
Logical Methods in Computer Science
Volume 16, Issue 1, 2020, pp. 9:1–9:42
https://lmcs.episciences.org/

Submitted May 09, 2018
Published Feb. 10, 2020

DESCRIPTIVE COMPLEXITY FOR COUNTING COMPLEXITY

CLASSES

MARCELO ARENAS, MARTIN MUÑOZ, AND CRISTIAN RIVEROS

Pontificia Universidad Católica de Chile & IMFD Chile
e-mail address: marenas@ing.puc.cl
e-mail address: mmunos@uc.cl
e-mail address: cristian.riveros@uc.cl

Abstract. Descriptive Complexity has been very successful in characterizing complexity
classes of decision problems in terms of the properties definable in some logics. However,
descriptive complexity for counting complexity classes, such as FP and #P, has not been
systematically studied, and it is not as developed as its decision counterpart. In this paper,
we propose a framework based on Weighted Logics to address this issue. Specifically, by
focusing on the natural numbers we obtain a logic called Quantitative Second Order Logics
(QSO), and show how some of its fragments can be used to capture fundamental counting
complexity classes such as FP, #P and FPSPACE, among others. We also use QSO to
define a hierarchy inside #P, identifying counting complexity classes with good closure
and approximation properties, and which admit natural complete problems. Finally, we
add recursion to QSO, and show how this extension naturally captures lower counting
complexity classes such as #L.

1. Introduction

The goal of descriptive complexity is to measure the complexity of a problem in terms of
the logical constructors needed to express it [Imm99]. The starting point of this branch of
complexity theory is Fagin’s theorem [Fag75], which states that NP is equal to existential
second-order logic. Since then, many more complexity classes have been characterized in
terms of logics (see [Grä07] for a survey) and descriptive complexity has found a variety of
applications in different areas [Imm99,Lib04]. For instance, Fagin’s theorem was the key
ingredient to define the class MaxSNP [PY91], which was later shown to be a fundamental
class in the study of hardness of approximation [ALM`98]. It is important to mention
here that the definition of MaxSNP would not have been possible without the machine-
independent point of view of descriptive complexity, as pointed out in [PY91].

Counting problems differ from decision problems in that the value of a function has to be
computed. More generally, a counting problem corresponds to computing a function f from

2012 ACM CCS: [Theory of computation]: Logic—Finite Model Theory [Theory of computa-
tion]: Computational complexity and cryptography—Complexity classes.

Key words and phrases: Function complexity classes, descriptive complexity.

LOGICAL METHODSl IN COMPUTER SCIENCE DOI:10.23638/LMCS-16(1:9)2020
c© M. Arenas, M. Munoz, and C. Riveros
CC© Creative Commons

https://lmcs.episciences.org/
http://creativecommons.org/about/licenses

9:2 M. Arenas, M. Munoz, and C. Riveros Vol. 16:1

a set of instances (e.g. graphs, formulae, etc) to natural numbers.1 The study of counting
problems has given rise to a rich theory of counting complexity classes [HV95,For97,AB09].
Some of these classes are natural counterparts of some classes of decision problems; for
example, FP is the class of all functions that can be computed in polynomial time, the
natural counterpart of P. However, other function complexity classes have emerged from
the need to prove that some functions are difficult to compute, even though their decision
counterparts can be solved efficiently. This is the case of the class #P, a counting complexity
class introduced in [Val79a] to prove that natural problems like counting the number of
satisfying assignments of a propositional formula in DNF or the number of perfect matchings
of a bipartite graph [Val79a] are difficult, namely, #P-complete, even though their decision
counterparts can be solved in polynomial time. Starting from #P, many more natural
counting complexity classes have been defined, such as #L, SpanP and GapP [HV95,For97].

Although counting problems play a prominent role in computational complexity, descrip-
tive complexity for this type of problems has not been systematically studied and it is not as
developed as for the case of decision problems. Insightful characterizations of #P and some
of its extensions have been provided [SST95,CG96]. However, these characterizations do not
define function problems in terms of a logic, but instead in terms of some counting problems
associated to a logic like FO. Thus, it is not clear how these characterizations can be used
to provide a general descriptive complexity framework for counting complexity classes like
FP and FPSPACE (the class of functions computable in polynomial space).

In this paper, we propose to study the descriptive complexity of counting complexity
classes in terms of Weighted Logics (WL) [DG07], a general logical framework that com-
bines Boolean formulae (e.g. in FO or SO) with operations over a fixed semiring (e.g. N).
Specifically, we propose to restrict WL to the natural numbers as a fixed semiring, calling
this restriction Quantitative Second Order Logics (QSO), and study its expressive power
for defining counting complexity classes over ordered structures. As a proof of concept, we
show that natural syntactical fragments of QSO capture counting complexity classes like
#P, SpanP, FP and FPSPACE. Furthermore, by slightly extending the framework we
can prove that QSO can also capture classes like GapP and OptP, showing the robustness
of our approach.

The next step is to use the machine-independent point of view of QSO to search for
subclasses of #P with some fundamental properties. The question here is, what properties
are desirable for a subclass of #P? First, it is desirable to have a class of counting problems
whose associated decision versions are tractable, in the sense that one can decide in polynomial
time whether the value of the function is greater than 0. In fact, this requirement is crucial
in order to find efficient approximation algorithms for a given function (see Section 5).
Second, we expect that the class is closed under basic arithmetical operations like sum,
multiplication and subtraction by one. This is a common topic for counting complexity
classes; for example, it is known that #P is not closed under subtraction by one (under
some complexity-theoretical assumption). Finally, we want a class with natural complete
problems, which characterize all problems in it.

In this paper, we give the first results towards defining subclasses of #P that are
robust in terms of existence of efficient approximations, having good closure properties, and
existence of natural complete problems. Specifically, we introduce a syntactic hierarchy

1This value is usually associated to counting the number of solutions in a search problem, but here we
consider a more general definition.

Vol. 16:1 DESCRIPTIVE COMPLEXITY FOR COUNTING COMPLEXITY CLASSES 9:3

inside #P, called ΣQSOpFOq-hierarchy, and we show that it is closely related to the FO-
hierarchy introduced in [SST95]. Looking inside the ΣQSOpFOq-hierarchy, we propose the
class ΣQSOpΣ1[FO]q and show that every function in it has a tractable associated decision
version, and it is closed under sum, multiplication, and subtraction by one. Unfortunately, it
is not clear whether this class admits a natural complete problem. Thus, we also introduce a
Horn-style syntactic class, inspired by [Grä92], that has tractable associated decision versions
and a natural complete problem.

After studying the structure of #P, we move beyond QSO by introducing new quantifiers.
By adding variables for functions on top of QSO, we introduce a quantitative least fixed
point operator to the logic. Adding finite recursion to a numerical setting is subtle since
functions over natural numbers can easily diverge without finding any fixed point. By using
the support of the functions, we give a natural halting condition that generalizes the least
fixed point operator of Boolean logics. Then, with a quantitative recursion at hand we show
how to capture FP from a different perspective and, moreover, how to restrict recursion to
capture lower complexity classes such as #L, the counting version of NL.

It is important to mention that this paper is an extension of the conference article
[AMR17]. In this version, we have included the complete proofs of all the results in the paper,
paying special attention in showing the main techniques used to establish them. Besides, we
have simplified some of the terminology used in [AMR17], with the goal of presenting the
main notions studied in the paper in a simple way.

Organization. The main terminology used in the paper is given in Section 2. Then the
logical framework is introduced in Section 3, and it is used to capture standard counting
complexity classes in Section 4. The structure of #P is studied in Section 5. Section 6 is
devoted to define recursion in QSO, and to show how to capture classes below FP. Finally,
we give some concluding remarks in Section 7.

2. Preliminaries

2.1. Second-order logic, LFP and PFP. A relational signature R (or just signature) is
a finite set tR1, . . . , Rku, where each Ri (1 ď i ď k) is a relation name with an associated
arity greater than 0, which is denoted by aritypRiq. A finite structure over R (or just finite

R-structure) is a tuple A “ xA,RA
1 , . . . , R

A
k y such that A is a finite set and RA

i Ď AaritypRiq

for every i P t1, . . . , ku. Further, an R-structure A is said to be ordered if ă is a binary
predicate name in R and ăA is a linear order on A. We denote by OrdStructrRs the class
of all finite ordered R-structures. In this paper we only consider finite ordered structures,
so we will usually omit the words finite and ordered when referring to them.

From now on, assume given disjoint infinite sets FV and SV of first-order variables
and second-order variables, respectively. Notice that every variable in SV has an associated
arity, which is denoted by aritypXq. Then given a signature R, the set of second-order logic
formulae (SO-formulae) over R is given by the following grammar:

ϕ :“ x “ y | Rpūq | J | Xpv̄q | ϕ | pϕ_ ϕq | Dx. ϕ | DX. ϕ

where x, y P FV, R P R, ū is a tuple of (not necessarily distinct) variables from FV whose
length is aritypRq, J is a reserved symbol to represent a tautology, X P SV, v̄ is a tuple of
(not necessarily distinct) variables from FV whose length is aritypXq, and x P FV.

9:4 M. Arenas, M. Munoz, and C. Riveros Vol. 16:1

We assume that the reader is familiar with the semantics of SO, so we only introduce
here some notation that will be used in this paper. Given a signature R and an R-structure
A with domain A, a first-order assignment v for A is a total function from FV to A, while a
second-order assignment V for A is a total function with domain SV that maps each X P SV
to a subset of AaritypXq. Moreover, given a first-order assignment v for A, x P FV and a P A,
we denote by vra{xs a first-order assignment such that vra{xspxq “ a and vra{xspyq “ vpyq
for every y P FV distinct from x. Similarly, given a second-order assignment V for A,
X P SV and B Ď AaritypXq, we denote by V rB{Xs a second-order assignment such that
V rB{XspXq “ B and V rB{XspY q “ V pY q for every Y P SV distinct from X. We use
notation pA, v, V q |ù ϕ to indicate that structure A satisfies ϕ under v and V .

In this paper, we consider several fragments or extensions of SO like first-order logic (FO),
least fixed point logic (LFP) and partial fixed point logic (PFP) [Lib04]. Moreover, for every
i P N, we consider the fragment Σi (resp., Πi) of FO, which is the set of FO-formulae of
the form Dx̄1@x̄2 ¨ ¨ ¨ Dx̄i´1@x̄i ψ (resp., @x̄1Dx̄2 ¨ ¨ ¨ @x̄i´1Dx̄i ψ) if i is even, and of the form
Dx̄1@x̄2 ¨ ¨ ¨ @x̄i´1Dx̄i ψ (resp., @x̄1Dx̄2 ¨ ¨ ¨ Dx̄i´1@x̄i ψ) if i is odd, where ψ is a quantifier-free
formula. Finally, we say that a fragment L1 is contained in a fragment L2, denoted by
L1 Ď L2, if for every formula ϕ in L1, there exists a formula ψ in L2 such that ϕ is logically
equivalent to ψ. Besides, we say that L1 is properly contained in L2, denoted by L1 Ĺ L2, if
L1 Ď L2 and L2 Ę L1.

2.2. Counting complexity classes. We consider several counting complexity classes in
this paper, some of them are recalled here (see [For97,HO13]). FP is the class of functions
f : Σ˚ Ñ N computable in polynomial time, while FPSPACE is the class of functions
f : Σ˚ Ñ N computable in polynomial space. Given a nondeterministic Turing Machine
(NTM) M , let #acceptM pxq be the number of accepting runs of M with input x. Then
#P is the class of functions f for which there exists a polynomial-time NTM M such that
fpxq “ #acceptM pxq for every input x, while #L is the class of functions f for which there
exists a logarithmic-space NTM M such that fpxq “ #acceptM pxq for every input x. Given
an NTM M with output tape, let #outputM pxq be the number of distinct outputs of M
with input x (notice that M produces an output if it halts in an accepting state). Then
SpanP is the class of functions f for which there exists a polynomial-time NTM M such
that fpxq “ #outputM pxq for every input x. Notice that #P Ď SpanP, and this inclusion
is believed to be strict.

3. A logic for quantitative functions

We introduce here the logical framework that we use for studying counting complexity classes.
This framework is based on the framework of Weighted Logics (WL) [DG07] that has been
used in the context of weighted automata for studying functions from words (or trees) to
semirings. We propose here to use the framework of WL over any relational structure and to
restrict the semiring to natural numbers. The extension to any relational structure will allow
us to study general counting complexity classes and the restriction to the natural numbers
will simplify the notation in this context (see Section 3.1 for a more detailed discussion).

Given a relational signature R, the set of Quantitative Second-Order logic formulae (or
just QSO-formulae) over R is given by the following grammar:

α :“ ϕ | s | pα` αq | pα ¨ αq | Σx. α | Πx. α | ΣX.α | ΠX.α (3.1)

Vol. 16:1 DESCRIPTIVE COMPLEXITY FOR COUNTING COMPLEXITY CLASSES 9:5

JϕKpA, v, V q “

#

1 if pA, v, V q |ù ϕ

0 otherwise

JsKpA, v, V q “ s

Jα1 ` α2KpA, v, V q “ Jα1KpA, v, V q ` Jα2KpA, v, V q

Jα1 ¨ α2KpA, v, V q “ Jα1KpA, v, V q ¨ Jα2KpA, v, V q

JΣx. αKpA, v, V q “
ÿ

aPA

JαKpA, vra{xs, V q

JΠx. αKpA, v, V q “
ź

aPA

JαKpA, vra{xs, V q

JΣX.αKpA, v, V q “
ÿ

BĎAaritypXq

JαKpA, v, V rB{Xsq

JΠX.αKpA, v, V q “
ź

BĎAaritypXq

JαKpA, v, V rB{Xsq

Table 1: The semantics of QSO formulae.

where ϕ is an SO-formula over R, s P N, x P FV and X P SV. Moreover, if R is not
mentioned, then QSO refers to the set of QSO formulae over all possible relational signatures.

The syntax of QSO formulae is divided in two levels. The first level is composed by
SO-formulae over R (called Boolean formulae) and the second level is made by counting
operators of addition and multiplication. For this reason, the quantifiers in SO (e.g. Dx
or DX) are called Boolean quantifiers and the quantifiers that make use of addition and
multiplication (e.g. Σx or ΠX) are called quantitative quantifiers. Furthermore, Σx and ΣX
are called first- and second-order sum, whereas Πx and ΠX are called first- and second-
order product, respectively. This separation between the Boolean and quantitative levels is
essential for understanding the difference between the logic and the quantitative parts of the
framework. Furthermore, this will later allow us to parametrize both levels of the logic in
order to capture different counting complexity classes.

Let R be a signature, A an R-structure with domain A, v a first-order assignment for
A and V a second-order assignment for A. Then the evaluation of a QSO-formula α over
pA, v, V q is defined as a function JαK that on input pA, v, V q returns a number in N. Formally,
the function JαK is recursively defined in Table 1. A QSO-formula α is said to be a sentence
if it does not have any free variable, that is, every variable in α is under the scope of a usual
quantifier or a quantitative quantifier. It is important to notice that if α is a QSO-sentence
over a signature R, then for every R-structure A, first-order assignments v1, v2 for A and
second-order assignments V1, V2 for A, it holds that JαKpA, v1, V1q “ JαKpA, v2, V2q. Thus,
in such a case we use the term JαKpAq to denote JαKpA, v, V q, for some arbitrary first-order
assignment v for A and some arbitrary second-order assignment V for A.

Example 3.1. Let G “ tEp¨, ¨q,ău be the vocabulary for graphs and G be an ordered
G-structure encoding an undirected graph. Suppose that we want to count the number of

9:6 M. Arenas, M. Munoz, and C. Riveros Vol. 16:1

triangles in G. Then this can be defined as follows:

α1 :“ Σx.Σy.Σz. pEpx, yq ^ Epy, zq ^ Epz, xq ^ x ă y ^ y ă zq

We encode a triangle in α1 as an increasing sequence of nodes tx, y, zu, in order to count
each triangle once. Then the Boolean subformula Epx, yq^Epy, zq^Epz, xq^x ă y^y ă z
is checking the triangle property, by returning 1 if tx, y, zu forms a triangle in G and 0
otherwise. Finally, the sum quantifiers in α1 aggregate all the values, counting the number
of triangles in G.

Suppose now that we want to count the number of cliques in G. We can define this
function with the following formula:

α2 :“ ΣX. cliquepXq,

where cliquepXq :“ @x. @y. ppXpxq ^Xpyq ^ x ‰ yq Ñ Epx, yqq. In the Boolean sub-formula
of α2 we check whether X is a clique, and with the sum quantifier we add one for each clique
in G. But in contrast to α1, in α2 we need a second-order quantifier in the quantitative level.
This is according to the complexity of evaluating each formula: α1 defines an FP-function
while α2 defines a #P-complete function.

Example 3.2. For an example that includes multiplication, let M “ tMp¨, ¨q,ău be a
vocabulary for storing 0-1 matrices; in particular, a structure M over M encodes a 0-1
matrix A as follows: if Ari, js “ 1, then Mpi, jq is true, otherwise Mpi, jq is false. Suppose
now that we want to compute the permanent of an n-by-n 0-1 matrix A, that is:

permpAq “
ÿ

σPSn

n
ź

i“1

Ari, σpiqs,

where Sn is the set of all permutations over t1, . . . , nu. The permanent is a fundamental
function on matrices that has found many applications; in fact, showing that this function
is hard to compute was one of the main motivations behind the definition of the class
#P [Val79a].

To define the permanent of a 0-1 matrix in QSO, assume that for a binary relation
symbol S, permutpSq is an FO-formula that is true if, and only if, S is a permutation,
namely, a total bijective function (the definition of permutpSq is straightforward). Then the
following is a QSO-formula defining the permanent of a matrix:

α3 :“ ΣS. permutpSq ¨Πx. pDy. Spx, yq ^Mpx, yqq.

Intuitively, the subformula βpSq :“ Πx. pDy. Spx, yq ^ Mpx, yqq calculates the value
śn
i“1Ari, σpiqs whenever S encodes a permutation σ. Moreover, the subformula permutpSq ¨

βpSq returns βpSq when S is a permutation, and returns 0 otherwise (i.e. permutpSq behaves
like a filter). Finally, the second order sum aggregates these values iterating over all binary
relations and calculating the permanent of the matrix. We would like to finish with this
example by highlighting the similarity of α3 to the permanent formula. Indeed, an advantage
of QSO-formulae is that the first- and second-order quantifiers in the quantitative level
naturally reflect the operations used to define mathematical formulae.

On restricting QSO. We consider several fragments of QSO, which are obtained by
restricting the use of the quantitative quantifiers or the syntax of the Boolean formulae, and
we consider some extensions that are obtained by adding recursive operators to QSO.

Vol. 16:1 DESCRIPTIVE COMPLEXITY FOR COUNTING COMPLEXITY CLASSES 9:7

‚ If we need to restrict the use of the quantitative quantifiers, then we replace QSO by
a term denoting the quantitative quantifiers that are allowed. In particular, we denote
by QFO the fragment of QSO where only first-order sum and product are allowed. For
instance, for the QSO-formulae defined in Example 3.1, we have that α1 is in QFO and
α2 is not. Moreover, we denote by ΣQSO the fragment of QSO where only first- and
second-order sums are allowed (that is, Πx. and ΠX. are not allowed). For example, α1

and α2 in Example 3.1 are formulae of ΣQSO, while α3 in Example 3.2 is not.
‚ If we need to restrict the syntax of the Boolean formulae to a fragment L of SO, then we

use notation QSOpL q to indicate that ϕ in (3.1) has to be a formula in L . Moreover,
every fragment of QSO can be restricted by using the same idea. For example, QFOpFOq
is the fragment of QFO obtained by restricting ϕ in (3.1) to be an FO-formula, and
likewise for ΣQSOpFOq.

In the following section, we use different fragments or extensions of QSO to capture counting
complexity classes. But before doing this, we show the connection of QSO to previous
frameworks for defining functions over relational structures.

3.1. Previous frameworks for quantitative functions. In this section, we discuss some
previous frameworks proposed in the literature and how they differ from our approach. We
start by discussing the connection between QSO and weighted logics (WL) [DG07]. As it
was previously discussed, QSO is a fragment of WL. The main difference is that we restrict
the semiring used in WL to natural numbers in order to study counting complexity classes.
Another difference between WL and our approach is that, to the best of our knowledge,
this is the first paper to study weighted logics over general relational signatures, in order to
do descriptive complexity for counting complexity classes. Previous works on WL usually
restrict the signature of the logic to strings, trees, and other specific structures (see [DKV09]
for more examples), and they did not study the logic over general structures. Furthermore, in
this paper we propose further extensions for QSO (see Section 6) which differ from previous
approaches in WL.

Another approach that resembles QSO are logics with counting [Imm82, IL90, Ete97,
GG98,Lib04], which include operators that extend FO with quantifiers that allow to count in
how many ways a formula is satisfied (the result of this counting is a value of a second sort,
in this case the natural numbers). A particularly influential logic in the area was proposed
in [Imm82, IL90], which is usually referred as FPC, and it is defined as an extension of
first-order logic with a least fixed-point operator and counting quantifiers. However, and in
contrast with our approach, counting operators are usually used in these logics for checking
Boolean properties over structures and not for producing values (i.e. they do not define a
function). In particular, we are not aware of any paper that uses this approach for capturing
counting complexity classes.

Finally, the work in [SST95,CG96,DHKV16] is of particular interest for our research.
In [SST95], it was proposed to define a function over a structure by using free variables in an
SO-formula; in particular, the function is defined by the number of instantiations of the free
variables that are satisfied by the structure. Formally, Saluja et. al [SST95] define a family
of counting classes #L for a fragment L of FO. For a formula ϕpx̄, X̄q over R, the function
fϕpx̄,X̄q is defined as fϕpx̄,X̄qpAq “ |tpā, Āq | A |ù ϕpā, Āqu| for every A P OrdStructrRs.

Then a function g : OrdStructrRs Ñ N is in #L if there exists a formula ϕpx̄, X̄q in L
such that g “ fϕpx̄,X̄q. In [SST95], they proved several results about capturing counting

9:8 M. Arenas, M. Munoz, and C. Riveros Vol. 16:1

complexity classes which are relevant for our work. We discuss and use these results in
Sections 4 and 5. Notice that for every formula ϕpx̄, X̄q, it holds that fϕpx̄,X̄q is the same

function as JΣX̄.Σx̄. ϕpx̄, X̄qK, that is, the approach in [SST95] can be seen as a syntactical
restriction of our approach based on QSO. Thus, the advantage of our approach relies on
the flexibility to define functions by alternating sum with product operators and, moreover,
by introducing new quantitative operators (see Section 6). Furthermore, we show in the
next section how to capture some classes that cannot be captured by following the approach
in [SST95].

4. Counting under QSO

In this section, we show that by syntactically restricting QSO one can capture different
counting complexity classes. In other words, by using QSO we can extend the theory of
descriptive complexity [Imm99] from decision problems to counting problems. For this, we
first formalize the notion of capturing a complexity class of functions.

Fix a signature R “ tR1, . . . , Rku and assume that A is an ordered R-structure with a
domain A “ ta1, . . . , anu, Rk “ă, and a1 ă

A a2 ă
A . . . ăA an. For every i P t1, . . . , k ´ 1u,

define the encoding of RA
i , denoted by encpRA

i q, as the following binary string. Assume that
` “ aritypRiq and consider an enumeration of the `-tuples over A in the lexicographic order
induced by ă. Then let encpRA

i q be a binary string of length n` such that the i-th bit of
encpRA

i q is 1 if the i-th tuple in the previous enumeration belongs to RA
i , and 0 otherwise.

Moreover, define the encoding of A, denoted by encpAq, as the string [Lib04]:

0n 1 encpRA
1 q ¨ ¨ ¨ encpRA

k´1q.

We can now formalize the notion of capturing a counting complexity class.

Definition 4.1. Let F be a fragment of QSO and C a counting complexity class. Then F
captures C over ordered R-structures if the following conditions hold:

(1) for every α P F , there exists f P C such that JαKpAq “ fpencpAqq for every A P

OrdStructrRs.
(2) for every f P C , there exists α P F such that fpencpAqq “ JαKpAq for every A P

OrdStructrRs.

Moreover, F captures C over ordered structures if F captures C over ordered R-structures
for every signature R.

In Definition 4.1, function f P C and formula α P F must coincide in all the strings that
encode ordered R-structures. Notice that this restriction is natural as we want to capture
C over a fixed set of structures (e.g. graphs, matrices). Moreover, this restriction is fairly
standard in descriptive complexity [Imm99,Lib04], and it has also been used in the previous
work on capturing complexity classes of functions [SST95,CG96].

What counting complexity classes can be captured with fragments of QSO? For answering
this question, it is reasonable to start with #P, a well-known and widely-studied counting
complexity class [AB09]. Since #P has a strong similarity with NP, one could expect a
“Fagin-like” Theorem [Fag75] for this class. Actually, in [SST95] it was shown that the class
#FO captures #P. In our setting, the class #FO is contained in ΣQSOpFOq, which also
captures #P as expected.

Proposition 4.2. ΣQSOpFOq captures #P over ordered structures.

Vol. 16:1 DESCRIPTIVE COMPLEXITY FOR COUNTING COMPLEXITY CLASSES 9:9

Proof. We briefly explain how the two conditions of Definition 4.1 are satisfied. First, for
condition (2) Saluja et al. proved that #P “ #FO [SST95]. Hence, given that every function
in #FO can be trivially defined as a formula in ΣQSOpFOq (see Section 3.1), condition (2)
holds. For condition (1), let α P ΣQSOpFOq over some signature R. Given an FO formula
ϕ, checking whether A |ù ϕ can be done in deterministic polynomial time on the size of A
and any constant function s can be trivially simulated in #P. These facts, together with
the closures under exponential sum and polynomial product of #P [For97], suffice to show
that the function represented by α is in #P.

By following the same approach as [SST95], Compton and Grädel [CG96] show that
#(DSO) captures SpanP, where DSO is the existential fragment of SO. As one could expect,
if we parametrize ΣQSO with DSO, we can also capture SpanP.

Proposition 4.3. ΣQSOpDSOq captures SpanP over ordered structures.

Proof. To prove condition (2), we use the fact that SpanP “ #pDSOq. The condition holds
using the same argument as in Proposition 4.2. For condition (1), notice that given an DSO
formula ϕ, checking whether A |ù ϕ can be done in non-deterministic polynomial time on
the size of A [Fag74]. Therefore, a SpanP machine for ϕ will simulate the non-deterministic
polynomial time machine and produce the same string as output in each accepting non-
deterministic run. Furthermore, any constant function s can be trivially simulated in SpanP
and, thus, condition (1) holds analogously to Proposition 4.2 since SpanP is also closed
under exponential sum and polynomial product [OH93].

Can we capture FP by using #L for some fragment L of SO? A first attempt could
be based on the use of a fragment L of SO that captures either P or NL [Grä92]. Such an
approach fails as #L can encode #P-complete problems in both cases; in the first case,
one can encode the problem of counting the number of satisfying assignments of a Horn
propositional formula, while in the second case one can encode the problem of counting
the number of satisfying assignments of a 2-CNF propositional formula. A second attempt
could then be based on considering a fragment L of FO. But even if we consider the
existential fragment Σ1 of FO the approach fails, as #Σ1 can encode #P-complete problems
like counting the number of satisfying assignments of a 3-DNF propositional formula [SST95].
One last attempt could be based on disallowing the use of second-order free variables in
#FO. But in this case one cannot capture exponential functions definable in FP such as 2n.
Thus, it is not clear how to capture FP by following the approach proposed in [SST95]. On
the other hand, if we consider our framework and move out from ΣQSO, we have other
alternatives for counting like first- and second-order products. In fact, the combination of
QFO with LFP is exactly what we need to capture FP.

Theorem 4.4. QFOpLFPq captures FP over ordered structures.

Proof. In this and the following proofs, we will reuse the symbol ă to denote the lexicographic
order over same-sized tuples. Formally, for x̄ “ px1, . . . , xmq and ȳ “ py1, . . . , ymq we denote
by x̄ ă ȳ the formula:

m
ł

i“1

i´1
ľ

j“1

pxj “ yj ^ xi ă yiq.

Similarly, we use x̄ “ ȳ to denote equality between tuples and x̄ ď ȳ to denote x̄ ă ȳ_ x̄ “ ȳ.
We will also use some syntactic sugar in QSO to simplify formulae. Specifically, we will use

9:10 M. Arenas, M. Munoz, and C. Riveros Vol. 16:1

the conditional count symbol pϕ ÞÑ αq defined as pϕ ¨αq` ϕ for any Boolean formula ϕ and
any quantitative formula α. Note that for each A P OrdStructrRs, and each first-order
(second-order) assignment v (V) over A:

Jpϕ ÞÑ αqKpA, v, V q “

#

JαKpA, v, V q if pA, v, V q |ù ϕ,

1 otherwise.

Furthermore, we use |A| to denote the size of an R-structure A. Now we prove Theorem 4.4.
For condition (1), recall that checking whether A |ù ϕ for any LFP formula ϕ can be done
in deterministic polynomial time on the size of A [Imm83]. Furthermore, it is easy to check
that FP is closed under polynomial sum and multiplication. We conclude then that any
formula in QFOpLFPq can be computed in FP. For condition (2), let R be a signature,
f P FP and ` P N such that log2 pfpencpAqqq ď |A|` for every A P OrdStructrRs (i.e. |A|`

is an upper bound for the output size of f over A). Consider the language:

L “ tpA, āq | ā P Al and the ā-th bit of fpencpAqq is 1u.

where ā encodes a number by following the lexicographic order over Al. Clearly, the language
L is in P and by [Imm83] there exists a formula Φpx̄q in LFP such that A |ù Φpāq if, and
only if, pA, āq P L. We use then the following formula to encode f :

α “ Σx̄.Φpx̄q ¨Πȳ. pȳ ă x̄q ÞÑ 2q

Note that the subformula Πȳ. pȳ ă x̄q ÞÑ 2 takes the value 2m if there exist m tuples in A`

that are smaller than x̄. Adding these values for each ā P A` gives exactly fpencpAqq. In
other words, Φpx̄q simulates the behavior of the FP-machine and the formula α reconstructs
the binary output bit by bit. Then α is in QFOpLFPq and JαKpAq “ fpencpAqq.

At this point it is natural to ask whether one can extend the previous idea to capture
FPSPACE [Lad89], the class of functions computable in polynomial space. Of course, for
capturing this class one needs a logical core powerful enough, like PFP, for simulating the run
of a polynomial-space TM. Moreover, one also needs more powerful quantitative quantifiers
as functions like 22n can be computed in polynomial space, so ΣQSO is not enough for the
quantitative layer of a logic for FPSPACE. In fact, by considering second-order product
we obtain the fragment QSOpPFPq that captures FPSPACE.

Theorem 4.5. QSOpPFPq captures FPSPACE over ordered structures.

Proof. For the first condition of Definition 4.1, notice that each PFP formula can be evaluated
in deterministic polynomial space, the constant function s can be trivially simulated in
FPSPACE, and FPSPACE is closed under exponential sum and multiplication. This
suffices to show that the condition holds. For the second condition, the proof is similar to
the proof of Theorem 4.4. Let f P FPSPACE defined over some R and ` P N such that

log2 pfpencpAqqq ď 2|A|
`

for every A P OrdStructrRs (i.e. 2|A|
`

is an upper bound for the
size of the output). Let X be a second-order variable of arity `. Consider the linear order
induced by ă over predicates of arity ` which can be defined by the following formula:

ϕăpX,Y q “ Dū.
“

 Xpūq ^ Y pūq ^ @v̄.
`

ū ă v̄ Ñ pXpūq Ø Y pv̄qq
˘‰

.

Namely, we use predicates to encode a number that will have most 2|A|
`

bits. We define

this encoding through the function τ : 2A
`
Ñ N, such that τpBq is equal to the number of

predicates in 2A
`

that are smaller than B with respect to the induced order. For example,

Vol. 16:1 DESCRIPTIVE COMPLEXITY FOR COUNTING COMPLEXITY CLASSES 9:11

we have that τpHq “ 0 and τpA`q “ 2|A|
`

´ 1. Furthermore, we can use a relation X to
index a position in the binary output of fpencpAqq as follows. Define the language:

L “ tpA, Bq | B Ď A` and the τpBq-th bit of fpencpAqq is 1u.

Since L is in PSPACE, it can be specified in PFP [AV89] by a formula ΦpXq such that
A |ù ΦpBq if and only if pA, Bq P L. Then, similarly as for the previous proof we define:

α :“ ΣX.ΦpXq ¨ΠY. pϕăpY,Xq ÞÑ 2q.

where ΠY. pϕăpY,Xq ÞÑ 2q takes the value 2τpXq and α reconstructs the output of fpencpAqq.
Using an argument analogous to the previous proof, we conclude that α P QSOpPFPq and
JαKpAq “ fpencpAqq.

From the proof of the previous theorem a natural question follows: what happens if we
use first-order quantitative quantifiers and PFP? In [Lad89], Ladner also introduced the
class FPSPACE(poly) of all functions computed by polynomial-space TMs with output
length bounded by a polynomial. Interestingly, if we restrict to FO-quantitative quantifiers
we can also capture this class.

Corollary 4.6. QFOpPFPq captures FPSPACE(poly) over ordered structures.

Proof. In this proof, both conditions are analogous to Theorem 4.4 and 4.5. For the first
condition, each PFP formula ϕ can be evaluated in PSPACE and the class is closed under
first sum and product. For the second condition, we use the same language L defined in the
proof of Theorem 4.4, which in this case is in PSPACE. The same construction of α, which
in this case is in QFOpPFPq, is used to show that the condition holds.

The results of this section validate QSO as an appropriate logical framework for extending
the theory of descriptive complexity to counting complexity classes. In the following sections,
we provide more arguments for this claim, by considering some fragments of ΣQSO and,
moreover, by showing how to go beyond ΣQSO to capture other classes.

4.1. Extending QSO to capture classes beyond counting. There exist complexity
classes that do not fit in our framework because either the output of a function is not
a natural number (e.g. a negative number) or the class is not defined purely in terms of
arithmetical operations (e.g. min and max). To remedy this problem, we show here how
QSO can be easily extended to capture such classes that go beyond sum and product over
natural numbers.

It is well-known that, under some reasonable complexity-theoretical assumptions, #P
is not closed under subtraction, not even under subtraction by one [OH93]. To overcome
this limitation, GapP was introduced in [FFK94] as the class of functions f for which there
exists a polynomial-time NTM M such that fpxq “ #acceptM pxq ´ #rejectM pxq, where
#rejectM pxq is the number of rejecting runs of M with input x. That is, GapP is the
closure of #P functions under subtraction, and its functions can obviously take negative
values. Given that our logical framework was built on top of the natural numbers, we need
to extend QSO in order to capture GapP. The most elegant way to do this is by allowing
constants coming from Z instead of just N. Formally, we define the logic QSOZ whose syntax
is the same as in (3.1) and whose semantics is the same as in Table 1 except that the atomic
formula s (i.e. a constant) comes from Z. Similarly as for QSO, we define the fragment
ΣQSOZ as the extension of ΣQSO with constants in Z.

9:12 M. Arenas, M. Munoz, and C. Riveros Vol. 16:1

Example 4.7. Recall the setting of Example 3.1 and suppose now that we want to compute
the number of cliques in a graph that are not triangles. This can be easily done in QSOZ
with the formula: α5 :“ α2 ` p´1q ¨ α1.

Adding negative constants is a mild extension to allow subtraction in the logic. It follows
from our characterization of #P that this is exactly what we need to capture GapP.

Corollary 4.8. ΣQSOZpFOq captures GapP over ordered structures.

This is an interesting result that shows how robust and versatile QSO is for capturing
different counting complexity classes whose functions are not restricted to N.

A different class of functions comes from considering the optimization version of a
decision problem. For example, one can define MAX-SAT as the problem of determining
the maximum number of clauses, of a given CNF propositional formula that can be made
true by an assignment. Here, MAX-SAT is defined in terms of a maximization problem
which in its essence differs from the functions in #P. To formalize this class of optimization
problems, Krentel defined OptP [Kre88] as the class of functions computable by taking
the maximum or minimum of the output values over all runs of a polynomial-time NTM
machine with output tape (i.e. each run produces a binary string which is interpreted as
a number). For instance, MAX-SAT is in OptP as many other optimization versions of
NP-problems. Given that in [Kre88] Krentel did not make the distinction between max and
min, Vollmer and Wagner [VW95] defined the classes MaxP and MinP as the max and
min version of the problems in OptP (i.e. OptP “MaxPYMinP).

In order to capture classes of optimization functions, we extend QSO with max and min
quantifiers as follows (called OptQSO). Given a signature R, the set of OptQSO-formulae
over R is given by extending the syntax in (3.1) with the following operators:

maxtα, αu | mintα, αu | Maxx. α | Minx. α | MaxX.α | MinX.α

where x P FV and X P SV. The semantics of the QSO-operators in OptQSO are defined
as usual. Furthermore, the semantics of the max and min quantifiers are defined as the
natural extension of the sum quantifiers in QSO (see Table 1) by maximizing or minimizing,
respectively, instead of computing a sum or a product.

Example 4.9. Recall again the setting of Example 3.1 and suppose now that we want to
compute the size of the largest clique in a graph. This can be done in OptQSO as follows:

α6 :“ MaxX. p cliquepXq ¨ Σz.Xpzq q

Notice that formula Σz.Xpzq is used to compute the number of nodes in a set X.

Similarly as for MaxP and MinP, we have to distinguish between the max and min
fragments of OptQSO. For this, we define the fragment MaxQSO of all OptQSO formulae
constructed from QFO operators and max-formulae maxtα, αu, Maxx. α and MaxX.α.
The class MinQSO is defined analogously replacing max by min. Notice that in MaxQSO
and MinQSO, second-order sum and product are not allowed. For instance, formula α6 in
Example 4.9 is in MaxQSO. As one could expect, MaxQSO and MinQSO are the needed
logics to capture MaxP and MinP.

Theorem 4.10. MaxQSOpFOq and MinQSOpFOq capture MaxP and MinP, respectively,
over ordered structures.

Vol. 16:1 DESCRIPTIVE COMPLEXITY FOR COUNTING COMPLEXITY CLASSES 9:13

Proof. It is straightforward to prove that MaxP can compute any FO-formula, is closed
under first-order sum and product, and second-order maximization. Therefore, condition (1)
in Definition 4.1 follows similarly as in the previous characterizations. Furthermore, one can
easily see that the same holds for MinQSOpFOq. The proof for the other direction is similar
to the one described in [KT94] extended with the ideas of Theorem 4.4. Let f P MaxP
be a function defined over some signature R and ` P N such that rlog2 fpencpAqqs ď |A|`

for each A P OrdStructrRs. For U Ď A`, we can interpret the encoding of U (encpUq)
as the binary encoding of a number with |A|`-bits. We denote this value by valpencpUqq.
Then, given A P OrdStructrRs and U Ď A`, consider the problem of checking whether
fpencpAqq ě valpencpUqq. Clearly, this is an NP-problem and, by Fagin’s theorem, there
exists a formula of the form DX̄. ΦpX̄, Y q with ΦpX̄, Y q in FO and aritypY q “ ` such that
fpencpAqq ě valpencpUqq if, and only if, pA, v, V q |ù DX̄. ΦpX̄, Y q with V pY q “ U . Then we
can describe f by the following MaxQSO formula:

α “ Max X̄. MaxY. ΦpX̄, Y q ¨
`

Σx̄. Y px̄q ¨Πȳ. px̄ ă ȳ ÞÑ 2q
˘

.

Note that, in contrast to previous proofs, we use x̄ ă ȳ instead of ȳ ă x̄ because the
most significant bit in encpUq correspond to the smallest tuple in U . It is easy to check
that ΦpX̄, Y q simulates the NP-machine and, if ΦpX̄, Y q holds, the formula to the right
reconstructs the binary output from the relation in Y . Then, α is in MaxQSOpFOq over R
and JαKpAq “ fpencpAqq.

For the case of MinQSOpFOq and a function f P MinP, one has to follow the same
approach but consider the NP-problem of checking whether fpencpAqq ď valpencpUqq. Then,
the formula for describing f is the following:

α “ Min X̄. MinY. Σx̄.
`

pΦpX̄, Y q Ñ Y px̄qq ¨Πȳ. px̄ ă ȳ ÞÑ 2q
˘

.

In this case, if the formula ΦpX̄, Y q is false, then the output produced by the subformula

inside the min-quantifiers will be the biggest possible value (i.e. 2|A|
`

). On the other hand,
if ΦpX̄, Y q holds, the subformula will produce valpencpUqq. In a similar way as in max, we
conclude that α is in MinQSOpFOq and JαKpAq “ fpencpAqq.

It is important to mention that a similar result, following the framework of [SST95],
was proved in [KT94] for the class MaxPB (resp., MinPB) of problems in MaxP (resp.,
MinP) whose output value is polynomially bounded. Interestingly, Theorem 4.10 is stronger
since our logic has the freedom to use sum and product quantifiers, instead of using a max-
and-count problem over Boolean formulae. Finally, it is easy to prove that our framework
can also capture MaxPB and MinPB by disallowing the product Πx in MaxQSOpFOq and
MinQSOpFOq, respectively.

5. Exploring the structure of #P through QSO

The class #P was introduced in [Val79a] to prove that computing the permanent of a matrix,
as defined in Example 3.2, is a #P-complete problem. As a consequence of this result many
counting problems have been proved to be #P-complete [Val79b, AB09]. Among them,
problems having easy decision counterparts play a fundamental role, as a counting problem
with a hard decision version is expected to be hard. Formally, the decision problem associated
to a function f : Σ˚ Ñ N is defined as Lf “ tx P Σ˚ | fpxq ą 0u, and f is said to have an easy
decision version if Lf P P. Many prominent examples satisfy this property, like computing
the number of: perfect matchings of a bipartite graph (#PerfectMatching) [Val79a],

9:14 M. Arenas, M. Munoz, and C. Riveros Vol. 16:1

satisfying assignments of a DNF (#DNF) [DHK05,KL83] or Horn (#HornSAT) [Val79b]
propositional formula, among others.

Counting problems with easy decision versions play a fundamental role in the search
for efficient approximation algorithms for functions in #P. A fully-polynomial randomized
approximation scheme (FPRAS) for a function f : Σ˚ Ñ N is a randomized algorithm
A : Σ˚ ˆ p0, 1q Ñ N such that: (1) for every string x P Σ˚ and real value ε P p0, 1q, the
probability that |fpxq ´Apx, εq| ď ε ¨ fpxq is at least 3

4 , and (2) the running time of A is
polynomial in the size of x and 1{ε [KL83]. Notably, there exist #P-complete functions
that can be efficiently approximated as they admit FPRAS; for instance, there exist FPRAS
for #DNF [KL83] and #PerfectMatching [JSV04]. A key observation here is that if a
function f admits an FPRAS, then Lf is in the randomized complexity class BPP [Gil77].
Hence, under the widely believed assumption that NP Ę BPP, we cannot hope for an
FPRAS for a function in #P whose decision counterpart is NP-complete, and we have to
concentrate on the class of counting problems with easy decision versions. That is, with
decision versions in P.

The importance of the class of counting problems with easy decision counterparts has
motivated the search for robust classes of functions in #P with this property [PZ06]. But
the key question here is what should be considered a robust class. A first desirable condition
is related to its closure properties, which is a common theme when studying function
complexity classes [OH93,FH08]. Analogously to the cases of P and NP, which are closed
under intersection and union, we expect our class to be closed under multiplication and sum.
For a more elaborated closure property, assume that sat one is a function that returns one
plus the number of satisfying assignments of a propositional formula. Clearly sat one is a
#P-complete function whose decision counterpart Lsat one is trivial. But should sat one be
part of a robust class of counting functions with easy decision versions? The key insight
here is that if a function in #P has an easy decision counterpart L, then as L P NP we
expect to have a polynomial-time algorithm that verifies whether x P L by constructing
witnesses for x. Moreover, if such an algorithm for constructing witnesses exists, then we
also expect to be able to manipulate such witnesses and in some cases to remove them. In
other words, we expect a robust class C of counting functions with easy decision versions to
be closed under subtraction by one, that is, if g P C , then the function g ´ 1 should also be
in C , where pg ´ 1qpxq is defined as gpxq ´ 1 if gpxq ě 1, and as 0 otherwise. Notice that,
unless P “ NP, no such class can contain the function sat one because sat one ´ 1 counts
the number of satisfying assignments of a propositional formula.

A second desirable condition of robustness is the existence of natural complete prob-
lems [Pap94]. Special attention has to be paid here to the notion of reduction used for
completeness. Notice that under the notion of Cook reduction, originally used in [Val79a],
the problems #DNF and #SAT are #P-complete. However, #DNF has an easy decision
counterpart and admits an FPRAS, while #SAT does not satisfy these conditions unless
P “ NP. Hence a more strict notion of reduction has to be considered; in particular,
the notion of parsimonious reduction (to be defined later) satisfies that if a function f is
parsimoniously reducible to a function g, then Lg P P implies that Lf P P and the existence
of an FPRAS for g implies the existence of a FPRAS for f .

In this section, we use the framework developed in this paper to address the problem of
defining a robust class of functions with easy decision versions. More specifically, we use the
framework to introduce in Section 5.1 a syntactic hierarchy of counting complexity classes
contained in #P. Then this hierarchy is used in Section 5.2 to define a class of functions

Vol. 16:1 DESCRIPTIVE COMPLEXITY FOR COUNTING COMPLEXITY CLASSES 9:15

with easy decision versions and good closure properties, and in Section 5.3 to define a class
of functions with easy decision versions and natural complete problems.

5.1. The ΣQSOpFOq-hierarchy inside #P. Inspired by the connection between #P
and #FO, a hierarchy of subclasses of #FO was introduced in [SST95] by restricting the
alternation of quantifiers in Boolean formulae. Specifically, the #FO-hierarchy consists of
the the classes #Σi and #Πi for every i ě 0, where #Σi (resp., #Πi) is defined as #FO but
restricting the formulae used to be in Σi (resp., Πi). By definition, we have that #Π0 “ #Σ0.
Moreover, it is shown in [SST95] that:

#Σ0 Ĺ #Σ1 Ĺ #Π1 Ĺ #Σ2 Ĺ #Π2 “ #FO

In light of the framework introduced in this paper, natural extensions of these classes
are obtained by considering ΣQSOpΣiq and ΣQSOpΠiq for every i ě 0, which form the
ΣQSOpFOq-hierarchy. Clearly, we have that #Σi Ď ΣQSOpΣiq and #Πi Ď ΣQSOpΠiq.
Indeed, each formula ϕpX̄, x̄q in #Σi is equivalent to the formula ΣX̄.Σx̄. ϕpX̄, x̄q in
ΣQSOpΣiq, and likewise for #Πi and ΣQSOpΠiq. But what is the exact relationship between
these two hierarchies? To answer this question, we first introduce two normal forms for
ΣQSOpL q that helps us to characterize the expressive power of this quantitative logic.
A formula α in ΣQSOpL q is in L -prenex normal form (L -PNF) if α is of the form
ΣX̄.Σx̄. ϕpX̄, x̄q, where X̄ and x̄ are sequences of zero or more second-order and first-order
variables, respectively, (as expected, ΣX̄. and Σx̄. are the respective nestings of ΣX. ’s and
Σx. ’s) and ϕpX̄, x̄q is a formula in L . Notice that a formula ϕpX̄, x̄q in #L is equivalent to
the formula ΣX̄.Σx̄. ϕpX̄, x̄q in L -PNF. Moreover, a formula α in ΣQSOpL q is in L -sum
normal form (L -SNF) if α is of the form

řn
i“1 αi, where this is a shorthand notation for

α1 ` ¨ ¨ ¨ ` αn, and each αi is in L -PNF.

Proposition 5.1. Every formula in ΣQSOpL q can be rewritten in L -SNF.

Proof. Recall that a formula in ΣQSOpL q is defined by the following grammar:

α “ ϕ | s | pα` αq | Σx. α | ΣX.α

where ϕ is a formula in L and s P N. To find an equivalent formula in L -SNF for every
α P ΣQSOpL q, we give a recursive function τ such that τpαq is in L -SNF and τpαq ” α.
Specifically, if α “ ϕ, define τpαq “ α; if α “ s, define τpαq “ pJ ` s times. . . ` Jq; if

α “ pα1`α2q, define τpαq “ pτpα1q`τpα2qq; if α “ Σx. β, assume τpβq “
řk
i“1 βi such that

each βi is in L -PNF, and define τpαq “
řk
i“1 Σx. βi; and if α “ ΣX.β, then we proceed

analogously as in the previous case. This covers all possible cases for α and we conclude the
proof by taking τpαq as the desired rewrite of α.

If a formula is in L -PNF then clearly the formula is in L -SNF. Unfortunately, for some
L there exist formulae in ΣQSOpL q that cannot be rewritten in L -PNF. Therefore, to
unveil the relationship between the #FO-hierarchy and the ΣQSOpFOq-hierarchy, we need
to understand the boundary between PNF and SNF. We do this in the following theorem.

Theorem 5.2. For i “ 0, 1, there exists a formula αi in ΣQSOpΣiq that is not equivalent to
any formula in Σi-PNF. On the other hand, if Π1 Ď L and L is closed under conjunction
and disjunction, then every formula in ΣQSOpL q can be rewritten in L -PNF.

9:16 M. Arenas, M. Munoz, and C. Riveros Vol. 16:1

Proof. From now on, for every first-order tuple x̄ or second-order tuple X̄ we write |x̄| or
|X̄| as the number of variables in x̄ or X̄ respectively. We divide the proof in three parts.

First, we prove that the formula α0 “ pΣX. 1q ` 1 with aritypXq “ 1 (i.e. the function

2|A|` 1) is not equivalent to any formula in Σ0-PNF. Suppose that there exists some formula
α “ ΣX̄.Σx̄. ϕpX̄, x̄q in Σ0-PNF that is equivalent to α0. In [SST95], it was proved that
if |X̄| ą 0, the function defined by α is always even for big enough structures, which is
not possible in our case. On the other hand, if α is of the form Σx̄. ϕpx̄q, then α defines a
polynomially bounded function which leads to a contradiction.

Second, we prove that the formula α1 “ 2 (i.e. Jα1K is the constant function 2) is
not equivalent to any formula in Σ1-PNF. Suppose that there exists some formula α “
ΣX̄.Σx̄. Dȳ ϕpX̄, x̄, ȳq in Σ1-PNF that is equivalent to α1. First, if |X̄| “ |x̄| “ 0, then
the function defined by α is never greater than 1. Therefore, suppose that |X̄| ą 0 or
|x̄| ą 0, and consider some ordered structure A. Since JαKpAq “ 2, there exist at least two
assignments pB̄1, b̄1, ā1q, pB̄2, b̄2, ā2q to pX̄, x̄, ȳq such that for i P t1, 2u: A |ù ϕpB̄i, b̄i, āiq.
Now consider the ordered structure A1 that is obtained by taking the disjoint union of A
twice. Indeed, each half of A1 is isomorphic to A. Note that A1 |ù ϕpB̄i, b̄i, āiq for i “ 1, 2
and there exists a third assignment pB̄11, b̄

1
1, ā

1
1q that is isomorphic to pB̄1, b̄1, ā1q, in the other

half of the structure, such that A1 |ù ϕpB̄11, b̄
1
1, ā

1
1q. As a result, we have that JαKpA1q ě 3

which leads to a contradiction.
For the last part of the proof, we show that if L contains Π1 and is closed under

conjunction and disjunction, then for every formula α in ΣQSOpL q there exists an equivalent
formula in L -PNF. Similarly as in the proof of Theorem 5.1, we show a recursive function
τ that produces such a formula. Assume that α “

řn
i“1 αi is in L -SNF where each αi is

in L -PNF. Without loss of generality, we assume that each αi “ ΣX̄.Σx̄. ϕipX̄, x̄q with
|X̄| ą 0 and |x̄| ą 0. If that is not the case, we can replace each αi by the equivalent formula

ΣX̄.ΣY.Σx̄.Σy. pϕipX̄, x̄q ^ @z. Y pzq ^ @z. z ď yq.

Now we begin describing the function τ . If α “ ΣX̄.Σx̄. ϕpX̄, x̄q, then the formula is
already in L -PNF so we define τpαq “ α. If α “ α1 ` α2, then we assume that τpα1q “

ΣX̄.Σx̄. ϕpX̄, x̄q and τpα2q “ ΣȲ .Σȳ. ψpȲ , ȳq. Our construction works by identifying a
“first” assignment for both pX̄, x̄q and pȲ , ȳq and a “last” assignment for both pX̄, x̄q and
pȲ , ȳq using the following formulae:

γfirstpX̄, x̄q “

|X̄|
ľ

i“1

@z̄. Xipz̄q ^ @z̄. px̄ ď z̄q,

γlastpX̄, x̄q “

|X̄|
ľ

i“1

@z̄. Xipz̄q ^ @z̄. pz̄ ď x̄q.

Similarly, we can define the formulae γfirstpȲ , ȳq and γlastpȲ , ȳq. In other words, the “first”
assignment is the one where every second-order predicate is empty and the first-order
assignment is the lexicographically smallest, and the “last” assignment is the one where
every second-order predicate is full and the first-order assignment is the lexicographically
greatest. We also need to identify the assignments that are not first and the ones that
are not last. We do this by negating the two formulae above and grouping together the

Vol. 16:1 DESCRIPTIVE COMPLEXITY FOR COUNTING COMPLEXITY CLASSES 9:17

#Σ0

#Σ1

Ĺ

ΣQSOpΣ0q

Ĺ
ΣQSOpΣ1q

Ĺ

Ĺ

ΣQSOpΠ1qĹ

#Π1

“

ΣQSOpΣ2qĹ

#Σ2

“

ΣQSOpΠ2qĹ

#Π2

“

#FO“

Figure 1: The relationship between the #FO-hierarchy and the ΣQSOpFOq-hierarchy, where
#Σ1 and ΣQSOpΣ0q are incomparable.

first-order variables:

γnot-firstpX̄, x̄q “ Dz̄. pz̄0 ă x̄_

|X̄|
ł

i“1

Xpz̄iqq,

γnot-lastpX̄, x̄q “ Dz̄. px̄ ă z̄0 _

|X̄|
ł

i“1

 Xpz̄iqq,

where z̄ “ pz̄0, z̄1, . . . , z̄|X̄|q. Then the following formula is equivalent to α:

ΣX̄.Σx̄.ΣȲ .Σȳ. rpϕpX̄, x̄q ^ γnot-firstpX̄, x̄q ^ γfirstpȲ , ȳqq_ (5.1)

pϕpX̄, x̄q ^ γfirstpX̄, x̄q ^ γlastpȲ , ȳqq_ (5.2)

pψpȲ , ȳq ^ γfirstpX̄, x̄q ^ γnot-lastpȲ , ȳqq_ (5.3)

pψpȲ , ȳq ^ γlastpX̄, x̄q ^ γlastpȲ , ȳqqs. (5.4)

To show that the formula is indeed equivalent to α, note that the formulae in lines
(5.1) and (5.2) form a partition over the assignments of pX̄, x̄q, while fixing an assignment
for pȲ , ȳq, and the formulae in lines (5.3) and (5.4) form a partition over the assignments
of pȲ , ȳq, while fixing an assignment for pX̄, x̄q. Altogether the four lines define pairwise
disjoint assignments for pX̄, x̄q, pȲ , ȳq. With this, it is straightforward to show that the
above formula is equivalent to α. However, the formula is not yet in the correct form since
it has existential quantifiers in the sub-formulae γnot-first and γnot-last. To solve this, we can
replace each existential quantifier by a first order sum that counts just the first assignment
that satisfies the inner formula and this can be defined in Π1. A similar construction was
used in [SST95].

Finally, consider a ΣQSOpL q formula α in L -SNF. If α “
řn
i“1 αi, then by induction

we consider α “ α1`p
řn
i“2 αiq and use τpα1`τp

řn
i“2 αiqq as the rewrite of α, which satisfies

the hypothesis.

As a consequence of Proposition 5.1 and Theorem 5.2, we obtain that #Σi Ĺ ΣQSOpΣiq

for i “ 0, 1, and that #L “ ΣQSOpL q for L equal to Π1, Σ2 or Π2. The following
proposition completes our picture of the relationship between the #FO-hierarchy and the
ΣQSOpFOq-hierarchy.

Proposition 5.3. The following properties hold:

‚ ΣQSOpΣ0q and #Σ1 are incomparable, that is, #Σ1 Ę ΣQSOpΣ0q and ΣQSOpΣ0q Ę #Σ1,
‚ ΣQSOpΣ1q Ĺ ΣQSOpΠ1q.

9:18 M. Arenas, M. Munoz, and C. Riveros Vol. 16:1

Proof. We divide this proof into three parts. First, we show that #Σ1 Ę ΣQSOpΣ0q. For
this inclusion to be true, it is required to hold for an arbitrary ordered relational signature
R, so it suffices to show that it is not true for at least one such a signature. Let R be
the ordered signature that contains only the relation name ă. Suppose that there is a
ΣQSOpΣ0q formula α over R which is equivalent to the #Σ1-formula Σx. Dy. px ă yq. That
is, for every finite R-structure A, JαKpAq “ |A| ´ 1.

Suppose that α is in SNF, namely, α “
řk
i“1 αi for some fixed k. Since JαK is not

the identically zero function, consider some αi that describes a non-null function. Let
αi “ ΣX̄.Σx̄. ϕpX̄, x̄q where ϕ is quantifier-free. Notice that if |X̄| ą 0, then the function

JαK is in Ωp2|A|q, as it was proven in [SST95]. Therefore, we have that αi “ Σx̄. ϕpx̄q. We

conclude our proof with the following claim, from which we conclude that α “
řk
i“1 αi

cannot be equivalent to the #Σ1-formula Σx. Dy. px ă yq.

Claim 5.4. Let β “ Σx̄. ϕpx̄q where ϕ is quantifier free. Then the function JβK is either
null, greater or equal to n, or is in Ωpn2q, where n is the size of the input structure.

Proof. Assume that x̄ “ px1, . . . , xmq, and notice that each atomic sub-formula in ϕpx̄q is
either pxi “ xjq, pxi ă xjq, J or a negation thereof, where i, j P t1, . . . ,mu. Suppose JβK
is not null and consider some R-structure A such that JβKpAq ą 0. Hence, there exists an
assignment ā “ pa1, . . . , amq for x̄ such that A |ù ϕpāq. Given this assignment, define an
equivalence relation „ on tx1, . . . , xmu as follows: xi „ xj if and only if ai “ aj , and assume
that „ partitions tx1, . . . , xmu into ` equivalence classes, where ` ě 1. Then we have that

there exist at least
`

|A|
`

˘

assignments b̄ for x̄ such that A |ù ϕpb̄q. Thus, given that if ` “ 1,

then
`

|A|
`

˘

“ |A|, and if ` ě 2, then
`

|A|
`

˘

P Ωp|A|2q, we conclude that the claim holds.

Now we show that ΣQSOpΣ0q Ę #Σ1. In Theorem 5.2 we proved that there is no
formula in Σ1-PNF equivalent to the formula α “ 2. Every formula in #Σ1 can be expressed
in Σ1-PNF, which implies that 2 R #Σ1. Therefore, given that 2 P ΣQSOpΣ0q by the
definition of this logic, we conclude that ΣQSOpΣ0q Ę #Σ1.

Finally, we prove that ΣQSOpΣ1q Ĺ ΣQSOpΠ1q. For inclusion, let α be a formula
in ΣQSOpΣ1q. Suppose that it is in Σ1-SNF, namely, α “ c `

řn
i“1 αi. Let αi “

ΣX̄.Σx̄. Dȳ. ϕipX̄, x̄, ȳq, where ϕi is quantifier-free for each αi. We use the same con-
struction used in [SST95], and we obtain that the formula Dȳ. ϕipX̄, x̄, ȳq is equivalent to
Σȳ. rϕipX̄, x̄, ȳq ^ @ȳ

1. pϕipX̄, x̄, ȳ
1q Ñ ȳ ď ȳ1qs for every assignment to pX̄, x̄q. We do this

replacement for each αi, and we obtain an equivalent formula to α in ΣQSOpΠ1q.
To prove that the inclusion is proper, consider the ΣQSOpΠ1q formula Σx.@y. py “ xq.

This formula defines the following function over each ordered structure A:

JαKpAq “

#

1 A has one element

0 otherwise.

Suppose that there exists an equivalent formula α in ΣQSOpΣ1q. Also, suppose that
it is in L -SNF, so α “

řn
i“1 ΣX̄.Σx̄. Dȳ. ϕipX̄, x̄, ȳq. Consider a structure A1 with one

element. We have that for some i, there exists an assignment pB̄, b̄, āq for pX̄, x̄, ȳq such
that A1 |ù ϕipB̄, b̄, āq. Consider now the structure A2 that is obtained by duplicating A1, as
we did for Theorem 5.2. Note that A2 |ù ϕipB̄, b̄, āq, which implies that JαKpA1 Z A2q ą 1,
which leads to a contradiction.

Vol. 16:1 DESCRIPTIVE COMPLEXITY FOR COUNTING COMPLEXITY CLASSES 9:19

The relationship between the two hierarchies is summarized in Figure 1. Our hierarchy
and the one proposed in [SST95] only differ in Σ0 and Σ1. Interestingly, we show next that
this difference is crucial for finding classes of functions with easy decision versions and good
closure properties.

5.2. Defining a class of functions with easy decision versions and good closure
properties. We use the ΣQSOpFOq-hierarchy to define syntactic classes of functions with
good algorithmic and closure properties. But before doing this, we introduce a more strict
notion of counting problem with easy decision version. Recall that a function f : Σ˚ Ñ N
has an easy decision counterpart if Lf “ tx P Σ˚ | fpxq ą 0u is a language in P. As the goal
of this section is to define a syntactic class of functions in #P with easy decision versions
and good closure properties, we do not directly consider the semantic condition Lf P P,
but instead we consider a more restricted syntactic condition. More precisely, a function
f : Σ˚ Ñ N is said to be in the complexity class TotP [PZ06] if there exists a polynomial-
time NTM M such that fpxq “ #totalM pxq ´ 1 for every x P Σ˚, where #totalM pxq is the
total number of runs of M with input x. Notice that one is subtracted from #totalM pxq
to allow for fpxq “ 0. Besides, notice that TotP Ď #P and that f P TotP implies that
Lf P P.

The complexity class TotP contains many important counting problems with easy
decision counterparts, such as #PerfectMatching, #DNF, and #HornSAT among
others [PZ06]. Besides, TotP has good closure properties as it is closed under sum,
multiplication and subtraction by one. However, some functions in TotP do not admit
FPRAS under standard complexity-theoretical assumptions.2 Hence, we use the ΣQSOpFOq-
hierarchy to find restrictions of TotP with good approximation and closure properties.

It was proved in [SST95] that every function in #Σ1 admits an FPRAS. Besides, it
can be proved that #Σ1 Ď TotP. However, this class is not closed under sum, so it is not
robust under the basic closure properties we are looking for.

Proposition 5.5. There exist functions f, g P #Σ1 such that pf ` gq R #Σ1.

Proof. Towards a contradiction, assume that #Σ1 is closed under binary sum. Consider
the formula α “ Σx. px “ xq P #Σ1 over some signature R. This defines the function
JαKpAq “ |A|. From our assumption, there exists some formula in #Σ1 equivalent to the
formula α` α, which describes the function 2|A|. Let ΣX̄.Σx̄. Dȳ ϕpX̄, x̄, ȳq be this formula,
where ϕ is first-order and quantifier-free. For each R-structure A, we have the following
inequality:

JΣX̄.Σx̄.Σȳ. ϕpX̄, x̄, ȳqKpAq ď JΣX̄.Σx̄. Dȳ ϕpX̄, x̄, ȳqKpAq ¨ |A||ȳ| ď 2|A||ȳ|`1

Note that the formula ΣX̄.Σx̄.Σȳ. ϕpX̄, x̄, ȳq defines a function in #Σ0. Therefore, as it

was proven in [SST95], if |X̄| ą 0 then the function is in Ωp2|A|q, which violates the inequality
for large structures.

We now have that |X̄| “ 0. Consider a structure 1 with only one element. We have
that JΣx̄. Dȳ ϕpx̄, ȳqKp1q “ 2, but since the structure has only one element, there is only one

2As an example consider the problem of counting the number of independent sets in a graph, and the
widely believed assumption that NP is not equal to the randomized complexity class RP (Randomized
Polynomial-Time [Gil77]). This counting problem is in TotP, and it is known that NP “ RP if there exists
an FPRAS for it [DFJ02].

9:20 M. Arenas, M. Munoz, and C. Riveros Vol. 16:1

possible assignment to x̄. And so, JΣx̄. Dȳ ϕpx̄, ȳqKp1q ď 1, which leads to a contradiction.

To overcome this limitation, one can consider the class ΣQSOpΣ1q, which is closed under
sum by definition. In fact, the following proposition shows that the same good properties
as for #Σ1 hold for ΣQSOpΣ1q, together with the fact that it is closed under sum and
multiplication.

Proposition 5.6. ΣQSOpΣ1q Ď TotP and every function in ΣQSOpΣ1q has an FPRAS.
Moreover, ΣQSOpΣ1q is closed under sum and multiplication.

Proof. The authors in [SST95] proved that there exists a product reduction from every function
in #Σ1 to a restricted version of #DNF. That is, if α P #Σ1 over some signature R, there
exist polynomially computable functions g : OrdStructrRs Ñ OrdStructrRDNFs and
h : N Ñ N such that for every R-structure A, it holds that JαKpAq “ #DNFpencpgpAqqq ¨
hp|A|q. We use this fact in the following arguments.

To show that ΣQSOpΣ1q is contained in TotP, let α be a ΣQSOpΣ1q formula and
assume that it is in Σ1-SNF. That is, α “

řn
i“1 αi where each αi is in Σ1-PNF. Consider the

following nondeterministic procedure that on input encpAq generates JαKpAq branches. For
each αi “ ϕ, where ϕ is a Σ1 formula, it checks if A |ù ϕ in polynomial time and generates
a new branch if that is the case. For each αi “ ΣX̄.Σx̄. ϕ, this formula is also in #Σ1.
We use the reduction to #DNF provided in [SST95] and we obtain gpencpAqq, which is an
instance to #DNF. Since #DNF is also in TotP [PZ06], we simulate the corresponding
nondeterministic procedure that generates exactly #DNFpencpgpAqqq branches. Since,
FP Ď TotP [PZ06], each polynomially computable function is also in TotP, and then on
each of these branches we simulate the corresponding nondeterministic procedure to generate
hp|A|q more. The number of branches for each αi is JαiKpAq “ #DNFpencpgpAqqq ¨ hp|A|q,
and the total number of branches is equal to JαKpAq. We conclude that α P TotP.

To show that every function in ΣQSOpΣ1q has an FPRAS, let α be a ΣQSOpΣ1q formula
and assume that it is in Σ1-SNF. That is, α “

řn
i“1 αi where each αi is in Σ1-PNF. Note

that each αi that is equal to some Σ1 formula ϕ has an FPRAS given by the procedure that
simply checks if A |ù ϕ and returns 1 if it does and 0 otherwise. Also, each remaining αi
has an FPRAS since αi P #Σ1 [SST95]. If two functions have an FPRAS, then their sum
also has one given by the procedure that simulates them both and sums the results. We
conclude that α has an FPRAS.

Finally, we show that ΣQSOpΣ1q is closed under sum and multiplication. Since
ΣQSOpΣ1q is closed under sum by definition, we focus only on proving that it is closed
under multiplication. We prove this for the more general case of ΣQSOpL q with L being a
fragment of SO.

Lemma 5.7. If L is a fragment closed under conjunction, then ΣQSOpL q is closed under
binary multiplication.

Proof. Given two formulae α, β in ΣQSOpL q we will construct a formula in the logic which
is equivalent to pα ¨ βq. From what was proven in Proposition 5.1, we may assume that α
and β are in L -SNF. Let α “

řn
i“1 ΣX̄i.Σx̄i. ϕipX̄i, x̄iq, and β “

řm
i“1 ΣȲi.Σȳi. ψipȲi, ȳiq.

Expanding the product in pα ¨ βq and reorganizing results in the equivalent formula
n
ÿ

i“1

m
ÿ

j“1

ΣX̄i.ΣȲj .Σx̄i.Σȳj . pϕipX̄i, x̄iq ^ ψipȲj , ȳjqq,

Vol. 16:1 DESCRIPTIVE COMPLEXITY FOR COUNTING COMPLEXITY CLASSES 9:21

which is in L -SNF, and therefore, in ΣQSOpL q.

Since Σ1 is closed under conjunction, we have that Lemma 5.7 can be applied to
ΣQSOpΣ1q, and we can deduce that ΣQSOpΣ1q is closed under multiplication. This concludes
the proof of the proposition.

Hence, it only remains to prove that ΣQSOpΣ1q is closed under subtraction by one.
Unfortunately, it is not clear whether this property holds; in fact, we conjecture that it is
not the case. Thus, we need to find an extension of ΣQSOpΣ1q that keeps all the previous
properties and is closed under subtraction by one. It is important to notice that #P is
believed not to be closed under subtraction by one due to some complexity-theoretical
assumption3. So, the following proposition rules out any logic that extends Π1 as a possible
extension of ΣQSOpΣ1q with the desired closure property.

Proposition 5.8. If Π1 Ď L Ď FO and ΣQSOpL q is closed under subtraction by one,
then #P is closed under subtraction by one.

Proof. Let L be a fragment of FO that contains Π1. Then we have that every function in #Π1

is expressible in ΣQSOpL q. In particular, #3-CNF P ΣQSOpL q. Suppose that ΣQSOpL q

is closed under subtraction by one. Then, the function #3-CNF´1, which counts the number
of satisfying assignments of a 3-CNF formula minus one, is also in ΣQSOpL q. Recall also that
ΣQSOpL q Ď ΣQSOpFOq “ #P and that #3-CNF is #P-complete under parsimonious
reductions4. Let f be a function in #P, and consider the nondeterministic polynomial-
time procedure that on input encpAq computes the corresponding reduction gpencpAqq into
#3-CNF and simulates the #P procedure for #3-CNF ´ 1 on input gpencpAqq. This is
a #P procedure that computes f ´ 1, from which we conclude that #P is closed under
subtraction by one.

Therefore, the desired extension has to be achieved by allowing some local extensions
to Σ1. To this end, we define Σ1[FO] as Σ1 but allowing atomic formulae over a signature R
to be of the form either u “ v or Xpūq, where X is a second-order variable, or ϕpūq, where
ϕpūq is a first-order formula over R (in particular, it does not mention any second-order
variable). With this extension we obtain a class with the desired properties.

Theorem 5.9. The class ΣQSOpΣ1[FO]q is closed under sum, multiplication and subtraction
by one. Moreover, ΣQSOpΣ1[FO]q Ď TotP and every function in ΣQSOpΣ1[FO]q has an
FPRAS.

Proof. For the sake of readability, we divide the proof into three parts. The last part, i.e.
subtraction by one, is the most technical proof in the paper. Since this proof is several
pages long, a line was drawn on the left margin to visually differentiate it from the rest of
the paper.

Closed under sum and multiplication. By the previous results, it is straightforward
to prove that ΣQSOpΣ1[FO]q is closed under sum and multiplication. Indeed, ΣQSOpL q

3A decision problem L is in the randomized complexity class SPP if there exists a polynomial-time NTM
M such that for every x P L it holds that #acceptM pxq ´#rejectM pxq “ 2, and for every x R L it holds that
#acceptM pxq “ #rejectM pxq [OH93,FFK94]. It is believed that NP Ę SPP. However, if #P is closed under
subtraction by one, then it holds that NP Ď SPP [OH93].

4It can be easily verified that the standard reduction from SAT to 3-CNF (or 3-SAT) preserves the number
of satisfying assignments

9:22 M. Arenas, M. Munoz, and C. Riveros Vol. 16:1

is closed under sum by definition for every fragment L , and since Σ1[FO] is closed under
conjunction, from Lemma 5.7 it follows that ΣQSOpΣ1[FO]q is closed under multiplication.

Easy decision version and FPRAS. We show here that ΣQSOpΣ1[FO]q Ď TotP and
every function in ΣQSOpΣ1[FO]q has an FPRAS. We do this by showing a parsimonious
reduction from any function in ΣQSOpΣ1[FO]q to some function in ΣQSOpΣ1q, and using
the result of Proposition 5.6. First, we define a function that converts any formula α in
ΣQSOpΣ1[FO]q over a signature R into a formula λpαq in ΣQSOpΣ1q over a signature
Rα. Afterwards, we define a function gα that receives an R-structure A and outputs an
Rα-structure gαpAq.

Let α be in ΣQSOpΣ1[FO]q. The signature Rα is obtained by adding the symbol Rψ
to R for every FO formula ψpz̄q in α. Each symbol Rψ represents a predicate with arity
|z̄|. Then, λpαq is defined as α where each FO formula ψpz̄q has been replaced by Rψpz̄q.
We now define the function gα with a polynomial time procedure. Let A be a R-structure
with domain A. Let A1 be an Rα-structure obtained by copying A and leaving each RA1

ψ

empty. For each FO-formula ψpz̄q with |z̄| open first-order variables, we iterate over all

tuples ā P A|z̄|. If A |ù ψpāq (this can be done in P), then the tuple ā is added to RA1

ψ .

This concludes the construction of A1. Note that the number of FO subformulae, arity and
tuple size is fixed in α, so computing this function takes polynomial time over the size of
the structure. Moreover, the encoding of A1 has polynomial size over the size of encpAq.
We define gαpAq “ A1 and we have that for each R-structure A: JαKpAq “ JλpαqKpgαpAqq.
Therefore, we have a parsimonious reduction from α to the ΣQSOpΣ1q formula λpαq.

To show that the function defined by α is in TotP, we can convert α and encpAq into
λpαq and encpgαpAqq, respectively, and run the procedure in Proposition 5.6. Similarly, to
show that α has an FPRAS, we do the same as before and simulates the FPRAS for λpαq
in Proposition 5.6. These procedures also takes polynomial time and satisfies the required
conditions.

Closed under subtraction by one. We prove here that ΣQSOpΣ1[FO]q is closed
under subtraction by one. For this, given α P ΣQSOpΣ1[FO]q over a signature R, we
will define a ΣQSOpΣ1[FO]q-formula κpαq such that for each finite structure A over R:
JκpαqKpAq “ JαKpAq .́ 1. Without loss of generality, we assume that α is in Σ1[FO]-SNF,
that is, α “

řn
i“1 ΣX̄.Σx̄. ϕi where each ϕi is in Σ1[FO]. Moreover, we assume that

|x̄| ą 0 since, if this is not the case, we can replace ΣX̄. ϕi with the equivalent formula
ΣX̄.Σy. ϕi ^ firstpyq.

Proof outline: The proof will be separated in two parts. In the first part, we will
assume that α is in Σ1[FO]-PNF, namely, α “ ΣX̄.Σx̄. ϕ for some ϕ in Σ1[FO]. We
will show how to define a formula ϕ1 that satisfies the following condition: for each A, if
pA, V, vq |ù ϕpX̄, x̄q for some V and v over A, then there exists exactly one assignment
to pX̄, x̄q that satisfies ϕ and not ϕ1. From this, we will have that κpαq “ ΣX̄.Σx̄. ϕ1 is
the desired formula. In the second part, we suppose that α is of the form β ` ΣX̄.Σx̄. ϕ
with β being the sum of one or more formulae in Σ1[FO]-PNF. We define a formula ϕ1

that satisfies the following condition: if pA, V, vq |ù ϕpX̄, x̄q and JβKpAq “ 0, then there
exists exactly one assignment to pX̄, x̄q that satisfies ϕ and not ϕ1. From here, we can
define κ recursively as κpαq “ κpβq ` ΣX̄.Σx̄. ϕ1 and the property of subtraction by one
will be proven.

Vol. 16:1 DESCRIPTIVE COMPLEXITY FOR COUNTING COMPLEXITY CLASSES 9:23

Part (1). Let α “ ΣX̄.Σx̄. ϕpX̄, x̄q where ϕ is a Σ1[FO]-formula. Note that, if α is of the
form α “ Σx̄. ϕpx̄q (i.e. |X̄| “ 0), we can define κpαq “ Σx̄. rϕpx̄q ^ Dz̄. pϕpz̄q ^ z̄ ă x̄qs,
which is in ΣQSOpΣ1[FO]q and fulfils the desired property. Therefore, for the rest of the
proof we can assume that |X̄| ą 0 and |x̄| ą 0.

To simplify the analysis of ϕ, the first step is to rewrite ϕ as a DNF formula. More
precisely, we rewrite ϕ into an equivalent formula of the form

Žm
i“1 ϕi for some m P N

where each ϕipX̄, x̄q “ Dȳ.ϕ
1
ipX̄, x̄, ȳq and ϕ1ipX̄, x̄, ȳq is a conjunction of atomic formulae or

negation of atomic formulae. Furthermore, we assume that each ϕ1ipX̄, x̄, ȳq has the form:

ϕ1ipX̄, x̄, ȳq “ ϕFO
i px̄, ȳq

loooomoooon

an FO formula

^ ϕ`i pX̄, x̄, ȳq
looooomooooon

conjunction of Xj ’s

^ ϕ´i pX̄, x̄, ȳq
looooomooooon

conjunction of Xj ’s

.

Note that atomic formulae, like Rpz̄q for R P R, will appear in the subformula ϕFO
i px̄, ȳq.

Now, we define a series of rewrites of ϕ that will make each formula ϕi satisfy the
following three conditions: (a) no variable from x̄ appears in ϕ´i pX̄, x̄, ȳq ^ ϕ`i pX̄, x̄, ȳq,

(b) ϕFO
i px̄, ȳq defines a weak ordering over the variables in px̄, ȳq (the precise definition of a

weak ordering is detailed below) and (c) if both Xjpz̄q and Xjpw̄q appear in the formula,
the weak ordering should not satisfy z̄ “ w̄. When these conditions are met, ϕ1ipX̄, x̄, ȳq
will be satisfiable if and only if ϕFO

i px̄, ȳq is satisfiable. This is proven in Claim 5.10. We
explain below how to rewrite ϕi in order to satisfy each condition.

(a) No variable from x̄ appears in ϕ´i pX̄, x̄, ȳq ^ ϕ`i pX̄, x̄, ȳq. In order to satisfy this
condition, consider some instance of Xjpw̄q in ϕi, where w̄ is a subtuple of px̄, ȳq. Add |w̄|
new variables z1, . . . , z|w̄| to the formula and let z̄ “ pz1, . . . , z|w̄|q. We rewrite ϕ`i pX̄, x̄, ȳq

by replacing Xjpw̄q with Xjpz̄q (denoted by ϕ`i pX̄, x̄, ȳqrXjpw̄q Ð Xjpz̄qs) and then the
formula ϕi is equivalently defined as:

ϕipX̄, x̄q :“ Dȳ. Dz̄.
`

z̄ “ w̄ ^ ϕFO
i px̄, ȳq ^ ϕ`i pX̄, x̄, ȳqrXjpw̄q Ð Xjpz̄qs ^ ϕ

´
i pX̄, x̄, ȳq

˘

.

We repeat this process for each instance of a Xjpw̄q in ϕi, and we obtain a formula where
none of the Xj ’s acts over any variable in x̄. We add the new first-order variables to ȳ and
we redefine ϕi as:

ϕipX̄, x̄q :“ Dȳ.
`

ϕFO
i px̄, ȳq ^ ϕ´i pX̄, ȳq ^ ϕ

`
i pX̄, ȳq

˘

.

For example, if x̄ “ x, ȳ “ y and ϕi “ Dȳ.
`

x ă y ^Xpx, yq ^ Xpx, xq
˘

, then we redefine
ȳ “ py, v1, v2, v3, v4q and:

ϕi :“ Dȳ.
`

v1 “ x^ v2 “ y ^ v3 “ x^ v4 “ x^ x ă y ^Xpv1, v2q ^ Xpv3, v4q
˘

.

(b) ϕFO
i px̄, ȳq defines a weak ordering over the variables in px̄, ȳq. A weak ordering on

a set S is defined by an equivalence relation „ over S, and a linear order over S{ „.
For example, let x̄ “ px1, x2, x3, x4q. A possible weak ordering would be defined by
the formula θpx̄q “ x2 ă x1 ^ x1 “ x4 ^ x4 ă x3. On the other hand, the formula
θ1px̄q “ x1 ă x2 ^ x1 ă x4 ^ x2 “ x3 does not define a weak ordering since both
tx1u ă tx2, x3u ă tx4u and tx1u ă tx2, x3, x4u satisfy θ1. For a given k, let Bk be the
number of possible weak orderings for a set of size k. For 1 ď j ď B|px̄,ȳq| let θjpx̄, ȳq be

the formula that defines the j-th weak ordering over px̄, ȳq. The formula ϕpX̄, x̄q is thus
redefined as:

ϕpX̄, x̄q :“
m
ł

i“1

B|px̄,ȳq|
ł

j“1

Dȳ.
`

θjpx̄, ȳq ^ ϕFO
i px̄, ȳq ^ ϕ´i pX̄, ȳq ^ ϕ

`
i pX̄, ȳq

˘

,

9:24 M. Arenas, M. Munoz, and C. Riveros Vol. 16:1

Note that each θjpx̄, ȳq is an FO-formula. Then, by redefining ϕFO
i px̄, ȳq as θjpx̄, ȳq ^

ϕFO
i px̄, ȳq, we can suppose that each ϕFO

i px̄, ȳq forces a weak ordering over the variables in
px̄, ȳq.
(c) If both Xjpz̄q and Xjpw̄q appear in the formula, the weak ordering should not satisfy
z̄ “ w̄. If there exists an instance of Xjpz̄q in ϕ`i , an instance of Xjpw̄q in ϕ´i and the

weak ordering in ϕFO
i satisfies z̄ “ w̄, then the entire formula ϕi is removed from ϕ. It is

important to notice that the resulting ϕ is equivalent to the initial one, and it is still a
formula in ΣQSOpΣ1[FO]q. From now on, we assume that each ϕipX̄, x̄q “ Dȳ. ϕ

1
ipX̄, x̄, ȳq

satisfies conditions (a), (b) and (c), and moreover, ϕ1ipX̄, x̄, ȳq has the form:

ϕ1ipX̄, x̄, ȳq “ ϕFO
i px̄, ȳq ^ ϕ`i pX̄, ȳq ^ ϕ

´
i pX̄, ȳq.

Note that neither one of ϕ` or ϕ´i depends on x̄.

Claim 5.10. For an ordered structure A and an FO assignment v for A, pA, vq |ù ϕFO
i px̄, ȳq

if, and only if, there exists an SO assignment V for A such that pA, V, vq |ù ϕ1ipX̄, x̄, ȳq.

Proof. To prove the only if direction, let A be an ordered structure with domain A
and let v be a first-order assignment for A, such that pA, vq |ù ϕFO

i px̄, ȳq. Define B̄ “

pB1, . . . , B|X̄|q as Bj “ tvpw̄q | Xjpw̄q is mentioned in ϕ`i pX̄, ȳqu, and let V be a second-

order assignment for which V pX̄q “ B̄. Towards a contradiction, suppose that pA, V, vq ­|ù
ϕFO
i px̄, ȳq ^ ϕ`i pX̄, ȳq ^ ϕ´i pX̄, ȳq. By the choice of v, and construction of V it is clear

that pA, V, vq |ù ϕFO
i px̄, ȳq ^ ϕ`i pX̄, ȳq, so we necessarily have that pA, V, vq ­|ù ϕ´i pX̄, ȳq.

Let Xt be such that Xtpw̄q is mentioned in ϕ´i pX̄, ȳq and pA, V, vq ­|ù Xtpw̄q, namely,
vpw̄q P Bt. However, by the construction of Bt, there exists a subtuple z̄ of ȳ such that
Xtpz̄q appears in ϕ`i pX̄, ȳq and vpz̄q “ vpw̄q. Since pA, vq |ù ϕFO

i px̄, ȳq and vpz̄q “ vpw̄q,

then the weak ordering in ϕFO
i satisfies z̄ “ w̄. This violates condition (c) above since

 Xtpw̄q appears in ϕ´i and Xtpz̄q appears in ϕ`i , which leads to a contradiction.

The other direction is trivial since ϕFO
i px̄, ȳq is a subformula of ϕ1i.

The previous claim its subsequent proof motivate the following definition. For a
first-order assignment v over A, define B̄v “ pBv

1 , . . . , B
v
|X̄|
q where each Bv

j “ tvpw̄q |

Xjpw̄q is mentioned in ϕ`i pX̄, ȳqu. One can easily check that for every assignment pV, vq
such that pA, V, vq |ù ϕ1ipX̄, x̄, ȳq, it holds that pA, B̄v, vq |ù ϕ1ipX̄, x̄, ȳq and B̄v Ď V pX̄q.
Namely, B̄v is a valid candidate for X̄ and, furthermore, it is contained in all satisfying
assignments of X̄ when v is fixed. This offers an insight into the main idea of Part (1): by
choosing one particular v the plan is to remove B̄v as an assignment over X̄ in ϕi. For this,
we choose the minimal v that satisfies ϕFO

i px̄, ȳq which can be defined with the following
formula:

min-ϕFO
i px̄, ȳq “ ϕFO

i px̄, ȳq ^ @x̄1. @ȳ1.
`

ϕFO
i px̄1, ȳ1q Ñ px̄ ď x̄1 ^ ȳ ď ȳ1q

˘

.

If ϕFO
i is satisfiable, let v be the only assignment such that pA, vq |ù min-ϕFO

i px̄, ȳq.
Furthermore, let V ˚ be the second-order assignment and v˚ the first-order assignment that
satisfy V ˚pX̄q “ B̄v and v˚px̄q “ vpx̄q. By the previous discussion, pA, V ˚, v˚q |ù ϕipX̄, x̄q.

Now, we have all the ingredients in order to define κpαq. Intuitively, we want to exclude
the assignment pV ˚, v˚q from the satisfying assignments of ϕipX̄, x̄q. Towards this goal,
we can define a formula ψipX̄, x̄q such that, if ϕipX̄, x̄q is satisfiable, pA, V, vq |ù ψipX̄, x̄q

Vol. 16:1 DESCRIPTIVE COMPLEXITY FOR COUNTING COMPLEXITY CLASSES 9:25

if, and only if either V ‰ V ˚ or v ‰ v˚. This property can be defined as follows:

ψipX̄, x̄q :“
`

Dx̄1. Dȳ. ϕFO
i px̄1, ȳq

˘

Ñ (5.5)
´

Dȳ.
“

min-ϕFO
i px̄, ȳq ^

`

ϕ1ipX̄, x̄, ȳq Ñ
ł

XPX̄

Dz̄.pXpz̄q ^
ľ

Xpw̄q Pϕ`i pX̄,ȳq

w̄ ‰ z̄ q
˘‰

_ (5.6)

Dx̄1. Dȳ.
`

ϕ1ipX̄, x̄
1, ȳq ^ x̄1 ă x̄

˘

¯

(5.7)

To understand the formula, first notice that the premise of the implication at (5.5) is true
if, and only if, ϕipX̄, x̄q is satisfiable. Indeed, by Claim 5.10 we know that if Dx̄.Dȳ.ϕFO

i px̄, ȳq
is true, then there exist assignments V and v such that pA, V, vq |ù ϕ1ipX̄, x̄, ȳq. The
conclusion of the implication (divided into (5.6) and (5.7)), takes care that V pX̄q ‰ V ˚pX̄q
or vpx̄q ‰ v˚px̄q. Here, the first disjunct (5.6) checks that V pX̄q ‰ V ˚pX̄q by defining
that if ϕ1ipX̄, x̄, ȳq is satisfied then V ˚pX̄q Ĺ V pX̄q. The second disjunct (5.7) is satisfied
when vpx̄q is not the lexicographically smallest tuple that satisfies ϕi (i.e. vpx̄q ‰ v˚px̄q).
Finally, from the previous discussion one can easily check that ψipX̄, x̄q satisfies the desired
property.

We are ready to define the formula κpαq as ΣX̄.Σx̄.
Žm
i“1 ϕ

˚
i pX̄, x̄q where each modified

disjunct ϕ˚i pX̄, x̄q is constructed as follows. For the sake of simplicity, define the auxiliary
formula χi “ Dx̄.Dȳ.ϕ

FO
i px̄, ȳq. This formula basically checks if ϕi is not satisfiable (recall

Claim 5.10). Define the first formula ϕ˚1 as:

ϕ˚1pX̄, x̄q :“ ϕ1pX̄, x̄q ^ ψ1pX̄, x̄q.

This formula accepts all the assignments that satisfy ϕ1, except for the assignment pV ˚, v˚q
of ϕ1. The second formula ϕ˚2 is defined as:

ϕ˚2pX̄, x̄q :“ ϕ2pX̄, x̄q ^ ψ1pX̄, x̄q ^ pχ1 Ñ ψ2pX̄, x̄qq.

This models all the assignments that satisfy ϕ2, except for the assignment pV ˚, v˚q of ϕ1.
Moreover, if ϕ1 is not satisfiable, then ψ1pX̄, x̄q and χ1 will hold, and the formula ψ2pX̄, x̄q
will exclude the assignment pV ˚, v˚q of ϕ2. This construction can be generalized for each
ϕi as follows:

ϕ˚i pX̄, x̄q :“ ϕipX̄, x̄q ^ ψ1pX̄, x̄q^

pχ1 Ñ ψ2pX̄, x̄qq ^ ppχ1 ^ χ2q Ñ ψ3pX̄, x̄qq ^ ¨ ¨ ¨ ^ p

j“i´1
ľ

j“1

χj Ñ ψipX̄, x̄qq.

From the construction of κpαq, one can easily check that JκpαqKpAq “ JαKpAq ´ 1 for each
A.

Part (2). Let α “ β ` ΣX̄.Σx̄. ϕpX̄, x̄q for some ΣQSOpΣ1[FO]q formula β. We define
κpαq as follows. First, rewrite ϕpX̄, x̄q as in Part (1). Let ϕ “

Žm
i“1 ϕipX̄, x̄q where each

ϕi satisfies conditions (a), (b) and (c) defined above. Also, consider the previously defined
formulae χi and ψi, for each i ď m. We construct a function λ that receives a formula
β P ΣQSOpΣ1[FO]q and produces a logic formula λpβq that satisfies A |ù λpβq if, and only
if, JβKpAq “ 0. If β “ Σx̄. ϕpx̄q, then λpβq “ Dx̄1. ϕpx̄1q. If β “ ΣX̄.Σx̄. ϕpX̄, x̄q, then
define λpβq “ χ1 ^ ¨ ¨ ¨ ^ χm. If β “ pβ1 ` β2q, then λpβq “ λpβ1q ^ λpβ2q. Now, following
the same ideas as in Part (1) we define a formula ϕ˚i pX̄, x̄q that removes the minimal

9:26 M. Arenas, M. Munoz, and C. Riveros Vol. 16:1

pV ˚, v˚q of ϕi whenever β cannot be satisfied (i.e. λpβq is true). Formally, we define ϕ˚i as
follows:

ϕ˚i pX̄, x̄q :“ ϕipX̄, x̄q ^
´

λpβq Ñ
´

ψ1pX̄, x̄q^

pχ1 Ñ ψ2pX̄, x̄qq ^ ppχ1 ^ χ2q Ñ ψ3pX̄, x̄qq ^ ¨ ¨ ¨ ^ p

j“i´1
ľ

j“1

χj Ñ ψipX̄, x̄qq
¯¯

.

Finally, κpαq is defined as κpαq “ κpβq ` ΣX̄.Σx̄.
Žm
i“1 ϕ

˚
i pX̄, x̄q, which is in

ΣQSOpΣ1[FO]q and satisfies the desired conditions. This concludes the proof.

The proof that ΣQSOpΣ1[FO]q is closed under subtraction by one is the most involved
in the paper. A key insight in this proof is the fact that if a formula in ΣQSOpΣ1[FO]q
has a satisfying assignment over a structure, then it also has a satisfying assignment over
this structure that is of logarithmic size, and which can be characterized and removed by
using some fixed formulae. To give more intuition about this idea, let us consider the case
of #3-DNF, and the way Saluja et. al [SST95] propose to encode this problem in #Σ1 and,
thus, also in ΣQSOpΣ1[FO]q. Let R “ tP0p¨, ¨, ¨q, P1p¨, ¨, ¨q, P2p¨, ¨, ¨q, P3p¨, ¨, ¨q,ău and θ be
a propositional formula in 3-DNF. Then θ is encoded as an R-structure Aθ as follows. The
domain of Aθ is the set of propositional variables occurring in θ, and for every tuple pa, b, cq
of propositional variables occurring in θ, we have that: (i) P0pa, b, cq holds if pa^ b^ cq is a
disjunct in θ; (ii) P1pa, b, cq holds if pa^ b^ cq is a disjunct in θ; (iii) P2pa, b, cq holds if
pa ^ b ^ cq is a disjunct in θ; and (iv) P3pa, b, cq holds if p a ^ b ^ cq is a disjunct
in θ. Moreover, to define #3-DNF, we consider a fixed SO-formula ϕpT q over R, where
T is a unary predicate, such that the number of satisfying assignments of θ is equal to
JΣT. ϕpT qKpAθq. More specifically, T paq holds if and only if a is assigned value true, so that
ϕpT q is defined as:

ϕpT q :“ Dx. Dy. Dz.
`

pP0px, y, zq ^ T pxq ^ T pyq ^ T pzqq _

pP1px, y, zq ^ T pxq ^ T pyq ^ T pzqq _

pP2px, y, zq ^ T pxq ^ T pyq ^ T pzqq _

pP3px, y, zq ^ T pxq ^ T pyq ^ T pzqq
˘

.

Let us now focus on the first disjunct pP0px, y, zq ^ T pxq ^ T pyq ^ T pzqq of ϕpT q. Assuming
that a propositional formula pa^ b^ cq is a disjunct in θ, we have that pAθ, V q |ù ϕpT q for
every assignment V for T such that ta, b, cu Ď V pT q. Notice that some of these assignments,
such as the one that assigns to T all the variables occurring in θ, are of linear size in the size
of Aθ. However, ϕpT q also admits satisfying assignments of logarithmic size in the size of
Aθ, such as V pT q “ ta, b, cu. A key idea in the proof is the fact that the minimum of such
small witnesses (under the lexicographic order induced by ă) can be identified by using a
fixed formula in Σ1[FO]:

αpx, y, zq :“ P0px, y, zq ^ @x
1. @y1. @z1.

`

P0px
1, y1, z1q Ñ

`

px ă x1q _ px “ x1 ^ y ă y1q _ px “ x1 ^ y “ y1 ^ z ă z1q
˘˘

,

Vol. 16:1 DESCRIPTIVE COMPLEXITY FOR COUNTING COMPLEXITY CLASSES 9:27

and then it can be removed also by using a fixed formula in Σ1[FO]:

βpT q :“ Dx. Dy. Dz.
`

P0px, y, zq ^ T pxq ^ T pyq ^ T pzq
˘

^

Dx1. Dy1. Dz1.
`

αpx1, y1, z1q ^

pT px1q ^ T py1q ^ T pz1q Ñ Dw. pT pwq ^ w ‰ x1 ^ w ‰ y1 ^ w1 ‰ zqq
˘

.

In particular, the combination of these two formulae forces T to represent a satisfying
assignment for θ that is different from the set ta0, b0, c0u, where pa0, b0, c0q is the minimum
tuple under the lexicographic order induced by ă on the set of tuples pa, b, cq such that
pa^ b^ cq is a disjunct of θ. In the proof, we generalize and properly formalize this idea,
thus using the existence of logarithmic size witnesses for the formulae in ΣQSOpΣ1[FO]q to
prove that this class is closed under subtraction by one. We think that the existence of such
witnesses is a fundamental property of this class that deserves to be further investigated.

5.3. Defining a class of functions with easy decision versions and natural com-
plete problems. The goal of this section is to define a class of functions in #P with easy
decision counterparts and natural complete problems. To this end, we consider the notion
of parsimonious reduction. Formally, a function f : Σ˚ Ñ N is parsimoniously reducible to
a function g : Σ˚ Ñ N if there exists a function h : Σ˚ Ñ Σ˚ such that h is computable in
polynomial time and fpxq “ gphpxqq for every x P Σ˚. As mentioned at the beginning of
this section, if f can be parsimoniously reduced to g, then Lg P P implies that Lf P P and
the existence of an FPRAS for g implies the existence of an FPRAS for f .

In the previous section, we showed that the class ΣQSOpΣ1[FO]q has good closure and
approximation properties. Unfortunately, it is not clear whether it admits a natural complete
problem under parsimonious reductions, where natural means any of the counting problems
defined in this section or any other well-known counting problem (not one specifically
designed to be complete for the class). On the other hand, TotP admits a natural complete
problem under parsimonious reductions, which is the problem of counting the number of
inputs accepted by a monotone circuit [BCP`17]. However, the notion of monotone circuit
used in [BCP`17] does not correspond with the usual notion of monotone circuit [GS90],
that is, circuits with AND and OR gates but without negation. In this sense, we still lack a
class of functions in #P with easy decision counterparts and a complete problem that is well
known and has been widely studied. In this section, we follow a different approach to find
such a class, which is inspired by the approach followed in [Grä92] that uses a restriction of
second-order logic to Horn clauses for capturing P (over ordered structures). The following
example shows how our approach works.

Example 5.11. Let R “ tPp¨, ¨q,Np¨, ¨q,Vp¨q,NCp¨q,ău. This vocabulary is used as follows
to encode a Horn formula. A fact Ppc, xq indicates that propositional variable x is a disjunct
in a clause c, while Npc, xq indicates that x is a disjunct in c. Furthermore, Vpxq holds if x
is a propositional variable, and NCpcq holds if c is a clause containing only negative literals,
that is, c is of the form p x1 _ ¨ ¨ ¨ _ xnq.

To define #HornSAT, we consider an SO-formula ϕpTq over R, where T is a unary
predicate, such that for every Horn formula θ encoded by an R-structure A, the number of
satisfying assignments of θ is equal to JΣT. ϕpTqKpAq. In particular, Tpxq holds if and only

9:28 M. Arenas, M. Munoz, and C. Riveros Vol. 16:1

if x is a propositional variable that is assigned value true. More specifically,

ϕpTq :“ @x. pTpxq Ñ Vpxqq ^

@c. pNCpcq Ñ Dx. pNpc, xq ^ Tpxqqq ^

@c. @x. prPpc, xq ^ @y. pNpc, yq Ñ Tpyqqs Ñ Tpxqq.

We can rewrite ϕpTq in the following way:

@x. p Tpxq _Vpxqq ^

@c. p NCpcq _ Dx. pNpc, xq ^ Tpxqqq ^

@c. @x. p Ppc, xq _ Dy. pNpc, yq ^ Tpyqq _ Tpxqq.

Moreover, by introducing an auxiliary predicate A defined as

@c. @x. p Apc, xq Ø rNpc, xq ^ Tpxqsq,

we can translate ϕpTq into the following equivalent formula:

ψpT,Aq :“ @x. p Tpxq _Vpxqq ^

@c. p NCpcq _ Dx. Apc, xqq ^

@c. @x. p Ppc, xq _ Dy. Apc, yq _ Tpxqq ^

@c. @x. p Npc, xq _ Tpxq _ Apc, xqq ^

@c. @x. pApc, xq _Npc, xqq ^

@c. @x. pApc, xq _ Tpxqq.

More precisely, we have that:

JΣT. ϕpTqKpAq “ JΣT.ΣA. ψpT,AqKpAq,

for every R-structure A encoding a Horn formula. Therefore, the formula ψpT,Aq also
defines #HornSAT. More importantly, ψpT,Aq resembles a conjunction of Horn clauses
except for the use of negative literals of the form Dv. Apu, vq.

The previous example suggests that to define #HornSAT, we can use Horn formulae
defined as follows. A positive literal is a formula of the form Xpx̄q, where X is a second-order
variable and x̄ is a tuple of first-order variables, and a negative literal is a formula of the
form Dv̄. Xpū, v̄q, where ū and v̄ are tuples of first-order variables. Given a signature R,
a clause over R is a formula of the form @x̄. pϕ1 _ ¨ ¨ ¨ _ ϕnq, where each ϕi (1 ď i ď n)
is either a positive literal, a negative literal or an FO-formula over R. A clause is said to
be Horn if it contains at most one positive literal, and a formula is said to be Horn if it
is a conjunction of Horn clauses. With this terminology, we define Π1-Horn as the set of
formulae ψ such that ψ is a Horn formula over a signature R.

As we have seen, we have that #HornSAT P ΣQSOpΠ1-Hornq. Moreover, one can
show that ΣQSOpΠ1-Hornq forms a class of functions with easy decision counterparts,
namely, ΣQSOpΠ1-Hornq Ď TotP. Thus, ΣQSOpΠ1-Hornq is a new alternative in our
search for a class of functions in #P with easy decision counterparts and natural complete
problems. Moreover, an even larger class for our search can be generated by extending the
definition of Π1-Horn with outermost existential quantification. Formally, a formula ϕ is in
Σ2-Horn if ϕ is of the form Dx̄. ψ with ψ a Horn formula.

Proposition 5.12. ΣQSOpΣ2-Hornq Ď TotP.

Vol. 16:1 DESCRIPTIVE COMPLEXITY FOR COUNTING COMPLEXITY CLASSES 9:29

In this section, we identify a complete problem for ΣQSOpΣ2-Hornq under parsimonious
reductions. Hence, to prove that ΣQSOpΣ2-Hornq Ď TotP, it is enough to prove that
such a problem is in TotP, as TotP is closed under parsimonious reductions. We give this
proof at the end of this section, after the complete problem has been identified.

Interestingly, we have that both #HornSAT and #DNF belong to ΣQSOpΣ2-Hornq.
An imperative question at this point is whether in the definitions of Π1-Horn and Σ2-Horn,
it is necessary to allow negative literals of the form Dv̄. Xpū, v̄q. Actually, this forces our
Horn classes to be included in ΣQSOpΠ2q and not necessarily in ΣQSOpΣ2q. The following
result shows that this is indeed the case.

Proposition 5.13. #HornSAT R ΣQSOpΣ2q.

Proof. Suppose that the statement is false, that is, #HornSAT P ΣQSOpΣ2q. Consider
the signature R from Example 5.11 and let α P ΣQSOpΣ2q be a formula over R that
defines #HornSAT. By Proposition 5.1 we know that every formula in ΣQSOpΣ2q can be
rewritten in Σ2-PNF, so we can assume that α is of the form ΣX̄.Σx̄. Dȳ. @z̄. ϕpX̄, x̄, ȳ, z̄q.
Now, consider the following Horn formula:

Φ “ p^
n
ľ

i“1

pti ^ pÑ qq ^ q,

such that n “ |x̄|` |ȳ|` 1 and let AΦ be the encoding of this formula over R. One can easily
check that Φ is satisfiable, so JαKpAΦq ě 1. Let pB̄, b̄, āq be an assignment to pX̄, x̄, ȳq such
that AΦ |ù @z̄. ϕpB̄, b̄, ā, z̄q and let t` be such that it does not appear in b̄ or ā (recall that
n ą |x̄| ` |ȳ|). Consider the induced substructure A1Φ that is obtained by removing t` from
AΦ and B̄1 as the subset of B̄ obtained by deleting each appearance of t` in B̄. Given that
if a universal formula holds in a structure A, then it holds in every induced substructure of
A, we have that A1Φ |ù @z̄. ϕpB̄

1, b̄, ā, z̄q. And so, it follows that JαKpA1Φq ě 1 which is not
possible since A1Φ encodes the formula

Φ1 “ p^
`´1
ľ

i“1

pti ^ pÑ qq ^ ppÑ qq ^
n
ľ

i“``1

pti ^ pÑ qq ^ q,

which is unsatisfiable. This leads to a contradiction and we conclude that #HornSAT is
not in ΣQSOpΣ2-Hornq.

Next we show that ΣQSOpΣ2-Hornq is the class we were looking for, as not only every
function in ΣQSOpΣ2-Hornq has an easy decision counterpart, but also ΣQSOpΣ2-Hornq
admits a natural complete problem under parsimonious reductions. More precisely, define
#DisjHornSAT as the problem of counting the satisfying assignments of a formula Φ that
is a disjunction of Horn formulae. Then we have that:

Theorem 5.14. #DisjHornSAT is ΣQSOpΣ2-Hornq-complete under parsimonious re-
ductions.

Proof. First we prove that #DisjHornSAT is in ΣQSOpΣ2-Hornq. Recall that each
instance of #DisjHornSAT is a disjunction of Horn formulae. Let R be a relational
signature such that R “ tPp¨, ¨q,Np¨, ¨q,Vp¨q,NCp¨q,Dp¨, ¨qu. Each symbol in this vocabulary
is used to indicate the same as in Example 5.11, with the addition of Dpd, cq which indicates
that c is a clause in the formula d. Define ψ as in Example 5.11 such that ΣT.ΣA. ψpT,Aq

9:30 M. Arenas, M. Munoz, and C. Riveros Vol. 16:1

defines #HornSAT. In order to encode #DisjHornSAT, we extend ψpT,Aq by adding
the information of Dpd, cq as follows:

ψ1pT,Aq :“ Dd.
“

@x. p Tpxq _Vpxqq ^

@c. p Dpc, dq _ NCpcq _ Dx. Apc, xqq ^

@c. @x. p Dpc, dq _ Ppc, xq _ Dy. Apc, yq _ Tpxqq ^

@c. @x. p Dpc, dq _ Npc, xq _ Tpxq _ Apc, xqq ^

@c. @x. p Dpc, dq _Apc, xq _Npc, xqq ^

@c. @x. p Dpc, dq _Apc, xq _ Tpxqq
‰

.

One can check that ψ1pT,Aq effectively defines #DisjHornSAT as for every disjunction
of Horn formulae θ “ θ1 _ ¨ ¨ ¨ _ θm encoded by an R-structure A, the number of sat-
isfying assignments of θ is equal to JΣT.ΣA. ψ1pT,AqKpAq. Therefore, we conclude that
#DisjHornSAT P ΣQSOpΣ2-Hornq.

Next, we prove that #DisjHornSAT is hard for ΣQSOpΣ2-Hornq over each signa-
ture R under parsimonious reductions. For each ΣQSOpΣ2-Hornq formula α over R, we
define a polynomial-time function gα that receives an R-structure A and outputs an instance
of #DisjHornSAT such that JαKpAq “ #DisjHornSATpgαpAqq. By Proposition 5.1, we
can assume that α is of the form:

α “

m
ÿ

i“1

ΣX̄i.Σx̄. Dȳ.
n
ľ

j“1

@z̄. ϕijpX̄i, x̄, ȳ, z̄q,

where each ϕij is a Horn clause, and each X̄i is a sequence of second-order variables. Consider

X̄ as the union of all X̄i. We replace each of the m summands in α with

ΣX̄.Σx̄. Dȳ.

ˆ n
ľ

j“1

@z̄. ϕijpX̄i, x̄, ȳ, z̄q ^
ľ

XRX̄i

@ū. Xpūq

˙

,

whose sum is equivalent to α. Now, consider a finite R-structure A with domain A. The
next transformation of α and A towards a disjunction of Horn-formulae is to expand each
first-order quantifier (i.e. Σx̄, Dȳ, and @z̄) by replacing variables with constants. More
specifically, we obtain the following formula that defines the same function as α, and it is of
polynomial size in the size of A (recall that α is fixed):

αA “

m
ÿ

i“1

ÿ

ā PA|x̄|

ΣX̄.
ł

b̄ PA|ȳ|

ˆ n
ľ

j“1

ľ

c̄ PA|z̄|

ϕijpX̄i, ā, b̄, c̄q ^
ľ

XRX̄i

ľ

ē PAaritypXq

Xpēq

˙

.

Notice that each first-order subformula in ϕijpX̄i, ā, b̄, c̄q has no free variables and,
therefore, we can evaluate each of them in polynomial time and easily rewrite αA to an
equivalent formula that does not have any first-order subformula. In other words, in
polynomial time we can replace ϕij with a disjunction of negative literals of the form X`pd̄q

and at most one positive literal of the form X`pd̄q, where d̄ is a tuple of constants. After
simplifying, grouping and reordering the previous formula, we can obtain an equivalent
formula α1A of the form:

α1A “

m1
ÿ

i“1

ΣX̄.

n11
ł

j“1

n12
ľ

k“1

ψij,kpX̄q,

Vol. 16:1 DESCRIPTIVE COMPLEXITY FOR COUNTING COMPLEXITY CLASSES 9:31

where every ψij,kpX̄q is a disjunction of negative literals of the form X`pd̄q and at most one

positive literal of the form X`pd̄q, where d̄ is a tuple of constants.
The idea for the rest of the proof is to show how to obtain gαpAq, i.e. an instance of

#DisjHornSAT, from α1A. First, if m1 “ 1 and α1A “ ΣX̄.
Žn11
j“1

Źn12
k“1 ψj,kpX̄q, then we can

define gαpAq as the propositional formula
Žn11
j“1

Źn12
k“1 ψj,kpX̄q over the propositional alphabet

tXpēq | X P X̄ and ē P AaritypXqu. It is straightforward to see that
Žn11
j“1

Źn12
k“1 ψj,kpX̄q is a

disjunction of Horn formulae, and its number of satisfying assignments is exactly JαKpAq.
Otherwise, if m1 ą 1, then we can use m1 fresh new variables t1, . . . , tm1 and define:

gαpAq :“
m1
ł

i“1

n11
ł

j“1

n12
ľ

k“1

ψij,kpX̄q ^ ti ^
ľ

`‰i

 t`

over the propositional alphabet tXpēq | X P X̄ and ē P AaritypXqu Y tt1, . . . , tm1u. Variables
t1, . . . , tm1 are used to have disjoint sets of propositional assignments for the different disjuncts
of the outermost disjunction, which correspond to the summands in the original formula.
One can easily check that gαpAq is a disjunction of Horn formulae, and that the number of
satisfying assignments of gαpAq is exactly JαKpAq. This covers all possible cases for α, and
the entire procedure takes polynomial time.

Now that we have a complete problem for ΣQSOpΣ2-Hornq, we can provide a simple
proof of Proposition 5.12.

Proof of Proposition 5.12. As we mentioned before, TotP is closed under parsimonious
reductions, so we only need to show that #DisjHornSAT is in TotP. For this consider a
non-deterministic procedure that receives a DisjHornSAT formula Φ as input and does
the following. First it checks whether Φ is satisfiable. If it is not, then it stops; otherwise, it
creates a dummy branch that simply stops, and continues in the main branch. More precisely,
it picks in the main branch a propositional variable x in Φ and creates two formulae Φ0 and
Φ1, where x has been replaced by K and J, respectively. If only one of these is satisfiable, it
continues on this branch with the respective Φi, and if both are satisfiable, then it creates a
new branch for Φ1 and continues on this branch with Φ0. On each branch, it repeats the
same instructions until no variables are left to replace. Since DisjHornSAT is in P, all
the aforementioned checks can be done in polynomial time, so that the procedure takes at
most hpnq steps in each branch, where n is the size of Φ and h is some fixed polynomial.
Moreover, the algorithm produces exactly #DisjHornSATpΦq ` 1 branches, from which
we conclude that #DisjHornSAT is in TotP.

Finally, it is important to mention that from the previous proof one can easily derive
that ΣQSOpΣ2-Hornq ” #pΣ2-Hornq. Therefore, the framework in [SST95] is enough for
defining the class of problems in ΣQSOpΣ2-Hornq.

6. Adding recursion to QSO

We have used weighted logics to give a framework for descriptive complexity of counting
complexity classes. Here, we go beyond weighted logics and give the first steps on defining
recursion at the quantitative level. This goal is not trivial not only because we want to add
recursion over functions, but also because it is not clear what could be the right notion of
“fixed point”. To this end, we show first how to extend QSO with function symbols that are

9:32 M. Arenas, M. Munoz, and C. Riveros Vol. 16:1

later used to define a natural generalization of LFP to functions. As a proof of concept, we
show that this notion can be used to capture FP. Moreover, we use this concept to define
an operator for counting paths in a graph, a natural generalization of the transitive closure
operator [Imm99], and show that this gives rise to a logic that captures #L.

We start by defining an extension of QSO with function symbols. Assume that FS is
an infinite set of function symbols, where each h P FS has an associated arity denoted by
arityphq. Then the set of FQSO formulae over a signature R is defined by the following
grammar:

α :“ ϕ | s | hpx1, . . . , x`q | pα` αq | pα ¨ αq |

Σx. α | Πx. α | ΣX.α | ΠX.α, (6.1)

where h P FS, arityphq “ ` and x1, . . . , x` is a sequence of (not necessarily distinct) first-order
variables. Given an R-structure A with domain A, we say that F is a function assignment for
A if for every h P FS with arityphq “ `, we have that F phq : A` Ñ N. The notion of function
assignment is used to extend the semantics of QSO to the case of a quantitative formula of
the form hpx1, . . . , x`q. More precisely, given first-order and second-order assignments v and
V for A, respectively, we have that:

Jhpx1, . . . , x`qKpA, v, V, F q “ F phqpvpx1q, . . . , vpx`qq.

As for the case of QFO, we define FQFO disallowing quantifiers ΣX and ΠX in (6.1).
It is worth noting that function symbols in FQSO represent functions from tuples

to natural numbers, so they are different from the classical notion of function symbol in
FO [Lib04]. Furthermore, a function symbol can be seen as an “oracle” that is instantiated
by the function assignment. To the best of our knowledge, this is the first article to propose
this extension on weighted logics, which we think should be further investigated.

We define an extension of LFP [Imm86,Var82] to allow counting. More precisely, the
set of RQFOpFOq formulae over a signature R, where RQFO stands for recursive QFO,
is defined as an extension of QFOpFOq that includes the formula rlsfpβpx̄, hqs, where (1)
x̄ “ px1, . . . , x`q is a sequence of ` distinct first-order variables, (2) βpx̄, hq is an FQFOpFOq-
formula over R whose only function symbol is h, and (3) arityphq “ `. The free variables of
the formula rlsfpβpx̄, hqs are x1, . . . , x`; in particular, h is not considered to be free.

Fix an R-structure with domain A and a quantitative formula rlsfpβpx̄, hqs with
arityphq “ `, and assume that F is the set of functions f : A` Ñ N. To define the semantics
of rlsfpβpx̄, hqs, we first show how βpx̄, hq can be interpreted as an operator Tβ on F . More

precisely, for every f P F and tuple ā “ pa1, . . . , a`q P A
`, the function Tβpfq satisfies that:

Tβpfqpāq “ Jβpx̄, hqKpA, v, F q,

where v is a first-order assignment for A such that vpxiq “ ai for every i P t1, . . . , `u, and F
is a function assignment for A such that F phq “ f .

As for the case of LFP, it would be natural to consider the point-wise partial order ď
on F defined as f ď g if, and only if, fpāq ď gpāq for every ā P A`, and let the semantics of
rlsfpβpx̄, hqs be the least fixed point of the operator Tβ . However, pF ,ďq is not a complete
lattice, so we do not have a Knaster-Tarski Theorem ensuring that such a fixed point exists.
Instead, we generalize the semantics of LFP as follows. In the definition of the semantics of
LFP, an operator T on relations is considered, and the semantics is defined in terms of the
least fixed point of T , that is, a relation R such that [Imm86,Var82]: (a) T pRq “ R, and
(b) R Ď S for every S such that T pSq “ S. We can view T as an operator on functions if

Vol. 16:1 DESCRIPTIVE COMPLEXITY FOR COUNTING COMPLEXITY CLASSES 9:33

we consider the characteristic function of a relation. Given a relation R Ď A`, let χR be its
characteristic function, that is χRpāq “ 1 if ā P R, and χRpāq “ 0 otherwise. Then define an
operator T ‹ on characteristic functions as T ‹pχRq “ χT pRq. Moreover, we can rewrite the
conditions defining a least fixed point of T in terms of the operator T ‹ if we consider the
notion of support of a function. Given a function f P F , define the support of f , denoted by
supppfq, as tā P A` | fpāq ą 0u. Then given that supppχRq “ R, we have that the conditions
(a) and (b) are equivalent to the following conditions on T ‹: (a) supppT ‹pχRqq “ supppχRq,
and (b) supppχRq Ď supppχSq for every S such that supppT ‹pχSqq “ supppχSq. To define a
notion of fixed point for Tβ we simply generalize these conditions. More precisely, a function
f P F is a s-fixed point of Tβ if supppTβpfqq “ supppfq, and f is a least s-fixed point of Tβ if
f is a s-fixed point of Tβ and for every s-fixed point g of Tβ it holds that supppfq Ď supppgq.
The existence of such fixed point is ensured by the following lemma:

Lemma 6.1. Let h P FS such that arityphq “ `, and β be an FQFOpFOq-formula over
a signature R such that if a function symbol occurs in β, then this function symbol is h.
Moreover, let A be an R-structure with domain A, f, g : A` Ñ N and F,G be function
assignments such that F phq “ f and F phq “ g. If supppfq Ď supppgq, then for every
first-order and second-order assignments v and V , respectively, it holds that:

if JβKpA, v, V, F q ą 0, then JβKpA, v, V,Gq ą 0.

Proof. We prove the lemma by induction on the structure of β. First we need to consider
the base cases.

(1) Assume that β is either a constant s P N or an FO-formula ϕ. In both cases, function
symbol h is not mentioned, so JβKpA, v, V, F q “ JβKpA, v, V,Gq and it trivially holds that
if JβKpA, v, V, F q ą 0, then JβKpA, v, V,Gq ą 0.

(2) Assume that β is equal to hpy1, . . . , y`q, where y1, . . ., y` is a sequence of (non-
necessarily pairwise distinct) variables. Let ā “ pvpy1q, . . . , vpy`qq. Then we have
that JβKpA, v, V, F q “ F phqpvpy1q, . . . , vpy`qq “ fpāq and JβKpA, v, V,Gq “ gpāq. Given
that supppfq Ď supppgq, if fpāq ą 0, then gpāq ą 0. Hence, we conclude that if
JβKpA, v, V, F q ą 0, then JβKpA, v, V,Gq ą 0.

We now consider the inductive steps. Assume that the property holds for FQFOpFOq-
formulae β1, β2 and δ

(3) Assume that β “ pβ1 ` β2q. If JβKpA, v, V, F q ą 0, then Jβ1KpA, v, V, F q ą 0 or
Jβ2KpA, v, V, F q ą 0. Thus, by induction hypothesis we conclude that Jβ1KpA, v, V,Gq ą 0
or Jβ2KpA, v, V,Gq ą 0. Hence, we have that JβKpA, v, V,Gq ą 0.

(4) Assume that β “ pβ1 ¨ β2q. If JβKpA, v, V, F q ą 0, then Jβ1KpA, v, V, F q ą 0 and
Jβ2KpA, v, V, F q ą 0. Thus, by induction hypothesis we conclude that Jβ1KpA, v, V,Gq ą 0
and Jβ2KpA, v, V,Gq ą 0. Hence, we have that JβKpA, v, V,Gq ą 0.

(5) Suppose that β “ Σx. δ. Then we have that JβKpA, v, V, F q “
ř

aPA JδKpA, vra{xs, V, F q
and JβKpA, v, V,Gq “

ř

aPA JδKpA, vra{xs, V,Gq. Thus, if we assume that JβKpA, v, V, F q ą
0, then there exists a P A such that JδKpA, vra{xs, V, F q ą 0. Hence, by induction
hypothesis we have that JδKpA, vra{xs, V,Gq ą 0 and, therefore, we conclude that
JβKpA, v, V,Gq ą 0.

(6) Suppose that β “ Πx. δ. Then we have that JβKpA, v, V, F q “
ś

aPA JδKpA, vra{xs, V, F q
and JβKpA, v, V,Gq “

ś

aPA JδKpA, vra{xs, V,Gq. Thus, if we assume that JβKpA, v, V, F q ą
0, then JδKpA, vra{xs, V, F q ą 0 for every a P A. Hence, by induction hypothesis we
have that JδKpA, vra{xs, V,Gq ą 0 for every a P A, and, therefore, we conclude that
JβKpA, v, V,Gq ą 0.

9:34 M. Arenas, M. Munoz, and C. Riveros Vol. 16:1

In the particular case of an RQFOpFOq-formula rlsfpβpx̄, hqs, Lemma 6.1 tell us that
if f, g P F and supppfq Ď supppgq, then supppTβpfqq Ď supppTβpgqq. Hence, as for the
case of LFP, this lemma gives us a simple way to compute a least s-fixed point of Tβ. Let

f0 P F be a function such that f0pāq “ 0 for every ā P A` (i.e. f0 is the only function with
empty support), and let function fi`1 be defined as Tβpfiq for every i P N. Then there
exists j ě 0 such that supppfjq “ supppTβpfjqq. Let k be the smallest natural number
such that supppfkq “ supppTβpfkqq. We have that fk is a least s-fixed point of Tβ , which is
used to define the semantics of rlsfpβpx̄, hqs. More specifically, for an arbitrary first-order
assignment v for A:

Jrlsfpβpx̄, hqsKpA, vq “ fkpvpx̄qq.

Example 6.2. We would like to define an RQFOpFOq-formula that, given a directed acyclic
graph G with n nodes and a pair of nodes b, c in G, counts the number of paths of length less
than n from b to c in G. To this end, assume that graphs are encoded using the signature
R “ tEp¨, ¨q,ău, and then define formula αpx, y, fq as follows:

Epx, yq ` Σz. fpx, zq ¨ Epz, yq. (6.2)

We have that rlsfpαpx, y, fqs defines our counting function. In fact, assume that A is an
R-structure with n elements in its domain encoding an acyclic directed graph. Moreover,
assume that b, c are elements of A and v is a first-order assignment over A such that vpxq “ b
and vpyq “ c. Then we have that Jrlsfpαpx, y, fqsKpA, vq is equal to the number of paths in
A from b to c of length at most n´ 1.

Assume now that we need to count the number of paths of length less than n from a
node b to a node c in a directed graph that is not necessarily acyclic. Then we cannot use
formula (6.2), as the fixed point could be reached too soon without counting all paths of
length at most n´ 1. The fixed point of (6.2) is always reached after k steps, where k is the
size of the maximum shortest path between two vertices in the graph. If the graph has a
cycle in it, there might be paths of size k1 P tk ` 1, . . . , n´ 1u that would not be counted
because the fixed point was reached earlier. Thus, we need a more involved formula in the
general case, which is given below.

Suppose that ϕfirstpxq and ϕsuccpx, yq are FO-formulae defining the first element of ă
and the successor relation associated to ă, respectively. Moreover, define formula βpx, y, t, gq
as follows:

pEpx, yq ` Σz. gpx, z, tq ¨ Epz, yqq ¨ ϕfirstptq ` Σt1. ϕsuccpt
1, tq ¨

`

Σx1.Σy1. gpx1, y1, t1q
˘

Then our extended counting function is defined by:

Σt. pϕfirstptq ¨ rlsfpβpx, y, t, gqsq.

In fact, the number of paths of length at most n from a node x to a node y is recursively
computed by using the formula pEpx, yq ` Σz. gpx, z, tq ¨Epz, yqq ¨ ϕfirstptq, which stores this
value in gpx, y, tq with t the first element in the domain. The other formula Σt1. ϕsuccpt

1, tq ¨
pΣx1.Σy1. gpx1, y1, t1qq is just an auxiliary artifact that is used as a counter to allow reaching
a fixed point in the support of g in n steps. Notice that the use of the filter ϕsuccpt

1, tq
prevents this formula for incrementing the value of gpx, y, tq when t is the first element in
the domain.

In contrast to LFP, to reach a fixed point we do not need to impose any positive
restriction on the formula βpx̄, hq. In fact, since β is constructed from monotone operations
(sum and product) over the natural numbers, the resulting operator Tβ is monotone as well.

Vol. 16:1 DESCRIPTIVE COMPLEXITY FOR COUNTING COMPLEXITY CLASSES 9:35

Now that a least fixed point operator over functions is defined, the next step is to
understand its expressive power. In the following theorem, we show that this operator can
be used to capture FP.

Theorem 6.3. RQFOpFOq captures FP over ordered structures.

Proof. Given the definition of the semantics of RQFOpFOq, it is clear that a fixed formula
rlsfpβpx̄, hqs can be evaluated in polynomial time, from which it is possible to conclude
that each fixed formula in RQFOpFOq can be evaluated in polynomial time. Thus, to prove
that RQFOpFOq captures FP, we only need to prove the second condition in Definition 4.1.

Let f be a function in FP. We address the case when f is defined for the encodings
of the structures of a relational signature R “ tEp¨, ¨qu, as the proof for an arbitrary
signature is analogous. Let M be a deterministic polynomial-time TM with a working
tape and an output tape, such that the output of M on input encpAq is fpencpAqq for
each R-structure A. We assume that M “ pQ, t0, 1u, q0, δq, where Q “ tq0, . . . , q`u, and
δ : Qˆt0, 1, B,$u Ñ Qˆt0, 1, B,$uˆtÐ,Ñuˆt0, 1,Hu is a partial function. In particular,
the tapes of M are infinite to the right so the symbol $ is used to indicate the first position
in each tape, and M does not have any final states, as it produces an output for each input.
Moreover, the only allowed operations in the output tape are: (1) writing 0 and moving
the head one cell to the right, (2) writing 1 and moving the head one cell to the right, or
(3) doing nothing. These operations are represented by 0, 1, and H, respectively. Finally,
assume that M , on input encpAq with domain A “ t1, . . . , nu, executes exactly nk steps on
large inputs for a fixed k ě 1. We ignore small inputs since they can be handled separately.

We construct a formula α in an extension of the grammar of RQFOpFOq such that
JαKpAq “ fpencpAqq for each R-structure A. This extension allows defining the operator
lsfp for multiple functions, analogously to the notion of simultaneous LFP [Lib04]. Let
x̄ “ px1, . . . , xkq and t̄ “ pt1, . . . , tkq. Then α is defined as:

α “ Σt̄. rlsfp outpt̄q :αT0pt̄, x̄, T0, T1, TB, T$, h, ĥ, sq0 , . . . , sq` , outq,

αT1pt̄, x̄, T0, T1, TB, T$, h, ĥ, sq0 , . . . , sq` , outq,

αTBpt̄, x̄, T0, T1, TB, T$, h, ĥ, sq0 , . . . , sq` , outq,

αT$pt̄, x̄, T0, T1, TB, T$, h, ĥ, sq0 , . . . , sq` , outq,

αhpt̄, x̄, T0, T1, TB, T$, h, ĥ, sq0 , . . . , sq` , outq,

αĥpt̄, x̄, T0, T1, TB, T$, h, ĥ, sq0 , . . . , sq` , outq,

αsq0
pt̄, T0, T1, TB, T$, h, ĥ, sq0 , . . . , sq` , outq,

...

αsq` pt̄, T0, T1, TB, T$, h, ĥ, sq0 , . . . , sq` , outq,

αoutpt̄, T0, T1, TB, T$, h, ĥ, sq0 , . . . , sq` , outqs ¨ lastpt̄q.

In this formula, T0, T1, TB, T$, h, ĥ are functions symbols of arity 2 ¨ k, while sq0 , . . . , sq` , out
are function symbols of arity k. For each one of these function symbols f , there is a formula
αf defining how the values of f are updated when computing the fixed point. For example,
αT0 is used to define the values of function T0. Notice that the values of each function in
α depend on the values of the other functions, which is why we talk about a simultaneous

9:36 M. Arenas, M. Munoz, and C. Riveros Vol. 16:1

computation. Besides, notice that the notation rlsfp outpt̄q : . . .s is used to indicate that
(1) the free variables of the formula are t̄ “ pt1, . . . , tkq, and (2) once the least fixed point
has been computed, the value of rlsfp outpt̄q : . . .s for an assignment ā to t̄ is given by the
value (in the fixed point) of function out on ā. Finally, it is important to notice that α
can be transformed into a proper RQFOpFOq formula by using the same techniques used
to prove that simultaneous LFP has the same expressiveness as LFP [Lib04]; in particular,

functions symbols T0, T1, TB, T$, h, ĥ, sq0 , . . . , sq` , out are replaced by a single function f of
arity 6 ¨ 2 ¨ k ` p`` 1q ¨ k ` k “ p`` 14q ¨ k.

In the formula α, function T0 is used to indicate whether the content of a cell of the
working tape is 0 at a certain point of time, that is, T0pt̄, x̄q ą 0 if the cell at position x̄ of
the working tape contains the symbol 0 at step t̄, and T0pt̄, x̄q “ 0 otherwise. Functions T1,
TB and T$ are defined analogously. Function h is used to indicate whether the head of the
working tape is in a specific position at a certain point of time, that is, hpt̄, x̄q ą 0 if the head

of the working tape is at position x̄ at step t̄, and hpt̄, x̄q “ 0 otherwise. Function ĥ is used
to indicate whether the head of the working tape is not in a position at a particular point of
time, that is, ĥpt̄, x̄q ą 0 if the head of the working tape is not at position x̄ at step t̄, and

ĥpt̄, x̄q “ 0 otherwise. For each i P t0, . . . , `u, function sqi is used to indicate whether the TM
M is in state qi at a certain point of time, that is, sqipt̄q ą 0 if the TM M is in state qi at
step t̄, and sqipt̄q “ 0 otherwise. Function out stores the output of the TM M ; in particular,
outpt̄q is the value returned by M when t̄ is the last step. Finally, assuming that ϕlastpxq is

an FO-formula defining the last element of ă, we have that lastpt̄q “
Źk
i“1 ϕlastptiq, that is,

lastpt̄q holds if t̄ is the last step. Therefore, the use of lastpt̄q in α allows us to return the
output of the TM M .

As in Example 6.2, assume that ϕfirstpxq is an FO-formula defining the first element of
ă. Moreover, assume that firstpt̄q and succpt̄, t̄1q are FO-formulae such that firstpt̄q holds if
t̄ is the first step and succpt̄, t̄1q holds if t̄1 is the successor step of t̄ (that is, succp¨, ¨q is the
successor relation associated to the lexicographical order induced by ă on the tuples with k
elements). Then formula αT$ is defined as follows:

αT$pt̄, x̄, T0, T1, TB, T$, h, ĥ, sq0 , . . . , sq` , outq “

pfirstpt̄q ^ firstpx̄qq ` Σt̄1. psuccpt̄1, t̄q ¨ ĥpt̄1, x̄q ¨ T$pt̄
1, x̄qq `

ÿ

pq,aq : δpq,aq“p ,$, , q

Σt̄1. psuccpt̄1, t̄q ¨ hpt̄1, x̄q ¨ Tapt̄
1, x̄q ¨ sqpt̄

1qq.

Notation
ř

pq,aq : δpq,aq“p ,$, , q in this formula is used to indicate that we are considering a

sum over all pairs pq, aq P Q ˆ t0, 1, B,$u such that δpq, aq “ pq1,$, u, vq for some q1 P Q,
u P tÐ,Ñu and v P t0, 1,Hu. Formulae αT0 , αT1 and αTB are defined analogously; for the
sake of presentation, we only show here how αT0 is defined, assuming that ȳ “ py1, . . . , ykq:

αT0pt̄, x̄, T0, T1, TB, T$, h, ĥ, sq0 , . . . , sq` , outq “

pfirstpt̄q ^ Dȳpϕfirstpy1q ^ ¨ ¨ ¨ ^ ϕfirstpyk´2q ^ Epyk´1, ykq ^ succpȳ, x̄qqq `

Σt̄1. psuccpt̄1, t̄q ¨ ĥpt̄1, x̄q ¨ T0pt̄
1, x̄qq`

ÿ

pq,aq : δpq,aq“p ,0, , q

Σt̄1. psuccpt̄1, t̄q ¨ hpt̄1, x̄q ¨ Tapt̄
1, x̄q ¨ sqpt̄

1qq.

Vol. 16:1 DESCRIPTIVE COMPLEXITY FOR COUNTING COMPLEXITY CLASSES 9:37

Notice that in the initial step, the encoding of the structure A has to be placed on the
working tape of M from the second position since the symbol $ is placed in the first position.
This is the reason why we use tuple ȳ and define x̄ as the successor of ȳ. Formula αh is
defined as follows:

αhpt̄, x̄,T0, T1, TB, T$, h, ĥ, sq0 , . . . , sq` , outq “

pfirstpt̄q ^ succpt̄, x̄qq`
ÿ

pq,aq : δpq,aq“p , ,Ð, q

Σt̄1.Σx̄1. psuccpt̄1, t̄q ¨ succpx̄, x̄1q ¨ hpt̄1, x̄1q ¨ Tapt̄
1, x̄1q ¨ sqpt̄

1qq `

ÿ

pq,aq : δpq,aq“p , ,Ñ, q

Σt̄1.Σx̄1. psuccpt̄1, t̄q ¨ succpx̄1, x̄q ¨ hpt̄1, x̄1q ¨ Tapt̄
1, x̄1q ¨ sqpt̄

1qq.

Similarly, formula αĥ is defined as follows:

αĥpt̄, x̄,T0, T1, TB, T$, h, ĥ, sq0 , . . . , sq` , outq “

pfirstpt̄q ^ succpt̄, x̄qq`
ÿ

pq,aq : δpq,aq“p , ,Ð, q

Σt̄1.Σx̄1.Σx̄2. psuccpt̄1, t̄q ¨ hpt̄1, x̄1q ¨ Tapt̄
1, x̄1q ¨ sqpt̄

1q ¨

succpx̄2, x̄1q ¨ px̄ ‰ x̄2qq `
ÿ

pq,aq : δpq,aq“p , ,Ñ, q

Σt̄1.Σx̄1.Σx̄2. psuccpt̄1, t̄q ¨ hpt̄1, x̄1q ¨ Tapt̄
1, x̄1q ¨ sqpt̄

1q ¨

succpx̄1, x̄2q ¨ px̄ ‰ x̄2qq.

Notice that in the definition of αĥ, FO-formula x̄ ‰ x̄2 is used to indicate that tuples x̄ and
x̄2 are distinct (that is, there exists i P t1, . . . , ku such that the i-th components of x̄ and x̄2

are distinct). Formula αsq0
is defined as:

αsq0
pt̄, T0, T1, TB, T$, h, ĥ, sq0 , . . . , sq` , outq “

firstpt̄q `
ÿ

pq,aq : δpq,aq“pq0, , , q

Σt̄1.Σx̄1. psuccpt̄1, t̄q ¨ hpt̄1, x̄1q ¨ Tapt̄
1, x̄1q ¨ sqpt̄

1qq.

Moreover, for every i P t1, . . . , `u, formula αsqi is defined analogously. Finally, formula αout

is defined as:

αoutpt̄, T0, T1, TB, T$, h, ĥ, sq0 , . . . , sq` , outq “
ÿ

pq,aq : δpq,aq“p , , ,0q

Σt̄1.Σx̄1. psuccpt̄1, t̄q ¨ hpt̄1, x̄1q ¨ Tapt̄
1, x̄1q ¨ sqpt̄

1q ¨ 2 ¨ outpt̄1qq `

ÿ

pq,aq : δpq,aq“p , , ,1q

Σt̄1.Σx̄1. psuccpt̄1, t̄q ¨ hpt̄1, x̄1q ¨ Tapt̄
1, x̄1q ¨ sqpt̄

1q ¨ p2 ¨ outpt̄1q ` 1qq `

ÿ

pq,aq : δpq,aq“p , , ,Hq

Σt̄1.Σx̄1. psuccpt̄1, t̄q ¨ hpt̄1, x̄1q ¨ Tapt̄
1, x̄1q ¨ sqpt̄

1q ¨ outpt̄1qq.

Clearly, tuple t̄ encodes the number of steps the machine has done and in each iteration
of the fixed point operator, one timestep of the machine is executed. Assume that ā, ā1

are tuples with k elements such that ā1 is the successor of ā. From the construction of
the formula, and since the machine is deterministic, it can be seen that for each function

9:38 M. Arenas, M. Munoz, and C. Riveros Vol. 16:1

f P tT0, T1, TB, T$, h, ĥu, at the ā-th iteration of the fixed point operator, it holds that
fpā, b̄q ď 1 and fpā1, b̄q “ 0 for every b̄ P Ak. In the same way, it can be seen that (1) for
each function g P tsq1 , . . . , sq`u, at the ā-th iteration of the fixed point operator, it holds that
gpāq ď 1 and gpā1q “ 0, that (2) for each b̄, only one of the functions T0,T1,TB,T$ outputs 1

on input (ā, b̄q, (3) for each b̄, only one of the functions h, ĥ outputs 1 on input pā, b̄q, (4)
there is exactly one b̄ with hpā, b̄q “ 1, and (5) there is exactly one i such that sqipāq “ 1.
From this, we have that at the iteration ā1 of the fixed point operator, outpā1q is equal to
either 2 ¨ outpāq, 2 ¨ outpāq ` 1, or outpāq, which represents precisely the value in the output
tape at each step of M running on the input encpAq. From this argument, it can be seen
that JαKpAq “ fpencpAqq, which concludes the proof of the theorem.

Our last goal in this section is to use the new characterization of FP to explore classes
below it. It was shown in [Imm86, Imm88] that FO extended with a transitive closure
operator captures NL. Inspired by this work, we show that a restricted version of RQFO
can be used to capture #L, the counting version of NL. Specifically, we use RQFO to define
an operator for counting the number of paths in a directed graph, which is what is needed
to capture #L.

Given a relational signature R, the set of transitive QFO formulae (TQFO-formulae) is
defined as the extension of QFO by the additional operator rpath ψpx̄, ȳqs, where ψpx̄, ȳq is
an FO-formula over R, and x̄ “ px1, . . . , xkq, ȳ “ py1, . . . , ykq are tuples of pairwise distinct
first-order variables. The semantics of rpath ψpx̄, ȳqs can easily be defined in terms of
RQFOpFOq as follows. Given an R-structure A with domain A, define a (directed) graph
GψpAq “ pN,Eq such that N “ Ak and for every pair b̄, c̄ P N , it holds that pb̄, c̄q P E if,
and only if, A |ù ψpb̄, c̄q. As was the case for Example 6.2, we can count the paths of length
at most |Ak| in GψpAq with the formula βψpx̄,ȳqpx̄, ȳ, t̄, gq:

pψpx̄, ȳq ` Σz̄. gpx̄, z̄, t̄q ¨ ψpz̄, ȳqq ¨ ϕfirst-lexpt̄q ` Σt̄1. ϕsucc-lexpt̄
1, t̄q ¨

`

Σx̄1.Σȳ1. gpx̄1, ȳ1, t̄1q
˘

,

where ϕfirst-lex and ϕsucc-lex are FO-formulae defining the first and successor predicates over
tuples in Ak, following the lexicographic order induced by ă. Then the semantics of the
path operator can be defined by using the following definition of rpath ψpx̄, ȳqs in RQFO:

rpath ψpx̄, ȳqs :“ Σt̄. pϕfirstpt̄q ¨ rlsfpβψpx̄,ȳqpx̄, ȳ, t̄, gqsq.

In other words, Jrpath ψpx̄, ȳqsKpA, vq counts the number of paths from vpx̄q to vpȳq in the
graph GψpAq whose length is at most |Ak|. As mentioned before, the operator for counting
paths is exactly what we need to capture #L.

Theorem 6.4. TQFOpFOq captures #L over ordered structures.

Proof. First, we show that every formula in TQFOpFOq defines a function that is in #L.
Let R be a relational signature and α a formula over R in TQFOpFOq. We construct a
logarithmic-space nondeterministic Turing Machine Mα that on input pencpAq, vq, where A
is an R-structure and v is a first-order assignment for A, has JαKpA, vq accepting runs (so
that we can conclude that the function defined by α is in #L). Suppose that the domain of
A is A “ t1, . . . , nu. The TM Mα needs ` ¨ log2pnq bits of memory to store the first-order
variables that appear in α, where ` is the number of different variables in this formula (and
also the size of the domain of v). If α “ ϕ, where ϕ is an FO-formula, then we check if
pA, vq |ù ϕ in deterministic logarithmic space, and accept if and only if this condition holds.
If α “ s, where s is a fixed natural number, then we generate s branches and accept in all of
them. If α “ pα1 ` α2q, we simulate Mα1 and Mα2 on separate branches. If α “ pα1 ¨ α2q,

Vol. 16:1 DESCRIPTIVE COMPLEXITY FOR COUNTING COMPLEXITY CLASSES 9:39

we simulate Mα1 and if it accepts, then instead of accepting we simulate Mα2 . If α “ Σx. β,
for each a P A we generate a different branch where we simulate Mβ with input vra{xs.
If α “ Πx. β, we simulate Mβ with input vr1{xs, and on each accepting run, instead of
accepting we simulate Mβ with input vr2{xs, and so on. If α “ rpath ϕpx̄, ȳqs, where ϕ is
an FO-formula, we simulate the #L procedure that counts the number of paths of a given
length from a source to a target node in an input graph (where the length is at most the
number of nodes in the graph).

Second, we show that every function in #L can be encoded by a formula in TQFOpFOq.
Let f be a function in #L and M a logarithmic-space nondeterministic Turing Machine
such that #acceptM pencpAqq “ fpencpAqq. We assume that M has only one accepting state,
and that no transition is defined for this state. Moreover, we assume that there exists only
one accepting configuration. We make use of transitive closure logic (TC) to simplify our
proof [Grä07]. We have that TC captures NL [Imm83], so that there exists a formula ϕ in
TC such that A |ù ϕ if and only if M accepts encpAq. This formula can be expressed as:

ϕ “ DūDz̄pψinitialpūq ^ ψaccpz̄q ^ rtcx̄,ȳ ψnextpx̄, ȳqspū, z̄qq,

where ψinitialpūq is an FO-formula that indicates that ū is the initial configuration, ψaccpz̄q
is an FO-formula that indicates that z̄ is an accepting configuration, and ψnextpx̄, ȳq is
an FO-formula that indicates that ȳ is a successor configuration of x̄ [Grä07]. Here,
there is a one-to-one correspondence between configurations of M and assignments to
z̄. As a consequence, given a structure A and a first-order assignment v for A, where
vpx̄q is the starting configuration and vpȳq is the sole accepting configuration, the value of
Jrpath ψnextpx̄, ȳqsKpA, vq is equal to #acceptM pencpAqq. Therefore, the TQFOpFOq-formula
α “ Σū.Σz̄. pψinitialpūq ¨ψaccpz̄q ¨ rpath ψnextpū, z̄qsq satisfies that JαKpAq “ fpencpAqq. This
concludes the proof of the theorem.

This last result perfectly illustrates the benefits of our logical framework for the devel-
opment of descriptive complexity for counting complexity classes. The distinction in the
language between the Boolean and the quantitative level allows us to define operators at the
latter level that cannot be defined at the former. As an example showing how fundamental
this separation is, consider the issue of extending QFOpFOq at the Boolean level in order
to capture #L. The natural alternative to do this is to use FO extended with a transitive
closure operator, which is denoted by TC. But then the problem is that for every language
L P NL, it holds that its characteristic function χL is in QFOpTCq, where χLpxq “ 1 if
x P L, and χLpxq “ 0 otherwise. Thus, if we assume that QFOpTCq captures #L (over
ordered structures), then we have that χL P #L for every L P NL. This would imply that
NL “ UL,5 solving an outstanding open problem [RA97].

7. Concluding remarks and future work

We proposed a framework based on Weighted Logics to develop a descriptive complexity
theory for complexity classes of functions. We consider the results of this paper as a first
step in this direction. Consequently, there are several directions for future research, some of
which are mentioned here. TotP is an interesting counting complexity class as it naturally
defines a class of functions in #P with easy decision counterparts. However, we do not have

5A decision language L is in UL is there exists a logarithmic-space NTM M accepting L and satisfying
that #acceptM pxq “ 1 for every x P L.

9:40 M. Arenas, M. Munoz, and C. Riveros Vol. 16:1

a logical characterization of this class. Similarly, we are missing logical characterizations
of other fundamental complexity classes such as SpanL [ÀJ93]. We would also like to
define a larger syntactic subclass of #P where each function admits an FPRAS; notice that
#PerfectMatching is an important problem admitting an FPRAS [JSV04] that is not
included in the classes defined in Section 5.2. Moreover, by following the approach proposed
in [Imm83], we would like to include second-order free variables in the operator for counting
paths introduced in Section 6, in order to have alternative ways to capture FPSPACE and
even #P.

Finally, an open problem is to understand the connection of this framework with
enumeration complexity classes. For example, in [DS11] the enumeration of assignments
for first-order formulas was studied following the #FO-hierarchy, and in [ABJM17] the
efficient enumeration (i.e. constant delay enumeration [Seg13]) was shown for a particular
class of circuits. It would be interesting then to adapt the ΣQSOpFOq-hierarchy for the
context of enumeration and identify subclasses that also admit good properties in terms of
enumeration.

8. Acknowledgements

The authors are grateful to Luis Alberto Croquevielle for providing the proof of Proposition
5.13. This research has been supported by the Fondecyt grant 1161473 and the Millennium
Institute for Foundational Research on Data.

References

[AB09] Sanjeev Arora and Boaz Barak. Computational complexity: a modern approach. Cambridge
University Press, 2009.

[ABJM17] Antoine Amarilli, Pierre Bourhis, Louis Jachiet, and Stefan Mengel. A circuit-based approach to ef-
ficient enumeration. In 44th International Colloquium on Automata, Languages, and Programming,
ICALP 2017, July 10-14, 2017, Warsaw, Poland, pages 111:1–111:15, 2017.

[ÀJ93] Carme Àlvarez and Birgit Jenner. A very hard log-space counting class. Theor. Comput. Sci.,
107(1):3–30, 1993.

[ALM`98] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy. Proof
verification and the hardness of approximation problems. J. ACM, 45(3):501–555, 1998.

[AMR17] Marcelo Arenas, Martin Muñoz, and Cristian Riveros. Descriptive complexity for counting
complexity classes. In 32nd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS
2017, Reykjavik, Iceland, June 20-23, 2017, pages 1–12, 2017.

[AV89] Serge Abiteboul and Victor Vianu. Fixpoint extensions of first-order logic and datalog-like
languages. In Proceedings of LICS’89, pages 71–79, 1989.

[BCP`17] Eleni Bakali, Aggeliki Chalki, Aris Pagourtzis, Petros Pantavos, and Stathis Zachos. Completeness
results for counting problems with easy decision. In Algorithms and Complexity - 10th International
Conference, CIAC 2017, Athens, Greece, May 24-26, 2017, Proceedings, pages 55–66, 2017.

[CG96] Kevin J. Compton and Erich Grädel. Logical definability of counting functions. J. Comput. Syst.
Sci., 53(2):283–297, 1996.

[DFJ02] Martin E. Dyer, Alan M. Frieze, and Mark Jerrum. On counting independent sets in sparse graphs.
SIAM J. Comput., 31(5):1527–1541, 2002.

[DG07] Manfred Droste and Paul Gastin. Weighted automata and weighted logics. Theor. Comput. Sci.,
380(1-2):69–86, 2007.

[DHK05] Arnaud Durand, Miki Hermann, and Phokion G. Kolaitis. Subtractive reductions and complete
problems for counting complexity classes. Theor. Comput. Sci., 340(3):496–513, 2005.

Vol. 16:1 DESCRIPTIVE COMPLEXITY FOR COUNTING COMPLEXITY CLASSES 9:41

[DHKV16] Arnaud Durand, Anselm Haak, Juha Kontinen, and Heribert Vollmer. Descriptive complexity
of #ac0 functions. In 25th EACSL Annual Conference on Computer Science Logic, CSL 2016,
August 29 - September 1, 2016, Marseille, France, pages 20:1–20:16, 2016.

[DKV09] Manfred Droste, Werner Kuich, and Heiko Vogler. Handbook of weighted automata. Springer
Science & Business Media, 2009.

[DS11] Arnaud Durand and Yann Strozecki. Enumeration Complexity of Logical Query Problems with
Second-order Variables. In Marc Bezem, editor, Computer Science Logic (CSL’11) - 25th Inter-
national Workshop/20th Annual Conference of the EACSL, volume 12 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 189–202, Dagstuhl, Germany, 2011. Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik.

[Ete97] Kousha Etessami. Counting quantifiers, successor relations, and logarithmic space. J. Comput.
Syst. Sci., 54(3):400–411, 1997.

[Fag74] Ronald Fagin. Generalized first-order spectra and polynomial-time recognizable sets. Complexity
of Computation, SIAM-AMS Proceedings, (7):43–73, 1974.

[Fag75] Ronald Fagin. Monadic generalized spectra. Math. Log. Q., 21(1):89–96, 1975.
[FFK94] Stephen A. Fenner, Lance Fortnow, and Stuart A. Kurtz. Gap-definable counting classes. J.

Comput. Syst. Sci., 48(1):116–148, 1994.
[FH08] Piotr Faliszewski and Lane A. Hemaspaandra. The consequences of eliminating NP solutions.

Comp. Sci. Review, 2(1):40–54, 2008.
[For97] Lance Fortnow. Counting complexity. In Complexity Theory Retrospective II, pages 81–107.

Springer, 1997.
[GG98] Erich Grädel and Yuri Gurevich. Metafinite model theory. Inf. Comput., 140(1):26–81, 1998.
[Gil77] John Gill. Computational complexity of probabilistic turing machines. SIAM J. Comput., 6(4):675–

695, 1977.
[Grä92] Erich Grädel. Capturing complexity classes by fragments of second-order logic. Theor. Comput.

Sci., 101(1):35–57, 1992.
[Grä07] Erich Grädel. Finite model theory and descriptive complexity. In Finite Model Theory and Its

Applications, pages 125–230. Springer, 2007.
[GS90] Michelangelo Grigni and Michael Sipser. Monotone complexity. In Proceedings of LMS Workshop

on Boolean Function Complexity, 1990.
[HO13] Lane Hemaspaandra and Mitsunori Ogihara. The complexity theory companion. Springer Science

& Business Media, 2013.
[HV95] Lane A. Hemaspaandra and Heribert Vollmer. The satanic notations: counting classes beyond

#P and other definitional adventures. SIGACT News, 26(1):2–13, 1995.
[IL90] Neil Immerman and Eric Lander. Describing graphs: a first order approach to graph canonization.

In Alan L. Selman, editor, Complexity Theory Retrospective, pages 59–81. Springer-Verlag, 1990.
[Imm82] Neil Immerman. Relational queries computable in polynomial time (extended abstract). In

Proceedings of the fourteenth annual ACM symposium on Theory of computing, pages 147–152,
1982.

[Imm83] Neil Immerman. Languages which capture complexity classes (preliminary report). In Proceedings
of STOC’83, pages 347–354, 1983.

[Imm86] Neil Immerman. Relational queries computable in polynomial time. Information and Control,
68(1-3):86–104, 1986.

[Imm88] Neil Immerman. Nondeterministic space is closed under complementation. SIAM J. Comput.,
17(5):935–938, 1988.

[Imm99] Neil Immerman. Descriptive complexity. Graduate texts in computer science. Springer, 1999.
[JSV04] Mark Jerrum, Alistair Sinclair, and Eric Vigoda. A polynomial-time approximation algorithm for

the permanent of a matrix with nonnegative entries. J. ACM, 51(4):671–697, 2004.
[KL83] Richard M. Karp and Michael Luby. Monte-carlo algorithms for enumeration and reliability

problems. In Proceedings of FOCS’83, pages 56–64, 1983.
[Kre88] Mark W Krentel. The complexity of optimization problems. Journal of computer and system

sciences, 36(3):490–509, 1988.
[KT94] Phokion G Kolaitis and Madhukar N Thakur. Logical definability of NP optimization problems.

Information and Computation, 115(2):321–353, 1994.

9:42 M. Arenas, M. Munoz, and C. Riveros Vol. 16:1

[Lad89] Richard E. Ladner. Polynomial space counting problems. SIAM J. Comput., 18(6):1087–1097,
1989.

[Lib04] Leonid Libkin. Elements of Finite Model Theory. Springer, 2004.
[OH93] Mitsunori Ogiwara and Lane A. Hemachandra. A complexity theory for feasible closure properties.

J. Comput. Syst. Sci., 46(3):295–325, 1993.
[Pap94] Christos H. Papadimitriou. Computational complexity. Addison-Wesley, 1994.
[PY91] Christos H. Papadimitriou and Mihalis Yannakakis. Optimization, approximation, and complexity

classes. J. Comput. Syst. Sci., 43(3):425–440, 1991.
[PZ06] Aris Pagourtzis and Stathis Zachos. The complexity of counting functions with easy decision

version. In Proceedings of MFCS’06, pages 741–752, 2006.
[RA97] Klaus Reinhardt and Eric Allender. Making nondeterminism unambiguous. Electronic Colloquium

on Computational Complexity (ECCC), 4(14), 1997.
[Seg13] Luc Segoufin. Enumerating with constant delay the answers to a query. In Joint 2013 EDBT/ICDT

Conferences, ICDT ’13 Proceedings, Genoa, Italy, March 18-22, 2013, pages 10–20, 2013.
[SST95] Sanjeev Saluja, K. V. Subrahmanyam, and Madhukar N. Thakur. Descriptive Complexity of #P

Functions. J. Comput. Syst. Sci., 50(3):493–505, 1995.
[Val79a] Leslie G. Valiant. The complexity of computing the permanent. Theor. Comput. Sci., 8:189–201,

1979.
[Val79b] Leslie G. Valiant. The complexity of enumeration and reliability problems. SIAM J. Comput.,

8(3):410–421, 1979.
[Var82] Moshe Vardi. The complexity of relational query languages. In Proceedings of STOC’82, pages

137–146, 1982.
[VW95] Heribert Vollmer and Klaus W Wagner. Complexity classes of optimization functions. Inf. and

Comp., 120(2):198–219, 1995.

This work is licensed under the Creative Commons Attribution License. To view a copy of this
license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or Eisenacher Strasse
2, 10777 Berlin, Germany

	1. Introduction
	2. Preliminaries
	2.1. Second-order logic, LFP and PFP
	2.2. Counting complexity classes

	3. A logic for quantitative functions
	3.1. Previous frameworks for quantitative functions

	4. Counting under QSO
	4.1. Extending QSO to capture classes beyond counting

	5. Exploring the structure of #P through QSO
	5.1. The QSO(FO)-hierarchy inside #P
	5.2. Defining a class of functions with easy decision versions and good closure properties
	5.3. Defining a class of functions with easy decision versions and natural complete problems

	6. Adding recursion to QSO
	7. Concluding remarks and future work
	8. Acknowledgements
	References

