
ar
X

iv
:1

70
4.

03
16

0v
1

 [
cs

.L
O

]
 1

1
A

pr
 2

01
7

Lean and Full Congruence Formats for Recursion

Rob van Glabbeek
Data61, CSIRO, Sydney, Australia

School of Computer Science & Engineering, University of New South Wales, Sydney, Australia

Abstract—In this paper I distinguish two (pre)congruence re-
quirements for semantic equivalences and preorders on processes
given as closed terms in a system description language with
a recursion construct. A lean congruence preserves equivalence
when replacing closed subexpressions of a process by equivalent
alternatives. A full congruence moreover allows replacement
within a recursive specification of subexpressions that may con-
tain recursion variables bound outside of these subexpressions.

I establish that bisimilarity is a lean (pre)congruence for re-
cursion for all languages with a structural operational semantics
in the ntyft/ntyxt format. Additionally, it is a full congruence for
the tyft/tyxt format.

I. INTRODUCTION

Structural Operational Semantics [44], [46] is one of the

main methods for defining the meaning of system description

languages like CCS [44]. A system or process is represented

by a closed term built from a collection of operators, process

variables and usually a recursion construct, and the behaviour

of a process is given by its collection of (outgoing) transitions,

each specifying the action the process performs by taking this

transition, and the process that results after doing so. The

transitions between states are obtained from a set of proof

rules called transition rules.

For purposes of representation and verification, several

behavioural equivalence relations have been defined on pro-

cesses, of which the most well-known is (strong) bisimilar-

ity [44]. To allow compositional system verification, such

equivalences need to be congruences for the operators under

consideration, meaning that the equivalence class of an n-

ary operator f applied to arguments p1, . . . , pn is completely

determined by the equivalence classes of these arguments.

Equally important is that the chosen equivalence relation

∼ is a congruence for recursion. Recursion allows the spec-

ification of a process as a canonical solution of an equation

X = E(X).1 Here E(X) is an expression that may contain

the variable X . If W is the collection of other variables

occurring in E(X), not bound by the recursive specification,

then the canonical solution of X = E(X) is a W -ary function

that returns a process for each valuation of these variables

as processes. I call ∼ a lean congruence for recursion if

each such operator satisfies the above-mentioned congruence

requirement.

Take for example E(X) to be a.X + Y in the language

CCS of MILNER [44]. Then W = {Y }. Let ∼ be bisimilarity,

so that b.0 ∼ b.0 + b.0 [44]. Now the lean congruence

1The particular solution supplied by structural operational semantics is the
one whose transitions are determined by the transition rules.

requirement for ∼ insists that the selected solutions of the

recursive equations X = a.X+b.0 and X = a.X+(b.0+b.0),
obtained from X = a.X + Y by substituting each of these

bisimilar processes for Y , are again bisimilar.

The lean congruence requirement plays a key rôle in the

study of expressiveness of system description languages [33].

There, correct translations of one language into another up

to a semantic equivalence ∼ are defined; and expressiveness

hierarchies—one for each choice of ∼—are defined in terms

of those translations. However, a correct translation can exist

only when ∼ is a lean congruence for the source language, as

well as for the source’s image within the target language.

If F (X) is an expression like E(X), for simplicity assum-

ing that neither contains variables other than X , and E(p) ∼
F (p) regardless which process p is substituted for the variable

X , then the full congruence property demands that the selected

solutions of the equations X = E(X) and X = F (X) are

again equivalent. As a CCS example, suppose that a process

is given as the solution of the equation X = a.X + a.X .

Using the idempotence of + under bisimilarity, one can now

proceed to think of the same process, up to bisimilarity, as

the solution of X = a.X . This type of reasoning is a central

component in system verification by equivalence checking [7],

[17], [6], [37], as applied in successful verification toolsets

such as CADP [24] and mCRL2 [37]. Yet it is valid only if

bisimilarity is a full congruence for recursion.

In order to streamline the process of proving that a certain

equivalence is a congruence for certain operators, and to guide

sensible language definitions, syntactic criteria (congruence

formats) for the transition rules in structural operational se-

mantics have been developed, ensuring that the equivalence

is a congruence for any operator specified by rules that meet

these criteria. The first of these was proposed by ROBERT DE

SIMONE in [48], [49] and is now called the De Simone for-

mat. A generalisation featuring transition rules with negative

premises is the GSOS format of BLOOM, ISTRAIL & MEYER

[11], and a generalisation with lookahead is the tyft/tyxt

format of GROOTE & VAANDRAGER [39]. The ntyft/ntyxt

format of GROOTE [36] allows both negative premises and

lookahead and generalises the GSOS as well as the tyft/tyxt

format. All this work provides congruence formats for (strong)

bisimilarity. Congruence formats for other strong semantic

equivalences—treating the internal action τ like any other

action—appear in [10], [21].2 Formats for weak semantics—

2These congruence formats also apply to behavioural preorders, and then
ensure that such a preorder is a precongruence.

http://arxiv.org/abs/1704.03160v1
http://cadp.inria.fr/
http://www.win.tue.nl/mcrl2/

abstracting from internal activity—can be found, e.g., in [50],

[9], [18], [51], [52], [32], [23], [20].
Extensions to probabilistic systems appear for instance in

[8], [41], [40], [25], [43], [5], [16]. Rule formats ensuring

properties of operators other than being a (pre)congruence

appear in [45] (commutativity), [15] (associativity), [2] (zero

and unit elements), [3] (distributivity) and [1] (idempotence).

Overviews on work on congruence formats and other rule

formats, with many more references, can be found in [4], [38].
Yet, to the best of my knowledge, no one has proposed a

congruence format for recursion. This hiatus is addressed here.

I establish that bisimilarity is a lean congruence for recursion

for all languages with a structural operational semantics in

the ntyft/ntyxt format.3 I did not succeed in showing that it is

even a full congruence for all ntyft/ntyxt languages; nor did I

find a counterexample. Even for GSOS languages this remains

an open question. However, I show that bisimilarity is a full

congruence for recursion for all tyft/tyxt languages.
My proof strategy follows the traditional method of [11],

[39], [12]. However, for this to work smoothly, I present a

new formulation—better fitted to my application—of the well-

founded semantics of transition system specifications with

negative premises, and show its consistency with previous

formulations.
I could not establish the full congruence result directly,

without using the lean congruence result as an intermediate

step, even when restricting the latter to the tyft/tyxt format.

Thus, I see no way around a sequence of two proofs with a

large overlap.
The method of modal decomposition [22] yields alternative

congruence proofs for operators specified in the tyft/tyxt and

GSOS formats [22]. Extending this method to deal with

recursion might be a way to extend my full congruence result

to transition rules with negative premises.
Providing (lean and full) congruence formats for recursion

for equivalences and preorders other than bisimilarity, as well

as for weak versions of bisimilarity [44], [35]—supporting

abstraction from internal actions—remains an important open

problem.

II. TRANSITION SYSTEM SPECIFICATIONS AND THEIR

MEANING

In this paper Var and A are two sets of variables and

actions. Many concepts that will appear are parameterised by

the choice of Var and A, but as in this paper this choice is

fixed, a corresponding index is suppressed.

Definition 1 (Signatures) A function declaration is a pair

(f, n) of a function symbol f 6∈ Var and an arity n ∈ N.4 A

3Some of those languages have a 3-valued transition system semantics,
where bisimilarity becomes an asymmetric preorder. Here I establish that it
is a precongruence.

4This work generalises seamlessly to operators with infinitely many argu-
ments. Such operators occur, for instance, in [13, Appendix A.2]. Hence one
may take n to be any ordinal. An operator, like the summation or choice of
CCS [44], that actually takes any set of arguments, needs to be simulated by
a family of operators with a sequence of arguments (but yielding the same
value upon reshuffling of the arguments), one for each cardinality of this set.

function declaration (c, 0) is also called a constant declaration.

A signature is a set of function declarations. The set T(Σ) of

terms with recursion over a signature Σ is defined inductively

by:

• Var ⊆ T(Σ),
• if (f, n)∈Σ and t1, ..., tn∈T(Σ) then f(t1, ..., tn)∈T(Σ),
• If VS ⊆ Var , S : VS → T(Σ) and X ∈ VS , then

/
\X |S\

/ ∈ T(Σ).
A term c() is abbreviated as c. A function S as appears in

the last clause is called a recursive specification. A recursive

specification S is often displayed as {X = SX | X ∈ VS}.

An occurrence of a variable y in a term t is free if it does

not occur in a subterm of t of the form /
\X |S\

/ with y ∈ VS .

Let var(t) denote the set of variables occurring free in a term

t ∈ T(Σ), and let T(Σ,W) be the set of terms t over Σ with

var(t) ⊆ W . T(Σ) := T(Σ, ∅) is set of closed terms over Σ.

Example 1 Let Σ contain three unary functions a. , b. and

d. , and one infix-written binary function ‖. Let X,Y, z∈Var .

Then S = { X = (a.X)‖(b.Y), Y = (d.Y)‖(X‖z) } is a

recursive specification, so /
\X |S\

/∈T(Σ). Since VS = {X,Y },

the only variable that occurs free in this term is z.

As illustrated here, I often choose upper case letters for bound

variables (the ones occurring in a set VS) and lower case ones

for variables occurring free; this is a convention only.

A recursive specification S is meant to denote a VS-tuple (in

the example above a pair) of processes that—when filled in for

the variables in VS—forms a solution to the equations in S.5

The term /
\X |S\

/ denotes the X-component of such a tuple.

Definition 2 (Substitution) A Σ-substitution σ is a partial

function from Var to T(Σ); it is closed if it is a total function

from Var to T(Σ). If σ is a substitution and S any syntactic

object, then S[σ] denotes the object obtained from S by

replacing, for x in the domain of σ, every free occurrence of x
in S by σ(x), while renaming bound variables if necessary to

prevent name-clashes. In that case S[σ] is called a substitution

instance of S. A substitution instance t[σ] where σ is given

by σ(xi) = ui for i ∈ I is denoted as t[ui/xi]i∈I , and for S
a recursive specification /

\t|S\
/ abbreviates t[/\Y |S\

//Y]Y ∈VS .

Example 2 Extend Σ from Ex. 1 with a constant c. Then
/
\X |S\

/[b.c/z] = /
\X |{X=(a.X)‖(b.Y), Y=(d.Y)‖(X‖b.c)}\

/,
/
\X |S\

/[X/z] = /
\Z|{Z=(a.Z)‖(b.Y), Y=(d.Y)‖(Z‖X)}\

/

and /
\X |S\

/[b.c/Y] = /
\X |S\

/.

Structural operational semantics [46] defines the meaning of

system description languages whose syntax is given by a sig-

nature Σ. It generates a transition system in which the states,

or processes, are the closed terms over Σ—representing the

remaining system behaviour from that state—and transitions

between processes are supplied with labels. The transitions

5When S contains free variables from a set W , this solution is parame-
terised by the choice of a valuation of these variables as processes, thereby
becoming a W -ary function.

2

between processes are obtained from a transition system

specification, which consists of a set of transition rules.

Definition 3 (Transition system specifications) Let Σ be a

signature. A positive Σ-literal is an expression t a−→ t′ and

a negative Σ-literal an expression t a−6→ with t, t′ ∈ T(Σ)

and a ∈ A. For t, t′ ∈ T(Σ) the literals t a−→ t′ and t a−6→
are said to deny each other. A transition rule over Σ is an

expression of the form H
α

with H a set of Σ-literals (the

premises or antecedents of the rule) and α a positive Σ-literal

(the conclusion). The terms at the left- and right-hand side of

α are the source and target of the rule. A rule H
α

with H = ∅ is

also written α. A literal or transition rule is closed if it contains

no free variables. A transition system specification (TSS) is a

pair (Σ, R) with Σ a signature and R a set of transition rules

over Σ; it is positive if all antecedents of its rules are positive.

The concept of a (positive) TSS presented above was in-

troduced in GROOTE & VAANDRAGER [39]; the negative

premises t a−6→ were added in GROOTE [36]. The notion

generalises the GSOS rule systems of [11] and constitutes

the first formalisation of PLOTKIN’s Structural Operational

Semantics (SOS) [46] that is sufficiently general to cover many

of its applications.

The following definition (from [27]) tells when a transition

is provable from a TSS. It generalises the standard definition

(see e.g. [39]) by (also) allowing the derivation of transition

rules. The derivation of a transition t a−→ t′ corresponds to

the derivation of the transition rule H

t
a

−→t′
with H = ∅. The

case H 6= ∅ corresponds to the derivation of t a−→ t′ under the

assumptions H .

Definition 4 (Proof) Let P = (Σ, R) be a TSS. A proof

of a transition rule H
α

from P is a well-founded, upwardly

branching tree of which the nodes are labelled by Σ-literals,

such that:

• the root is labelled by α, and

• if β is the label of a node q and K is the set of labels of

the nodes directly above q, then

– either K = ∅ and β ∈ H ,

– or K
β

is a substitution instance of a rule from R.

If a proof of H
α

from P exists, then H
α

is provable from P ,

notation P ⊢ H
α

.

A TSS is meant to specify an LTS in which the transitions are

closed positive literals. A positive TSS specifies a transition

relation in a straightforward way as the set of all provable

transitions.6 But as pointed out in GROOTE [36], it is not

so easy to associate a transition relation to a TSS with

negative premises. In [31] several solutions to this problem

6Readers interested only in the restriction of my results to TSSs without
negative premises—giving rise to 2-valued transition relations—can safely

skip the remainder of this section, and identify p
a

−−→ p′ with p
a

−→ p′.

In the proofs of Prop. 3 and Thm. 2 also p
a

−−→λ p′ and p
a

−→λ p′ equal

p
a

−→ p′, for any λ; so the induction on λ can be skipped, as well as the
auxiliary Claims 3 and 1, and the proof proceeds directly by induction on π.

were reviewed and evaluated. Arguably, the best method to

assign a meaning to all TSSs is the well-founded semantics

of VAN GELDER, ROSS & SCHLIPF [26], which in general

yields a 3-valued transition relation T : T(Σ)×A×T(Σ) →
{present, undetermined, absent}. I present such a relation as

a pair /
\CT, PT\

/ of 2-valued transition relations—the sets

of certain and possible transitions—with CT ⊆ PT . When

insisting on 2-valued transition relations, the best method is

the same, declaring meaningful only those TSSs whose well-

founded semantics is 2-valued, meaning that CT = PT .
Below I give a new presentation of the well-founded seman-

tics, strongly inspired by previous accounts in [47], [12], [31].

As Def. 4 does not allow the derivation of negative literals,

to arrive at an approximation AT+ of the set of transitions

that are in the transition relation intended by a TSS P , one

could start from an approximation AT− of the closed negative

literals that ought to be generated, and define AT+ as the set of

closed positive literals provable from P under the hypotheses

AT−. Intuitively,

1) if AT− is an under- (resp. over-)approximation of the

closed negative literals that “really” hold, then AT+ will

be an under- (resp. over-)approximation of the intended

(2-valued) transition relation, and

2) if AT+ is an under- (resp. over-)approximation of the

intended transition relation, then the set of all closed

negative literals that do not deny any literal in AT+ is an

over- (resp. under-)approximation of the closed negative

literals that agree with the intended transition relation.

Definition 5 (Over- and underappr. of transition relations)

Let P be a TSS. For ordinals λ the sets CT+
λ and PT+

λ of

closed positive literals, and CT−

λ , PT−

λ of closed negative

literals are defined inductively by:

PT−

λ

is the set of literals

that do not deny any

β ∈ CT+
κ with κ < λ

β ∈ PT+
λ iff P ⊢

PT
−
λ

β

CT−

λ

is the set of literals

that do not deny any

β ∈ PT+
λ

β ∈ CT+
λ iff P ⊢

CT
−
λ

β
.

Intuitively, CT+
λ is an underapproximation of the set of

transitions that should be in the transition relation specified

by P , and PT+
λ an overapproximation. Likewise, CT−

λ is

an underapproximation of the set of closed negative literals

that should hold, and PT−

λ an overapproximation. The ap-

proximations get better with increasing λ. To understand this

inductively, note that PT−

0 is the set of all closed negative

literals, and thus surely an overapproximation. The induction

step is given by considerations 1 and 2 above.

Lemma 1 CT−

κ ⊆CT−

λ ⊆PT−

λ ⊆PT−

κ and CT+
κ ⊆CT+

λ ⊆
PT+

λ ⊆ PT+
κ for κ < λ.

Proof: Let κ < λ. The definition of PT−

λ immediately

yields PT−

λ ⊆ PT−

κ . From this, applying Def. 5, one obtains

3

PT+
λ ⊆ PT+

κ , CT−

κ ⊆ CT−

λ and CT+
κ ⊆ CT+

λ , respectively.

The remaining claims follow by induction on λ.

As PT−

0 is the universal relation, certainly CT−

0 ⊆ PT−

0 ,

so CT+
0 ⊆ PT+

0 .

Let λ be a limit ordinal. Then PT−

λ =
⋂

µ<λ PT−

µ . For

any κ, µ < λ one has CT−

κ ⊆ PT−

µ by induction. Namely

CT−

κ ⊆ CT−

µ ⊆ PT−

µ if κ ≤ µ < λ, and CT−

κ ⊆ PT−

κ ⊆
PT−

µ if µ ≤ κ < λ. Hence CT−

κ ⊆
⋂

µ<λ PT−

µ = PT−

λ for

any κ < λ, and hence CT+
κ ⊆ PT+

λ . With Def. 5 this implies

CT−

λ ⊆ PT−

λ and hence CT+
λ ⊆ PT+

λ .

Now let λ = µ+1. By induction CT+
µ ⊆PT+

µ . With Def. 5

this implies CT−

µ ⊆ PT−

λ , and hence CT+
µ ⊆ PT+

λ . With

Def. 5 this implies CT−

λ ⊆ PT−

λ and hence CT+
λ ⊆ PT+

λ . ✷

Since the closed literals over Σ form a proper set, there must

be an ordinal κ such that PT−

λ = PT−

κ for all λ > κ, and

hence also PT+
λ = PT+

κ , CT−

λ = CT−

κ and CT+
λ = CT+

κ .

Definition 6 Such an ordinal κ is called closure ordinal. Let

PT− :=PT−

κ , PT+:=PT+
κ , CT− :=CT−

κ and CT+ :=CT+
κ .

Remark 1 PT− =
⋂

λ PT−

λ , taking the intersection over all

ordinals. Likewise, PT+ =
⋂

λ PT+
λ , CT− =

⋃
λ CT−

λ and

CT+ =
⋃

λ CT+
λ .

Remark 2 PT− is the set of literals that do not deny any

literal in CT+, and likewise for CT− and PT+. Moreover,

CT− ⊆ PT− and CT+ ⊆ PT+.

Definition 7 (Well-founded semantics) The 3-valued transi-

tion relation /
\CT+, PT+\

/ constitutes the well-founded seman-

tics of P .

Below I show that the above account of the well-founded

semantics is consistent with the one in [31], and thereby with

the ones in [12], [47], [26].

Definition 8 (Well-supported proof [31]) Let P = (Σ, R) be

a TSS. A well-supported proof from P of a closed literal α is

a well-founded tree with the nodes labelled by closed literals,

such that the root is labelled by α, and if β is the label of a

node and K is the set of labels of the children of this node,

then:

• either β is positive and K
β

is a substitution instance of a

rule in R;

• or β is negative and for each set N of closed negative

literals with P ⊢ N
γ

for γ a closed positive literal denying

β, a literal in K denies one in N .

P ⊢ws α denotes that a well-supported proof from P of α
exists.

Proposition 1 Let P be a TSS. Then P ⊢ws p a−→ q iff

(p a−→ q) ∈ CT+, and P ⊢ws p a−6→ iff (p a−6→) ∈ CT−.

Proof: ⇒ : Let π be a well-supported proof of a closed literal

α. By consistently applying the same closed substitution to

all literals occurring in π, one can assume, without loss of

generality, that all literals in π are closed. With structural

induction on π I show that α ∈ CT+ ∪ CT−.

Suppose α is positive and K
α

is the closed substitution

instance of the rule of P applied at the root of π. Then for

each β ∈ K the literal β is ws-provable from P by means

of a strict subproof of π. By induction β ∈ CT+ ∪CT−. As

CT+ is CT+
κ for some ordinal κ, it is closed under deduction.

Hence α ∈ CT+.

Suppose α is negative. Let β be closed positive literal

denying α. By Def. 8, each set N of closed negative literals

with P ⊢ β contains a literal γN denying a literal δN that

is ws-provable from P by means of a strict subproof of π.

By induction δN ∈ CT+. Hence γN /∈ PT−. Consequently

β /∈ PT+. Hence α ∈ CT−.

⇐ : Suppose α ∈ CT+
λ ∪ CT−

λ . With induction on λ I

show that P ⊢ws α. First suppose α ∈ CT−

λ . Let N be a set

of closed negative literals with P ⊢ N
γ

for γ a closed positive

literal denying α. Assume that N ⊆ PT−

λ . Then γ would be

in PT+
λ , contradicting the definition of CT−

λ . So N contains

a literal that is not in PT−

λ , i.e., denies a literal δN in CT+
κ

for some κ < λ. By induction, P ⊢ws δN . It follows that

P ⊢ws α.

Now suppose α ∈ CT+
λ . Then P ⊢

CT
−
λ

α
. By the case above

P ⊢ws β for each β ∈ CT−

λ . Hence P ⊢ws α. ✷

The above result, together with Theorem 1 in [31], and the

observation in [31] that literals t a−6→ t′ can be eliminated from

consideration (as done here), implies that the well-founded

semantics given above agrees with the one from [31].

In [31] it was shown that ⊢ws is consistent, in the sense

that no TSS admits well-supported proofs of two literals that

deny each other. This also follows directly from the material

above. A TSS P is called complete [31] if for each p and a,

either P ⊢ws p a−6→ or P ⊢ws p a−→ q for some q. This implies

that CT− is exactly the set of closed negative literals that do

not deny any literal in CT+. Hence CT− = PT− and thus

CT+ = PT+. So the 3-valued transition system associated to

a complete TSS is 2-valued.

Below I write P ⊢ p
a

−→λ q for (p
a

−→q)∈CT+
λ , P ⊢ p 6

a
−→λ

for (p 6
a
−→) ∈CT−

λ , P ⊢ p a
−−→λ q for (p

a
−→ q) ∈ PT+

λ and

P ⊢ p 6a−−→λ for (p 6
a
−→) ∈ PT−

λ . Moreover, p
a

−→ q, resp.

p
a

−−→ q, will abbreviate p
a

−→κ q, resp. p
a

−−→κ q, where κ
is the closure ordinal of Def. 6.

In my forthcoming lean congruence proof I will apply

structural induction on “the proof of a transition p
a

−→λ q

or p
a

−−→λ q from P ”. There I will mean the proofs of
CT

−
λ

p
a

−→q

and
PT

−
λ

p
a

−→q
, respectively, as this is what constitutes the evidence

for the statement P ⊢ p a−→λ q, resp. P ⊢ p a
−−→λ q.

III. THE BISIMULATION PREORDER

The goal of this paper is to show that bisimilarity is a

congruence for recursion for all languages with a structural

operational semantics in the ntyft/ntyxt format. Traditionally

[44], bisimilarity is defined on 2-valued transition systems

only, whereas the structural operational semantics of a lan-

guage specified by a TSS can be 3-valued. Rather than

4

limit my results to languages specified by complete TSSs,

I use an extension of the notion of bisimilarity to 3-valued

transition systems. Such an extension, called modal refinement,

is provided in [42]. There, 3-valued transition systems are

called modal transition systems.

Definition 9 (Bisimilarity) Let P be a TSS. A bisimulation

R is a binary relation on the states of T(Σ) such that, for

p, q ∈ T(Σ) and a ∈ A,

• if p R q and P ⊢ p
a

−→ p′, then there is a q′ with

P ⊢ q
a

−→ q′ and p′ R q′,
• if p R q and P ⊢ q

a
−−→ q′, then there is a p′ with

P ⊢ p a
−−→ p′ and p′ R q′.

A process q∈T(Σ) is a modal refinement of p∈T(Σ), notation

p ⊑B q, if there exists a bisimulation R with p R q. I call

⊑B the bisimulation preorder, or bisimilarity. The kernel of

⊑, given by ≡B := ⊑B ∩ ⊒B , is bisimulation equivalence.

Clearly, modal refinement is reflexive and transitive, and hence

a preorder. The underlying idea is that a process p with a

3-valued transition relation /
\CT, PT\

/ is a specification of

a process with a 2-valued transition relation, in which the

presence or absence of certain transitions is left open. CT
contains the transitions that are required by the specification,

and PT the ones that are allowed. If p ⊑B q, then q may

be closer to the eventual implementation, in the sense that

some of the undetermined transitions have been resolved to

present or absent. The requirements of Def. 9 now say that

any transition that is required by p should be (matched by a

transition) required by q, whereas any transition allowed by q,

should certainly be (matched by a transition) allowed by p.

In case p and q are 2-valued (i.e. implementations) the modal

refinement relation is just the traditional notion of bisimilarity

[44] (and thus symmetric).

While achieving a higher degree of generality of my lean

congruence theorem by interpreting incomplete TSSs as modal

transition systems, I do not propose incomplete TSSs as a tool

for the specification of modal transition systems.

IV. CONGRUENCE PROPERTIES

In the presence of recursion, two sensible notions of pre-

congruence come to mind. Let ⊑ be a preorder on the set

T(Σ) of closed terms over Σ. For ρ, ν :Var → T(Σ) closed

substitutions write ρ⊑ ν iff ρ(x)⊑ ν(x) for each x ∈ Var .

Definition 10 (Lean precongruence) A preorder ⊑ ⊆ T(Σ)
× T(Σ) is a lean precongruence iff t[ρ] ⊑ t[ν] for any term

t ∈ T(Σ) and any closed substitutions ρ and ν with ρ ⊑ ν.

Definition 11 (Full precongruence) A preorder ⊑⊆T(Σ)×
T(Σ) is a full precongruence iff it satisfies

pi ⊑ qi for all i = 1, ..., n
⇒ f(p1, ..., pn) ⊑ f(q1, ..., qn)

(1)

SY [σ] ⊑ S′

Y [σ] for all Y ∈W and σ : W → T(Σ)
⇒ /

\X |S\
/ ⊑ /

\X |S′\
/

(2)

for all functions (f, n) ∈ Σ, closed terms pi, qi ∈ T(Σ), and

recursive specifications S, S′ : W → T(Σ,W) with X ∈
W ⊆ Var .

A lean (resp. full) precongruence that is symmetric (i.e.

an equivalence relation) is called a lean (resp. full) con-

gruence. Clearly, each full (pre)congruence is also a lean

(pre)congruence, and each lean (pre)congruence satisfies (1)

above. Both implications are strict, as the following examples

illustrate.

Example 3 Consider the TSS given by the rules

a.x
a

−→ x
x

a
−→ x′

x‖y
a

−→ x′‖y

y
a

−→ y′

x‖y
a

−→ x‖y′

where a ranges over A, and the recursion rule from Def. 13

below. An infinite trace of a process p is a sequence a1a2 · · · ∈
Aω such that there are processes p1, p2, . . . with p

a1−→
p1

a2−→ p2
a3−→ Let p ⊑ q iff for each infinite trace

σ of p there is an infinite trace of q that has a suffix in

common with σ. This is a preorder indeed. It is not hard

to check that ⊑ is a precongruence for both action prefixing

a. and parallel composition ‖ , in the sense that (1)

holds. However, it fails to be a lean congruence, because

a./\X |X=c.X\
/ ≡ b./\X |X=c.X\

/, yet when filled in for Y in
/
\Z|Z=Y ‖Z\

/ (which can be seen as !Y , an infinite parallel

composition of copies of Y) the two are no longer equivalent.

I did not find a pair of a TSS and a preorder known from the

literature showing the same. This suggests that most common

preorders that are (pre)congruences for a selection of common

operators are also lean (pre)congruences for recursion.

Example 4 Consider the TSS with a constant 0 and action

prefixing, and only the rules for recursion from Def. 13 and

a.x
a

−→ x for a ∈ A, with τ ∈ A the internal action.

Consider any semantic equivalence ∼ satisfying x ∼ τ.x,

and such that divergence /
\X |X=τ.X\

/ differs from deadlock

or inaction 0. Such semantic equivalences are abound in the

literature and include the failures semantics of CSP [14], [28]

and branching bisimilarity with explicit divergence [34], [28].

They are all lean congruences (at least when no other operators

are present). Yet, since 0 ∼ /
\X |X=X\

/ 6∼ /
\X |X=τ.X\

/, they

fail to be full congruences.

A lean congruence is required for treating processes as equiv-

alence classes of closed terms rather than as the closed terms

themselves, in such a way that each term t∈T(Σ,W) with free

variables drawn from the set W models a W -ary operator on

such processes. As explained in the introduction, this notion of

congruence facilitates a formal comparison of the expressive

power of system description languages [33]. However, it does

not allow equivalence preserving modifications of recursive

specifications themselves, as contemplated in the introduction.

That requires a full congruence.

5

V. THE PURE NTYXT/NTYFT FORMAT WITH RECURSION

Definition 12 (ntytt, ntyft, ntyxt, nxytt rules) An ntytt rule

is a rule in which the right-hand sides of positive premises

are variables that are all distinct, and that do not occur in the

source. An ntytt rule is an ntyxt rule if its source is a variable,

an ntyft rule if its source contains exactly one function symbol

and no multiple occurrences of variables, and an nxytt rule if

the left-hand sides of its premises are variables.

The idea behind the names of the rules is that the ‘n’ in front

refers to the presence of negative premises, and the following

four letters refer to the allowed forms of left- and right-

hand sides of premises and of the conclusion, respectively.

For example, ntyft means a rule with negative premises (n),

where left-hand sides of premises are general terms (t), right-

hand sides of positive premises are variables (y), the source

contains exactly one function symbol (f), and the target is a

general term (t).

Definition 13 A TSS is in the ntyft/ntyxt format with recur-

sion if for every recursive specification S and X ∈ VS it has

a rule /
\SX |S\

/
a−→ z

/
\X |S\

/
a−→ z

and all of its other rules are ntyft or ntyxt rules.

Definition 14 (Well-founded and pure rules; distance) The

dependency graph of an ntytt rule with {ti
ai−→ yi | i ∈ I}

as set of positive premises is the directed graph with edges

{〈x, yi〉 | x ∈ var (ti) for some i ∈ I}. A ntytt rule is well-

founded if each backward chain of edges in its dependency

graph is finite. A variable in a rule is free if it occurs neither

in the source nor in the right-hand sides of the premises of this

rule. A rule is pure if it is well-founded and does not contain

free variables. A TSS is well-founded, resp. pure, if all of its

rules are.

Let r= H

t
a

−→u
be a pure ntytt rule. The distance of a variable

y ∈ var (r) to the source of r is the ordinal number given by

dist(x) = 0 if x ∈ var (t),

dist(y) = 1 + sup({dist(x) | x ∈ var(t)}) if (t a−→ y) ∈ H .

BOL & GROOTE show that bisimilarity is a congruence for

any language specified by a complete TSS in the well-founded

ntyft/ntyxt format (without recursion) [12]. This generalises a

result by GROOTE [36], showing the same for stratified TSSs

in the well-founded ntyft/ntyxt format; here stratified is a more

restrictive criterion than completeness, guaranteeing that a TSS

has a well-defined meaning as a 2-valued transition relation.

That result, in turn, generalises the congruence formats of

GROOTE & VAANDRAGER [39] for the well-founded tyft/tyxt

format (obtained by leaving out negative premises) and for the

GSOS format of BLOOM, ISTRAIL & MEYER [11]. Both of

these generalise the De Simone format [48], [49].

FOKKINK AND VAN GLABBEEK show that for any complete

TSS in tyft/tyxt (resp. ntyft/ntyxt) format there exists a pure

(and thus well-founded) complete TSS in tyft (resp. ntyft)

format that generates the same transition relation [19]. From

this it follows that the restriction to well-founded TSSs can

be dropped from the congruence formats of [12] and [39].

The result of [19] generalises straightforwardly to incomplete

TSSs, and to formats with recursion.

Theorem 1 For each TSS in the tyft/tyxt (resp. ntyft/ntyxt)

format with recursion there exists a pure TSS in the tyft (resp.

ntyft) format with recursion, generating the same (3-valued)

transition relation.

Proof: [19, Theorem 5.4] shows that for each TSS P in

ntyft/ntyxt format there exists a TSS P ′ in pure ntyft format,

such that for any closed transition rule N
α

with only negative

premises, one has P ⊢ N
α

⇔ P ′ ⊢ N
α

. This result generalises

seamlessly to TSS in the ntyft/ntyxt format with recursion; I

leave it to the reader to check that recursion causes no new

complications in the proof.

[19] obtains the quoted result for complete TSSs from

Thm. 5.4 by means of an application of [19, Prop. 5.2], which

says that if P and P ′ are TSSs such that P ⊢ N
α

⇔ P ′ ⊢ N
α

for any closed transition rule N
α

with only negative premises,

then P is complete iff P ′ is, and in that case they determine

the same transition relation. This Prop. 5.2 was taken verbatim

from [30, Prop. 29].

In [31], the journal version of [30], Prop. 29 was extended

to also conclude, under the same assumption, that P and P ′

determine the same 3-valued transition relation according to

the well-founded semantics. Using this version of Prop. 29

instead of Prop. 5.2 yields the required result. ✷

The next two propositions (not used in the rest of the paper)

tell that any language specified by TSS in the ntyft/ntyxt

format with recursion satisfies two sanity requirements from

[29]. The first is that, up to ≡B , the meaning of a closed term
/
\X |S\

/ is the X-component of a solution of S:

Proposition 2 Let P = (Σ, R) be a TSS in the ntyft/ntyxt

format with recursion and S a recursive specification with X∈
VS . Then /

\X |S\
/ ≡B

/
\SX |S\

/.

Proof: P ⊢ /
\X |S\

/
a−→ q for some a ∈ A and q ∈ T(Σ) iff

P ⊢ /
\SX |S\

/
a−→ q. ✷

For the second, invariance under α-conversion, write t
α
= u if

the terms t, u ∈ T(Σ) differ only in the names of their bound

variables (the variables from VS within a subexpression of the

form /
\X |S\

/).

Proposition 3 Let P = (Σ, R) be a TSS in the ntyft/ntyxt

format with recursion. Then p
α
= q ⇒ p ≡B q for all p, q ∈

T(Σ).

Proof: By Thm. 1 I may assume, without loss of generality,

that P is in the pure ntyft format with recursion. I show that
α
= is a bisimulation on T(Σ)—since

α
= is also symmetric, this

yields the required result.

6

Thus I need to show that, for p, q ∈ T(Σ) and a ∈ A,

• if p
α
= q and P ⊢ p

a
−→ p′, then there is a q′ with

P ⊢ q
a

−→ q′ and p′
α
= q′,

• if p
α
= q and P ⊢ q a

−−→ q′, then there is a p′ with

P ⊢ p a
−−→ p′ and p′

α
= q′.

To this end it suffices to establish, for all ordinals λ, that

4. if p
α
= q and P ⊢ p

a
−→λ p′, then there is a q′ with

P ⊢ q
a

−→ q′ and p′
α
= q′,

2. if p
α
= q and P ⊢ q

a
−−→ q′, then there is a p′ with

P ⊢ p a
−−→λ p′ and p′

α
= q′.

The desired result is then obtained by taking λ to be the closure

ordinal κ of Def. 6. This I will do by induction on λ, at the

same time establishing that

3. if p
α
= q and P ⊢ p 6

a
−→λ, then P ⊢ q 6

a
−→,

1. if p
α
= q and P ⊢ q 6a−−→, then P ⊢ p 6a−−→λ.

So assume Claims 1–4 have been established for all κ < λ.

Suppose p
α
= q and P ⊢ q 6a−−→. By Remark 2 there is no

q′ ∈ T(Σ) with P ⊢ q
a

−→ q′. So by induction, using Claim

4 above, there is no p′ ∈ T(Σ) with P ⊢ p
a

−→κ p′ for some

κ < λ. By Def. 5 P ⊢ p 6a−−→λ. This yields Claim 1.

Now suppose p
α
= q and P ⊢ q a

−−→ q′. I need to find a p′

with P ⊢ q a
−−→λ q′ and p′

α
= q′. This I will do by structural

induction on the proof π of p
a

−−→ p′ from P , making a case

distinction based on the shape of p.

• Let p = f(p1, . . . , pn). Then q = f(q1, . . . , qn) where

pi
α
= qi for i=1, . . . , n. Let π be a proof of P ⊢ q

a
−−→ q′

from P . By Defs. 4 and 13, there must be a pure ntyft

rule r = H

f(x1,...,xn)
a

−→t
in R and a closed substitution ν

with ν(xi)= qi for i=1, ..., n and t[ν]= q′, such that for

each (ty
c−→ y) ∈ H the transition P ⊢ ty[ν]

c
−−→ ν(y)

is provable from P by means of a strict subproof of π,

and P ⊢ u[ν] 6c−−→ for each (u c−6→) ∈ H . Next, I define

a substitution σ : var (r) → T(Σ) such that

(i) σ(xi) = pi for i = 1, . . . , n,

(ii) σ(y)
α
= ν(y) for each y ∈ var(r),

(iii) P ⊢ ty[σ]
c

−−→λ σ(y) for each (ty
c−→ y) ∈ H .

The definition of σ(y) and the inference of (i)–(iii) above

proceed with induction on the distance of y∈var (r) from

the source of r,

Base case: Let σ(xi) := pi for i = 1, . . . , n, so that

Property (i) is satisfied. Regarding Property (ii), σ(xi)
α
=

ν(xi) for i = 1, . . . , n.

Induction step: When defining σ(y) for some y ∈ Var

with (ty
c−→ y) ∈ H , by induction σ(x) has been defined

already for all x∈ var (ty), so I may assume that σ(x)
α
=

ν(x) for all x ∈ var (ty) and hence ty[σ]
α
= ty[ν].

By induction on π, there is a py with P ⊢ ty[σ]
c

−−→λ py
and py

α
= ν(y). Define σ(y) := py . Properties (ii) and (iii)

now hold for y.

Take p′ := t[σ]. So p′ = t[σ]
α
= t[ν] = q′ by Property (ii)

of σ. For each premise (u c−6→) ∈ H one has u[σ]
α
= u[ν]

by Property (ii) of σ. So P ⊢ u[σ] 6c−−→λ by Claim 1. By

Defs. 4 and 13, together with Property (iii) of σ, this

implies P ⊢ p = f(p1, . . . , pn)
a

−−→λ t[σ] = p′.

• Let p = /
\X |S\

/. Then q = /
\α(X)|S′[α]\/ for some recur-

sive specification S′ : VS → T(Σ) with SY
α
= S′

Y for all

Y ∈ VS , and an injective substitution α : VS → Var such

that the range of α contains no variables occurring free

in /
\S′

Y |S
\
/ for some Y ∈ VS . Now /

\SX |S\
/

α
= /

\SX |S′\
/

α
=

/
\S′

α(X)|S
′[α]\/. Let π be a proof of P ⊢ q a

−−→ q′ from P .

By Defs. 4 and 13 P ⊢ /
\S′

α(X)|S
′[α]\/

a
−−→ q′ is provable

from P by means of a strict subproof of π. So by

induction there is a p′ such that P ⊢ /
\SX |S\

/

a
−−→λ p′ and

p′
α
= q′. By Defs. 4 and 13, P ⊢ p = /

\X |S\
/

a
−−→λ p′.

This establishes Claim 2.

Next, suppose that p
α
= q and P ⊢ p 6

a
−→λ. By Def. 5 there

is no p′ ∈T(Σ) with P ⊢ p a
−−→λ p′. Using Claim 2, there is

no q′ ∈ T(Σ) with P ⊢ q
a

−−→ q′. By Remark 2, P ⊢ q 6
a
−→.

This yields Claim 3.

Claim 4 follows by structural induction on the proof of

p a−→λ p′ from P , pretty much in the same way as Claim

2 above. ✷

Prop. 3 could be classified as “self-evident”. One reason to

spell out the proof above is to obtain a template for bisimilarity

proofs in the setting of the well-founded semantics. I will use

this template in the forthcoming lean congruence proof.

VI. A LEAN CONGRUENCE RESULT

The following congruence proof is strongly inspired by the

one in [12].

Theorem 2 Bisimilarity is a lean precongruence for any

language specified by a TSS in the ntyft/ntyxt format with

recursion.

Proof: By Thm. 1 I may assume, without loss of generality,

that P = (Σ, R) is a TSS in the pure ntyft format with re-

cursion. Let R be the smallest lean precongruence containing

bisimilarity, i.e., R ⊆ T(Σ) × T(Σ) is the smallest relation

on processes satisfying

• if p ⊑B q then p R q,

• if (f, n) ∈ Σ and pi R qi for all i = 1, ..., n, then

f(p1, . . . , pn) R f(q1, . . . , qn),
• and if S : VS → T(Σ) with Z ∈ VS ⊆ Var , and ρ, ν :
Var\VS → T(Σ) satisfy ρ(x) R ν(x) for all x∈Var\VS ,

then /
\Z|S\

/[ρ] R /
\Z|S\

/[ν].
A trivial structural induction on t ∈T(Σ), using the last two

clauses, shows that if ρ, ν :Var → T(Σ) satisfy ρ(x) R ν(x)
for all x ∈ var (t), then t[ρ] R t[ν]. (*)

As /
\ |S\

/[ρ] : VS → T(Σ) and /
\ |S\

/[ν] : VS → T(Σ), this

implies that in the last clause one even has /
\t|S\

/[ρ] R /
\t|S\

/[ν]
for all terms t ∈ T(Σ, VS). ($)

It suffices to show that R is a bisimulation, because this

implies R ⊆ ⊑B, so that R equals ⊑B , and (*) says that

R is a lean precongruence. Thus I need to show that, for

p, q ∈ T(Σ) and a ∈ A,

• if p R q and P ⊢ p
a

−→ p′, then there is a q′ with

P ⊢ q
a

−→ q′ and p′ R q′,
• if p R q and P ⊢ q

a
−−→ q′, then there is a p′ with

P ⊢ p a
−−→ p′ and p′ R q′.

7

To this end it suffices to establish, for all ordinals λ, that

4. if p R q and P ⊢ p
a

−→λ p′, then there is a q′ with

P ⊢ q
a

−→ q′ and p′ R q′,
2. if p R q and P ⊢ q a

−−→ q′, then there is a p′ with

P ⊢ p
a

−−→λ p′ and p′ R q′.

The desired result is then obtained by taking λ to be the closure

ordinal κ of Def. 6. This I will do by induction on λ, at the

same time establishing that

3. if p R q and P ⊢ p 6
a
−→λ, then P ⊢ q 6

a
−→,

1. if p R q and P ⊢ q 6a−−→, then P ⊢ p 6a−−→λ.

So assume Claims 1–4 have been established for all κ < λ.

Suppose p R q and P ⊢ q 6a−−→. By Remark 2 there is no

q′ ∈ T(Σ) with P ⊢ q
a

−→ q′. So by induction, using Claim

4 above, there is no p′ ∈ T(Σ) with P ⊢ p
a

−→κ p′ for some

κ < λ. By Def. 5 P ⊢ p 6a−−→λ. This yields Claim 1.

Now suppose p R q and P ⊢ q
a

−−→ q′. I need to find a p′

with P ⊢ p a
−−→λ p′ and p′ R q′. This I will do by structural

induction on the proof π of q
a

−−→ q′ from P . I make a case

distinction based on the derivation of p R q.

• Let p ⊑B q. Using that ⊑B is a bisimulation, there

must be a process p′ such that P ⊢ p a
−−→ p′ and

p′ ⊑B q′, hence p′ R q′. Since P ⊢ p
a

−−→ p′, certainly

P ⊢ p a
−−→λ p′, by Remark 1.

• Let p = f(p1, . . . , pn) and q = f(q1, . . . , qn) where

pi R qi for i = 1, . . . , n. Let π be a proof of q
a

−−→ q′

from P . By Defs. 4 and 13, there must be a pure ntyft

rule r = H

f(x1,...,xn)
a

−→t
in R and a closed substitution ν

with ν(xi) = qi for i = 1, ..., n and t[ν] = q′, such that

for each (ty
c−→ y) ∈ H the transition ty[ν]

c
−−→ ν(y) is

provable from P by means of a strict subproof of π, and

P ⊢ u[ν] 6c−−→ for each (u c−6→) ∈ H. Next, I define a

substitution σ : var (r) → T(Σ) such that

(i) σ(xi) = pi for i = 1, . . . , n,

(ii) σ(y) R ν(y) for each y ∈ var (r),
(iii) P ⊢ ty[σ]

c
−−→λ σ(y) for each (ty

c−→ y) ∈ H .

The definition of σ(y) and the inference of (i)–(iii) above

proceed with induction on the distance of y∈var (r) from

the source of r,

Base case: Let σ(xi) := pi for i = 1, . . . , n, so that

Property (i) is satisfied. Regarding Property (ii), σ(xi) R
ν(xi) for i = 1, . . . , n.

Induction step: When defining σ(y) for some y ∈ Var

with (ty
c−→ y) ∈ H , by induction σ(x) has been defined

already for all x∈var (ty), so I may assume that σ(x) R
ν(x) for all x ∈ var(ty) and hence ty[σ] R ty[ν] by (*).

By induction on π, there is a py with P ⊢ ty[σ]
c

−−→λ py
and py R ν(y). Define σ(y) := py. Properties (ii) and

(iii) now hold for y.

Take p′ := t[σ]. So p′ = t[σ] R t[ν] = q′ by (*) and

Property (ii) of σ. For each premise (u c−6→) ∈ H one

has u[σ] R u[ν] by (*) and Property (ii) of σ. So

P ⊢ u[σ] 6c−−→λ by Claim 1. By Defs. 4 and 13, together

with Property (iii) of σ, this implies

P ⊢ p = f(p1, . . . , pn)
a

−−→λ t[σ] = p′.

• Let p= /
\Z|S\

/[ρ] =
/
\Z|S[ρ]\/ and q= /

\Z|S\
/[σ] =

/
\Z|S[σ]\/

where S : VS → T(Σ) with Z ∈ VS ⊆ Var , ρ, σ :
Var\VS → T(Σ), and for all x ∈ Var \ VS one has

ρ(x) R σ(x). Let π be a proof of q
a

−−→ q′ from P .

By Defs. 4 and 13 /
\SZ |S[σ]\/

a
−−→ q′ is provable from

P by means of a strict subproof of π. By ($) above one

has /
\SZ |S[ρ]

\
/ R /

\SZ |S[σ]
\
/. So by induction there is a p′

such that P ⊢ /
\SZ |S[ρ]

\
/

a
−−→λ p′ and p′ R q′. By Defs. 4

and 13, P ⊢ p = /
\Z|S[σ]\/

a
−−→λ p′.

Next, suppose that p R q and P ⊢ p 6
a
−→λ. By Def. 5 there

is no p′ ∈T(Σ) with P ⊢ p
a

−−→λ p′. Using Claim 2, there is

no q′ ∈ T(Σ) with P ⊢ q
a

−−→ q′. By Remark 2, P ⊢ q 6
a
−→.

This yields Claim 3.

Finally, suppose p R q and P ⊢ p
a

−→λ p′. I need to find a

q′ with P ⊢ q
a

−→ q′ and p′ R q′. This I will do by structural

induction on the proof π of p a−→λ p′ from P . I make a case

distinction based on the derivation of p R q.

• Let p ⊑B q. Since P ⊢ p
a

−→λ p′, certainly P ⊢ p
a

−→
p′, by Remark 1. Using that ⊑B is a bisimulation, there

must be a process q′ such that P ⊢ q a−→ q′ and p′ ⊑B q′,
hence p′ R q′.

• Let p=f(p1, . . . , pn) and q=f(q1, . . . , qn) where pi R qi
for i = 1, . . . , n. Let π be a proof of p a−→λ p′ from P .

By Defs. 4, 5 and 13, there must be a pure ntyft rule

r = H

f(x1,...,xn)
a

−→t
in R and a closed substitution σ

with σ(xi) = pi for i = 1, ..., n and t[σ] = p′, such that

for each (ty
c−→ y) ∈ H the transition ty[σ]

c−→λ σ(y) is

provable from P by means of a strict subproof of π, and

P ⊢ u[σ] c−6→λ for each (u c−6→) ∈ H . Next, I define a

substitution ν :var (r)→T(Σ) such that

(i) ν(xi) = qi for i = 1, . . . , n,

(ii) σ(y) R ν(y) for each y ∈ var (r),
(iii) P ⊢ ty[ν]

c−→ ν(y) for each (ty
c−→ y) ∈ H .

The definition of ν(y) and the inference of (i)–(iii) above

proceed with induction on the distance of y∈var (r) from

the source of r,

Base case: Let ν(xi) := qi for i = 1, . . . , n, so that

Property (i) is satisfied. Regarding Property (ii), σ(xi) R
ν(xi) for i = 1, . . . , n.

Induction step: When defining ν(y) for some y ∈ Var

with (ty
c−→ y) ∈ H , by induction ν(x) has been defined

already for all x∈var (ty), so I may assume that σ(x) R
ν(x) for all x∈ var (ty) and hence ty[σ] R ty[ν] by (*).

By induction on π, there is a qy with P ⊢ ty[ν]
c−→ qy

and σ(y) R qy . Define ν(y) := qy . Properties (ii) and

(iii) now hold for y.

Take q′ := t[ν]. So p′ = t[σ] R t[ν] = q′ by (*) and

Property (ii) of ν. For each premise (u c−6→) ∈ H one

has u[σ] R u[ν] by (*) and Property (ii) of ν. So

P ⊢ u[ν] c−6→ by Claim 3. Since CT+ is closed under

deduction, together with Property (iii) of ν this implies

P ⊢ q = f(q1, . . . , qn)
a−→ t[ν] = q′.

• Let p= /
\Z|S\

/[ρ] =
/
\Z|S[ρ]\/ and q = /

\Z|S\
/[ν] =

/
\Z|S[ν]\/

where S : VS → T(Σ) with Z ∈ VS ⊆ Var , ρ, ν :

8

Var\VS → T(Σ), and for all x ∈ Var \ VS one has

ρ(x) R ν(x). Let π be a proof of p a−→λ p′ from P . By

Defs. 4, 5 and 13 /
\SZ |S[ρ]

\
/

a−→λ p′ is provable from P
by means of a strict subproof of π. By ($) above one

has /
\SZ |S[ρ]\/ R /

\SZ |S[ν]\/. So by induction there is a q′

such that P ⊢ /
\SZ |S[ν]

\
/

a−→ q′ and p′ R q′. By Defs. 4

and 13, P ⊢ q = /
\Z|S[ν]\/

a−→ q′.
This yields Claim 4. ✷

The above result implies that any ntyft/ntyxt language with

recursion satisfies congruence requirement (1) up to ⊑B, but

is not strong enough to yield (2).

VII. A FULL CONGRUENCE RESULT

In this section I deal with positive TSSs only. Here the

relations
a

−−→λ and
a

−→µ for ordinals λ and µ all coincide,

and ⊑B = ≡B . The following auxiliary concept was used in

[44] to show that CCS satisfies Condition (2) of Def. 11.

Definition 15 A symmetric relation R ⊆ T(Σ) × T(Σ) is a

bisimulation up to ∼ if p R q and P ⊢ p
a

−→ p′ imply that

there is a q′ with P ⊢ q
a

−→ q′ and p′ ∼R∼ q′, for all a ∈ A.

Here ∼R∼ := {(r, s) | ∃r′, s′. r ∼ r′ R s′ ∼ s}.

Proposition 4 ([44]) If p R q for some bisimulation R up to

≡B , then p ≡B q.

Proof: Using the reflexivity of ≡B it suffices to show that

≡BR≡B is a bisimulation. Using symmetry and transitivity

of ≡B this is straightforward. ✷

Theorem 3 Bisimilarity is a full congruence for any language

specified by a TSS in the tyft/tyxt format with recursion.

Proof: By Thm. 1 I may assume, without loss of generality,

that P = (Σ, R) is a TSS in the pure tyft format with recur-

sion. Let S, S′ : W → T(Σ,W) be recursive specifications

with SY [σ] ≡B S′

Y [σ] for all Y ∈ W and σ : W → T(Σ).7

I need to show that /
\X |S\

/ ≡B
/
\X |S′\

/ for all X ∈ W . Let

R ⊆ T(Σ) × T(Σ) be the smallest relation on processes

satisfying

•
/
\X |S\

/ R /
\X |S′\

/ and /
\X |S′\

/ R /
\X |S\

/ for all X ∈ W ,

• if (f, n) ∈ Σ and pi R qi for all i = 1, ..., n, then

f(p1, . . . , pn) R f(q1, . . . , qn),
• and if S′′ : VS′′ → T(Σ) with Z ∈ VS′′ ⊆ Var , and

ρ, ν : Var \ VS′′ → T(Σ) satisfy ρ(x) R ν(x) for all

x ∈ Var \ VS′′ , then /
\Z|S′′\

/[ρ] R /
\Z|S′′\

/[ν].
A trivial structural induction on t ∈T(Σ), using the last two

clauses, shows that if ρ, ν : Var → T(Σ) satisfy ρ(x) R ν(x)
for all x ∈ Var , then t[ρ] R t[ν]. (*)

So in the first clause one even has /
\t|S\

/ R /
\t|S′\

/ for all

t ∈ T(Σ,W), (#)

and in the last clause /
\t|S′′\

/[ρ] R /
\t|S′′\

/[ν] for all t ∈
T(Σ, VS′′). ($)

It suffices to show that R is a bisimulation up to ≡B,

because with Prop. 4 this implies R ⊆ ≡B . By construction

R is symmetric. So it suffices to show that,

if p R q and P ⊢ p a−→ p′, then there is a q′ with

P ⊢ q a−→ q′ and p′ R≡B q′,

for all p, q ∈ T(Σ) and a ∈ A, This I will do by structural

induction on the proof π of p a−→ p′ from P . I make a case

distinction based on the derivation of p R q.

• Let p = /
\X |S\

/ and q = /
\X |S′\

/ with X ∈ W . Let

π be a proof of p a−→ p′ from P . By Definitions 4

and 13 /
\SX |S\

/
a−→ p′ is provable from P by means of a

strict subproof of π. By (#) above one has /
\SX |S\

/ R
/
\SX |S′\

/. So by induction there is an r′ such that

P ⊢ /
\SX |S′\

/
a−→ r′ and p′ R≡B r′. Since /

\ |S′\
/ is

a substitution of the form σ : W → T(Σ), one has
/
\SX |S′\

/ ≡B
/
\S′

X |S′\
/. Hence there is a q′ such that

P ⊢ /
\S

′

X |S′\
/

a−→ q′ and r′ ≡B q′. So p′ R≡B q′. By

Definitions 4 and 13 P ⊢ q = /
\X |S′\

/
a−→ q′.

• The case p = /
\X |S′\

/ and q = /
\X |S\

/ goes likewise, swap-

ping the rôles of S′

X and SX , and using the substitution
/
\ |S\

/.
7

• The remaining two cases proceed in the same way as

in the proof of Claim 4 for Thm. 2, but suppressing λ
and with R≡B substituted for the blue occurrences of

R. In the last case there are no further changes, so I

will not repeat it here. The remaining case needs a few

elaborations—these involve the blue coloured segments

in the proof of Claim 4:

• Let p=f(p1, . . . , pn) and q=f(q1, . . . , qn) where pi R qi
for i = 1, . . . , n. Let π be a proof of p a−→ p′ from P .

By Defs. 4 and 13, there must be a pure tyft rule

r = H

f(x1,...,xn)
a

−→t
in R and a closed substitution σ with

σ(xi)=pi for i=1, ..., n and t[σ]=p′, such that for each

(ty
c−→ y) ∈ H the transition ty[σ]

c−→ σ(y) is provable

from P by means of a strict subproof of π. Next, I define

a substitution ν :var (r)→T(Σ) such that

(i) ν(xi) = qi for i = 1, . . . , n,

(ii) σ(y) R≡B ν(y) for each y ∈ var(r),
(iii) P ⊢ ty[ν]

c−→ ν(y) for each (ty
c−→ y) ∈ H .

The definition of ν(y) and the inference of (i)–(iii) above

proceed with induction on the distance of y∈var (r) from

the source of r,

Base case: Let ν(xi) := qi for i = 1, . . . , n, so that

Property (i) is satisfied. Regarding Property (ii), σ(xi) R
ν(xi) for i = 1, . . . , n.

Induction step: When defining ν(y) for some y ∈ Var

with (ty
c−→ y) ∈ H , by induction ν(x) has been de-

fined already for all x ∈ var(ty), so I may assume that

σ(x) R≡B ν(x) for all x ∈ var (ty), i.e., there exists a

substitution ρ :var (r)→T(Σ) with σ(x)Rρ(x)≡B ν(x)
for all x ∈ var (ty). Now ty[σ] R ty[ρ] by (*) and

ty[ρ]≡B ty[ν] by Thm. 2.

By induction on π, there is an ry with P ⊢ ty[ρ]
c−→ ry

and σ(y) R≡B ry . By the definition of bisimilarity, there

7This proof shows that in the full congruence property (2) one only needs to
assume SY [σ] ≡B S′

Y
[σ] for two specific substitutions σ: namely σ(Y) :=

/
\Y |S′\

/, resp. /
\Y |S\

/.

9

is a qy with P ⊢ ty[ν]
c−→ qy and ry ≡B qy . Define

ν(y) := qy . Properties (ii) and (iii) now hold for y.

Take q′ := t[ν]. So p′=t[σ] R≡ t[ν]=q′ by (*), Property

(ii) of ν, and Thm. 2. By Defs. 4 and 13, together with

Property (iii) of ν, this implies

P ⊢ q = f(q1, . . . , qn)
a−→ t[ν] = q′. ✷

It remains an open question whether the above result can be

generalised to the ntyft/ntyxt format with recursion. A direct

combination of the proofs of Thms. 2 and 3 does not work,

however. An attempt in this direction would substitute either

R⊑B or ⊑BR for the red R in Claim 2 in the proof of Thm. 2.

Both attempts fail on the case p = /
\X |S\

/ and q = /
\X |S′\

/ in

the proof of Thm. 3.

The first attempt would from P ⊢ /
\S′

X |S′\
/

a
−−→ q′ infer

P ⊢ /
\SX |S′\

/

a
−−→ r′ by bisimilarity, and then infer P ⊢

/
\SX |S\

/

a
−−→λ p′ by induction. However, one may not use

induction, as the transition /
\SX |S′\

/

a
−−→r′ may be derived later

than /
\X |S′\

/

a
−−→q′. In fact, if a variant of this approach would

work, skipping /
\X |S′\

/ R /
\X |S\

/ from the definition of R, one

could prove a false version of (2) that assumes the antecedent

only for the single substitution /
\ |S′\

/ (cf. Footnote 7); it is

trivial to find a counterexample in the GSOS format with

unguarded recursion.

The second attempt would from P ⊢ /
\S′

X |S′\
/

a
−−→ q′ infer

P ⊢ /
\S′

X |S\
/

a
−−→λr

′ by induction, and then P ⊢ /
\SX |S\

/

a
−−→λ

p′ by bisimilarity. The latter step is invalid, as /
\SX |S′\

/

a
−−→λr

′

is only an overapproximation of P ⊢ /
\SX |S′\

/

a
−−→ r′.

REFERENCES

[1] L. Aceto, A. Birgisson, A. Ingólfsdóttir, M.R. Mousavi & M.A. Reniers
(2012): Rule formats for determinism and idempotence. Science of
Computer Programming 77(7-8), pp. 889–907, doi:10.1016/j.scico.2010.
04.002.

[2] L. Aceto, M. Cimini, A. Ingólfsdóttir, M.R. Mousavi & M.A. Reniers
(2011): SOS rule formats for zero and unit elements. Theoretical
Computer Science 412(28), pp. 3045–3071, doi:10.1016/j.tcs.2011.01.
024.

[3] L. Aceto, M. Cimini, A. Ingólfsdóttir, M.R. Mousavi & M.A. Reniers
(2012): Rule formats for distributivity. Theoretical Computer Science
458, pp. 1–28, doi:10.1016/j.tcs.2012.07.036.

[4] L. Aceto, W.J. Fokkink & C. Verhoef (2000): Structural Operational

Semantics. In J.A. Bergstra, A. Ponse & S.A. Smolka, editors: Handbook
of Process Algebra, chapter 3, Elsevier, pp. 197–292.

[5] G. Bacci & M. Miculan (2015): Structural operational semantics for

continuous state stochastic transition systems. Journal of Computer and
System Sciences 81(5), pp. 834–858, doi:10.1016/j.jcss.2014.12.003.

[6] J. C. M. Baeten, T. Basten & M. A. Reniers (2010): Process Algebra:

Equational Theories of Communicating Processes. Cambridge Univer-
sity Press.

[7] J.C.M. Baeten, editor (1990): Applications of Process Algebra. Cam-
bridge Tracts in Theoretical Computer Science 17, Cambridge University
Press.

[8] F. Bartels (2002): GSOS for Probabilistic Transition Systems.
Electr. Notes Theor. Comput. Sci. 65(1), pp. 29–53, doi:10.1016/
S1571-0661(04)80358-X.

[9] B. Bloom (1995): Structural operational semantics for weak bisimu-
lations. Theoretical Computer Science 146, pp. 25–68, doi:10.1016/
0304-3975(94)00152-9.

[10] B. Bloom, W.J. Fokkink & R.J. van Glabbeek (2004): Precongruence

Formats for Decorated Trace Semantics. Transactions on Computational
Logic 5(1), pp. 26–78, doi:10.1145/963927.963929.

[11] B. Bloom, S. Istrail & A.R. Meyer (1995): Bisimulation Can’t be Traced.
Journal of the ACM 42(1), pp. 232–268, doi:10.1145/200836.200876.

[12] R.N. Bol & J.F. Groote (1996): The meaning of negative premises in

transition system specifications. Journal of the ACM 43(5), pp. 863–914,
doi:10.1145/234752.234756.

[13] E. Bres, R.J. van Glabbeek & P. Höfner (2016): A Timed Process Algebra
for Wireless Networks with an Application in Routing. Technical Report
9145, NICTA. Available at http://arxiv.org/abs/1606.03663. Extended
abstract in P. Thiemann, editor: Proc. ESOP’16, LNCS 9632, Springer,
2016, pp. 95-122.

[14] S.D. Brookes, C.A.R. Hoare & A.W. Roscoe (1984): A theory of

communicating sequential processes. Journal of the ACM 31(3), pp.
560–599, doi:10.1145/828.833.

[15] S. Cranen, M. R. Mousavi & M. A. Reniers (2008): A Rule For-

mat for Associativity. In F. van Breugel & M. Chechik, editors:
Proc. CONCUR’08, LNCS 5201, Springer, pp. 447–461, doi:10.1007/
978-3-540-85361-9 35.

[16] P.R. D’Argenio, D. Gebler & M.D. Lee (2016): A general SOS theory

for the specification of probabilistic transition systems. Information and
Computation 249, pp. 76–109, doi:10.1016/j.ic.2016.03.009.

[17] W. J. Fokkink (2000): Introduction to Process Algebra. Texts in
Theoretical Computer Science, An EATCS Series, Springer, doi:10.
1007/978-3-662-04293-9.

[18] W.J. Fokkink (2000): Rooted Branching Bisimulation as a Congruence.
Journal of Computer and System Sciences 60(1), pp. 13–37, doi:10.1006/
jcss.1999.1663.

[19] W.J. Fokkink & R.J. van Glabbeek (1996): Ntyft/ntyxt rules reduce to

ntree rules. Information and Computation 126(1), pp. 1–10, doi:10.1006/
inco.1996.0030.

[20] W.J. Fokkink & R.J. van Glabbeek (2016): Divide and Congruence II:

Delay and Weak Bisimilarity. In: Proc. LICS’16, ACM, pp. 778–787,
doi:10.1145/2933575.2933590.

[21] W.J. Fokkink & R.J. van Glabbeek (2017): Precongruence Formats with
Lookahead through Modal Decomposition. Available at http://theory.
stanford.edu/∼rvg/abstracts.html#122.

[22] W.J. Fokkink, R.J. van Glabbeek & P. de Wind (2006): Compositionality
of Hennessy-Milner Logic by Structural Operational Semantics. The-
oretical Computer Science 354(3), pp. 421–440, doi:10.1016/j.tcs.2005.
11.035.

[23] W.J. Fokkink, R.J. van Glabbeek & P. de Wind (2012): Divide and

congruence: From decomposition of modal formulas to preservation of

branching and η-bisimilarity. Information and Computation 214, pp.
59–85, doi:10.1016/j.ic.2011.10.011.

[24] H. Garavel, F. Lang, R. Mateescu & W. Serwe (2011): CADP 2010: A
Toolbox for the Construction and Analysis of Distributed Processes. In
P.A. Abdulla & K.R.M. Leino, editors: Proc. TACAS’11, LNCS 6605,
Springer, pp. 372–387, doi:10.1007/978-3-642-19835-9 33.

[25] D. Gebler & S. Tini (2013): Compositionality of Approximate Bisim-

ulation for Probabilistic Systems. In Johannes Borgström & Bas
Luttik, editors: Proc. EXPRESS/SOS’13, EPTCS 120, Open Publishing
Association, pp. 32–46, doi:10.4204/EPTCS.120.4.

[26] A. van Gelder, K. Ross & J.S. Schlipf (1991): The well-founded

semantics for general logic programs. Journal of the ACM 38(3), pp.
620–650, doi:10.1145/116825.116838.

[27] R.J. van Glabbeek (1993): Full abstraction in structural operational se-
mantics (extended abstract). In M. Nivat, C. Rattray, T. Rus & G. Scollo,
editors: Proc. AMAST’93, Workshops in Computing, Springer, pp. 77–
84. Available at http://theory.stanford.edu/∼rvg/abstracts.html#28.

[28] R.J. van Glabbeek (1993): The Linear Time – Branching Time Spectrum

II; The semantics of sequential systems with silent moves (extended

abstract). In E. Best, editor: Proc. CONCUR’93, LNCS 715, Springer,
pp. 66–81, doi:10.1007/3-540-57208-2 6.

[29] R.J. van Glabbeek (1994): On the expressiveness of ACP (extended
abstract). In A. Ponse, C. Verhoef & S.F.M. van Vlijmen, editors:
Proceedings First Workshop on the Algebra of Communicating Pro-
cesses, ACP94, Utrecht, The Netherlands, May 1994, Workshops in
Computing, Springer, pp. 188–217. Available at http://theory.stanford.
edu/∼rvg/abstracts.html#31.

[30] R.J. van Glabbeek (1995): The Meaning of Negative Premises in
Transition System Specifications II. Technical Report STAN-CS-TN-
95-16, Stanford University. Available at http://theory.stanford.edu/∼rvg/
abstracts.html#32. Extended abstract in F. Meyer auf der Heide & B.
Monien, editors: Proc. ICALP’96, LNCS 1099, Springer, pp. 502–513,
doi: 10.1007/3-540-61440-0 154.

10

http://dx.doi.org/10.1016/j.scico.2010.04.002
http://dx.doi.org/10.1016/j.scico.2010.04.002
http://dx.doi.org/10.1016/j.tcs.2011.01.024
http://dx.doi.org/10.1016/j.tcs.2011.01.024
http://dx.doi.org/10.1016/j.tcs.2012.07.036
http://dx.doi.org/10.1016/j.jcss.2014.12.003
http://dx.doi.org/10.1016/S1571-0661(04)80358-X
http://dx.doi.org/10.1016/S1571-0661(04)80358-X
http://dx.doi.org/10.1016/0304-3975(94)00152-9
http://dx.doi.org/10.1016/0304-3975(94)00152-9
http://dx.doi.org/10.1145/963927.963929
http://dx.doi.org/10.1145/200836.200876
http://dx.doi.org/10.1145/234752.234756
http://arxiv.org/abs/1606.03663
http://dx.doi.org/10.1145/828.833
http://dx.doi.org/10.1007/978-3-540-85361-9_35
http://dx.doi.org/10.1007/978-3-540-85361-9_35
http://dx.doi.org/10.1016/j.ic.2016.03.009
http://dx.doi.org/10.1007/978-3-662-04293-9
http://dx.doi.org/10.1007/978-3-662-04293-9
http://dx.doi.org/10.1006/jcss.1999.1663
http://dx.doi.org/10.1006/jcss.1999.1663
http://dx.doi.org/10.1006/inco.1996.0030
http://dx.doi.org/10.1006/inco.1996.0030
http://dx.doi.org/10.1145/2933575.2933590
http://theory.stanford.edu/~rvg/abstracts.html#122
http://theory.stanford.edu/~rvg/abstracts.html#122
http://dx.doi.org/10.1016/j.tcs.2005.11.035
http://dx.doi.org/10.1016/j.tcs.2005.11.035
http://dx.doi.org/10.1016/j.ic.2011.10.011
http://dx.doi.org/10.1007/978-3-642-19835-9_33
http://dx.doi.org/10.4204/EPTCS.120.4
http://dx.doi.org/10.1145/116825.116838
http://theory.stanford.edu/~rvg/abstracts.html#28
http://dx.doi.org/10.1007/3-540-57208-2_6
http://theory.stanford.edu/~rvg/abstracts.html#31
http://theory.stanford.edu/~rvg/abstracts.html#31
http://theory.stanford.edu/~rvg/abstracts.html#32
http://theory.stanford.edu/~rvg/abstracts.html#32
http://dx.doi.org/10.1007/3-540-61440-0_154

[31] R.J. van Glabbeek (2004): The Meaning of Negative Premises in

Transition System Specifications II. Journal of Logic and Algebraic
Programming 60–61, pp. 229–258, doi:10.1016/j.jlap.2004.03.007.

[32] R.J. van Glabbeek (2011): On Cool Congruence Formats for Weak

Bisimulations. Theoretical Computer Science 412(28), pp. 3283–3302,
doi:10.1016/j.tcs.2011.02.036.

[33] R.J. van Glabbeek (2012): Musings on Encodings and Expressiveness. In
B. Luttik & M.A. Reniers, editors: Proc. EXPRESS/SOS’12, EPTCS 89,
Open Publishing Association, pp. 81–98, doi:10.4204/EPTCS.89.7.

[34] R.J. van Glabbeek, B. Luttik & N. Trčka (2009): Branching Bisimilarity

with Explicit Divergence. Fundamenta Informaticae 93(4), pp. 371–392.
[35] R.J. van Glabbeek & W.P. Weijland (1989): Branching Time and

Abstraction in Bisimulation Semantics (extended abstract). In G.X.
Ritter, editor: Information Processing 89, Proceedings of the IFIP 11th
World Computer Congress, San Francisco 1989, North-Holland, pp.
613–618. Full version in Jounal of the ACM 43(3), 1996, pp. 555–600.

[36] J.F. Groote (1993): Transition System Specifications with Negative

Premises. Theoretical Computer Science 118, pp. 263–299, doi:10.1016/
0304-3975(93)90111-6.

[37] J.F. Groote & M.R. Mousavi (2014): Modeling and Analysis of Com-
municating Systems. MIT Press.

[38] J.F. Groote, M.R. Mousavi & M.A. Reniers (2006): A Hierarchy of

SOS Rule Formats. Electr. Notes Theor. Comput. Sci. 156(1), pp. 3–25,
doi:10.1016/j.entcs.2005.11.077.

[39] J.F. Groote & F.W. Vaandrager (1992): Structured Operational Semantics

and Bisimulation as a Congruence. Information and Computation
100(2), pp. 202–260, doi:10.1016/0890-5401(92)90013-6.

[40] B. Klin & V. Sassone (2013): Structural operational semantics for

stochastic and weighted transition systems. Information and Compu-
tation 227, pp. 58–83, doi:10.1016/j.ic.2013.04.001.

[41] R. Lanotte & S. Tini (2009): Probabilistic bisimulation as a congru-
ence. ACM Transactions on Computational Logic 10(2):9, doi:10.1145/
1462179.1462181.

[42] K.G. Larsen & B. Thomsen (1988): A Modal Process Logic. In: Proc.
LICS’88, IEEE Computer Society Press, pp. 203–210, doi:10.1109/
LICS.1988.5119.

[43] M. Miculan & M. Peressotti (2014): GSOS for non-deterministic pro-

cesses with quantitative aspects. In Nathalie Bertrand & Luca Bortolussi,
editors: Proc. QAPL’14, EPTCS 154, Open Publishing Association, pp.
17–33, doi:10.4204/EPTCS.154.2.

[44] R. Milner (1990): Operational and algebraic semantics of concurrent

processes. In J. van Leeuwen, editor: Handbook of Theoretical Computer
Science, chapter 19, Elsevier Science Publishers B.V. (North-Holland),
pp. 1201–1242. Alternatively see Communication and Concurrency,
Prentice-Hall, Englewood Cliffs, 1989, of which an earlier version
appeared as A Calculus of Communicating Systems, LNCS 92, Springer,
1980.

[45] M.R. Mousavi, M.A. Reniers & J.F. Groote (2005): A syntactic com-

mutativity format for SOS. Information Processing Letters 93(5), pp.
217–223, doi:10.1016/j.ipl.2004.11.007.

[46] G.D. Plotkin (2004): A Structural Approach to Operational Semantics.
The Journal of Logic and Algebraic Programming 60–61, pp. 17–139,
doi:10.1016/j.jlap.2004.05.001. Originally appeared in 1981.

[47] T.C. Przymusinski (1990): The Well-founded Semantics Coincides with

the Three-valued Stable Semantics. Fundamenta Informaticae XIII(4),
pp. 445–463.

[48] R. de Simone (1984): Calculabilité et Expressivité dans l’Algebra de

Processus Parallèles MEIJE. Thèse de 3e cycle, Univ. Paris 7.
[49] R. de Simone (1985): Higher-level synchronising devices in MEIJE-

SCCS. Theoretical Computer Science 37, pp. 245–267, doi:10.1016/
0304-3975(85)90093-3.

[50] I. Ulidowski (1992): Equivalences on Observable Processes. In: Proc.
LICS’92, IEEE Computer Society Press, pp. 148–159, doi:10.1109/
LICS.1992.185529.

[51] I. Ulidowski (2000): Finite axiom systems for testing preorder and De

Simone process languages. Theoretical Computer Science 239(1), pp.
97–139, doi:10.1016/S0304-3975(99)00214-5.

[52] I. Ulidowski & I. Phillips (2002): Ordered SOS Rules and Process

Languages for Branching and Eager Bisimulations. Information and
Computation 178(1), pp. 180–213, doi:10.1006/inco.2002.3161.

11

http://dx.doi.org/10.1016/j.jlap.2004.03.007
http://dx.doi.org/10.1016/j.tcs.2011.02.036
http://dx.doi.org/10.4204/EPTCS.89.7
http://dx.doi.org/10.1016/0304-3975(93)90111-6
http://dx.doi.org/10.1016/0304-3975(93)90111-6
http://dx.doi.org/10.1016/j.entcs.2005.11.077
http://dx.doi.org/10.1016/0890-5401(92)90013-6
http://dx.doi.org/10.1016/j.ic.2013.04.001
http://dx.doi.org/10.1145/1462179.1462181
http://dx.doi.org/10.1145/1462179.1462181
http://dx.doi.org/10.1109/LICS.1988.5119
http://dx.doi.org/10.1109/LICS.1988.5119
http://dx.doi.org/10.4204/EPTCS.154.2
http://dx.doi.org/10.1016/j.ipl.2004.11.007
http://dx.doi.org/10.1016/j.jlap.2004.05.001
http://dx.doi.org/10.1016/0304-3975(85)90093-3
http://dx.doi.org/10.1016/0304-3975(85)90093-3
http://dx.doi.org/10.1109/LICS.1992.185529
http://dx.doi.org/10.1109/LICS.1992.185529
http://dx.doi.org/10.1016/S0304-3975(99)00214-5
http://dx.doi.org/10.1006/inco.2002.3161

	I Introduction
	II Transition system specifications and their meaning
	III The bisimulation preorder
	IV Congruence properties
	V The pure ntyxt/ntyft format with recursion
	VI A lean congruence result
	VII A full congruence result
	References

