurrent applicability
of rules. Indeed, the lack of stability arises essentially from
considering as concurrent those fusions which act on common

a

a

b

b

c

c (a, b)

ia ib ic

T

a

a

b

b

c

c

c

(a, b)

ia ib ic

Gs

ia a

a

c

c

c

(a, b)

a

a

c

c (a, b)
a

ib b

b

c

c

c

(a, b)

b

b

c

c (a, b)
b

ic c

c (a, b)

c

c (a, b)
c

Fig. 15: The grammar associated to our running example.

items. Preventing fusions to act on already merged items,
one may lose some concurrency, yet gaining a definite notion
of causality. Technically, a prime ES can be obtained for
left-linear rewriting systems by restricting the applicability
condition: the match must be such that the pair 〈l;mL, r〉
of Fig. 11 is jointly mono. This essentially means that items
which have been already fused, should not be fused again.

Formally, this means changing the applicability condition,
restricting to fusion safe derivations.

Definition 42 (fusion safe (direct) derivation) A fusion
safe direct derivation is a direct derivation as in Fig. 17 where
〈l;mL, r〉 is jointly mono. A derivation is fusion safe if it
consists of a sequence of fusion safe direct derivations.

Consider our running example in Fig. 2. Clearly, the deriva-
tions labelled pa and pb starting from Gs are now in conflict,
since e.g. the application of pa forbids the application of pb
to Ga, since the derivation would not be anymore jointly
mono. We thus end up in the situation presented by the
configurations in Fig. 7, hence the applications of pc to Ga
and Gb respectively must be considered as different events.

The notion of sequential independence remains unchanged.
Note that the interchange operator (see Proposition 13) applied
to sequential independent derivations that are fusion safe
produces a new pair of fusion safe derivations. Then we

a

a

b

b

c

c

d

d

(a, c)
(b, c)

e

e

d#e

T

a

a

b

b

c

c

d

d

d

(a, c)

d

(b, c)

e

e

d#e

ia ib ic id ie

Gs

ia a

a

d

d

d

(a, c)

a

a

d

d (a, c)
a

ib b

b

d

d

d

(b, c)

b

b

d

d (b, c)
b

ic c

c

d

d

d

(a, c)

d

(b, c)

c

c

d

d

(a, c)
(b, c)c

id d

d

(a, c)
(b, c)

d#e d

d

(a, c)
(b, c)d

ie e

e

d#e e

e
e

Fig. 16: The grammar for the ES in example 2.

L

mL
��

K
loo r //

mK
��

R

mR
��

G D
l∗
oo

r∗
// H

Fig. 17: A direct derivation.

can consider concatenable fusion safe traces, that form a
subcategory of the category of traces.

Definition 43 (fusion safe traces) Let G be a graph gram-
mar. The category of concatenable fusion safe traces of
G, denoted by Trs(G), has abstract graphs as objects and
concatenable fusion safe traces as arrows.

The construction of Theorem 6 recasted on fusion safe
traces now produces a prime domain (hence a prime ES).

Theorem 8 (prime domain structure for graph grammars)
Let G be a graph grammar. Then Idl(([Gs] ↓ Trs(G))) is a
prime domain.

Proof: The proof is the same as for Theorem 6. We
already know that the domain is weak prime, hence, by
Proposition 3, all irreducibles are weak primes. Additionally,
interchangeability, as characterised in the proof of the men-
tioned theorem, is the identity.

In fact, given two irreducibles 〈εi〉c with εi = ψi; δi
for i ∈ {1, 2} such that 〈ε1〉c ↔ 〈ε2〉c, by interchange-
ability 〈ψ1〉c t 〈ε2〉c = 〈ε1〉c t 〈ψ2〉c. Let such join be
〈ψ1; δ1;ψ′1〉c = 〈ψ2; δ2;ψ′2〉c for suitable ψ′1, ψ

′
2. This means

that ψ1; δ1;ψ′1 ≡cσ ψ2; δ2;ψ′2 for a suitable permutation σ, with
σ(|ε1|) = σ(|ε2|). There are two possibilities. If |ψ1| = |ψ2|
and σ restricts to a permutation of [1, |ψ1|], then ψ1 ≡c ψ2

and we conclude. Otherwise a step in ψ2 is not mapped to ψ1

or viceversa. Assume, without loss of generality, that there is
i ∈ [1, |ψ1|] such that σ(i) > |ψ2|. This means that the i-th
step in ψ1 is performed in ψ′2. Since such step is performed
after δ2, it cannot generate items consumed by δ1. Hence it
must merge items that are merged by a different step in ψ2.
But this contradicts its fusion safety.

Hence all weak primes are primes and we conclude.

VI. CONCLUSIONS AND RELATED WORK

In the paper we provided a characterisation of a class of
domains, referred to as weak prime algebraic domains, which
is appropriate for describing the concurrent semantics of those
formalisms where a computational step can merge parts of the
state. We show a categorical equivalence between weak prime
algebraic domains and a suitably defined class of connected
event structures. We also prove that the category of general
event structures coreflects into the category of weak prime
algebraic domains.

The appropriateness of the class of weak prime domains is
witnessed by the results that show that weak prime algebraic
domains are precisely those arising from left-linear graph

rewriting systems, i.e., those systems where rules besides gen-
erating and deleting can also merge graph items. Furthermore,
we show how to recover a prime event structures semantics
also for rule-based formalisms with fusions by introducing
suitable restrictions on the concurrent applicability of rules.

We have shown that the characterisations of prime domains
and event structures in terms of intervals and asynchronous
graphs naturally extend to weak prime domains. The char-
acterisation of weak prime domains in terms of the inter-
changeability equivalence on irreducibles naturally suggest a
presentation in terms of prime event structures endowed with
an equivalence relation, allowing us to establish a link with
the work in [23], [24].

Technically, the starting point for our proposal is the re-
laxation of the stability condition for event structures. As
already noted by Winskel in [5] “[t]he stability axiom would
go if one wished to model processes which had an event
which could be caused in several compatible ways [. . .]; then
I expect complete irreducibles would play a similar role to
complete primes here”. Indeed, the correspondence between
irreducibles and weak primes, which exploits the notion of
interchangeability, is the ingenious step that allows us to obtain
a smooth extension of the classical duality between prime
event structures and prime algebraic domains.

The coreflection between the category of general unstable
event structures (with binary conflict) and the one of weak
prime algebraic domains says that the latter are exactly the
partial orders of configurations of the former. Such class of
domains has been studied originally in [21] where, general-
ising the work on concrete domains and sequentiality [34], a
characterisation is given in terms of a set of axioms expressing
properties of prime intervals. In our paper we also provide
an in depth comparison with these results, based on the
observation that, roughly speaking, weak primes correspond
to executions of events with their minimal enablings, while
intervals can be seen as executions of events in a generic
configuration. A comparison is also drawn with the more
recent notions of asynchronous graph [29], an alternative
representation of prime algebraic domains based on the notion
of path equivalence, which we generalise in order to account
for weak prime ones.

The need of resorting to unstable ES for modelling the
concurrent computations of name passing process calculi has
been observed by several authors. In particular, in [17] an
ES semantics for the π-calculus is defined by relying on ES
with names, namely labelled ES tailored for modelling parallel
extrusions. An event can have various minimal enablings but
with the constraint that distinct minimal enablings can differ
only for one event (intuitively, the extruder). ES with names are
not connected ES since they can have non-connected minimal
enablings (roughly, because identical events in disconnected
minimal enablings can be identified via the labelling). Nev-
ertheless, a connected ES semantics could be obtained by
transforming ES with names through the coreflection in the
paper: More details are reported in Appendix B.

We believe that our results cover a long road in estab-

lishing weak prime domains and connected event structures
as a foundational concept in the event-based semantics for
concurrent computational systems. Our next step will be to
look at possible more general formalisms. In particular, the
paper [35] studies a characterisation of the partial order of con-
figurations for a variety of classes of event structures in terms
of axiomatisability of the associated propositional theories.
Even if the focus in the present paper is on event structures
that generalise Winskel’s ones, we believe that our work can
provide interesting suggestions for further development.

Acknowledgements: We are grateful to the anonymous
referees of the conference version of the paper for their
insightful comments and suggestions. We are also indebted to
Paul-Andrè Melliés for insightful discussions on the relation
between event structures and asynchronous graphs.

REFERENCES

[1] M. Nielsen, G. Plotkin, and G. Winskel, “Petri nets, event structures and
domains, Part 1,” Theoretical Computer Science, vol. 13, pp. 85–108,
1981.

[2] P. Baldan, A. Corradini, H. Ehrig, M. Löwe, U. Montanari, and F. Rossi,
“Concurrent semantics of algebraic graph transformation systems,” in
Handbook of Graph Grammars and Computing by Graph Transforma-
tion, G. Rozenberg, Ed. World Scientific, 1999, vol. III: Concurrency,
pp. 107–187.

[3] P. Baldan, “Modelling concurrent computations: from contextual Petri
nets to graph grammars,” Ph.D. dissertation, University of Pisa, 2000.

[4] G. Schied, “On relating rewriting systems and graph grammars to event
structures,” in Dagstuhl Seminar 9301 on Graph Transformations in
Computer Science, ser. LNCS, H.-J. Schneider and H. Ehrig, Eds., vol.
776. Springer, 1994, pp. 326–340.

[5] G. Winskel, “Event structure semantics for CCS and related languages,”
University of Aarhus, Tech. Rep. DAIMI PB-159, 1983.

[6] D. Varacca and N. Yoshida, “Typed event structures and the linear π-
calculus,” Theoretical Computer Science, vol. 411, no. 19, pp. 1949–
1973, 2010.

[7] R. Bruni, H. C. Melgratti, and U. Montanari, “Event structure semantics
for nominal calculi,” in CONCUR 2006, ser. LNCS, C. Baier and
H. Hermanns, Eds., vol. 4137. Springer, 2006, pp. 295–309.

[8] G. Winskel, “Events, causality and symmetry,” Computer Journal,
vol. 54, no. 1, pp. 42–57, 2011.

[9] J. Pichon-Pharabod and P. Sewell, “A concurrency semantics for relaxed
atomics that permits optimisation and avoids thin-air executions,” in
POPL 2016, R. Bodı́k and R. Majumdar, Eds. ACM, 2016, pp. 622–
633.

[10] A. Jeffrey and J. Riely, “On thin air reads: Towards an event structures
model of relaxed memory,” in LICS 2016, M. Grohe, E. Koskinen, and
N. Shankar, Eds. ACM, 2016, pp. 759–767.

[11] S. Chakraborty and V. Vafeiadis, “Grounding thin-air reads with event
structures,” PACMPL, vol. 3, no. POPL, pp. 70:1–70:28, 2019.

[12] M. Dumas and L. Garcı́a-Bañuelos, “Process mining reloaded: Event
structures as a unified representation of process models and event logs,”
in Petri Nets 2015, ser. LNCS, R. R. Devillers and A. Valmari, Eds.,
vol. 9115. Springer, 2015, pp. 33–48.

[13] J. Meseguer, “Conditional rewriting logic as a unified model of con-
currency,” Theoretical Computer Science, vol. 96, no. 1, pp. 73–155,
1992.

[14] A. Corradini, U. Montanari, F. Rossi, H. Ehrig, R. Heckel, and M. Löwe,
“Algebraic approaches to graph transformation I: Basic concepts and
double pushout approach,” in Handbook of Graph Grammars and Com-
puting by Graph Transformation. Volume 1: Foundations, G. Rozenberg,
Ed. World Scientific, 1997, pp. 163–246.

[15] J. Lévy, “Optimal reductions in the lambda-calculus,” in To H.B.
Curry, Essays on Combinatory Logic, Lambda Calculus and Formalism,
J. Seldin and J. Hindley, Eds. Academic Press, 1980, pp. 159–191.

[16] G. Winskel, “Event structures,” in Petri Nets: Applications and Relation-
ships to Other Models of Concurrency, ser. LNCS, W. Brauer, W. Reisig,
and G. Rozenberg, Eds., vol. 255. Springer, 1987, pp. 325–392.

[17] S. Crafa, D. Varacca, and N. Yoshida, “Event structure semantics of
parallel extrusion in the π-calculus,” in FoSSaCS 2012, ser. LNCS,
L. Birkedal, Ed., vol. 7213. Springer, 2012, pp. 225–239.

[18] F. Gadducci, “Graph rewriting and the π-calculus,” Mathematical Struc-
tures in Computer Science, vol. 17, no. 3, pp. 1–31, 2007.

[19] I. Phillips, I. Ulidowski, and S. Yuen, “Modelling of bonding with
processes and events,” in RC 2013, ser. LNCS, G. W. Dueck and D. M.
Miller, Eds., vol. 7948. Springer, 2013, pp. 141–154.

[20] H. Ehrig, “Tutorial introduction to the algebraic approach of graph-
grammars,” in TAGT 1986, ser. LNCS, H. Ehrig, M. Nagl, G. Rozenberg,
and A. Rosenfeld, Eds., vol. 291. Springer, 1987, pp. 3–14.

[21] G. Winskel, “Events in computation,” Ph.D. dissertation, University of
Edinburgh, 1980.

[22] M. Droste, “Event structures and domains,” Theoretical Computer
Science, vol. 68, no. 1, pp. 37–47, 1989.

[23] M. de Visme and G. Winskel, “Strategies with parallel causes,” in CSL
2017, ser. LIPIcs, V. Goranko and M. Dam, Eds., vol. 82. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2017, pp. 41:1–41:21.

[24] ——, “Causal unfoldings,” in CALCO 2019, ser. LIPIcs, M. Roggenbach
and A. Sokolova, Eds., vol. 139. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2019, pp. 9:1–9:18.

[25] M. Droste, “Concurrent automata and domains,” Foundations of Com-
puter Science, vol. 3, no. 4, pp. 398–418, 1992.

[26] M. Droste and D. Kuske, “Automata with concurrency relations – a
survey,” in LAPTEC 2002, J. M. Abe and J. I. da Silva Filho, Eds.
IOS Press, 2002, pp. 152–172.

[27] I. Phillips and I. Ulidowski, “Reversibility and models for concurrency,”
Electronic Notes in Theoretical Computer Science, vol. 192, no. 1, pp.
93–108, 2007.

[28] V. Sassone, M. Nielsen, and G. Winskel, “Models for concurrency:
Towards a classification,” Theoretical Computer Science, vol. 170, no.
1-2, pp. 297–348, 1996.

[29] P.-A. Melliès, “Une étude micrologique de la négation,” 2018, habilita-
tion á Diriger des Recherches.

[30] P. Baldan, A. Corradini, and F. Gadducci, “Domains and event structures
for fusions,” in Proceedings of LICS’17. IEEE Computer Society, 2017,
pp. 1–12.

[31] A. Corradini, H. Ehrig, M. Löwe, U. Montanari, and F. Rossi, “An event
structure semantics for graph grammars with parallel productions,” in
TAGT 1994, ser. LNCS, J. Cuny, H. Ehrig, G. Engels, and G. Rozenberg,
Eds., vol. 1073. Springer, 1996, pp. 240–256.

[32] A. Corradini, U. Montanari, and F. Rossi, “Graph processes,” Funda-
menta Informaticae, vol. 26, no. 3/4, pp. 241–265, 1996.

[33] P. Degano, J. Meseguer, and U. Montanari, “Axiomatizing the algebra
of net computations and processes,” Acta Informatica, vol. 33, no. 7,
pp. 641–647, 1996.

[34] G. Kahn and G. Plotkin, “Concrete domains,” Theoretical Computer
Science, vol. 121, no. 1, pp. 187–277, 1993, based on [36].

[35] R. van Glabbeek and G. Plotkin, “Configuration structures, event struc-
tures and Petri nets,” Theoretical Computer Science, vol. 410, no. 41,
pp. 4111–4159, 2009.

[36] G. Kahn and G. Plotkin, “Domaines concretes,” INRIA Paris, Tech. Rep.
336, 1978.

APPENDIX

A. Event Structures with Non-Binary Conflict

In the literature also ES with non-binary conflict have been
considered, where the binary conflict relation is replaced by
a consistency predicate [22]. It is noteworthy that the duality
results of Section III easily adapt to this case.

Definition 44 (ES with non-binary conflict) An ES with
non-binary conflict (ESNB for short) is a tuple 〈E,`, Con〉
such that
• E is a set of events
• Con ⊆ 2Efin is the consistency predicate, satisfying X ∈
Con and Y ⊆ X implies Y ∈ Con

• ` ⊆ Con× E is the enabling relation, satisfying X ` e
and X ⊆ Y ∈ Con implies Y ` e.

The ESNB E is stable if X ` e, Y ` e, and X∪Y ∪{e} ∈ Con
imply X ∩ Y ` e.

A configuration C ⊆ E is just a set such that it is secured
and all its finite subsets are consistent. The notion of live ESNB
is easily adapted to take into account non-binary conflicts and
also in this case we will implicitly assume all ESNB to be live.

Definition 45 (live ESNB) An ESNB E is live if for all X ∈
Con there is C ∈ Conf (E) such that X ⊆ C and moreover
for all e ∈ E we have {e} ∈ Con.

The notion of the category of ESNB is adapted accordingly.

Definition 46 (category of event structures) A morphism
of ESNB f : E1 → E2 is a partial function f : E1 → E2

such that for all X1 ⊆ E1 and e1, e
′
1 ∈ E1 with f(e1), f(e′1)

defined
• if X1 ∈ Con1 then f(X1) ∈ Con2;
• if {e1, e

′
1} ∈ Con1 and f(e1) = f(e′1) then e1 = e′1;

• if X1 `1 e1 then f(X1) `2 f(e1).
We denote by ESnb the category of ESNB and ESNB mor-
phisms, and by cESnb its full subcategory having connected
ESNB as objects (the definition of conectedness remains un-
changed).

In the definition of domains (Definition 6), the existence of
joins is now required only for consistent subsets, instead of
being required for pairwise consistent.

Definition 47 (b-domains) A bounded complete domain (b-
domain) is an algebraic finitary partial order where all consis-
tent subsets X ⊆ D admit a least upper bound

⊔
X . B-domain

morphisms are as in Definition 15. We denote by Domb the
corresponding category.

The definition of weak prime algebraicity remains formally
the same, but the underlying partial order is required to be a
b-domain.

Definition 48 (weak prime algebraic b-domain) A weak
prime algebraic b-domain (or simply weak prime b-domain)
is a interchangeable b-domain D such that for all d ∈ D
it holds d =

⊔
(↓d∩wpr(D)). We denote by wDomb the

corresponding category.

The proof of the fact that, given an ESNB E, the partial order
of configurations D(E) = 〈Conf (E),⊆〉 is a weak prime b-
domain, is unchanged. The same holds for the fact that if f :
E1 → E2 is an ESNB morphism then D(f) : D(E1)→ D(E2)
is a weak prime b-domain morphism.

Vice versa the ESNB associated with a weak prime b-domain
is defined as follows.

Definition 49 (ESNB for a weak prime b-domain) Let D
be a weak prime b-domain. The ESNB E(D) = 〈E,Con,`〉
is defined as follows
• E = [ir(D)]↔∗ ;
• Con = {X | ∃d ∈ K(D) . X ⊆ [ir(d)]↔∗};
• X ` e if there exists i ∈ e such that [ir(i) \{i}]↔∗ ⊆ X .

Given a morphism f : D1 → D2, its image E(f) :
E(D1)→ E(D2) is defined for [i1]↔∗ ∈ E as E(f)([i1]↔∗) =
[i2]↔∗ , where i2 ∈ δ(f(i1), f(p(i1))), and E(f)([i1]↔∗) is
undefined if f(p(i1)) = f(i1).

We then get a result corresponding to Theorem 1 for ES
with non-binary conflict and weak prime b-domains.

Theorem 9 (corecflection of ESnb and wDomb) The func-
tors D : ESnb → wDomb and E : wDomb → ESnb form
a coreflection. It restricts to an equivalence between wDomb

and cESnb.

Concerning the interval-based characterisation in Sec-
tion IV-B, we recall that the paper by Droste [22] considers
also the case of event structures with a general consistency
relation (rather than a binary conflict) and shows that the
corresponding domains can be characterised as algebraic com-
plete partial orders where axioms (F), (C) of Section IV-B and,
additionally, (I) below hold.

(I) for all x, x′, y, y′ ∈ K(D) if [x, x′] ∼ [y, y′] and
x v x′ then y v y′.

The definition of the ES Ewd(D) associated with a domain
D (Definition 26) can be easily adapted to the non-binary case.
The only thing that changes is the definition of consistency:
a set X ⊆ E is consistent if for all e ∈ X there exists a
representative [ce, c

′
e] ∈ e such that {ce | e ∈ X} is bounded in

D. Then the correspondence with our approach established in
Section IV-B easily extends to this setting: algebraic complete
partial orders where axioms (F), (C) and (I) hold are exactly
the weak prime b-domains and the obvious rephrasing of
Proposition 11 continue to hold.

Also the connection with asynchronous graphs in Sec-
tion IV-C can be adapted easily. Unsurprisingly, Proposition 12
holds for connected ES with non-binary conflict if we mod-
ify the definition of asynchronous graph (Definition 27) by
omitting the coherence axiom (4).

B. An Event Structure Semantics for the π-calculus

The need of resorting to unstable ES for modelling the
concurrent computations of name passing process calculi has
been observed by several authors. In particular, in [17] an
ES semantics for the pi-calculus is defined by relying on so-
called ES with names (ESN for short), namely ES that are
tailored for parallel extrusions: labelled unstable ES with the
constraint that two minimal enablings can differ only for one
event (intuitively, the extruder).

Given a global set of names N , ES with names (ESN for
short) are triples (E,X, λ) where E is a prime ES, X ⊆ N
is a set of names (intuitively, the names that are restricted),
and λ : E → {x(y), x̄(y)} is a function mapping each event
to either an input or an output prefix.

A configuration C is a configuration of the underlying prime
ES such that there exists a maximal e ∈ C satisfying
• C \ {e} is a configuration;
• if λ(e) = x(y) or λ(e) = x̄(y) with x ∈ X then there

exists e′ ∈ C \ {e} such that λ(e′) = z̄(x).

The latter requirement above boils down to ensuring that if
the name were restricted, it has been extruded before. Thus,
ESN are unstable ES with the additional constraint that two
minimal enablings can differ only for one event (the extruder!):
namely, if X1 `0 e and X2 `0 e then X1∩X2 = X1 \{e1} =
X2 \ {e2} for suitable e1, e2.

Note that, ESN are not connected ES since they can have
non-connected minimal enablings (roughly, because identical
events in disconnected minimal enablings are identified via
the labelling). Consider e.g. E = {ā(x), b̄(x), x(y)}, with
ā(x)#b̄(x), and X = {x}. Then the configurations are ∅,
{ā(x)}, {b̄(x)}, {ā(x), x(y)}, and {b̄(x), x(y)}, hence x(y)
has two non-connected minimal enablings.

