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block Mal’tsev algebras
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Abstract

There are two well-known types of algorithms for solving CSPs: local

propagation and generating a basis of the solution space. For several years

the focus of the CSP research has been on ‘hybrid’ algorithms that somehow

combine the two approaches. In this paper we present a new method of such

hybridization that allows us to solve certain CSPs that has been out of reach

for a quite a while.

We apply this method to CSPs parametrized by a universal algebra, an

approach that has been very popular in the last decade or so. Specifically,

we consider a fairly restricted class of algebras we will call semilattice block

Mal’tsev. An algebra A is called semilattice block Mal’tsev if it has a binary

operation f , a ternary operationm, and a congruenceσ such that the quotient

A/
σ

with operation f is a semilattice, f is a projection on every block of σ,

and every block of σ is a Mal’tsev algebra with Mal’tsev operation m. This

means that the domain in such a CSP is partitioned into blocks such that

if the problem is considered on the quotient set A/
σ
, it can be solved by a

simple constraint propagation algorithm. On the other hand, if the problem

is restricted on individual blocks, it can be solved by generating a basis of

the solution space. We show that the two methods can be combined in a

highly nontrivial way, and therefore the constraint satisfaction problem over

a semilattice block Mal’tsev algebra is solvable in polynomial time.

1 Introduction

In a Constraint Satisfaction Problem (CSP, for short) we need to decide whether

or not a given set of constraints on values that can be assigned simultaneously to a

given set of variables can be satisfied. While the general CSP is NP-complete, its

versions restricted by specifying a constraint language, a set of allowed constraints,

are sometimes solvable in polynomial time. For a constraint language Γ the cor-

responding restricted CSP is denoted CSP(Γ) and called a nonuniform CSP. The

study of the complexity of nonuniform CSPs has been initiated by Schaefer [31]. In
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that paper Schaefer determined the complexity of CSP(Γ) for constraint languages

on a 2-element set. The complexity of CSP(Γ) for constraint languages over finite

sets has been attracting much attention since then. This research is guided by the

Dichotomy Conjecture proposed by Feder and Vardi [18, 19] that states that every

CSP of the form CSP(Γ) for a constraint language Γ on a finite set is either solv-

able in polynomial time or is NP-complete. The Dichotomy Conjecture has been

restated and made more precise in different languages, see, e.g. [12, 29]. Also,

several powerful approaches to the problem have been developed, through algebra,

logic, and graph theory. So far the most successful method of studying the com-

plexity of the CSP has been the algebraic approach introduced by Jeavons et al.

[11, 12, 14, 23]. This approach relates the complexity of CSP(Γ) to the properties

of a certain universal algebra AΓ associated with Γ. In particular it allows one to

expand CSP(Γ) to the problem CSP(AΓ) that depends only on the associated al-

gebra, without changing its complexity. It therefore suffices to restrict ourselves to

the study of the complexity of problems of the form CSP(A), where A is a finite

universal algebra.

The dichotomy conjecture has been confirmed in a number of cases: for con-

straint languages on 2- and 3-element sets [7, 31] (a dichotomy result was also

announced for languages over 4-, 5-, and 7-element sets [25, 32, 33]), for con-

straint languages containing all unary relations [1, 8, 9], and several others, see, e.g.

[2, 3, 22]. One of the most remarkable phenomena discovered is that, generally,

there are only two types of algorithms applicable to CSPs solvable in polynomial

time. The first one has long been known to researchers in Artificial Intelligence

as constraint propagation [17]. Algorithms of the other type resemble Gaussian

elimination in the sense that they construct a small generating set of the set of

all solutions [10, 22]. The scope of both types of algorithms is precisely known

[2, 22].

General dichotomy results, however, cannot be proved using only algorithms

of a single ‘pure’ type. In all such results, see, e.g. [1, 7, 8, 9] a certain mix

of the two types of algorithms is needed. In some cases, for instance, [7] such

a hybrid algorithm is somewhat ad hoc; in other cases, [1, 8, 9] it is based on

intricate decompositions of the problem instance. It has become clear however that

ad hoc hybridization and the decomposition techniques developed in the mentioned

works are not sufficient. Therefore trying to identify new polynomial time solvable

cases of the CSP through combining the two types of algorithms is the key to

approaching the Dichotomy Conjecture. There have been several further attempts

to design hybrid algorithms; however, most of them were not quite successful.

In more successful cases such as [26, 27, 28, 30] the researchers tried to tackle

somewhat limited cases, in which a combination of local consistency properties

and Gaussian elimination type fragments is very explicit. To provide the context
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for our results we explain those cases in details.

Suppose that a constraint language Γ is such that it is possible to partition its

domain A into blocks with the property that the restriction of CSP(Γ) on each

block of the partition can be solved by an algorithm of one type; while if we col-

lapse each block into a single element, the resulting quotient problem can be solved

by an algorithm of another type. What can be said about CSP(Γ) itself? For in-

stance, consider constraint language Γ = {R} on A = {0, 1, 2} where the ternary

relation R is given by (triples in R are written vertically)

R =





0 0 1 1 2 2 2 2 2 2 2 2
0 1 0 1 0 0 1 1 2 2 0 1
0 1 1 0 1 0 0 1 0 1 2 2



 .

If A is partitioned into B = {0, 1} and C = {2}, then the restriction of R on

the blocks B,C is one of the relations above separated by vertical lines (we can

choose between B and C for different coordinate positions), and the corresponding

CSP can be solved by Gaussian elimination. Indeed, the only nontrivial relation

obtained this way is the first one, that is, R∩B3, and it is given by a linear equation

x+ y + z = 0. The quotient relation R′ then looks like

R′ =





B C C C
B B C B
B B B C



 ,

and it follows from [31] that CSP(R′) can be solved by a local propagation algo-

rithm, asR′ can be represented by a Horn clause. Solving CSP(Γ) is less easy, see,

[7], and similar but more complicated cases have not been known to be polynomial

time solvable until now.

To make constructions like the one above more precise we use the algebraic

representation of nonuniform CSPs, in which a constraint language is replaced

with its (universal) algebra of polymorphisms. This allows us to exploit structural

properties of algebras to design a hybrid algorithm. So, starting from CSP(Γ),
where Γ is a constraint language on a set A, we first consider the corresponding al-

gebra AΓ with base set A such CSP(AΓ) is polynomial time reducible to CSP(Γ).
A partition of AΓ is given by a congruence of AΓ, that is, an invariant equivalence

relation. Recall that due to the results of [12] the algebra AΓ can be assumed idem-

potent, this makes restrictions on congruence blocks possible. Now, suppose that

an idempotent algebra A is such that it has a congruence σ with the property that

the CSP of its quotient A/σ can be solved by the small generating set algorithm,

say, it is Mal’tsev, while for every σ-block B (a subalgebra of A) the CSP over B

can be solved by a local propagation algorithm; or the other way round, see Fig-

ure 1. How can one solve the CSP over A itself? Maroti in [27] considered the
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first case, when A/σ can be solved by the small generating set algorithm. This

case turns out to be easier because of the property of the σ-blocks we can exploit.

Suppose for simplicity that every σ-block B is a semilattice, as shown in Figure 1.

Then every CSP instance on B has some sort of a canonical solution that assigns

the maximal element of the semilattice (that is element a ∈ B such that ab = a
for all b ∈ B) to every variable. It then can be shown that if we find a solution

ϕ : V → A/σ where V is the set of variables of the instance on A/σ, and then

assign the maximal elements of the σ-block ϕ(v) to v, we obtain a solution of the

original instance.

+

+ +

+

maximal elements

maximal     -blocks

(a)

(b)

Figure 1: (a) Algebra A such that A/σ is Mal’tsev; (b) an SBM algebra. Rectangles

represent σ-blocks, dots represent elements, lines show the semilattice structure,

and ⊕ represents a Mal’tsev operation acting on elements or σ-blocks.

The case when A/σ is a semilattice, while every σ-block is Mal’tsev is much

more difficult. We will call such algebras semilattice block Mal’tsev algebras (SBM

algebras, for short). More precisely, we consider idempotent algebras A with the

following property: There are a binary operation f and a ternary operation m, and

a congruence σ of A such that A/σ is a semilattice with a semilattice operation f ,

and every σ-block B is a Mal’tsev algebra with Mal’tsev operation m, and fB is a

projection. The main difficulty with this kind of algebras is that the only solution

of a CSP over a semilattice we can reliably find is the canonical one assigning the

maximal available element to each variable. Finding a second solution is already

hard. On the other hand, if we restrict our instance only to the maximal σ-block

B, it may have no solution there, even though the original instance has a solution,

which simply does not belong to the maximal block. If this is the case, it has been

unclear for nearly 10 years how the domain can be reduced so that the maximal

block is eliminated.

The problem has been resolved in some special cases. Firstly, Maroti in [28]

showed that it suffices to consider SBM algebras of a certain restricted type. We
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will use this result in this paper. Marcović and McKenzie suggested an algorithm

that solves the CSP over SBM algebras A when A/σ is a chain, that is, ab ∈ {a, b}
for any a, b ∈ A/σ. In this case their algorithm is capable of eliminating the max-

imal block using the fact that if a semilattice is a chain, any of its subsets is a

subalgebra. Finally, very recently Payne in [30] suggested an algorithm that works

for a more general class of algebras than SBM, but algebras in this class have to

satisfy an extra condition that in SBM algebras manifests itself as the existence

of certain well behaving mappings between σ-blocks. In particular, this condi-

tion guarantees that the instance restricted to the maximal σ-block has a solution

whenever the original problem has a solution.

In this paper we continue the effort started in [26, 28, 30] and present an algo-

rithm that solves the CSP over an arbitrary SBM algebra.

Theorem 1 If A is a SBM algebra then CSP(A) is solvable in polynomial time.

The algorithm is based upon a new local consistency notion that we call block-

minimality (although in our case it is necessarily not quite local, since it has to

deal with Mal’tsev algebras). More specifically, our algorithm first separates the

set V of variables of a CSP instance into overlapping subsets, coherent sets, and

considers subproblems on these sets of variables. For block-minimality these sub-

problems have to be minimal, that is, every tuple from every constraint relation has

to be a part of a solution. This can be achieved by solving the problem many times

with additional constraints. However, this is not very straightforward, because co-

herent sets may contain all the variables from V . To overcome this problem we

show that the subproblems restricted to coherent sets are either over a Mal’tsev

domain and therefore can be solved efficiently, or they split up into a collection of

disjoint instances, each of which has a strictly smaller domain. In the latter case we

can recurse on these smaller instances. Finally, we prove that any block-minimal

instance has a solution.

The results of this paper can easily be made more general by removing some

of the restrictions on the basic operations of SBM algebras. However, we hope

that these results can be generalized well beyond SBM-like algebras and so we

stop short of giving more general but also more technically involved proofs just

restricting ourselves to demonstrating the general idea.

In Section 2 we recall the basic definitions on CSP and the algebraic approach.

A somewhat simplified outline of the solution algorithm and block-minimality is

given in Section 3. More advanced facts from algebra and a study of certain proper-

ties of SBM algebras are given in Section 4. In Section 5 we strengthen the results

of [5] about the structure of relations over Mal’tsev algebras and extend them to
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SBM algebras1. In Section 6 we extend these notions to CSP instances. Finally, in

Section 7 we prove the main result and present a solution algorithm.

2 Preliminaries

2.1 Multisorted Constraint Satisfaction Problem

By [n] we denote the set {1, . . . , n}. Let A1, . . . , An be finite sets. Tuples from

A1 × . . . × An are denoted in boldface, say, a, and their entries by a[1], . . . ,a[n].
A relation R over A1, . . . , An is a subset of A1 × · · · × An. We refer to n as

the arity of the tuple a and the relation R. Let I = (i1, . . . , ik) be an (ordered)

multiset, a subset of [n]. Then let prIa = (a[i1], . . . ,a[ik]) and prIR = {prIa |
a ∈ R}. Relation R is said to be a subdirect product of A1, . . . , An if priR = Ai

for i ∈ [n]. In some cases it will be convenient to consider tuples and relations

whose entries are indexed by sets other than subsets of [n], most often those will

be sets of variables. Then we either assume the index set is somehow ordered, or

consider tuples as functions from the index set to the domain and relations as sets

of such functions.

Let A be a set of sets, in this paper A is usually the set of universes of finite

algebras derived from an SBM algebra; we clarify ‘derived’ later. An instance of

a (Multisorted) Constraint Satisfaction Problem (CSP) over A is given by P =
(V,A, C), where V is a set of variables, A is a collection of domains Av ∈ A, and

C is a set of constraints; every constraint 〈s, R〉 is a pair consisting of an ordered

multiset s = (v1, . . . , vk), a subset of V , called the constraint scope and R, a

relation over Av1 , . . . , Avk , called the constraint relation.

2.2 Algebraic structure of the CSP

For a detailed introduction to CSP and the algebraic approach to its structure the

reader is referred to a very recent and very nice survey by Barto et al. [4]. Basics

of universal algebra can be learned from the textbook [16] and monograph [21].

A (universal) algebra is a pair A = (A;F ), where A is a set (always finite in

this paper) called the universe of A, and F is a set of basic operations, multi-ary

operations on A. Algebras A = (A,FA) and B = (B,FB) are said to be similar

if their basic operations are indexed by elements of the same set F in such a way

that operations from FA and FB indexed by the same element have the same arity.

Operations that can be obtained from the basic operations of A or a class A of

1Kearnes and Szendrei in [24] developed a technique based on so-called critical relations that re-

sembles in certain aspects what can be achieved through coherent sets. However, [24] only concerns

congruence modular algebras, and so cannot be used for SBM algebras.
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similar algebras by means of compositions are said to be term operations of A or,

respectively, A.

The CSP is related to algebras through the notion of polymorphism. Let R be

a relation on a set A and f is a k-ary operation on the same set. Operation f is

said to be a polymorphism of R if for any a1, . . . ,ak ∈ R the tuple f(a1, . . . ,ak)
also belongs to R. More generally, let R be a subset of A1 × · · · × Aℓ and f is an

operation symbol such that fAi is a k-ary operation on Ai for i ∈ [ℓ]. Then f is

a polymorphism of R if for any a1, . . . ,ak ∈ R the tuple f(a1, . . . ,ak) belongs

to R, where f(a1, . . . ,ak) = (fA1(a1[1], . . . ,ak[1]), . . . , f
Aℓ(a1[ℓ], . . . ,ak[ℓ])).

Let Γ be a constraint language on a set A. Then Pol(Γ) denotes the set of all

operations f on A such that f is a polymorphism of every relation from Γ; also

AΓ = (A,Pol(Γ)) is the corresponding algebra. Similarly, let A be a collection of

sets and Γ a constraint language over A, that is, a set of relations R ⊆ A1×· · ·×Aℓ,

A1, . . . , Aℓ ∈ A. Then F = Pol(Γ) is the set of all operation symbols f along with

their interpretations on sets from A such that f is a polymorphism of all relations

from Γ. The corresponding set of algebras is denoted by AΓ, that is, for every

A ∈ A the set AΓ contains algebra A = (A,FA), where FA = {fA | f ∈ F}.

Any class of similar algebras also gives rise to a CSP. Let A be a class of similar

finite algebras and A the set of universes of algebras from A. Then CSP(A) is the

class of instances (V,A, C) of CSPs over A such that every constraint relation R
from 〈s, R〉 ∈ C, s = (v1, . . . , vk), is a subalgebra of Av1 × · · · ×Avk , where Av,

v ∈ V , are viewed as algebras from A.

In this paper we will use two special types of operations.

Example 2 A binary operation f on A is said to be semilattice if f(a, a) = a,

f(a, b) = f(b, a), and f(f(a, b), c) = f(a, f(b, c)) for any a, b, c ∈ A. Similarly,

f is a semilattice operation on a class A of similar algebras, if it is a term operation

of that class and fA is a semilattice operation for every A ∈ A. We will treat a

semilattice operation as multiplication and denote it by · or omit the sign altogether.

A semilattice operation defines an order on its domain: a ≤ b if and only if ab = b.
This means that there is always the greatest element of such a semilattice order —

the product of all the elements of A. We will denote this element by max(A).

Example 3 A ternary operation m is said to be Mal’tsev if it satisfies the equations

m(a, b, b) = m(b, b, a) = a for any a, b ∈ A. A term operation m of a class A

is Mal’tsev if mA is Mal’tsev for every A ∈ A. An algebra with a Mal’tsev term

operation is said to be Mal’tsev.

If A has a Mal’tsev term operation, the algorithm from [10] constructs a com-

pact representation of the set of solutions of any instance from CSP(A), thus solv-

ing the problem in polynomial time.
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A subalgebra of an algebra A = (A,F ) is a subset B ⊆ A equipped with the

restrictions of operations from F on B and such that f(a1, . . . , ak) ∈ B for every

f ∈ F and a1, . . . , ak ∈ B. An equivalence relation on A invariant with respect

to the basic operations of A is said to be a congruence of A. If a, b are related

by a congruence α, we write a
α
≡ b; the α-block containing a is denoted aα.

The quotient algebra A/α has the universe A/α and basic operations fα, f ∈ F ,

such that for any a1, . . . , ak ∈ A operation fα is given by fα(aα1 , . . . , a
α
k ) =

(f(a1, . . . , ak))
α. We will omit the superscript in fα whenever this does not lead

to a confusion. Algebra A is said to be idempotent if f(a, . . . , a) = a for any

f ∈ F and any a ∈ A. A useful property of idempotent algebras is that every class

of any of its congruences is a subalgebra. In particular, every 1-element subset ofA
is a subalgebra. Algebras A,A′ with the same universe are called term equivalent

if they have the same set of term operations. If A = (A,F ), A′ = (A,F ′) and F ′

is a subset of the set of term operations of A, then A
′ is said to be a reduct of A.

Idempotent algebra A is said to be semilattice block Mal’tsev if there are a

binary term operation f and a ternary term operation m, and a congruence σ of

A such that A/σ is term equivalent to a semilattice with a semilattice operation f ,

operation m is a Mal’tsev operation on every σ-block B, and fB is a projection,

that is, fB(x, y) = x.

2.3 Partial solutions and local consistency

Let P = (V,A, C) be a CSP instance Let W ⊆ V . By PW we denote the instance

(W,AW , CW ) defined as follows: AW
v = Av for each v ∈W ; for every constraint

C = 〈s, R〉, C ∈ C, the set CW includes the constraint CW = 〈s′, R′〉, where

s′ = s∩W and R′ = pr
s
′R. A solution of PW is called a partial solution of P on

W . The set of all such solutions is denoted by SW . If W = {v} or W = {u, v},

we simplify notation to Pv,Sv and Puv,Suv, respectively.

Instance P is called minimal if every tuple a ∈ R for any constraint 〈s, R〉 ∈ C
can be extended to a solution of P; that is, there is ϕ ∈ S such that ϕ(v) = a[v]
for v ∈ s. Instance P is called k-minimal if PW is minimal for all k-element

W ⊆ V . For any fixed k every instance can be reduced to a k-minimal instance

in polynomial time by a standard algorithm [13]: cycle over all k element subsets

W ⊆ V , solve the problem PW , and for every constraint 〈s, R〉 exclude from

R all tuples inconsistent with SW . If P ∈ CSP(A) for some class A of similar

algebras closed under subalgebras, the resulting problem also belongs to CSP(A).
In particular, from now on we will assume that all the instances we deal with are 1-

minimal. For such problems we can also tighten the instance reducing the domains

Av, v ∈ V , to the sets Sv. Every constraint relation will therefore be assumed

to be a subdirect product of the respective domains. If A consists of idempotent
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algebras, then any problem from CSP(A) can be reduced to a minimal one by

solving polynomially many instances of CSP(A). First of all, constant relations,

Ra = {(a)}, a ∈ A ∈ A, are subalgebras of A and therefore can be used in

constraints. Then the algorithm proceeds as follows: cycle over all constraints

C = 〈s, R〉 ∈ C and all a ∈ R; replace C with the collection of unary constraints

〈(s[i]), R
a[s[i]]〉; solve the resulting instance PC,a; remove a from R if PC,a has no

solutions. However, this procedure obviously amounts to solving instances from

CSP(A), and therefore there is no guarantee this can be done in polynomial time.

Example 4 If a class A of similar algebras has a semilattice term operation then

CSP(A) can be solved by establishing 1-minimality. More precisely, if P =
(V,A, C) is a 1-minimal instance from CSP(A), where Av is the domain of v ∈ V ,

then the mapping ϕ(v) = max(Av) is a solution of P.

2.4 Congruences and polynomials

The set (lattice) of congruences of an algebra A will be denoted by Con(A). So,

Con(A) is equipped with two binary operations of join, ∨, and meet, ∧. The small-

est congruence of A, the equality relation, is denoted by 0A, and the greatest con-

gruence, the total relation, is denoted by 1A. Let R be a subdirect product of

A1, . . . ,Ak, and αi ∈ Con(Ai), i ∈ [k]. Then by αR, or simply α if R is clear

from the context, we denote the congruence α1 × · · · × αk of R given by a
α
≡ b if

and only if a[i]
αi
≡ b[i] for all i ∈ [k]. Also, if I = {i1, . . . , iℓ} ⊆ [k] then by αI

we denote the congruence αi1 × · · · × αiℓ of prIR.

Let P = (V,A, C) be an instance of CSP(A) and αv a congruence of Av ∈ A

for each v ∈ V . By Pα we denote the instance (V,Aα, Cα), in which A
α
v = Av/αv

,

and a constraint 〈s, R′〉, s = (v1, . . . , vk), belongs to Cα if and only if a constraint

〈s, R〉, where

R′ = R/α = {aα = (a[1]αv1 , . . . ,a[k]αvk ) | a ∈ R},

belongs to C.

A pair of congruences α, β ∈ Con(A) is said to be a prime interval, denoted

α ≺ β, if α ≤ β and α < γ < β for no congruence γ ∈ Con(A). Then α � β
means that α ≺ β or α = β. For an operation f on A we write f(β) ⊆ α if, for

any a, b ∈ A with a
β
≡ b, f(a)

α
≡ f(b).

Polynomials of A are formed from term operations as follows. Let

f(x1, . . . , xk, y1, . . . , yℓ) be a term operation of A and a1, . . . , aℓ ∈ A. Then

the operation g(x1, . . . , xk) = f(x1, . . . , xk, a1, . . . , aℓ) is said to be a polynomial

of A. Note that although a polynomial does not have to be a polymorphism of
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invariant relations of A, unary polynomials and congruences of A are in a special

relationship: an equivalence relation α is a congruence of A if and only if it is pre-

served by every unary polynomial f , that is, f(α) ⊆ α. As usual, by an idempotent

unary polynomial we mean a polynomial f(x) such that f ◦f = f or, equivalently,

such that f(x) = x for any x from its range.

Let R be a subdirect product of A1, . . . ,Ak. Similar to tuples from R, poly-

nomials of R are also denoted in boldface, say, f . A polynomial f can be rep-

resented as f(x1, . . . , xk) = g(x1, . . . , xk,a
1, . . . ,aℓ) where g is a term opera-

tion of R and a1, . . . ,al ∈ R. Then the polynomial g(x1, . . . , xk,a
1[i], . . . ,aℓ[i])

of Ai is denoted by fi, and for I = {i1, . . . , is} ⊆ [n], fI denotes the polyno-

mial g(x1, . . . , xk,prIa
1, . . . ,prIa

ℓ) of prIR. For any i, and any polynomial f
of Ai, there is a polynomial g of R such that gi = f . We shall call g an ex-

tension of f to a polynomial of R. Finally, for I ⊆ [k], and a ∈
∏

i∈I Ai and

b ∈
∏

i∈[k]−I Ai, (a,b) denotes the tuple c such that c[i] = a[i] for i ∈ I and

c[i] = b[i] if i ∈ [k]− I . To distinguish such concatenation of tuples from pairs of

tuples, we will denote pairs of tuples by 〈a,b〉.
The proposition below lists the main basic properties of relations over Mal’tsev

algebras.

Proposition 5 (Folklore) Let R be a subdirect product of Mal’tsev algebras A1 ×
· · · ×Ak and I ⊆ [k]. Then the following properties hold

(1) R is rectangular, that is if a,b ∈ prIR, c,d ∈ pr[k]−IR and (a, c), (a,d),
(b, c) ∈ R, then (b,d) ∈ R.

(2) The relation νI = {〈a,b〉 ∈ (prIR)
2 | there is c ∈ pr[k]−IR such that (a, c),

(b, c) ∈ R} is a congruence of prIR.

3 Outline of the algorithm

Our solution algorithm works by establishing some sort of minimality condition

and repeatedly alternates two phases. The first phase is based on the results of

Maroti [28] that allow us to reduce an instance over SBM algebras to one over

SBM algebras with a minimal element. If A is an SBM algebra then there is a

congruence σ such that A/σ is a semilattice. This means that A/σ has a maximal

or absorbing element a such that ax = xa = a for any x ∈ A/σ. This element will

be in the focus of our argument. We will also show with help of [28], Corollary 12,

that it can always be assumed that A/σ has a minimal or neutral element b such

that bx = xb = x for any x ∈ A/σ. In fact, one can assume an even stronger

condition: that b is a 1-element σ-block.

For the second phase we introduce the block-minimality condition defined with

the help of congruences and polynomials of an algebra. Let R be a subdirect prod-
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uct of A1× · · ·×An and α, β ∈ Con(Ai), γ, δ ∈ Con(Aj) such that α ≺ β, γ ≺ δ
for some i, j ∈ [n]. Interval (α, β) can be separated from (γ, δ) if there is a unary

polynomial f of R such that fi(β) 6⊆ α while fj(δ) ⊆ γ. We are mostly interested

in the situation when prime intervals cannot be separated.

Suppose that P = (V,A, C) is a 3-minimal instance and the domain Av of

v ∈ V is an SBM algebra and σv is such that Av/σv
is a semilattice. Let θv denote

the congruence of Av such that the maximal element of Av/σv
is one block of

θv, and all other θv-blocks are singletons. We show, Lemma 9, that this is indeed

a congruence. For every v ∈ V and α, β ∈ Con(Av) with α ≺ β ≤ θv let

Wvαβ ⊆ V denote the set of variables w such that (α, β) and (γ, δ) for some

γ, δ ∈ Con(Aw) with γ ≺ δ ≤ θw cannot be separated from each other in the

binary relation Svw. We call such sets of variables coherent sets. Instance P is said

to be block-minimal if for every v ∈ V and α, β ∈ Con(Av) with α ≺ β ≤ θv the

problem PWvαβ
is minimal.

The result now follows from the following two statements. First, Proposi-

tion 20 claims that any instance P over SBM algebras can be efficiently reduced

to an equivalent block-minimal instance by solving polynomially many SBM in-

stances over domains of smaller size. The second statement, Theorem 21, claims

that any block-minimal SBM instance has a solution.

The key to the proof of Proposition 20 is Lemma 19 stating that every problem

PWvαβ
is a disjoint union of problems over smaller domains, or its domains are

Mal’tsev algebras. More precisely, in the first case there is k such that for every

w ∈Wvαβ the domain Aw can be partitioned into a disjoint union A
(1)
w ∪· · ·∪A

(k)
w

in such a way that for any constraint 〈(v1, . . . , vℓ), R〉 of PWvαβ
, every tuple a ∈ R

belongs to A
(j)
v1 × · · · × A

(j)
vk for some j ∈ [k]. This property follows from the

existence of a minimal element in every domain and the fact that certain prime

intervals in congruence lattices of the domains of PWvαβ
cannot be separated from

each other, Lemma 19. It means, of course, that it suffices to solve k problems

P
(j)
Wvαβ

whose domains are A
(j)
w .

We prove Theorem 21 by induction, showing that for every β = (βv)v∈V with

βv ∈ Con(Av) with βv ≤ θv there is a collection of solutions ϕvαβ of PWvαβ

such that whenever u ∈ Wvαβ ∩Wwγδ we have ϕvαβ(u)
βu
≡ ϕwγδ(u). If every βw

equals θw then such a collection exists because the maximal element of Aw/βw
is

a singleton, and we always can choose mappings ϕvαβ to be such that ϕvαβ(w)/θv
is the maximal element. On the other hand, if βw is the equality relation for every

w ∈ V then solutions ϕvαβ agree with each other and provide a solution of P.

Thus, showing that the existence of solutions ϕvαβ for some β implies the existence

of such solutions for smaller congruences β
′

is the crux of our argument.
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4 Semilattice block Mal’tsev algebras and minimal ele-

ments

4.1 Minimal sets and polynomials

We will use several basic concepts of the tame congruence theory, [21].

An (α, β)-minimal set is a minimal (under inclusion) set U such that U =
f(A) for a unary polynomial of A satisfying f(β) 6⊆ α. Sets B,C are said to be

polynomially isomorphic in A if there are unary polynomials f, g such that f(B) =
C , g(C) = B, and f ◦ g, g ◦ f are identity mappings on C and B, respectively.

Lemma 6 (Theorem 2.8, [21]) Let α, β ∈ Con(A), α ≺ β. Then the following

hold.

(1) Any (α, β)-minimal sets U, V are polynomially isomorphic.

(2) For any (α, β)-minimal set U and any unary polynomial f , if f(βU) 6⊆ α then

f(U) is an (α, β)-minimal set, U and f(U) are polynomially isomorphic, and f
witnesses this fact.

(3) For any (α, β)-minimal set U there is a unary polynomial f such that f(A) =
U , f(β) 6⊆ α, and f is idempotent, in particular, f is the identity mapping on U .

(4) For any unary polynomial f such that f(β) 6⊆ α there is an (α, β)-minimal set

U such that f witnesses that U and f(U) are polynomially isomorphic.

Minimal sets of a Mal’tsev algebra form a particularly dense collection.

Lemma 7 (Folklore) Let A be a finite Mal’tsev algebra and α ≺ β for α, β ∈
Con(A). Then for any a, b ∈ A with (a, b) ∈ β − α, there is an (α, β)-minimal set

U such that aα ∩ U 6= ∅ and bα ∩ U 6= ∅.

4.2 Semilattice block Mal’tsev algebras

Since the fewer basic operations an algebra has, the richer the corresponding con-

straint language, we assume that the algebras we are dealing with have only two

basic operations, just enough to guarantee the required properties. Therefore we as-

sume that our semilattice block Mal’tsev algebras have only two basic operations:

a binary operation · that we will often omit, and a ternary operation m satisfying

the conditions specified earlier. For elements a, b ∈ A such that ab = ba = b we

write a ≤ b.

Lemma 8 Let A be an SBM algebra. By choosing a reduct of A we may assume

that

12



Operation · satisfies the equation x(xy) = xy; and for any a, b ∈ A, a ≤ ab.

Operation m can be chosen such that for any a, b, c ∈ A, m(a, b, c)σA = (abc)σA .

Proof: (1) Follows from Proposition 10 of [15] .

(2) Consider the operation m′(x, y, z) = m(x, y, z)xyz. If B is a σA-block,

then, since ab = a for any a, b ∈ B, operation m′ is Mal’tsev on B. Also, as

A/σA
is term equivalent to a semilattice, d = m(a, b, c)σA belongs to the subsemi-

lattice of A/σA
generated by aσA , bσA , cσA . Therefore m′(a, b, c)σA = d(abc)σA =

(abc)σA , and we can choose m′ for m. ✷

Next we show some useful properties of SBM algebras. Let A be an SBM

algebra and max(A) the maximal block of σ, that is, max(A) ·a ⊆ max(A) for all

a ∈ A.

Lemma 9 (1) The equivalence relation θA whose blocks are max(A) and all the

remaining elements form singleton blocks, is a congruence.

(2) Let R be a subdirect product of SBM algebras A1, . . . ,An and the equivalence

relation θR is such that its blocks are max(R) = R∩(max(A1)×· · ·×max(An)),
and all the remaining elements form singleton blocks. Then θR is a congruence.

Proof: (1) It suffices to observe that for any a ∈ max(A) we have ax, xa,

m(a, x, y),m(x, a, y),m(x, y, a) ∈ max(A) for any x, y, and therefore all non-

constant polynomials of A preserve max(A).
(2) is similar to (1). ✷

When dealing with a relation over algebras A1, . . . ,An or a CSP with domains

Av we will simplify the notation θAi
, θAv to θi, θv.

Lemma 10 Every (α, β)-minimal set, for α ≺ β ≤ θA, is a subset of max(A).

Proof: Let U be a (α, β)-minimal set and f an idempotent polynomial with

f(A) = U and f(β) 6⊆ α. Since β ≤ θA, c, d ∈ U ∩max(A) for some (c, d) ∈
β − α, as otherwise we would have f(β) ⊆ α. Take a ∈ max(A) and set g(x) =
f(x)a. For any b ∈ U ∩ max(A) we have g(b) = f(b)a = ba = b. Therefore

g(β) 6⊆ α and g(A) ⊆ max(A). Finally, f(max(A)) ⊆ max(A), therefore f ◦
g(A) ⊆ U ∩max(A) and f ◦ g(x) = x for x ∈ U ∩max(A). As U is minimal,

U = U ∩max(A). ✷

4.3 Maroti’s reduction

In this section we describe a reduction introduced by Maroti in [28] that allows

us to reduce CSPs over SBM algebras to CSPs over SBM algebras of a certain

restricted type. More precisely, it allows us to assume that every domain A is
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either a Mal’tsev algebra with m as a Mal’tsev operation, or it contains a minimal

element a, that is, an element such that ab = ba = b for all b ∈ A. Moreover,

as is easily seen, such element is unique and forms a σA-block, which is also the

smallest element of the semilattice A/σA
.

Let f be an idempotent unary polynomial of algebra A and A the universe of

A. The retract f(A) of A is the algebra with universe f(A), whose basic opera-

tions are of the form f ◦ g, given by f ◦ g(x1, . . . , xn) = f(g(x1, . . . , xn)) for

x1, . . . , xn ∈ f(A), where g is a basic operation of A.

Lemma 11 A retract of an SBM algebra through an idempotent polynomial is an

SBM algebra.

Proof: Let f be an idempotent polynomial. Let g1(x, y) = f(xy),m1(x, y, z) =
f(m(x, y, z)) be the basic operations of the retract, A1 = f(A), and σ1 = σAA1

.

Firstly, note that σ1 is a congruence of A1 and A1 is an idempotent algebra. Since

A/σA
is term equivalent to a semilattice and any retract of a semilattice by a semi-

lattice polynomial is a semilattice, so is A1/σ1
. Finally,

m1(x, y, y) = f(m(x, y, y)) = f(x) = x

m1(y, y, x) = f(m(y, y, x)) = f(x) = x,

for any x, y ∈ A1 with x
σ1

≡ y. ✷

The results of [28] imply the following. Let A be a class of similar finite

algebras closed under subalgebras, and retracts via idempotent unary polynomials.

Suppose that A has a term operation f satisfying the following conditions for some

B ∈ A:

(1) f(x, f(x, y)) = f(x, y) for any x, y ∈ B;

(2) for each a ∈ B the mapping x 7→ f(a, x) is not surjective;

(3) the set C of a ∈ B such that x 7→ f(x, a) is surjective generates a proper

subalgebra of B.

Then CSP(A) is polynomial time reducible to CSP(A− {B}).
By Lemma 8 the operation · of the class of SBM algebras from A satisfies

condition (1). If the operation a · x is surjective for some a, then a ≤ x for all

x ∈ B. Therefore the only case when condition (2) is not satisfied is when B has

a minimal element. Finally, condition (3) is satisfied whenever B is not a Mal’tsev

algebra. Therefore, choosing B to be a maximal (in terms of cardinality) algebra

from A satisfying conditions (1)–(3) we may only consider instances of CSP(A),
in which every domain has a minimal element or is a Mal’tsev algebra.
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Corollary 12 Every instance P ∈ CSP(A) can be reduced in polynomial time to

polynomially many instances over algebras each of which either is Mal’tsev or has

a minimal element.

Throughout the rest of the paper A is a finite class of finite SBM algebras closed

under taking subalgebras, quotient algebras, and retracts through unary idempotent

polynomials.

5 Separating congruences

In this section we develop a method that will lead to some way to decompose

CSPs over SBM algebras. First, we introduce and study the notion of separation of

prime intervals. LetR be a subdirect product of A1×· · ·×An and α, β ∈ Con(Ai),
γ, δ ∈ Con(Aj), for some i, j ∈ [n], such that α ≺ β, γ ≺ δ. Recall that interval

(α, β) can be separated from (γ, δ) if there is a unary polynomial f of R such that

fi(β) 6⊆ α while fj(δ) ⊆ γ. If f satisfies this property we will also say that f

separates (α, β) from (γ, δ). In the definition above it is possible that i = j or

that n = 1; in this cases the argument in some proofs may be slightly different.

To avoid such complications we will always assume that i 6= j, as the following

lemma allows us to do.

Lemma 13 Let Q be the binary equality relation on A. Prime interval (α, β),
α ≺ β ≤ θA, can be separated from (γ, δ), γ ≺ δ ≤ θA, as intervals in Con(A) if

and only if (α, β) can be separated from (γ, δ) inQ (as intervals in the congruence

lattices of the factors of a binary relation).

Proof: Note that for any polynomial f of Q its action on the first and second

factors of Q is the same polynomial of A. By definition α ≺ β can be separated

from γ ≺ δ in Con(A) if and only if there is a unary polynomial f of A, f(β) 6⊆ α
while f(δ) ⊆ γ. This condition can be expressed as follows: there is a unary

polynomial f of Q, f1(β) 6⊆ α while f2(δ) ⊆ γ, which precisely means that (α, β)
can be separated from (γ, δ) in Q ✷

In Section 5.1 we study the sets of intervals that cannot be separated from each

other. These sets will later give us some sort of decomposition of CSP instances.

Collapsing polynomials introduced in Section 5.2 yeild one of the main ingredients

of the solution algorithm. Section 5.3 provides a sufficient condition for separation

of intervals and a related notion of decomposition, which is the second ingredient.
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5.1 Basic properties of separation

Let again R be a subdirect product of SBM algebras A1 × . . .×An, i, j ∈ [n], and

α, β ∈ Con(Ai), γ, δ ∈ Con(Aj) with α ≺ β ≤ θi, γ ≺ δ ≤ θj .
First, we show that separating polynomials can be chosen to satisfy certain

simple conditions.

Lemma 14 If (α, β) can be separated from (γ, δ) then there is a polynomial f that

separates (α, β) from (γ, δ) and such that fℓ(Aℓ) ⊆ max(Aℓ) for every ℓ ∈ [n].

Proof: Let g separate (α, β) from (γ, δ). Choose a tuple a ∈ max(R) and

consider the polynomial f(x) = g(x) ·a. As is easily seen, fℓ(Aℓ) ⊆ max(Aℓ) for

ℓ ∈ [n]. Since gj(δ) ⊆ γ, we have fj(δ) ⊆ γ. Finally, take a, b ∈ max(Ai)∩gi(Ai)
with (a, b) ∈ β − α and a′, b′ ∈ max(Ai) such that gi(a

′) = a, gi(b
′) = b. By

Lemma 6(4) and Lemma 10 such elements exist, because gi(β) 6⊆ α and all the

nontrivial (that is, different from an α-block) βi-blocks are inside max(Ai). Then

fi(a
′) = gi(a

′)a[i] = aa[i] = a 6= b = ba[i] = gi(b
′)a[i] = fi(b

′).

✷

From now on we assume that all polynomials separating intervals satisfy the

conditions of Lemma 14.

Lemma 15 If (α, β) can be separated from (γ, δ) then, for any (α, β)-minimal

set U , there is an idempotent unary polynomial g such that gi(Ai) = U , and g

separates (α, β) from (γ, δ).

Proof: Let f separate (α, β) from (γ, δ). Then by Lemma 6(4) fi(Ai) contains

an (α, β)-minimal set U ′, and there is an idempotent polynomial hi with hi(Ai) =
U ′. The polynomial hi can be extended to a polynomial h of R. Then f ′ = h ◦ f
separates (α, β) from (γ, δ) and f ′i(Ai) = U ′.

By Lemma 6(2) there is an (α, β)-minimal set U ′′ with f ′i(U
′′) = U ′ and an

idempotent polynomial h′i with h′i(U
′) = U ′′. As above, the polynomial h′i can

be extended to a polynomial h′ of R. For a certain k, (f ′ ◦ h′)k is idempotent,

separates i from j, and (f ′i ◦ h
′
i)
k(Ai) = U ′′. Now the lemma follows easily from

Lemma 6(1). ✷

Let IR be the set of triples (i, α, β) such that i ∈ [n], α, β ∈ Con(Ai) and

α ≺ β ≤ θi. The relation ‘cannot be separated in R’ on IR is clearly reflexive and

transitive. Now, we prove it is also symmetric

Lemma 16 If (α, β) can be separated from (γ, δ) then (γ, δ) can be separated

from (α, β).
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Proof: Let U1, . . . , Uk be all the (α, β)-minimal sets. By Lemma 15, for every

Uℓ, there is an idempotent unary polynomial g(ℓ) separating (α, β) from (γ, δ) and

such that g
(ℓ)
i (Ai) = Uℓ. Take a δ-block B that contains more than one γ-block,

a tuple a ∈ R such that a[j] ∈ B, and set a(ℓ) = g(ℓ)(a). By Lemmas 10 and 14

a(1), . . . ,a(k) ∈ max(R) and U1, . . . , Uk ⊆ max(Ai), and B ⊆ max(Aj). The

operation h(ℓ)(x) = m(x,g(ℓ)(x),a(ℓ)) satisfies the conditions

• h
(ℓ)
i (x) = m(x, g

(ℓ)
i (x),a(ℓ)[i]) = m(x, x,a(ℓ)[i]) = a(ℓ)[i] for all x ∈ Uℓ;

• h
(ℓ)
j (x) = m(x, g

(ℓ)
j (x),a(ℓ)[j])

αj

≡ m(x,a(ℓ)[j],a(ℓ)[j]) = x for all x ∈ B;

• h(ℓ)(R) ⊆ max(R).

We are going to compose the polynomials h(ℓ) such that the composition collapses

β. To this end take a sequence 1 = ℓ1, ℓ2, . . . such that Uℓ2 is a subset of the range

of h
(1)

= h
(ℓ1)
i , and, for s > 2, Uℓs is a subset of the range of h

(s−1)
= h

(ℓs−1)
i ◦

. . . ◦ h
(ℓ1)
i . Since |h

(s)
(Ai)| < |h

(s−1)
(Ai)|, there is r such that |h

(r)
(Ai)| contains

no (α, β)-minimal sets. Therefore, setting h(x) = h(ℓr)(h(ℓr−1)(. . .h(ℓ1)(x) . . .))
we have that hi collapses all the (α, β)-minimal sets, and hj acts identically on

B/αj
. Thus, h separates (γ, δ) from (α, β). ✷

Lemma 16 together with the observation before it shows that the relation ‘can-

not be separated’ is an equivalence relation on I .

5.2 Collapsing polynomials

Intuitively, a collapsing polynomial for some prime interval α ≺ β in an algebra

or a subdirect product of algebras is a polynomial that collapses all prime intervals

that can be separated from α ≺ β and only such prime intervals.

LetR be a subdirect product of SBM algebras A1×· · ·×An, and (i, α, β) ∈ IR.

A unary idempotent polynomial f of R is called (α, β)-collapsing if the following

conditions hold:

(C1) for any (j, γ, δ) ∈ IR, it holds fj(δ) ⊆ γ, unless (α, β) and (γ, δ) cannot be

separated;

(C2) for any (j, γ, δ) ∈ IR such that (α, β), (γ, δ) cannot be separated, the set

fj(Aj) is a (γ, δ)-minimal set.

First, we show that (α, β)-collapsing polynomials exist even if we impose some

additional requirements.
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Lemma 17 Let R be a subdirect product of SBM algebras A1 × · · · × An and

(i, α, β) ∈ IR, and let a ∈ R be such that a[i] belongs to a β-block containing

more than one α-block and b ∈ Ai with (a[i], b) ∈ β − α. Then there is an (α, β)-

collapsing polynomial f of R such that f(a) = a and fi(b)
α
≡ b.

Proof: First, we find an (α, β)-collapsible polynomial. For every (j, γ, δ) ∈
IR such that (α, β) can be separated from (γ, δ) there is an idempotent polynomial

gjγδ such that gjγδj (δ) ⊆ γ, but gjγδi (β) 6⊆ α. Moreover, we may assume by

Lemma 15 that for every gjγδ, gjγδi (Ai) = U for the same (α, β)-minimal set U .

Composing all such polynomials we obtain a polynomial h such that hi(Ai) =
U , and so hi(β) 6⊆ α, and hj(δ) ⊆ γ for any j, γ, δ as above. By iterating h

can be assumed idempotent. Choose h to have the smallest image among unary

idempotent polynomials such that hi(Ai) is an (α, β)-minimal set and hj(δ) ⊆ γ
for any (j, γ, δ) ∈ IR such that (α, β) can be separated from (γ, δ).

Suppose now that for some (j, γ, δ) ∈ IR such that the interval (α, β) cannot

be separated from (γ, δ) the set U ′ = hj(Aj) is not a (γ, δ)-minimal set. Then,

since hj(δ) 6⊆ γ, the set U ′ contains a (γ, δ)-minimal set U ′′ by Lemma 6(4). Let

g be an idempotent polynomial of Aj with g(Aj) = U ′′ and g its extension to a

polynomial of R. Then h′ = g ◦ h satisfies the following conditions:

– h′j(Aj) = U ′′ and h′j(δ) 6⊆ γ;

– h′i(β) 6⊆ α, because (α, β) cannot be separated from (γ, δ);

– |h′(R)| < |h(R)|.

Iterating h′ it can be assumed idempotent. Then the last property contradicts the

choice of h. Therefore h is (α, β)-collapsing.

Let αi = α, βi = β, and for j ∈ [n] − {i} let αj = βj = θj . It is not hard

to see that α � β. Indeed, suppose η ∈ Con(R) is such that α < η ≤ β and let

i = n. Then there are (c, c), (d, d) ∈ R such that 〈(c, c), (d, d)〉 ∈ η such that

〈c,d〉 ∈ α[n−1] and 〈c, d〉 ∈ β − α. We show that for any 〈(c′, c′), (d′, d′)〉 ∈ β
we have 〈(c′, c′), (d′, d′)〉 ∈ η. In fact, by Proposition 5 it suffices to show that

〈(c′′, c′′), (d′′, d′′)〉 ∈ η for some c′′,d′′ ∈ pr[n−1]R
′ where R′ = max(R) and

〈c′′,d′′〉 ∈ α[n−1], and some c′′, d′′ ∈ max(An) with c′′
α
≡ c′, d′′

α
≡ d′. Since

R′ is a Mal’tsev algebra by Lemma 7 applied to conguences α ≺ β there is a

polynomial f of R such that c′′ = fn(c)
α
≡ c′, d′′ = fn(d)

α
≡ d′ and f(R) ⊆ R′.

Let c′′ = f[n−1](c),d
′′ = f[n−1](d). Then 〈(c′′, c′′), (d′′, d′′)〉 ∈ η. Also, since

β 6= α, we have α ≺ β.

By Lemma 7 there is an (α, β)-minimal set U such that a[i]α∩U, bα∩U 6= ∅.

Moreover, an (α, β)-collapsing polynomial h can be chosen such that hi(Ai) = U .

Then set f(x) = m(h(x),h(a),a). For the polynomial f we have:
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– f(a) = m(h(a),h(a),a) = a;

– c = fi(b) = m(hi(b), hi(a[i]),a[i])
α
≡ m(hi(b),a[i],a[i]) = hi(b)

α
≡ b, be-

cause, since h is idempotent, hi(a[i])
α
≡ a[i] and hi(b)

α
≡ b;

– for any (j, γ, δ) ∈ IR such that and (α, β), (γ, δ) can be separated, fj(δ) ⊆ γ.

By iterating f we obtain an idempotent polynomial f ′ that satisfies all the conditions

above. Indeed, the first and third conditions are straightforward, while the second

one follows from the equality fi(c)
α
≡ c. Finally, for any (j, γ, δ) ∈ IR such that

(α, β), (γ, δ) cannot be separated we have f ′j(δ) 6⊆ γ, because f ′i(β) 6⊆ α. Also,

f ′j(Aj) is a (γ, δ)-minimal set, because hj(Aj) is a one.

Thus, f ′ satisfies all the required conditions. The lemma is proved. ✷

5.3 Splits and alignments

In this section we present a sufficient condition for two prime intervals to be sepa-

rated. As we shall see using this condition certain projections of a relation can be

partitioned into a small number of subdirect products of smaller algebras.

Let R be a subdirect product of A1×· · ·×An, αi, βi ∈ Con(Ai), i ∈ [n], such

that αi ≺ βi ≤ θAi
. An element a ∈ Ai, i ∈ [n], is called αiβi-split if there is a

βi-block B and b, c ∈ B such that ab 6
αi
≡ ac. Note that no element from max(Ai) is

αiβi-split, while the minimal element is αiβi-split. We say that i, j ∈ [n] are not

αβ-aligned if there is a ∈ R such that a[i] is not αiβi-split and a[j] is αjβj-split,

or the other way round.

Lemma 18 If i, j are not αβ-aligned then (αi, βi) can be separated from (αj , βj).

Proof: It suffices to consider the case n = 2, i = 1, j = 2. Let (a, b) ∈ R be

such that a is αiβi-split, while b is not αjβj-split. Let also (c, d) ∈ R′ = max(R).
Consider operation f((x1, x2)) = (a, b) ·((x1, x2) ·(c, d)). We claim that f1(β1) 6⊆
α1 while f2(β2) ⊆ α2.

First, observe that all the values of the operation g((x1, x2)) = (x1, x2) · (c, d)
belong to max(R), and g((x1, x2)) = (x1, x2) for any (x1, x2) ∈ max(R). Then,

for any β2-block B2 and any a′, b′ ∈ B2 we have f2(a
′) = b(a′d)

α2

≡ b(b′d) =
f2(b

′), as b is not α2β2-split. Thus f2(β2) ⊆ α2. On the other hand, since a is

α1β1-split, there is a β1-block B1 and a′′, b′′ ∈ B1 such that f1(a
′′) = a(a′′c) =

aa′′ 6
α1

≡ ab′′ = a(b′′c) = f1(b
′′). The second and the second last equalities hold

because, as β1 ⊆ θ1 and B1 is a nontrivial β1-block, we have B1 ⊆ max(A1).
Therefore f1(β1) 6⊆ α1. ✷

19



6 From relations to instances

Here we apply the results of the previous section to CSP instances. In particular,

we introduce coherent sets of an instance and show that if an instance has solutions

on every coherent set, which are consistent in some weak sense, then the entire

instance has a solution.

Let P = (V,A, C) be a 3-minimal instance of CSP(A). We assume that the

domain Av of each variable v ∈ V is the set of solutions Sv, and so the constraint

relations are subdirect products of the domains.

Since separation of prime intervals depends only on binary projections of a

relation, it can be defined for 3-minimal instances as well. More precisely, let IP
(or just I if P is clear from the context) be the set of all triples (v, α, β), where

v ∈ V , α, β ∈ Con(Av) are such that α ≺ β ≤ θv. Let (v, α, β), (w, γ, δ) ∈ I;

we say that (α, β) cannot separated from (γ, δ) if this is the case for Svw. Due to

3-minimality — we can consider sets of solutions on 3 variables — this relation is

transitive. It is also reflexive and symmetric by Lemma 16.

Next we define two partitions of a CSP instance P. The first one, link partition

allows us to reduce solving subinstances of P to instances over smaller domains.

The second one provides a sufficient condition to have a link partition and is defined

through alignment properties.

Let again P = (V,A, C) be a 3-minimal instance of CSP(A). Partitions Av1 ∪
. . . ∪ Avkv = Av for v ∈ V are called a link partition if the following condition

holds:

• For any v,w ∈ V , kv = kw, and there is a bijection ϕvw : [kv] → [kw]
such that for any (a, b) ∈ Svw and any j ∈ [kv ], a ∈ Avj if and only if

b ∈ Awϕvw(j).

Observe that, since P is 3-minimal, the mappings ϕvw are consistent, that is,

for any u, v, w ∈ V it holds that ϕvw ◦ ϕuv = ϕuw. Without loss of generality we

will assume that ϕvw is an identity mapping.

As is easily seen the partition Av1 ∪ . . . ∪Avkv = Av defines a congruence of

Av. In particular, each of Avi is a subalgebra of Av.

Let αv, βv ∈ Con(Av) for v ∈ V be such that αv ≺ βv ≤ θv. Variables

v,w ∈ V are αβ-aligned if they are αβ-aligned in Svw. In the following lemma

we assume that every domain Av of P either has a minimal element, or σAv is the

full congruence, and so Av is a Mal’tsev algebra.

Lemma 19 (1) If variables v,w ∈ V of an instance P = (V,A, C) are αβ-aligned

and Av has a minimal element then Aw also has a minimal element.

(2) If every domain of an instance P = (V,A, C) has a minimal element and any

two variables v,w ∈ V are αβ-aligned, then P has a link partition.
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Proof: For every v ∈ V let Lv denote the set of αvβv-split elements of Av

and let Nv denote the set of αvβv-non-split elements. As we observed before

Lemma 18, both sets are nonempty if Av has a minimal element, and Lv = ∅ if

Av is a Mal’tsev algebra.

(1) If Aw is a Mal’tsev algebra then v,w cannot be αβ-aligned since Lw = ∅,

while Lv, Nv 6= ∅, and Svw is a subdirect product.

(2) For any v,w ∈ V and any pair (a, b) ∈ Svw, a ∈ Lv if and only if b ∈ Lw.

Therefore Svw is link-partitioned, as well as R for any constraint C = 〈s, R〉 ∈ C.

✷

7 The algorithm

In the first part of this section we introduce the property of block-minimality,

the key property of CSP instances for our algorithm. We also prove that block-

minimality can be efficiently established. Then in the second part we show that

block-minimality is sufficient for the existence of a solution, Theorem 21, which is

the main result of this section, and provides a polynomial time algorithm for CSPs

over SBM algebras.

7.1 Block-minimality

Let P = (V,A, C) be a 3-minimal instance such that for every its domain Av either

σAv is the full congruence, and so Av is a Mal’tsev algebra with Mal’tsev operation

m, or Av has a minimal element.

Recall that IP or just I denotes the set of all triples (v, α, β), where v ∈ V ,

α, β ∈ Con(Av) are such that α ≺ β ≤ θv. For a triple (v, α, β) ∈ I by I(v, α, β)
we denote the set of all triples (w, γ, δ) ∈ I such that (α, β) cannot be separated

from (γ, δ). Also, by Wvαβ we denote the set {w | (w, γ, δ) ∈ I(v, α, β)}. Sets

of the form Wvαβ are called coherent sets.

Instance P is said to be block-minimal if for any (v, α, β) ∈ I the instance

PWvαβ
is minimal.

In the next section we prove, Theorem 21, that every block-minimal instance

has a solution. To show that Theorem 21 gives rise to a polynomial-time algorithm

for CSP(A) we need to show how block-minimality can be established. We prove

that establishing block-minimality can be reduced to solving polynomially many

smaller instances of CSP(A).

Proposition 20 Transforming an instance P = (V,A, C) ∈ CSP(A) to a block-

minimal instance can be reduced to solving polynomially many instances P ′ =
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(V ′,A′, C′) ∈ CSP(A) such that V ′ ⊆ V and either A′
v is a Mal’tsev algebra for

all v ∈ V ′, or |A′
v| < |Av| for all v ∈ V ′.

Since the cardinalities of algebras in A are bounded, the depth of recursion

when establishing block-minimality is also bounded. Therefore, together with The-

orem 21 this proposition gives a polynomial time algorithm for CSP(A).
Proof: Using the standard propagation algorithm and Maroti’s reduction (Sec-

tion 4.3) we may assume that P is 3-minimal and every Av is either Mal’tsev

or has a minimal element. Take (v, α, β) ∈ I as in the definition of block-

minimality. We need to show how to make problems PWvαβ
minimal. If every

Aw for w ∈ Wvαβ is Mal’tsev, PWvαβ
can be made minimal using the algo-

rithm from [10]. If Aw has a minimal element for some w ∈ Wvαβ then set

αv = α, βv = β, and for each w ∈ Wvαβ choose αw, βw in such a way that

(w,αw, βw) ∈ I(v, α, β). Then by Lemma 19 and 18 PWvαβ
is link partitioned,

that is, it is a disjoint union of instances P1∪· · ·∪Pm, where Pi = (Wvαβ ,A
i, Ci)

are such that Aw = A
1
w ∪ · · · ∪ A

m
w is a disjoint union. We then transform them to

minimal instances separately.

If at any stage there is a tuple from a constraint relation that does not extend

to a solution of a certain subinstance, we tighten the original problem P and start

all over again. Observing that the set tuples from a constraint relation that can

be extended to a solution of the subinstance is a subalgebra, the resulting instance

belongs to CSP(A) as well. ✷

7.2 Block-minimality and solutions of the CSP

We now prove that block-minimality is a sufficient condition to have a solution.

Theorem 21 Every block-minimal instance P ∈ CSP(A) with nonempty con-

straint relations has a solution.

Proof: Let P = (V,A, C) be a 3-minimal and block-minimal instance from

CSP(A), and such that every domain Av is either a Mal’tsev algebra or has a

minimal element. We make use of the following construction. Let γv ∈ Con(Av),
γv ≤ θv for v ∈ V . A collection of mappings M = {ϕvαβ | (v, α, β) ∈ I} is

called an γ-ensemble for P if

(1) for every (v, α, β) ∈ I the mapping ϕvαβ is a solution of PWvαβ
; and

(2) for every (v, α, β), (w, γ, δ) ∈ I , and any u ∈ Wvαβ ∩ Wwγδ, it holds

ϕvαβ(u)
γu
≡ ϕwγδ(u);
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(3) for any C = 〈s, R〉 ∈ C the tuple a where a[u] = ϕvαβ/γv for u ∈ s and any

(v, α, β) ∈ I with u ∈Wvαβ , belongs to R/γ
s

.

We prove that for any γv ∈ Con(Av), γv ≤ θv for v ∈ V the instance P has a

γ-ensemble.

If γv = θv for each v ∈ V then any collection of solutions ϕvαβ of PWvαβ

such that ϕvαβ(u) ∈ max(Au) for all (v, α, β) ∈ I , and u ∈ Wvαβ , satisfies the

conditions of a γ-ensemble. Moreover by the block-minimality of P such solutions

exist.

If γv = 0v for v ∈ V then for any (v, α, β), (w, γ, δ) ∈ I condition (2) implies

ϕvαβ(u) = ϕwγδ(u) for u ∈ Wvαβ ∩Wwγδ. Let us denote this value by ψ(u).
Then condition (3) implies that ψ is a solution of P.

Finally, the inductive step follows from Lemma 22. ✷

Lemma 22 Let P = (V,A, C) ∈ CSP(A) be a 3-minimal and block-minimal

instance such that every Av, v ∈ V , either is Mal’tsev or has a minimal element.

Let v ∈ V and βw, γw ∈ Con(Aw), w ∈ V , be such that βw � γw ≤ θw, βv ≺ γv
and βw = γw for w 6= v. If there is a γ-ensemble for P then there is a β-ensemble

for P.

Proof: Let M = {ϕwγδ | (w, γ, δ) ∈ I} be a γ-ensemble and ξ(u) =
ϕwγδ(u)

γu for u ∈ Wwγδ. By condition (2) for γ-ensembles this definition is

consistent. If ξ(v) is a γv-block that is equal to an βv-block, then M is also a

β-ensemble, and there is nothing to prove.

Otherwise let B be the βv-block containing ϕvαβ(v). We show that for every

(w, γ, δ) ∈ I with v ∈Wwγδ a solution ϕ′
wγδ can be found such that ϕ′

wγδ(v) ∈ B

and ϕ′
wγδ(u)

γu
≡ ϕwγδ(u). Then, setting ϕ′

wγδ = ϕwγδ for (w, γ, δ) ∈ I such

that v 6∈ Wwγδ and M′ = {ϕ′
wγδ | (w, γ, δ) ∈ I} we conclude that M′ is a

β-ensemble.

Let (w, γ, δ) ∈ I be such that v ∈ Wwγδ, and let W = Wvαβ , U = Wwγδ,

ϕ = ϕvαβW∩U, ψ = ϕwγδ. Note that in this notation SW , SU , and SW∩U are the

sets of solutions of PWvαβ
, PWwγδ

, and PWvαβ∩Wwγδ
. It will often be convenient

for us to treat these sets as relations rather than sets of solutions of a CSP. Then

prW∩USW ,prW∩USU ⊆ SW∩U , and so ϕ,prW∩Uψ ∈ SW∩U .

Let f be a (βv , γv)-collapsing polynomial of SU . By Lemma 17 it can be

selected such that ψ ∈ f(SU ) and B ∩ fv(Av) 6= ∅. Let π = fW∩U (ϕ). We show

that the mapping ϕ′ onU given by ϕ′(u) = π(u) for u ∈W∩U , and ϕ′(u) = ψ(u)
for u ∈ U −W is a solution from SU . Since ϕ(v) ∈ B and B ∩ fv(Av) 6= ∅, that

is, fv(B) ⊆ B as f is idempotent, we have π(v) = fv(ϕ(v)) ∈ B. Also, as for
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every u ∈ (W ∩ U)− {v}, we have

ϕ′(u) = π(u) = fu(ϕ(u))
βu

≡ fu(ψ(u)) = ψ(u).

Therefore, ϕ′ satisfies condition (2) of β-ensembles for w, j.
Now we prove that ϕ′ is a solution from SU . Let C = 〈s, R〉 be a constraint

from PU , W ′ = s ∩W and a = prW ′ϕ. Then, since ϕ is a solution from SW∩U ,

there is b ∈ R with a = prW ′b. Let c = fs(b), clearly, c ∈ R. For the tuple c we

have:

– c[u] = fu(a[u]) = fu(ϕ(u)) = ϕ′(u) for u ∈W ′;

– c[u] = fu(b[u]) = ψ(u) for u ∈ s−W ′, because in this case fu(θu) ⊆ 0u, and

therefore, as fu(ψ(u)) = ψ(u), we have fu(max(Au)) = {ψ(u)}.

Thus, c = pr
s
ϕ′, and thus ϕ′ is a solution from SW∩U .

So far we have defined mappings ϕ′
wγδ, proved that they are solutions of the

respective subinstances, that is, condition (1), and that they are consistent modulo

β, that is, condition (2). It remains to verify condition (3). Let C = 〈s, R〉 ∈ C
and ξ(u) = ϕwγδ(u)

βu , ξ′(u) = ϕ′
wγδ(u)

βu for u ∈ V and any (w, γ, δ) ∈ I , such

that u ∈Wwγδ. We need to show that pr
s
ξ′ ∈ R′ = R/β

s

.

We use a simplified version of the argument above. Let W ′ = W ∩ s. If

v 6∈ s, the result follows from condition (3) for γ. Suppose v ∈ W ′ and let f be

a (βv, γv)-collapsing polynomial of R′. Also, let a = pr
s
ξ, b′ = prW∩sϕ/βW∩s

,

where ϕ = ϕvαβ as before, and b ∈ R′ such that b′ = prW∩sb. By Lemma 17 f

can be selected such that a ∈ f(R′) and b[v] ∈ fv(Av/βv
). Let c = fW∩U (b). We

have

– c[v] = b′[v];

– c[u] = fu(b
′[u]) = f ′u(a[u]) = a[u] for u ∈W ′−{u}, as ϕ(u) ∈ ξ(u) = ξ′(u);

– c[u] = fu(b[u]) = fu(a[u]) = a[u] for u ∈ s−W ′, as in this case fu(θu) ⊆ βu,

and therefore, since fu(a[u]) = a[u], we have fu(max(Au/βu
)) = {b[u]}.

Therefore c ∈ R′, and as c = pr
a
ξ′, the result follows. ✷
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[25] Petar Marković. The complexity of CSPs on a 4-element set. Personal com-

munication, 2011.
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