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Abstract—First-order logic (FO) over words is shown to
be equiexpressive with FO equipped with a restricted set of
numerical predicates, namely the order, a binary predicate MSB0,
and the finite-degree predicates: FO[ARB] = FO[≤,MSB0,FIN ].
The Crane Beach Property (CBP), introduced more than a decade
ago, is true of a logic if all the expressible languages admitting
a neutral letter are regular. Although it is known that FO[ARB]
does not have the CBP, it is shown here that the (strong form
of the) CBP holds for both FO[≤,FIN ] and FO[≤,MSB0]. Thus
FO[≤,FIN ] exhibits a form of locality and the CBP, and can
still express a wide variety of languages, while being one simple
predicate away from the expressive power of FO[ARB]. The
counting ability of FO[≤,FIN ] is studied as an application.

I. INTRODUCTION

Ajtai [1] and Furst, Saxe, and Sipser [2] showed some 30
years ago that Parity, the language of words over {0, 1} having
an even number of 1, is not computable by families of shallow
circuits, namely AC0 circuits. Since then, a wealth of precise
expressiveness properties of AC0 has been derived from this
sole result [3], [4]. Naturally aiming at a better understanding
of the core reasons behind this lower bound, a continuous effort
has been made to provide alternative proofs of Parity /∈ AC0.
However, this has been a rather fruitless endeavor, with the
notable exception of the early works of Razborov [5] and
Smolenski [6] that develop a less combinatorial approach with
an algebraic flavor. For instance, Koucký et al. [7] foray into
descriptive complexity and use model-theoretic tools to obtain
Parity /∈ AC0, but assert that “contrary to [their] original
hope, [their] Ehrenfeucht-Fraïssé game arguments are not
simpler than classical lower bounds.” More recent promising
approaches, especially the topological ones of [8], [9], have
yet to yield strong lower bounds.

A different take originated from a conjecture of Lautemann
and Thérien, investigated by Barrington et al. [10]: the Crane
Beach Conjecture. They noticed that the letter 0 acts as a
neutral letter in Parity, i.e., 0 can be added or removed from
any word without affecting its membership to the language. If
a circuit family recognizes a language with a neutral letter, it
seems convincing that the circuits for two given input sizes
should look very similar, that is: the circuit family must be
highly uniform. It was thus conjectured that all neutral letter
languages in AC0 were regular, and this was disproved in [10].

This however sparked an interest in the study of neutral
letter languages, in particular from the descriptive complexity
view. Indeed, AC0 circuits recognize precisely the languages

expressible in FO[ARB], where ARB denotes all possible
numerical predicates (expressing numerical properties of the
positions in a word). Further, as all regular neutral letter
languages of FO[ARB] are star-free [10], i.e., in FO[≤], the
Crane Beach Conjecture asked:

Are all neutral letter languages of FO[ARB] in FO[≤]?
Note that this echoes the above intuition on uniformity, since

the numerical predicates correspond precisely to the allowed
power to compute the circuit for a given input length [11]. The
intuition on the logic side is even more compelling: if a letter
can be introduced anywhere without impacting membership,
then the only meaningful relation that can relate positions is the
linear order. However, first-order logic can “count” up to log n
(see, e.g., [12]), meaning that even within a word with neutral
letters, FO[ARB] can assert some property on the number of
nonneutral letters. This is, in essence, why nonregular neutral
letter languages can be expressed in FO[ARB].

In the recent years, a great deal of efforts was put into
studying the Crane Beach Property in different logics, i.e.,
whether the definable neutral letter languages are regular.
Krebs and Sreejith [13], building on the work of Roy and
Straubing [14], show that all first-order logics with monoidal
quantifiers and + as the sole numerical predicate have the
Crane Beach Property. Lautemann et al. [15] show Crane
Beach Properties for classes of bounded-width branching pro-
grams, with an algebraic approach relying on communication
complexity. Some expressiveness results were also derived
from Crane Beach Properties, for instance Lee [16] shows that
FO[+] is strictly included in FO[≤,×] by proving that only
the former has the Crane Beach Property. Notably, all these
logics are quite far from full FO[ARB], and in that sense, fail
to identify the part of the arbitrary numerical predicates that
fit the intuition that they are rendered useless by the presence
of a neutral letter.

In the present paper, we identify a large class of predicates,
the finite-degree predicates, and a predicate MSB0 such that
any numerical predicate can be first-order defined using them
and the order; in symbols, FO[≤,MSB0,FIN ] = FO[ARB].
We show that, strikingly, both FO[≤,MSB0] and FO[≤,FIN ]
have the Crane Beach Property, this latter statement being our
main result. Hence showing that some nonregular neutral letter
language is not expressible in FO[ARB] could be done by show-
ing that MSB0 may be removed from any FO[≤,MSB0,FIN ]
formula expressing it.
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The proof for the Crane Beach Property of FO[≤,FIN ] relies
on a communication complexity argument different from that
of [15]. It is also unrelated to the database collapse techniques
of [10] (succinctly put, no logic with the Crane Beach Property
has the so-called independence property, i.e., can encode
arbitrary large sets). We will show that in fact FO[≤,FIN ]
does have the independence property. This provides, to the best
of our knowledge, the first example of a logic that exhibits
both the independence and the Crane Beach properties.

The aforementioned counting property of FO[ARB] led to the
conjecture [10], [16] that a logic has the Crane Beach Property
if and only if it cannot count beyond a constant. To the best
of our knowledge, neither of the directions is known; we show
however that FO[≤,FIN ] can only count up to a constant, by
showing that it cannot even express very restricted forms of
the addition. This adds evidence to the “if” direction of the
conjecture.

Structure of the paper. In Section II, we introduce the
required notions, although some familiarity with language
theory and logic on words is assumed (see, e.g., [4]). In
Section III, we show that FO[≤,MSB0,FIN ] = FO[ARB]. In
Section IV, we present a simple proof, relying on a much
harder result from [10], that FO[≤,MSB0] has the Crane
Beach Property. The failing of the aforementioned collapse
technique for FO[≤,FIN ] is shown in Section V. We tackle
the Crane Beach Property of FO[≤,FIN ], our main result, in
Section VI, after the necessary tools have been developed.
Finally, in Section VII, we focus on the counting inabilities of
FO[≤,FIN ].

Previous works. Finite-degree predicates were introduced
by the second author in [17], in the context of two-variable
logics. Therein, it is shown that the two-variable fragment of
FO[≤,FIN ] has the Crane Beach Property, and, even stronger,
that the neutral letter languages expressible with k quantifier
alternations can be expressed without the finite-degree pred-
icates with the same amount of quantifier alternations. The
techniques used in [17] are specific to two-variable logics,
relying heavily on the fact that each quantification depends on
a single previously quantified variable. We thus stress that the
communication complexity argument developed in Section VI
is unrelated to [17].

The fact that two sets of predicates can both verify the Crane
Beach Property while their union does not has already been
witnessed in [10]. Indeed, letting MON be the set of monoidal
numerical predicates, the Property holds for both FO[≤,+]
and FO[≤,MON ] but fails for FO[≤,+,MON ], although this
latter class is less expressive than FO[ARB] (this can be shown
using the same proof as [7, Proposition 5]).

II. PRELIMINARIES

A. Generalities

We write N = {0, 1, 2, . . .} for the set of nonnegative
numbers. For n ∈ N, we let [n] = {0, 1, . . . , n−1}. A function
f : N→ N is nondecreasing if m > n implies f(m) ≥ f(n).

An alphabet A is a finite set of letters (symbols), and we
write A∗ for the set of finite words. For u = u0u1 · · ·un−1,

the length n of u is denoted |u|. We write ε for the empty
word and A≤k for words of length ≤ k.

B. Logic on words
For an alphabet A, let σA be the vocabulary {a | a ∈ A} of

unary letter predicates. A (finite) word u = u0u1 · · ·un−1 ∈
A∗ is naturally associated with the structure over σA with
universe [n] and with a interpreted as the set of positions i
such that ui = a, for any a ∈ A. A numerical predicate is a
k-ary relation symbol together with an interpretation in [n]k for
each possible universe size n. Given a formula ϕ that relies on
some numerical predicates and a word u, we write u |= ϕ to
mean that ϕ is true of the σA-structure for u augmented with
the interpretations of the numerical predicates for the universe
of size |u|. A formula ϕ thus defines or expresses the language
{u ∈ A∗ | u |= ϕ}.

C. Classes of formulas
We let ARB be the set of all numerical predicates. Given a set
N ⊆ ARB, we write FO[N ] for the set of first-order formulas
built using the symbols from N ∪ σA, for any alphabet A.
Similarly, MSO[N ] denotes monadic second-order formulas
built with those symbols. We further define the quantifiers Maj
and ∃≡i , for i ∈ N, that will only be used in discussions:
• u |= (Maj x)[ϕ(x)] iff there is strict majority of positions
i ∈ [|u|] such that 〈u, x := i〉 |= ϕ;

• u |= (∃≡i )[ϕ(x)] iff the number of positions i ∈ [|u|]
verifying 〈u, x := i〉 |= ϕ is a multiple of i.

We will write MAJ[N ] and FO+MAJ[N ] with the obvious
meanings. Further, FO+MOD[N ] allows all the quantifiers ∃≡i
in FO[N ] formulas.

D. On numerical predicates
The most ubiquitous numerical predicate here will be the

binary order predicate ≤. The predicate that zeroes the most
significant bit (MSB) of a number will also be important:
(m,n) ∈ MSB0 iff n = m−2blogmc. Note that both predicates
do not depend on the universe size, and we single out this
concept:

Definition 1. A k-ary numerical predicate P is unvaried if
there is a set E ⊆ Nk such that the interpretation of P on
universes of size n is E ∩ [n]k. In this case, we identify P
with the set E. It is varied otherwise.1 We write ARBu for the
set of unvaried numerical predicates.

Naturally, any varied predicate can be converted to an
unvaried one by turning the universe length into an argument
and quantifying the maximum position; this implies in particular
that FO[ARB] = FO[ARBu]. This is however not entirely
innocuous, as will be discussed in Section VII.

We will rely on the following class of unvaried predicates,
generalizing a definition of [17] (see also the older notion of
“finite formula” [18]):

1The relevance of this concept has been noted in previous works (e.g., [10]),
but was left unnamed. The second author used in [17] the terms (non)uniform,
an unfortunate coinage in this context. We prefer here the less conflicting
terms (un)varied.
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Definition 2. An unvaried predicate P ⊆ Nk is of finite degree2

if for all n ∈ N, n appears in a finite number of tuples in P .
We write FIN for the class of such predicates.

Note that this does not imply that there is a N that bounds
the number of appearance for all n’s. Some examples:
• MSB0 is not a finite-degree predicate, as, e.g., (2n, 0) ∈

MSB0 for any n, hence 0 appears infinitely often;
• Any unvaried monadic numerical predicate is of finite

degree, this implies in particular that any language over a
unary alphabet is expressed by a FO[≤,FIN ] formula;

• The graph of any nondecreasing unbounded function
f : N→ N defines a finite-degree predicate, since f−1(n)
is a finite set for all n;

• The order, sum, and multiplication are not of finite degree;
• One can usually “translate” unvaried predicates to make

them finite degree; for instance, the predicate true of (x, y)
if y− x < x < y is of finite degree, see also the proof of
Proposition 4.

E. Crane Beach Property
A language L ⊆ A∗ is said to have a neutral letter if there

is a e ∈ A such that adding or deleting e from a word does
not change its membership to L. Following [15], we say that
a logic has the Crane Beach Property if all the neutral letter
languages it defines are regular. We further say that it has the
strong Crane Beach Property if all the neutral letter languages
it defines can be defined using order as the sole numerical
predicate.

III. FO[ARB] AND FO[≤,MSB0,FIN ] DEFINE THE SAME
LANGUAGES

In this section, we express all the numerical predicates using
only finite-degree ones, MSB0, and the order. The result is a
variant of [17, Theorem 3], where it is proven for the two-
variable fragment, and on neutral letter languages.

Theorem 1. FO[ARB] and FO[≤,MSB0,FIN ] define the same
languages.

Proof. We show that any FO[ARBu] language is definable in
FO[≤,MSB0,FIN ].

The main idea is to divide the set of word positions in four
contiguous zones and have the variables range over only the
second zone, called the work zone. Given an input of length
` = 2n, the set of positions [`] is divided in four zones of
equal size 2n−2; if the input length is not a power of 2, then
we apply the same split as the closest greater power of two,
leaving the third and fourth zone possibly smaller than the first
two.

As an example, suppose that the word size is ` = 11110
(here and in the following, we write numbers in binary). The
four zones of [`] will be:

1) 00000→ 00111; 2) 01000→ 01111;

3) 10000→ 10111; 4) 11000→ 11101 = `− 1 .

2The name stems from the fact that the hypergraph defined by P , with
edges of size k, is of finite degree.

The work zone has two salient properties: 1. Checking that
a number k ∈ [`] belongs to it amounts to checking that k has
exactly one greater power of two; in particular, two work-zone
positions share the same MSB; 2. Any number in [`] outside
the work zone can be obtained by replacing the MSB of a
number in the work zone with some other bits (0, 10, and 11,
for the first, third, and fourth zone, respectively); we call this
a translation to a zone, e.g., in our example above, 10101 is
the translation of 01101 to the third zone.

More formally, we can define a formula work(x) which is
true iff x belongs to the work zone, by expressing that there
is exactly one power of two strictly greater than x, using the
monadic predicate true on powers of two. Moreover, we can
define formulas trans(i)(x, y), 1 ≤ i ≤ 4, which are true if x
is in the work zone and y is its translation to the i-th zone; let
us treat the case i = 3, the others being similar. The formula
trans(3)(x, y) is true if y is obtained by replacing the MSB
of x with 10, this is expressed using MSB0 by finding z such
that MSB0(x, z) holds and then checking that y is the first
value z′ strictly greater than x such that MSB0(z

′, z) holds.
The strategy will then be to: 1. Quantify over the work

zone only; 2. Modify the predicates to internally change the
MSBs according to which zone the variables were supposed
to belong; 3. Compute the translations of the variables for the
letter predicates. Step 1 relies on work and trans(i), Step 2
transforms all numerical predicates to finite-degree ones, and
Step 3 simply uses trans(i).

Let ϕ ∈ FO[ARBu]. Step 1. We rewrite ϕ with annotated
variables; with x a variable, we write x(i), 1 ≤ i ≤ 4, to mean
“x translated to zone i”—as all the variables will be quantified
in the work zone, this is well defined. The following rewriting
is then performed:

∃x ψ(x) 

∃x
[
work(x) ∧

∨
1≤i≤4

[
(∃y)[trans(i)(x, y)] ∧ ψ(x(i))

]]
,

and mutatis mutandis for ∀.
Step 2. We sketch this step for binary numerical predicates.

Suppose such a predicate P is used in ϕ. For 1 ≤ i, j ≤ 4, we
define the predicate P (i,j) that expects two work-zone positions,
translates them to the i-th and j-th zone, respectively, then
checks whether they belong to P . Crucially, as the inputs
are work-zone positions, P (i,j) immediately rejects if they do
not share the same MSB: it is thus a finite-degree predicate.
Now every occurrence of P (x(i), y(j)) in ϕ can be replaced
by P (i,j)(x, y).

Step 3. The only remaining annotated variables appear under
letter predicates. To evaluate them, we simply have to retrieve
the translated position. Hence each a(x(i)) will be replaced by
(∃y)[trans(i)(x, y) ∧ a(y)], concluding the proof.

Remark. Theorem 1 can be shown to hold also for
FO+MAJ[≤,MSB0,FIN ], i.e., this logic is equiexpressive with
FO+MAJ[ARB]. The main modification to the proof is to allow
arbitrary quantifications (as opposed to work zone ones only)
and compute the work zone equivalent of each position before
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checking the numerical predicates. This ensures that the number
of positions verifying a formula is not changed. Likewise,
FO+MOD[≤,MSB0,FIN ] is equivalent with FO+MOD[ARB].

IV. FO[≤,MSB0] HAS THE CRANE BEACH PROPERTY

Following a short chain of rewriting, we will express MSB0

using predicates that appear in [10] and conclude that:

Theorem 2. FO[≤,MSB0] has the strong Crane Beach Prop-
erty.

Proof. Let f : N → N be defined by f(n) = 2(blognc2), and
let F ⊆ N2 be its graph. Barrington et al. [10, Corollary 4.14]
show that FO[≤,+, F ] has the strong Crane Beach Property;
we show that MSB0 can be expressed in that logic. First, the
monadic predicate Q = {2n | n ∈ N} is definable in FO[≤, F ],
since n is a power of two iff f(n− 1) 6= f(n). Second, given
n ∈ N, the greatest power of two smaller than n is p = 2blognc,
which is easy to find in FO[≤, Q]. Finally, MSB0(n,m) is true
iff m+ p = n, and is thus definable in FO[≤,+, F ].

Remark. From Lange [19], MAJ[≤] and FO+MAJ[≤,+] are
equiexpressive, and as MSB0 is expressible using the unary
predicate {2n | n ∈ N} and the sum, this shows that
MAJ[≤,FIN ] is equiexpressive with FO+MAJ[ARB]. Hence
MAJ[≤,FIN ] does not have the strong Crane Beach Property.

V. FO[≤,FIN ] HAS THE INDEPENDENCE PROPERTY

In [10], an important tool is introduced to show Crane Beach
Properties, relying on the notion of collapse in databases,
see [20, Chapter 13] for a modern account. Specifically, let us
define an ad-hoc version of the:

Definition 3 (Independence property (e.g., [21])). Let N be
a set of unvaried numerical predicates. Let #–x , #–y be two
vectors of first-order variables of size k and `, respectively. A
formula ϕ( #–x , #–y ) of FO[N ], over a single-letter alphabet, has
the independence property if for all n > 0 there are vectors
#–a0,

#–a1, . . . ,
#       –an−1, each of Nk, for which for any M ⊆ [n],

there is a vector
#  –

bM ∈ N` such that:3

〈N, #–x := #–ai,
#–y :=

#  –

bM 〉 |= ϕ iff i ∈M .

The logic FO[N ] has the independence property if it contains
such a ϕ.

Intuitively, a logic has the independence property iff it can
encode arbitrary sets. Barrington et al. [10], relying on a deep
result of Baldwin and Benedikt [21], show that:

Theorem 3 ([10, Corollary 4.13]). If a logic does not have
the independence property, then it has the strong Crane Beach
Property.

We note that this powerful tool cannot show that the logic
we consider exhibits the Crane Beach Property:

Proposition 1. FO[≤,FIN ] has the independence property.

3Note that we evaluate a formula over an infinite domain; this is well defined
in our case since we only use unvaried predicates and the letter predicates are
irrelevant.

Proof. Let n > 0, and define ai = 2n+2i for 0 ≤ i < n. Now
for M ⊆ [n], let bM = 2n +

∑
i∈M 2i. It holds that i ∈M iff

the binary AND of ai and bM is ai. Consider this latter binary
predicate; its behavior on two arguments that do not share
the same MSB is irrelevant, and we can thus decide that such
inputs are rejected. Thanks to this, we obtain a finite-degree
predicate. Consequently, the formula that consists of this single
predicate has the independence property.

VI. FO[≤,FIN ] HAS THE CRANE BEACH PROPERTY

A. Communication complexity

We will show the Crane Beach Property of FO[≤,FIN ] by a
communication complexity argument. This approach is mostly
unrelated to the use of communication complexity of [15],
[22]; in particular, we are concerned with two-party protocols
with a split of the input in two contiguous parts, as opposed
to worst-case partitioning of the input among multiple players.
We rely on a characterization of [23] of the class of languages
expressible in monadic second-order with varied monadic
numerical predicates. Writing this class MSO[≤,MON ], they
state in particular the following:

Proposition 2 ([23, Theorem 2.2]). Let L ⊆ A∗ and define,
for all p ∈ N, the equivalence relation ∼p over A∗ as: u ∼p v
iff for all w ∈ Ap, u ·w ∈ L⇔ v ·w ∈ L. If there is a N ∈ N
such that for all p ∈ N, ∼p has at most N equivalence classes,
then L ∈ MSO[≤,MON ].

Lemma 1. Let L ⊆ A∗. Suppose there are functions
fAlice : A

∗×N×{0, 1}∗ → {0, 1} and fBob : A
∗×N×{0, 1}∗

and a constant K ∈ N such that for any u, v ∈ A∗, the
sequence, for 1 ≤ i ≤ K:

• ai = fAlice (u, |u · v|, b1b2 · · · bi−1)
• bi = fBob (v, |u · v|, a1a2 · · · ai);

is such that bK = 1 iff u · v ∈ L. Then L ∈ MSO[≤,MON ].

Proof. We adapt the (folklore) proof that L is regular iff such
functions exist where fAlice and fBob do not use their second
parameter.

Let p ∈ N. For any u ∈ A∗, let c(u) be the set of pairs
(a1a2 · · · aK , b1b2 · · · bK−1) such that for all 1 ≤ i ≤ K,
it holds that ai = fAlice(u, |u| + p, b1b2 · · · bi−1). Define the
equivalence relation ≡ by letting u ≡ v iff c(u) = c(v); it
clearly has a finite number N = N(K) of equivalence classes.
Moreover, if u ≡ v and w ∈ Ap, then (u,w) and (v, w) define
the same sequences of ai’s and bi’s, by a simple induction.
Hence u · w ∈ L⇔ v · w ∈ L. This shows that ≡ refines ∼p,
implying, by Proposition 2, that L ∈ MSO[≤,MON ].

We shall adopt the classical communication complexity view
here, and consider fAlice and fBob as two players, Alice and
Bob, that alternate exchanging a bounded number of bits in
order to decide if the concatenation of their respective inputs
is in L. To show that L is in MSO[≤,MON ], the protocol
between Alice and Bob should end in a constant number of
rounds. We will then rely on the fact that:
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∃x

∀y

ψ

∨
∃Ax

∧

∀Ay

ψ

∀By

ψ

∃Bx

∧

∀Ay

ψ

∀By

ψ

∨

∃Bx

∧

∀By

ψ

∧

a(x) ∧
⊥ → ⊥

a(x) ∧
⊥ → ⊥

y = 0

y = 1

∨
∧

∀By

> ∧
> → b(y)

∧

> ∧
⊥ → ⊥

> ∧
> → ⊥

∧

∀By

> ∧
> → b(y)

∧
> ∧
⊥ → ⊥

> ∧
⊥ → ⊥

x = 0 x = 1

y = 0

y = 1 y = 0

y = 1

Quantified by Alice

a) b)

c)

Fig. 1. The formula ϕ as it gets evaluated by Alice and Bob.

Theorem 4 ([23, Theorem 4.6]). MSO[≤,MON ] has the Crane
Beach Property.

B. A toy example: FO[<] ⊆ MSO[≤,MON ]

We will demonstrate how the communication complexity
approach will be used with a toy example. Doing so, the
requirements for this protocol to work will be emphasized, and
they will be enforced when showing the Crane Beach Property
of FO[≤,FIN ] in Section VI-C.

Let us consider the following formula over A = {a, b, c}:

ϕ ≡ (∃x)(∀y)[ψ], with ψ ≡ a(x) ∧ (x < y → b(y)) ,

depicted as a tree in Figure 1.a. The formula ϕ asserts that the
all the letters after the last a are b’s. In this example, Alice
will receive u = aa, and Bob v = bb. Naturally, ϕ over words
of length 4 is equivalent to the formula where ∃x is replaced
by
∨3

x=0, and ∀y is replaced by
∧3

y=0; our approach will be
to split this rewriting between Alice and Bob.

Consider the variable x. To check the validity of the formula
over a u · v, the variable should range over the positions of
both players. In other words, the formula is true if there is
a position x of Alice verifying (∀y)[ψ] or a position x of
Bob verifying it—likewise for the universal quantifier. We thus
“split” the quantifiers by enforcing the domain to be either
Alice’s (∀A,∃A) or Bob’s (∀B,∃B), obtaining Figure 1.b.

Alice will now expand her quantifiers to range over her word;
she will thus replace, e.g., (∀Ay)[ψ] by

∧1
y=0 ψ. Crucially, at

the leaves of the formula, it is known which variables were
quantified by each player, and if they are Alice’s, their values.
Consider for instance a leaf where Alice substituted y with a
numerical value. The letter predicate b(y) can thus be replaced
by its truth value. More importantly, the predicate x < y
can also be evaluated: Either Alice quantified x, and it has a
numerical value, or she did not, and we know for sure that
x < y does not hold, since x will be quantified by Bob. Applied
to our example, we obtain the tree of Figure 1.c.

The resulting formulas at the leaves are thus free from the
variables quantified by Alice. Moreover, for each internal node
of the tree, its children represent subformulas of bounded
quantifier depth, and there are thus a finite number of possible
nonequivalent subformulas. Once only one subformula per
equivalence class is kept, the resulting tree is of bounded depth
and each node has a bounded number of children. Hence the
size of this tree is bounded by a value that only depends on ϕ.
Alice can thus communicate this tree to Bob. In our example,
simplifying the tree, we obtain the formula:

(∀By)[b(y)] ∨ (∃Bx)
[
a(x) ∧ (∀By)[ψ]

]
.

Finally, Bob can actually quantify his variables, resulting
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in a formula with no quantified variable, that he can evaluate,
concluding the protocol.

Takeaway. This protocol relies on the fact that predicates that
involve variables from both Alice and Bob can be evaluated
by Alice alone. This enables Alice to remove “her” variables
before sending the partially evaluated tree to Bob, who can
quantify the remainder of the variables.

C. The case of FO[≤,FIN ]
Theorem 5. FO[≤,FIN ] has the strong Crane Beach Property.

Proof. Let ϕ be a formula over an alphabet A in FO[≤,N ],
for some finite subset N of FIN , and suppose ϕ expresses
a language L that admits a neutral letter e. We show that
L ∈ MSO[≤,MON ] using Lemma 1. This concludes the proof
since by Theorem 4, L is a neutral letter regular language
in FO[ARB], and it thus belongs to FO[≤] (see [10]; this is
essentially a consequence of Parity /∈ AC0).

Let us write u ∈ A∗ for Alice’s word, and v for Bob’s.
Both players will compute a value N > 0 that depends solely
on ϕ and |u · v|, and the protocol will then decide whether
u·eN ·v ∈ L, which is equivalent to u·v ∈ L by hypothesis. We
suppose that a large enough N has been picked for the protocol
to work, and delay to the end of the proof its computation.

We will henceforth suppose that ϕ is given in prenex normal
form and that all variables are quantified only once:

ϕ ≡ (Q1x1)(Q2x2) · · · (Qkxk)[ψ] ,

with ψ quantifier-free and Qi ∈ {∀,∃}. We again see formulas
as trees with leaves containing quantifier-free formulas.

Rather than splitting the domain [|u · eN · v|] at a precise
position, and tasking Alice to quantify over the first half and
Bob over the second half, we will rely on a third group, that is
“far enough” from both Alice’s and Bob’s words. The core of
this proof is to formalize this notion. Let us first introduce the
tools that will enable this formalization: one set of definitions,
and two facts that will be used later on.

Definition 4. Let C be the set of pairs of integers (p1, p2) that
appear in a same tuple of a relation in N . Define the link graph
G = (N, E) as the undirected graph defined by (p1, p2) ∈ E
iff p1 = p2 or there are integers p′1 ≤ {p1, p2} ≤ p′2 such that
(p′1, p

′
2) ∈ C. For p ∈ N, L(p) (resp. R(p)) is the greatest

q < p (resp. smallest q > p) which is not a neighbor of p in
G. Equivalently, L(p) is the smallest neighbor of p minus 1,
and R(p) is the greatest neighbor of p plus 1.

Note that L and R are well defined since each vertex of G
has a finite number of neighbors. This directly implies that:

Fact 1. The functions L and R are nondecreasing and
unbounded. Moreover, for any p ∈ N, L(p) < p < R(p).

Writing Rn for the function R composed n times with itself,
and similarly for L, we have:

Fact 2. For any position p and n > m ≥ 0:
• Lm(Rn(p)) ≥ R(p);
• Rm(Ln(p)) ≤ L(p).

Proof. This is easily shown by induction; we prove the first
item, the second being similar. For n = 1, this is clear. Let
n > 1. If m = 0, this is immediate from Fact 1, let thus m > 0.
We have that:

Lm(Rn(p)) = L(Lm−1(Rn−1(p′))) ,

with p′ = R(p). By induction hypothesis and the fact that L
is nondecreasing, it holds that:

Lm(Rn(p)) ≥ L(R(p′)) = q .

Let p′′ = R(p′). By definition of L, (q + 1, p′′) is an edge
in G. Now by definition of G, if q < p′, then (p′, p′′) should
also be an edge in G, which contradicts the definition of p′′.
Hence q ≥ p′, showing the property. of Fact 2.

Let us now suppose we have two large positions |u| � `0 �
r0 � |v|, the requirements on which will be made clear shortly.
Let us deem a position p to be Alicic if p ≤ `0, Bobic if p ≥ r0,
and Neutral otherwise; we call this the type of the position.
We wish to ensure that two positions of two different types
cannot be linked in G, so that they cannot appear in a tuple of
a predicate in N . This surely is not the case if the typing of
positions does not reflect previously typed positions, e.g., `0−1
is Alicic, but `0 is Neutral, and their distance may not be large
enough to ensure that they do not form an edge in G. Thus
the boundaries of the zones, `0 and r0, will be moving with
each new typing. Formally, let T = {Alice,Neutral,Bob} be an
alphabet, and define the function bounds : T≤k → [|u ·eN ·v|]2
by:

bounds(ε) = (l0, r0)

bounds(t1t2 · · · ti) =
(Rn(`), r) if ti = Alice
(Ln(`),Rn(r)) if ti = Neutral
(`,Ln(r)) if ti = Bob

with (`, r) = bounds(t1t2 · · · ti−1) and n = 2k−i.

Assumption. We henceforth assume that if (`, r) = bounds(h)
for some word h ∈ T≤k, then |u| < ` < r < |u| + N . This
will have to be guaranteed by carefully picking N , `0 and r0.

The type of a position p under type history t1t2 · · · ti ∈ T ∗
is computed by first taking (`, r) = bounds(t1t2 · · · ti), and
reasoning as before: it is Alicic if p ≤ `, Bobic if p ≥ r, and
Neutral otherwise. This is well defined since ` < r by our
Assumption. The crucial property here is as follows:

Fact 3. Let p1, p2, . . . , pk be positions, and inductively define
the type ti of pi as its type under type history t1t2 · · · ti−1.

1) Two positions with different types do not form an edge
in G;

2) All Alicic positions are strictly smaller than the Neutral
ones, which are strictly smaller than the Bobic ones;

3) All Neutral positions are labeled with the neutral letter.

Proof. (Points 1 and 2.) Suppose pi is Alicic and pj is
Neutral, with i < j. Let (`, r) = bounds(t1t2 · · · ti−1),
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we thus have that pi is maximally `. Let (`′, r′) =
bounds(t1t2 · · · tj−1), then pj is minimally `′+1. By definition,
once the types of p1, p2, . . . , pi are fixed, the smallest `′ that
can be obtained with the types t>i is by having all positions
pt, with i < t < j, Neutral. In that case, an easy computation
shows that `′ would be:

L2k−(j−1)

(L2k−(j−2)

(· · · (L2k−(i+1)

(R2k−i

(`))) · · · )) .

That is, L is composed with itself m times with:

m = 2k−(i+1) + · · ·+ 2k−(j−1) <

k∑
s=i+1

2k−s

< 2k−i = n .

Hence `′ is at most Lm(Rn(`)) with m < n, and by Fact 2,
`′ ≥ R(`). Hence (pi, pj) is not an edge in G, and pi < pj .

The other cases are similar. For instance, if pi is Neutral
and pj Bobic, with i < j, then, with the same notation as above,
`′ can be at most Lm(Rn(`)), and by Fact 2, `′ ≥ L(`).

(Point 3.) This is a direct consequence of the Assumption.
Consider (`, r) = bounds(Neutralk); this provides the minimal
` and maximal r between which a position can be labeled
Neutral. By the Assumption, |u| < ` < r < |u|+N , hence a
Neutral position has a neutral letter. of Fact 3.

We are now ready to present the protocol. First, we rewrite
quantifiers using Alicic/Neutral/Bobic annotated quantifiers:
• (∀x)[ρ] (∀Ax)[ρ] ∧ (∀Nx)[ρ] ∧ (∀Bx)[ρ],
• (∃x)[ρ] (∃Ax)[ρ] ∨ (∀Nx)[ρ] ∨ (∃Bx)[ρ].

Let us further equip each node with the type history of the
variables quantified before it; that is, each node holds a string
t1t2 · · · tn ∈ T≤k where ti is the annotation of the i-th
quantifier from the root to the node, excluding the node itself.

Now if we were given the entire word u · eN · v, a way
to evaluate the formula that respects the semantic of “Alicic”,
“Neutral”, and “Bobic” is as follows:

Algorithm 1 Formula Evaluation
1: foreach quantifier node ∀Ax or ∃Ax do
2: (`, r) := bounds(type history at node)
3: if node is ∀Ax then
4: Replace node with

∧`
x=0

5: Similarly with ∃ becoming
∨

6: end
7: Evaluate the part of the leaves than can be evaluated
8: foreach quantifier node do
9: (`, r) := bounds(type history at node)

10: if node is ∀Nx then
11: Replace node with

∧r−1
x=`+1

12: else if node is ∀Bx then
13: Replace node with

∧|ueNv|
x=r

14: Similarly with ∃ becoming
∨

15: end
16: Finish evaluating the tree

This is precisely the algorithm that Alice and Bob will
execute. First, Alice will quantify her variables according to
the bounds of the type history of each node, as in Algorithm 1.
At the leaves, she will thus obtain the formula ψ, and have
a set of quantified Alicic variables. She can then evaluate ψ
partially: if an atomic formula only relies on Alicic variables,
she can compute its value. If an atomic formula uses a mix
of Alicic and non-Alicic variables, then she can also evaluate
it: if the formula is a numerical predicate, then by Fact 3.1,
it will be valued false; if the formula is of the form x < y,
then it is true iff x is Alicic, by Fact 3.2. Alice now simplifies
her tree: logically equivalent leaves with the same parent are
merged, and inductively, each internal node keeps only a single
occurrence per formula appearing as a child. We remark that
the semantic of the tree is preserved. This results in a tree
whose size depends solely on ϕ, and the values of N , `0, and
r0, and Alice can thus send it to Bob.

Bob will now expand the remaining quantifiers (Neutral
and Bobic), respecting the bounds of the type history, as in
Algorithm 1. He can then evaluate all the leaves, since, by
Fact 3.3, the only letter predicate true of a Neutral position is
that of the neutral letter. This concludes the protocol, which
clearly produces the same result as Algorithm 1.

What are N , `0, r0? We check that Alice and Bob can agree
on these values without communication. The requirements were
made explicit in our Assumption. The values computed by the
function bounds are obtained by applying L and R on `0 and
r0 at most n =

∑k−1
i=0 2i times. From Fact 1, it is clear that

any (`, r) = bounds(h), for h ∈ T≤k, verifies:

• `min = Ln(`0) ≤ ` ≤ Rn(`0) = `max;
• rmin = Ln(r0) ≤ r ≤ Rn(r0) = rmax.

Hence we pick `0 = Rn+1(|u|), ensuring, by Fact 2, that
`min > |u|. Next, we pick r0 to be Rn+1(`max), ensuring
that rmin > `max by the same Fact 2. Finally, we pick N =
Rn+1(r0), ensuring, by Fact 1, that N > rmax, so that in
particular, rmax < |u|+N . We then indeed obtain that |u| < ` <
r < |u|+N , as required. Note that these computations depend
solely on ϕ and the lengths of u and v. of Theorem 5.

Remark. It should be noted that the crux of this proof is that a
relation R(x, y) with x Alicic and y Neutral or Bobic can be
readily evaluated by Alice. If R were monadic, then it could
not mix two positions of different types, hence Alice could still
remove all of her variables at the end of her evaluation. The
rest of the protocol will be similar, with Bob quantifying the
remaining positions. This shows that FO[≤,MON ,FIN ] also
has the Crane Beach Property.

VII. ON COUNTING

A compelling notion of computational power, for a logic, is
the extent to which it is able to precisely evaluate the number
of positions that verify a formula. This is formalized with the
following standard definition:

7



Definition 5. For a nondecreasing function f(n) ≤ n, a logic
is said to count up to f(n) if there is a formula ϕ(c) in this
logic such that for all n and w ∈ {0, 1}n:

w |= ϕ(c) ⇔ c ≤ f(n) ∧ c = number of 1’s in w .

It is known from [10] that if a logic can count up to
log(log(· · · (log n))), for some number of iterations of log,
then the logic does not have the Crane Beach Property. It has
also been conjectured [10], [16] that a logic has the Crane
Beach Property iff it cannot count beyond a constant. It is not
known whether there exists a set of predicates N such that
FO[N ] can count beyond a constant but not up to log n.

We define a much weaker ability:

Definition 6. For a nondecreasing function f(n) ≤ n, a logic
is said to sum through f(n) if there is a formula ϕ(a, b, c) in
this logic such that for all n and w ∈ {0, 1}n:

w |= ϕ(a, b, c) ⇔ a = b+ f(c) .

This is in general even weaker than being able to sum “up
to” f(n), that is, having a formula expressing that a = b+ c
and c ≤ f(n). Naturally, counting and summing are related:

Proposition 3. LetN be a set of unvaried numerical predicates.
If FO[≤,N ] can count up to f(n), it can sum through f(n).

Proof. Letting ϕ(c) be the formula that counts up to f(n), we
modify it into ϕ′(a, b, c) by changing the letter predicates to
consider that there is a 1 in position p iff b ≤ p < a. This
expresses that a = b+ c provided that c ≤ f(n).

Next, the graph F of f is obtained as follows. First, modify
ϕ(c) into ϕ′(c, c′), by restricting all quantifications to c and
replacing the letter predicates to have 1’s in all positions below
c′. Second, (c, c′) ∈ F iff c′ is maximal among those that
verify ϕ′(c, c′). This relies on the fact that N consists solely
of unvaried predicates.

The logic can then sum through f(n) by:

ψ(a, b, c) ≡ (∃c′)[F (c, c′) ∧ a = b+ c′] .

Remark. Proposition 3 depends crucially on the fact that the
predicates are unvaried to show that the graph of the summing
function is expressible. Writing S for the set of varied monadic
predicates S = (Sn)n≥0 with |Sn| = 1 for all n, it is easily
shown that FO[≤,+,×,S] can count up to any function ≤
log n. However, we conjecture that there are functions whose
graphs are not expressible in this logic.

Proposition 4. FO[≤,FIN ] cannot sum through beyond a
constant.

Proof. Suppose for a contradiction that FO[≤,FIN ] can sum
through a nondecreasing unbounded function f using a formula
ϕ(a, b, c). Let Bit be the binary predicate true of (x, y) if the
y-th bit of x is 1. We define a translated version as:

Bit′ = {(x, y) | (x, y − f(x)) ∈ Bit} .

We show that Bit′ is of finite degree. Let n ∈ N, and suppose
(n, y) ∈ Bit′. This implies in particular that 0 < y − f(n) <

log n, hence n appears a finite number of time as (n, y) in
Bit′. Suppose (x, n) ∈ Bit′, then n− f(x) > 0, but for x large
enough, f(x) > n, hence there can only be a finite number of
pairs (x, n) in Bit′.

Now Bit can be defined in FO[≤,FIN ] using ϕ, since
Bit(x, y) holds iff (∃z)[ϕ(z, y, x)∧Bit′(x, z)], a contradiction
concluding the proof.

Corollary 1. FO[≤,FIN ] cannot count beyond a constant.

VIII. CONCLUSION

We showed that FO[≤,FIN ] is one simple predicate away
from expressing all of FO[ARB], and that it exhibits the Crane
Beach Property. This logic is thus really on the brink of a
crevice on the Crane Beach, and exemplifies a diverse set of
behaviors that fit the intuition that neutral letters should render
numerical predicates essentially useless. We emphasize some
future research directions:
• As a consequence of our results, one can show that a

nonregular neutral letter language L is not in AC0 as
follows. Assume L ∈ AC0 for a contradiction, and let ϕ ∈
FO[≤,MSB0,FIN ] be a formula expressing it. Suppose
that one can show that ϕ can be rewritten without the
predicate MSB0, then L ∈ FO[≤,FIN ], and thus L is
regular, a contradiction. We hope to be able to apply this
strategy in the future.

• As noted in [14] and [10] and studied in particular
in [13], the interest in circuit complexity calls for the
study of logics with more sophisticated quantifiers, no-
tably modular quantifiers and, more generally, monoidal
quantifiers. Hence the natural question here is whether
FO+MOD[≤,FIN ] has the Crane Beach Property.

• As asked in [10], can we dispense from our implicit
reliance on the lower bound Parity /∈ AC0? In the cases
of [10], and as noted by the authors, this would be
very difficult, as their results imply the lower bound.
Here, the strong Crane Beach Property for FO[≤,FIN ]
does not directly imply the lower bound. To show that
Parity /∈ AC0, one could additionally prove that all the
regular, neutral letter languages of FO[≤,MSB0,FIN ] are
in FO[≤,FIN ]—we know that this statement holds, but
only thanks to Parity /∈ AC0.

• Are we really on the brink of falling off the Crane Beach?
That is, are there unvaried predicates that cannot be
expressed in FO[≤,FIN ] but can still be added to the
logic while preserving the Crane Beach Property? We
noted that all varied monadic predicates can be added
safely, but already very simple predicates falsify the Crane
Beach Property. For instance, with F the graph of the 2-
adic valuation, FO[≤, F ] is as expressive as FO[≤,+,×]
(see [24, Theorem 3]), which does not have the Crane
Beach Property [10].

• Numerical predicates correspond in a precise sense [11]
to the computing power allowed to construct circuit
families for a language. Is there a natural way to present
FO[≤,FIN ]-uniform circuits?
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