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such properties compositionally, we introduce approximate span-lifting, a novel construction extending the

approximate relational lifting approaches previously developed for standard differential privacy to a more

general class of divergences, and also to continuous distributions. As an application, we develop a program

logic based on approximate span-liftings capable of proving relaxations of differential privacy and other

statistical divergence properties.
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1 INTRODUCTION
Differential privacy [Dwork et al. 2006] is a strong, statistical notion of data privacy that has attracted

the attention of theoreticians and practitioners alike. One reason for its success is that differential

privacy can often be proved compositionally, enabling easy construction of new private algorithms

and making formal verification practical. By now, researchers have developed a wide variety of

programming languages and program analysis tools to prove differential privacy [Albarghouthi

and Hsu 2018; Barthe et al. 2015, 2013; Gaboardi et al. 2013; McSherry 2009; Reed and Pierce 2010;

Winograd-Cort et al. 2017; Zhang and Kifer 2017] (Barthe et al. [2016c] provide a recent survey).

Seekingmore refined composition properties, researchers have recently proposed new relaxations

of differential privacy: Rényi differential privacy (RDP) [Mironov 2017], zero-concentrated differential
privacy (zCDP) [Bun and Steinke 2016], and truncated concentrated differential privacy (tCDP) [Bun

et al. 2018]. Roughly speaking, standard differential privacy requires a bound on the magnitude of a

random variable measuring the privacy loss, while RDP, zCDP, and tCDP model finer bounds on the

moments of this random variable. (Recall that the first moment of a random variable is its average

value, and the second moment of a random variable is its variance.) These relaxations capture

fine-grained aspects of the privacy loss, enabling more precise privacy analyses and allowing

algorithms to add less random noise to achieve the same privacy level.
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Each of RDP, zCDP, and tCDP is defined in terms Rényi divergences [Renyi 1961], sophisticated
distances on distributions originating from information theory. Inspiring our work, Barthe and

Olmedo previously developed abstractions for reasoning about a family of divergences called

f -divergences as part of their work on the program logic f pRHL [Barthe and Olmedo 2013; Olmedo

2014]. In particular, the semantic foundation of f pRHL is a 2-witness relational lifting for f -
divergences, which tracks the f -divergence between relates pairs of distributions. However, this

framework is not sufficient to establish about our target properties for two reasons. First, Rényi

divergences are not f -divergences,1 while zCDP and tCDP are properly described as supremums
of Rényi divergences, rather than single divergences. As a result, these relaxations of differential

privacy cannot be described in terms of f -divergences, nor captured in f pRHL. Accordingly, we
develop new relational liftings supporting significantly more general divergences, allowing direct

reasoning about RDP, zCDP, and tCDP.

A further challenge is that 2-witness relational liftings to date have only been proposed for

discrete distributions, while many algorithms satisfying relaxations of differential privacy—indeed,

the motivating examples of such algorithms—sample from continuous distributions, such as the

Gaussian distribution. Handling these distributions requires a careful treatment of measure theory.

Sato [2016] has previously considered a different semantic model for standard differential privacy

over continuous distributions usingwitness-free relational lifting based on a categorical construction
called codensity lifting [Katsumata and Sato 2015], but it is not clear how to handle more general

divergences with this method.

To overcome these difficulties, we generalize 2-witness liftings in two directions. First, we replace

the notion of f -divergence with a more general class of divergences, identifying the basic properties

needed for compositional reasoning. Second, we generalize these liftings to about continuous

probability measures. The main challenge is establishing a sequential composition principle—the

continuous case introduces further measurability requirements for composition. Accordingly, we

extend the structure of 2-witness liftings to a new notion called approximate span-liftings, which
have the necessary data to ensure closure under sequential composition. Finally, we specialize our

general model to Rényi divergence, divergences for zCDP, and divergences for tCDP, establishing

categorical properties needed to build approximate span-liftings. As an extended application, we

develop a relational program logic that can verify differential privacy, RDP, zCDP, and tCDP within

a single logic for programs using discrete or continuous sampling, and interpret the logic via

approximate span-liftings.

After motivating the various relaxations of differential privacy and presenting the key technical

challenges (Section 2), and introducing mathematical preliminaries (Section 3), we present our

main contributions.

• We identify a general class of divergences supporting basic properties composition properties,

and we show that our class can model RDP, zCDP and tCDP (Section 4).

• We extend 2-witness relational liftings to the continuous case by introducing a novel notion

of approximate span-lifting and showing how to translate composition properties of specific

divergences to their corresponding approximate span-liftings (Section 5).

• We develop a program logic supporting four flavors of differential privacy—standard DP, RDP,

zCDP, and tCDP—where programs may use both discrete and continuous random sampling,

and show soundness (Section 6). We demonstrate our logic on three examples (Section 7).

We survey related work (Section 8) and then conclude with promising future directions (Section 9).

1
For instance, all f -divergences are jointly convex while Rényi divergences are only quasi-convex [Van Erven and Harremoës

2014].
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2 BACKGROUND: MOTIVATION AND TECHNICAL CHALLENGES
To better understand the key technical challenges, we first introduce relevant background on

privacy, divergences, and existing relational verification techniques. For simplicity, in this section

we consider probability distributions which have associated density functions.

2.1 Differential Privacy and its Relaxations
We first introduce differential privacy. A randomized algorithm is a measurable function A : X →
Prob(Y ) from a set X of inputs to the set Prob(Y ) of probability distributions on a set Y of outputs.

Definition 2.1 (Differential Privacy (DP) [Dwork et al. 2006]). A randomized algorithm A : X →
Prob(Y ) is (ε,δ )-differentially private w.r.t an adjacency relation Φ ⊆ X ×X , if for any pairs of inputs

(x ,x ′) ∈ Φ, and any measurable subset S ⊆ Y , we have Pr[A(x) ∈ S] ≤ eε Pr[A(x ′) ∈ S] + δ .

Definition 2.2 (Rényi divergence [Renyi 1961]). Let α > 1. The Rényi divergence of order α between

two probability distributions µ1 and µ2 on a measurable space X is defined by:

Dα
X (µ1 | |µ2)

def
=

1

α − 1 log

∫
X
µ2(x)

(
µ1(x)
µ2(x)

)α
dx . (1)

Definition 2.3 (Rényi Differential Privacy (RDP) [Mironov 2017]). A randomized algorithm A :

X → Prob(Y ) is (α , ρ)-Rényi differentially private w.r.t an adjacency relation Φ ⊆ X × X , if for any

pairs of inputs (x ,x ′) ∈ Φ, we have Dα
X (A(x)| |A(y)) ≤ ρ.

Definition 2.4 (zero-Concentrated Differential Privacy (zCDP) [Bun and Steinke 2016]). A random-

ized algorithm A : X → Prob(Y ) is (ξ , ρ)-zero concentrated differentially private w.r.t an adjacency

relation Φ ⊆ X × X , if for any pairs of inputs (x ,x ′) ∈ Φ, we have
∀α > 1. Dα

Y (A(x)| |A(x ′)) ≤ ξ + αρ . (2)

Definition 2.5 (Truncated Concentrated Differential Privacy (tCDP) [Bun et al. 2018]). A randomized

algorithmA : X → Prob(Y ) is (ρ,ω)-truncated concentrated differentially private w.r.t an adjacency

relation Φ ⊆ X × X , if for any input pairs (x ,x ′) ∈ Φ, we have
∀1 < α < ω . Dα

Y (A(x)| |A(x ′)) ≤ αρ . (3)

While these notions may seem cryptic at first sight, they can all be understood as bounds on the

privacy loss, defined for any two private inputs x ,x ′ by

Lx→x ′(y) = Pr[A(x) = y]
Pr[A(x ′) = y] .

Intuitively, the privacy loss measures how much information is revealed when the output of a

private algorithm is seen to be y. While output values with a high value of privacy loss are highly

revealing—since they are far more likely to result from a private input x rather than a different

private input x ′—if these outputs are only seen with very small probability, then their influence

can be discounted. Accordingly, the different privacy definitions bound different functions of the

privacy loss function, evaluated at some output y drawn from the output distribution of the private

algorithm. The following table summarizes these bounds.

Privacy notion of A Bound on privacy loss L
(ε,δ )-DP Pry∼A(x )[Lx→x ′(y) ≤ eε ] ≥ 1 − δ
(α , ρ)-RDP Ey∼A(x )[Lx→x ′(y)α ] ≤ e(α−1)ρ

(ξ , ρ)-zCDP ∀α > 1. Ey∼A(x )[Lx→x ′(y)α ] ≤ e(α−1)(ξ+αρ)

(ω, ρ)-tCDP ∀1 < α < ω . Ey∼A(x )[Lx→x ′(y)α ] ≤ e(α−1)αρ

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.
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In particular, DP bounds the maximum value of the privacy loss, (α , ·)-RDP bounds the α-
moment, zCDP bounds all moments, and (·,ω)-tCDP bounds the moments up to some cutoff ω.
Many conversions are known between these definitions; for instance, the relaxations of RDP, zCDP,

and tCDP are known to sit between (ε, 0) and (ε,δ )-differential privacy in terms of expressivity, up

to some modification in the parameters. While this means that RDP, zCDP, and tCDP can sometimes

be analyzed by reduction to standard differential privacy, converting between the different notions

requires weakening the parameters and often the privacy analysis is simplest and most precise by

working with RDP, zCDP, or tCDP directly. For further details, the interested reader can refer to

the original papers [Bun and Steinke 2016; Mironov 2017].

A motivating example of a mechanism fitting these three definitions is the Gaussian mechanism
and Sinh Normal mechanism, which add noise according to a Gaussian distribution and sinh-normal

distribution over the real numbers respectively. The distributions are generated by continuous

density functions.

2.2 2-witness Relational Liftings for f -divergences in Discrete Case
Barthe and Olmedo [2013] observed that standard differential privacy can be phrased in terms of a

general class of divergences, called f -divergences.

Definition 2.6. A weight function is a convex function f : R≥0 → R continuous at 0.
2

Definition 2.7 (f -divergence). For a weight function f , the f -divergence ∆f
between two distribu-

tions µ1, µ2 over a measurable space X is defined as

∆
f
X (µ1, µ2) =

∫
X
µ2(x)f

(
µ1(x)
µ2(x)

)
dx . (4)

In particular, differential privacy can be modeled by the f -divergence ∆DP(ε )
with weight function

DP(ε)(t) = max(0, 1 − eεt) [Barthe and Olmedo 2013; Olmedo 2014]. For any randomized algorithm

A : X → Prob(Y ) and adjacency relation Φ ⊆ X × X , we have

A is (ε,δ )-DP iff (for all (x ,x ′) ∈ Φ, ∆DP(ε )
Y (A(x),A(x ′)) ≤ δ ).

To verify f -divergence properties of probabilistic programs, Barthe and Olmedo introduced

2-witness relational lifting for f -divergences as a key abstraction. This construction lifts a relation

R ⊆ X × Y over discrete sets X ,Y to a relation R♯(f ,δ ) ⊆ Dist(X ) × Dist(Y ) over subprobability
distributions:

3

R♯(f ,δ ) =
{
(µ1, µ2)

��� ∃µL, µR ∈ Dist(R). π1(µL) = µ1, π2(µR ) = µ2, ∆
f
R (µL, µR ) ≤ δ

}
. (5)

Above,πi (µ) is the i-thmarginal of µ, that is, (π1(µ))(x) =
∑
y∈Y µ(x ,y) and (π2(µ))(y) =

∑
x ∈X µ(x ,y).

The distributions µL and µR are called witness distributions, since to show that two distributions are

related by a lifting, one must show the existence of two appropriate witnesses.

Barthe and Olmedo used these relational liftings as the foundation of their relational program

logic f pRHL. These liftings have several attractive features. First, they reflect f -divergences:

Eq
♯(f ,δ )
X = { (x ,x) | x ∈ X }♯(f ,δ ) =

{
(µ1, µ2)

��� ∆f
X (µ1, µ2) ≤ δ

}
.

2
As is conventional [Liese and Vajda 2006], we exclude the condition f (1) = 0 from the definition of weight function

to support the exponential of Rényi divergence of order α . We also assume 0f (a/0) = limt→0+ t f (a/t ) for a > 0 and

0f (0/0) = 0.

3
In order to reason about possibly non-terminating programs, they work with an extension of f -divergence to subprobability
distributions.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.
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So, they can be used to characterize differential privacy: a program A : X → Dist(Y ) is (ε,δ )-
differentially private w.r.t. an adjacency relation Φ, if (A(x),A(x ′)) ∈ Eq

♯(DP(ε ),δ )
Y , for every

(x ,x ′) ∈ Φ. Second, 2-witness liftings satisfy various composition properties, enabling clean

verification of probabilistic programs. However, this construction works only in the discrete case—

all subprobability distributions are over countable discrete sets—and the logic f pRHL cannot reason
about programs that sample from continuous distributions, like the Gaussian distribution.

2.3 Challenge 1: Handling Richer Divergences
Much like standard differential privacy can be viewed in terms of f -divergences, we would like to

view RDP, zCDP, and tCDP as bounds on more general divergences. A natural candidate for Rényi

differential privacy is Rényi divergence Dα
, as in its original definition. Indeed, we have:

A is (α , ρ)-RDP iff (for all (x ,x ′) ∈ Φ, Dα
Y (A(x)| |A(x ′)) ≤ ρ).

However, the Rényi divergence Dα (µ1 | |µ2) of order α is not an f -divergence, and so it does not fit

in the 2-witness lifting framework. Likewise, zCDP [Bun and Steinke 2016] and tCDP [Bun et al.

2018] can be defined via uniform bounds on families of Rényi divergence:

∆
zCDP(ξ )
X (µ1, µ2) = sup

1<α

1

α

(
Dα
X (µ1 | |µ2) − ξ

)
for 0 ≤ ξ , (6)

∆ω−tCDP
X (µ1, µ2) = sup

1<α<ω

1

α

(
Dα
X (µ1 | |µ2)

)
for 1 < ω, (7)

letting us reformulate zCDP and tCDP as

A is (ξ , ρ)-zCDP iff (for all (x ,x ′) ∈ Φ, ∆zCDP(ξ )
Y (A(x),A(x ′)) ≤ ρ)

A is (ρ,ω)-tCDP iff (for all (x ,x ′) ∈ Φ, ∆ω−tCDP
Y (A(x),A(x ′)) ≤ ρ).

These divergences are also not f -divergences. Furthermore, the RDP, zCDP and tCDP divergences

may take negative values when applied to sub-probability distributions, which can arise from

probabilistic computations that may not terminate with probability 1. Accordingly, we generalize the

notion of divergence to go beyond f -divergences and also to handle sub-probability distributions.

Starting from families of real valued functions from pairs of distributions, we introduce basic

properties needed to give good composition properties for their corresponding liftings.

2.4 Challenge 2: Extending 2-witness Liftings to the Continuous Case
In order to support natural examples for RDP, zCDP, and tCDP, we need a framework supporting

continuous distributions, such as Gaussian, Laplace, and sinh-normal distributions. Unfortunately,

extending 2-witness relational liftings to the continuous case presents further technical challenges

related to composition. The relational lifting (−)♯(DP(ε ),δ ) for standard differential privacy satisfies a

sequential composition principle:

(f ,д) : R → S ♯(DP(ε1),δ1) is a relation-preserving map.

(f ♯,д♯) : R♯(DP(ε2),δ2) → S ♯(DP(ε1+ε2),δ1+δ2) is a relation-preserving map.

Here, f ♯ and д♯ are the Kleisli liftings of f and д with respect to the monad Dist of (discrete)

subprobability distributions; this composition property gives 2-witness relational liftings a graded
monad structure [Fujii et al. 2016; Katsumata 2014], highly useful for compositional reasoning.

Since 2-witness lifting is defined through the existence of witness distributions, for any (d1,d2) ∈
R♯(DP(ε2),δ2)

, we then need witness distributions showing (f ♯(d1),д♯(d2)) ∈ S ♯(DP(ε1+ε2),δ1+δ2). In the

discrete case, these witnesses can be constructed in two steps:

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.
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(1) For any (x ,y) ∈ R, there exist witnesses d ′L,d ′R ∈ Dist(S) proving (f (x),д(y)) ∈ S ♯(DP(ε1),δ1).
By applying the axiom of choice, we obtain a selection function

⟨l1, l2⟩ : R →
{
(d ′L,d ′R ) | ∆

DP(ε1)
S (d ′L,d ′R ) ≤ δ1

}
(2) For any witnesses dL,dR ∈ Dist(R) proving (d1,d2) ∈ R♯(DP(ε2),δ2)

, (l ♯
1
(dL), l ♯

2
(dR )) is a pair of

witness distributions proving (f ♯(d1),д♯(d2)) ∈ S ♯(DP(ε1+ε2),δ1+δ2) by composability of ∆DP(ε )
.

The first step is problematic to extend to the continuous case because the witness-selecting functions

l1 and l2 obtained by the axiom of choice may not be measurable—the Kleisli extensions l ♯
1
and l ♯

2

in the second step may not be well-defined in the continuous case.

To resolve this difficulty, we introduce a novel notion of approximate span-liftings. The key idea

is that morphisms between span-liftings carry a built-in measurable witness selection function,

making it unnecessary to use the axiom of choice when proving sequential composition.

3 MATHEMATICAL PRELIMINARIES
3.1 Measure Theory
We briefly review some definitions frommeasure theory; readers should consult a textbook for more

details [Rudin 1987]. Given a set X , a σ -algebra on X is a collection Σ of subsets of X including the

empty set, closed under complements, countable unions, and countable intersections; a measurable
space X is a set |X | with a σ -algebra ΣX , called the measurable sets. A countable set X yields the

discrete measurable space where all subsets are measurable: ΣX = 2
X
.

A map f : X → Y between measurable spaces is measurable if f−1(A) ∈ ΣX for all A ∈ ΣY .
Any subset S of measurable space X forms a subspace where the σ -algebra is given by ΣS =
{ A ∩ S | A ∈ ΣX }. ΣS is given as the coarsest one making the inclusion map S ↪→ X measurable.

A measure on a measurable space is a map µ : ΣX → R≥0 ∪ {∞} such that µ(∅) = 0 and

µ(∪iXi ) =
∑

i µ(Xi ) for any countable family of disjoint measurable setsXi . Measures with µ(X ) = 1

are called probability measures, and measures with µ(X ) ≤ 1 are called subprobability measures.
For any pair of subprobability measures µ1 on X and µ2 on Y , the product measure µ1 ⊗ µ2 of µ1

and µ2 is the unique measure on X × Y satisfying (µ1 ⊗ µ2)(A × B) = µ1(A) · µ2(B).
For any measurable spaceX and element x ∈ X , we write dx for the Dirac measure onX centered

at x , defined as dx (A) = 1 if x ∈ A, and dx (A) = 0 otherwise.

Measurable spaces and measurable functions form a category Meas; this category has all limits

and colimits, and finite products distribute over finite coproducts. We denote by Fin the full

subcategory of Meas consisting of all finite discrete spaces.

3.2 The Sub-Giry Monad
The sub-Giry monad G is the subprobabilistic variant of the Giry monad [Giry 1982].

Definition 3.1. The sub-Giry monad (G,η, (−)♯) over Meas is defined as follows:

• For any X ∈ Meas, the measurable space GX is the set of subprobability measures ( measures

whose mass is equal or less than 1 ) on X equipped with the coarsest σ -algebra induced by

the evaluation functions evA : GX → [0, 1] defined by ν 7→ ν (A) (A ∈ ΣX ).
• For each f : X → Y in Meas, G f : GX → GY is defined by (G f )(µ) = µ(f−1(−)).
• The unit η is defined by the Dirac distributions ηX (x) = dx .
• The Kleisli extension f ♯ : GX → GY of f : X → GY is given by for any µ ∈ GX and A ∈ ΣY ,
f ♯(µ)(A) =

∫
X f (x)(A) dµ(x).

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.
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The sub-Giry monad satisfies useful properties for interpreting probabilistic programs. It is

commutative and strong with respect to the Cartesian products of Meas, where the double strength
dstX ,Y : G(X ) × G(Y ) ⇒ G(X × Y ) is given by the product measures dstX ,Y (ν1,ν2) = ν1 ⊗ ν2.
The double strength is used to define semantics for composition and to interpret typing contexts.

Additionally, the sub-Giry monad provides a structure to interpret loops. Namely, we can introduce

an ωCPO⊥ structure over measurable functions of type X → G(Y ) with the following order:
4

f ⊑ д ⇐⇒ ∀x ∈ X ,B ∈ ΣY . f (x)(B) ≤ д(x)(B) (f ,д : X → G(Y ) in Meas).

3.3 Graded Monads
A graded monad [Fujii et al. 2016; Katsumata 2014] is a monad refined by indices from a monoid.

Let A = (A, ·, 1A, ⪯) be a preordered monoid. An A-graded monad on a category C consists of

• a family {Te }e ∈M of endofunctors Te on C,
• a morphism ηX : X → T1AX for X ∈ C (unit),

• a morphism (−)e1♯e2 : C(X ,Te2Y ) → C(Te1X ,Te1e2Y ) for X ,Y ∈ C and e1, e2 ∈ A (Kleisli

lifting),

• a family {⊑e1,e2 }e1⪯e2 of natural transformations ⊑e1,e2 : Te1 ⇒ Te2 (inclusion)

satisfying the following compatibility condition: for any f : X → Te1Y and д : Y → Te2Z ,

⊑(e2e1),(e2e3)Z ◦ f e2♯e1 = (⊑e1,e2Y ◦ f )e2♯e3 , f e3♯e1 ◦ ⊑e2,e3X = ⊑(e2e1),(e3e1)Y ◦ f e2♯e1 ,

f 1♯e1 ◦ ηX = f , η1♯eX = idTeX , (дe1♯e2 ◦ f )e0♯e1e2 = дe0e1♯e2 ◦ f e0♯e1 .
A typical way of constructing a graded monad is by refining a plain monad with indices. An

A-graded lifting of a monad (T ,ηT , (−)♯) on D along a functor U : C→ D is an A-graded monad

{Te }e ∈A on C satisfying U ◦Te = T ◦U , U (f e2♯e1 ) = (U f )♯ , U (ηD ) = ηTUD , and U (⊑
e1,e2
D ) = idTUD .

The functorU erases the grading of Te , yielding the original (plain) monad T .

3.4 The Category of Spans on Measurable Spaces
To extend the relational lifting approach to the continuous setting, we work with the category

of spans, whose objects generalize relations by taking arbitrary functions in place of projections.

Morphisms between spans will encode the information needed to ensure good compositional

behavior.

Definition 3.2. The category Span(Meas) of spans in Meas consists of:

• Objects (X ,Y ,Φ, ρ1, ρ2) given by span X
ρ1←−− Φ

ρ1−−→ Y in Meas.
• Morphisms (X ,Y ,Φ, ρ1, ρ2) → (Z ,W ,Ψ, ρ ′1, ρ ′2) given by triples (h,k, l) ofmorphismsh : X →
Z , k : Y →W , and l : Φ→ Ψ in Meas satisfying h ◦ ρ1 = ρ ′

1
◦ l and k ◦ ρ2 = ρ ′

2
◦ l .

For simplicity, we often denote a Span(Meas)-object (X ,Y ,Φ, ρ1, ρ2) byΦ. The category Span(Meas)
has several useful properties. First, the category has binary products:

(X ,Y ,Φ, ρ1, ρ2) Û× (Z ,W ,Ψ, ρ ′1, ρ ′2) = (X × Z ,Y ×W ,Φ × Ψ, ρ1 × ρ ′1, ρ2 × ρ ′2).
We will frequently use two notions of pairing on functions. Let f1 : X → Y , f2 : X →W , we have

⟨f1, f2⟩ : X → Y ×W and f1 × f2 : X × X → Y ×W . As functions, ⟨f1, f2⟩ takes a single input x
and returns a pair (f1(x), f2(x)). On the other hand, f1 × f2 take a pair of inputs (x ,y) and returns

(f1(x), f2(y)).
4
This ordering gives an ωCPO⊥-enrichment of the Kleisli category MeasG , which is equivalent to the partial additivity of

stochastic relations [Panangaden 1999].
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The category Span(Meas) also has coproducts:

(X ,Y ,Φ, ρ1, ρ2) Û+ (X ′,Y ′,Φ′, ρ ′1, ρ ′2) = (X + X ′,Y + Y ′,Φ + Φ′, ρ1 + ρ ′1, ρ2 + ρ ′2).
Standard binary relations can be interpreted as spans. For X ,Y ∈ Meas, any binary relation

Φ ⊆ |X | × |Y | determines a span X
π1←−− Φ

π2−−→ Y in Meas, where π1 and π2 are projections, and Φ is

regarded as a subspace of X × Y .
Finally, relation-preserving maps can be interpreted as morphisms of spans. Consider two

binary relations Φ ⊆ |X | × |Y | and Ψ ⊆ |Z | × |W |, and suppose that they are interpreted as

spans (X ,Y ,Φ,π1,π2) and (Z ,W ,Ψ,π1,π2) as above. If f : X → Z and д : Y →W in Meas satisfy
(f (x),д(y)) ∈ Ψ for any (x ,y) ∈ Φ, then we have the following morphism

(f ,д, f × д |Φ) : (X ,Y ,Φ,π1,π2) → (Z ,W ,Ψ,π1,π2) in Span(Meas)
where f × д |Φ is the restriction of f × д on Φ (we often write just f × д). These features are crucial
to interpret probabilistic program logics, as we will see in Section 6.

4 GENERAL STATISTICAL DIVERGENCES
Now that we have covered the preliminaries, our goal is to build a suitable graded monad on

Span(Meas)—this will be our abstraction for relational reasoning about divergences. We proceed

in two stages. In this section, we introduce a general class of divergences, real-valued functions on

two measures over the same space. Then, we identify important composition properties inspired

from analogous properties of f -divergences [Barthe and Olmedo 2013; Liese and Vajda 2006]. We

will leverage these properties to give a graded monad structure on Span(Meas) capturing these

divergences in the next section. We write R for the set R ∪ {−∞,+∞} of extended reals. We regard

both R and R≥0 as partially ordered additive monoids. For the former one, the addition is extended

by∞ + (−∞) = −∞.

Definition 4.1. A divergence is a family ∆ = {∆X }X ∈Meas of functions

∆X : |GX | × |GX | → R.

To describe composition of divergences, it is useful to work with indexed families of divergences;

often, two divergences can be combined to give a new divergence with different indices. For

instance, the notion of zCDP can be characterized by the family {∆zCDP(ξ )}0≤ξ of divergences

∆zCDP(ξ )
introduced in Section 2 (Equation 6). For this reason, we introduce the notion of graded

families of divergences.

Definition 4.2. Let (A, ·, 1A, ⪯) be a preordered monoid. An A-graded family of divergences is a
family ∆ = {∆α }α ∈A such that

α ⪯ β =⇒ (∀X ∈ Meas. ∀µ1, µ2 ∈ GX . ∆β
X (µ1, µ2) ≤ ∆α

X (µ1, µ2)).

Note that the preorder on the grading is contravariant. We will regard a divergence ∆ as a

singleton-graded family {∆}.

4.1 Basic Properties of Divergences
We define basic properties of graded families of divergences for given (A, ·, 1A, ⪯).

Definition 4.3. An A-graded family ∆ = {∆α }α ∈A of divergences is:

reflexive: if ∆α
X (µ, µ) ≤ 0.

functorial: if ∆α
Y (Gk(µ1),Gk(µ2)) ≤ ∆α

X (µ1, µ2) for any k : X → Y .

substitutive: if ∆α
Y (f ♯µ1, f ♯µ2) ≤ ∆α

X (µ1, µ2) for any f : X → GY .
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additive: if ∆α ·β
X×Y (µ1 ⊗ µ3, µ2 ⊗ µ4) ≤ ∆α

X (µ1, µ2) + ∆
β
Y (µ3, µ4).

continuous: if ∆α
X (µ1, µ2) = sup

{
∆α
I (Gk(µ1),Gk(µ2)) | I ∈ Fin,k : X → I

}
.

composable: if ∆α ·β
Y (f ♯µ1,д♯µ2) ≤ ∆α

X (µ1, µ2)+ supx ∈X ∆
β
Y (f (x),д(x)) for any f ,д : X → GY .

All functions are assumed to be measurable.

These properties are inspired by properties from the literature on f -divergences and differential

privacy. For instance, substitutivity is the generalization of the usual notion of data-processing
inequality for f -divergences [Pardo and Vajda 1997, Chapter 2], while functoriality is the special

case where the data-processing function is deterministic. These two properties are also known in the

differential privacy literature as resilience to post-processing [Dwork and Roth 2013, Proposition 2.1],

in the randomized and deterministic case. Composability corresponds to composition in differential

privacy, which states that we can adaptively compose two differentially private mechanisms.

Additivity corresponds to a simple instance of composition where the second mechanism does

not depend on the result of the first. Continuity is the generalization of the continuity of f -
divergences [Pardo and Vajda 1997, Theorem 16], which approximates divergences of continuous

distributions by divergences of discrete distributions.

Reflexivity and composability are key properties to give a structure of graded monad. Intuitively,

reflexivity gives a unit, and composability gives a (graded) Kleisli lifting. We also need additivity to

give a strength of the graded monad, allowing a lifting on real-valued distributions—often available

from known results in probability theory—to be converted into a lifting on distributions over larger

spaces (e.g., program memories). In some ways, composability is the key property: reflexivity is

usually immediate, and additivity is a consequence.

Theorem 4.4. An A-graded family ∆ is additive if it is continuous and composable.

Although these properties have been studied before in the discrete case, there are subtleties

when passing to our continuous ones. For example, in the case of discrete distributions, additivity

is an instance of composability [Barthe and Olmedo 2013, Proposition 4]. In the case of continuous

distributions, this may no longer hold. However, one can recover additivity from composability by

using a continuity property.

To prove composability, it is often easier to establish two other properties of families of diver-

gences first: approximability and finite-composability. These properties describe divergences that

are well-behaved with respect to discretization, in order to smoothly extend properties in the

discrete case to the continuous case.

Definition 4.5. An A-graded family ∆ = {∆α }α ∈A of divergences is:

approximable: if for any X ∈ Meas and I ∈ Fin, f ,д : X → GI , and µ1, µ2 ∈ GX , there are
Jn ∈ Fin andm∗n : X → Jn andmn : Jn → X in Meas such that

∆α
I (f ♯(µ1),д♯(µ2)) = lim

n→∞
∆α
I ((f ◦mn ◦m∗n)

♯(µ1), (д ◦mn ◦m∗n)
♯(µ2)).

finite-composable: if for any I , J ∈ Fin, f ,д : I → G J , and d1,d2 ∈ GI ,

∆
α ·β
J (f

♯d1,д
♯d2) ≤ ∆α

I (d1,d2) + sup
i ∈I

∆
β
J (f (i),д(i)).

The functionm∗n in the definition of the approximability of ∆ discretizes points in X to Jn , andmn
reconstructs points in X from Jn . Finite-composability of ∆ means the composability of ∆ in the

discrete case.

These properties allow us to extend composability of divergences in the discrete case, witnessed

by finite-composability, to the continuous case. Finite-composability is often known for standard
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divergences, or can be established by direct calculations. If ∆ is approximable and continuous,

finite-composability implies composability. Formally, we have the following theorem.

Theorem 4.6. A continuous approximable A-graded family ∆ is composable if finite-composable.

4.2 Basic Properties of f -divergences
To discuss basic properties of divergences for DP, RDP, zCDP, and tCDP, we begin with basic

properties of f -divergences since DP can be formulated by a graded family ∆DP = {∆DP(ε )}0≤ε
of f -divergences, and Rényi divergences are logarithms of f -divergences. An f -divergence ∆f

of subprobability measures is defined in the same way as f -divergence of probability measures

(4). The f -divergences are not necessarily positive for subprobability measures, though they are

positive for proper probability measures. We can extend the continuity of f -divergences [Liese and
Vajda 2006, Theorem 16] to support subprobability measures.

Theorem 4.7 (Cf. Liese and Vajda [2006, Theorem 16]). For any weight function f , the f -
divergence ∆f is continuous:5 for any subprobability measures µ1, µ2 ∈ GX on X , we have

∆
f
X (µ1, µ2) = sup

{
n∑
i=0

µ2(Ai )f
(
µ1(Ai )
µ2(Ai )

)
| {Ai }ni=0 is a measurable finite partition of X

}
.

As we have seen, DP can be formulated by the R≥0-graded family ∆DP = {∆DP(ε )}0≤ε of f -
divergences, while the Rényi divergences supporting RDP, zCDP, and tCDP are logarithms of

f -divergences. Before proving basic properties of divergences for DP, RDP, zCDP, and tCDP, we

first need two important basic properties of f -divergences, continuity and approximability, and we

show that finite-composability of f -divergences are extended to (proper) composability.

Theorem 4.8. The f -divergence ∆f is approximable for any weight function f .

Therefore, any finite-composable family of f -divergences is composable.

Theorem 4.9. An A-graded family ∆ = {∆fα }α ∈A of the fα -divergences is composable if it is
finite-composable.

We remark here that any composable family of f -divergences is also additive by applying

Theorem 4.4, since f -divergences are always continuous (Theorem 4.7).

4.3 Properties of Divergences for DP, RDP, zCDP, and tCDP
As we have seen, DP can be formulated by the R≥0-graded family ∆DP

of f -divergences. By
Theorem 4.4 and 4.9 and Barthe and Olmedo [2013, Theorem 1], we obtain the basic properties of

the divergences ∆DP
for DP as follows:

Theorem 4.10 (Cf. Barthe and Olmedo [2013, Theorem 1]). The R≥0-graded family ∆DP =

{∆DP(ε )}0≤ε is reflexive, continuous, approximable, composable, and additive.

Similarly, we can obtain basic properties for RDP, zCDP, and tCDP. First, by Theorem 4.7

and Theorem 4.8, the exponential exp(Dα ) of Rényi divergence of order α is continuous and

approximable because is exactly the f -divergence with weight function t 7→ exp(α/(1 − α))tα .
Since the logarithm function is monotone and continuous except at 0, Rényi divergence is

continuous and approximable too. Reflexivity and finite-composability of Rényi divergences follow

by direct calculations. Theorem 4.9 yields:

5
Note that a measurable finite partition {Ai }ni=0 on X is equivalent to a measurable function k : X → I where I =
{0, 1, . . . , n }.
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Theorem 4.11. For any α > 1, the Rényi divergence Dα of order α is reflexive, continuous, approx-
imable, composable, and additive (as a singleton-graded family).

We extend the following properties of Rényi divergences which give the transitive laws of RDP

and zCDP to support subprobability measures. (An known analogous law for tCDP is not known.)

Proposition 4.1 (Cf. Van Erven and Harremoës [2014, Theorem 3]). We have

1 < α ≤ β =⇒ Dα
X (µ1 | |µ2) ≤ D

β
X (µ1 | |µ2).

Proposition 4.2 (Cf. Langlois et al. [2014, Lemma 4.1]). For any α > 1, µ1, µ2, µ3 ∈ GX , and
p,q > 1 satisfying 1

p +
1

q = 1, we have

Dα
X (µ1 | |µ3) ≤

pα − 1
p(α − 1)D

pα
X (µ1 | |µ2) + D

q
p (pα−1)
X (µ1 | |µ2).

As we have seen in Section 2.4, we can define divergences for zCDP and tCDP by Equation

(6) and Equation (7). Explicitly, we introduce the divergences for zCDP and tCDP by ∆zCDP(ξ ,ρ) =
sup

1<α
1

α (Dα − ξ ) and ∆ω−tCDP(ρ) = sup
1<α<ω

1

α D
α
respectively. Since two supremums are com-

mutative (supx supy A(x ,y) = supy supx A(x ,y)) in general, the following basic properties of the

graded family of zCDP and the divergence of tCDP are obtained from Theorem 4.11.

Theorem 4.12. The R≥0-graded family ∆zCDP = {∆zCDP(ξ )}0≤ξ for zCDP is reflexive, continuous,
composable, and additive.

Theorem 4.13. For each 1 < ω, the divergence ∆ω−tCDP for ω-tCDP is reflexive, continuous, com-
posable, and additive.

Note that we may not have approximability, but the family is still composable. These results also

hold for subprobability measures where Rényi divergence and divergences for zCDP and tCDP are

defined in a way similar to Equation (1) and Equation (2) respectively.

5 APPROXIMATE SPAN-LIFTING
We are now ready to combine graded divergences with spans, leading to our new relational

liftings. Given an A-graded family ∆ = {∆α }α ∈A of divergences, we introduce a graded monad

on Span(Meas) called the approximate span-lifting (−)♯(∆,α,δ ) for the family ∆, where α ∈ A and

δ ∈ R. We first define its action on objects.

Definition 5.1. We define the span-constructor (−)♯(∆,α,δ ) as follows: for any (X ,Y ,Φ, ρ1, ρ2) in
Span(Meas), we define the Span(Meas)-object

(X ,Y ,Φ, ρ1, ρ2)♯(∆,α,δ ) = (GX ,GY ,W (Φ,∆,α ,δ ), Gρ1 ◦ π1, Gρ1 ◦ π2)
whereW (Φ,∆,α ,δ ) =

{
(ν1,ν2) ∈ GΦ × GΦ | ∆α

Φ(ν1,ν2) ≤ δ
}
.

We viewW (Φ,∆,α ,δ ) as a subspace of the measurable space GΦ × GΦ.

Intuitively, (X ,Y ,Φ, ρ1, ρ2)♯(∆,α,δ ) relates subprobability measures with ∆α
-distance at most

δ . The setW (Φ,∆,α ,δ ) contains all possible witness distributions, and π1 and π2 are canonical
projections fromW (Φ,∆,α ,δ ) to GΦ. As a special case, the approximate span-lifting (−)♯(∆,α,δ )
recovers the divergence ∆α

by applying the equality relation (X ,X , EqX ,π1,π1)♯(∆,α,δ ).

Theorem 5.2. For any A-graded family ∆, α ∈ A, and δ ∈ R, we have
(X ,X ,X , idX , idX )♯(∆,α,δ ) = (GX ,GX ,

{
(µ1, µ2) | ∆α

X (µ1, µ2) ≤ δ
}
,π1,π2).

Here, (X ,X ,X , idX , idX ) is isomorphic to the equality relation (X ,X ,EqX ,π1 |EqX ,π1 |EqX ).
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Next, we give approximate span-liftings the structure of a graded monad with double strength.

We consider the important case where ∆ is a reflexive, composable, and additive A-graded family

of divergences; in some cases, we can recover more limited versions of approximate span-liftings

by dropping or weakening these properties.

Theorem 5.3. If an A-graded family ∆ is reflexive, composable, and additive, then the approximate
span-lifting (−)♯(∆,α,δ ) form an A × R-graded monad with double strength. Namely, there are maps

Functor: For anymorphism (h,k, l) : (X ,Y ,Φ, ρ1, ρ2) → (Z ,W ,Ψ, ρ ′1, ρ ′2) in the category Span(Meas)
and any (α ,δ ) ∈ A × R,

(Gh,Gk,Gl × Gl) : (X ,Y ,Φ, ρ1, ρ2)♯(∆,α,δ ) → (Z ,W ,Ψ, ρ ′1, ρ ′2)♯(∆,α,δ ).
Unit: For any morphism (X ,Y ,Φ, ρ1, ρ2) in Span(Meas),

(ηX ,ηY , ⟨ηΦ,ηΦ⟩) : (X ,Y ,Φ, ρ1, ρ2) → (X ,Y ,Φ, ρ1, ρ2)♯(∆,1A,0).
Kleisli lifting: For anymorphism (h,k, l) : (X ,Y ,Φ, ρ1, ρ2) → (Z ,W ,Ψ, ρ ′1, ρ ′2)♯(∆,α,δ ) in Span(Meas)

and (β,γ ) ∈ A × R,
(h♯,k♯, (π1 ◦ l)♯ × (π2 ◦ l)♯) : (X ,Y ,Φ, ρ1, ρ2)♯(∆,β,γ ) → (Z ,W ,Ψ, ρ ′1, ρ ′2)♯(∆,α β,δ+γ )

Inclusions: For any (X ,Y ,Φ, ρ1, ρ2) in Span(Meas), and any α ⪯ β and δ ≤ γ ,
(idGX , idGY , idGΦ × idGΦ) : (X ,Y ,Φ, ρ1, ρ2)♯(∆,α,δ ) → (X ,Y ,Φ, ρ1, ρ2)♯(∆,β,γ ).

Double strength: For any (X ,Y ,Φ, ρ1, ρ2) and (Z ,W ,Ψ, ρ ′1, ρ ′2) in Span(Meas), and parameters
(α ,δ ) and (β ,γ ) in A × R, by letting θi = dstΦ,Ψ ◦ (πi × πi ) where i = 1, 2,
(dstX ,Z , dstY ,W , ⟨θ1,θ2⟩)

: (X ,Y ,Φ, ρ1, ρ2)♯(∆,α,δ ) Û× (Z ,W ,Ψ, ρ ′1, ρ ′2)♯(∆,β,γ ) → (Φ Û× Ψ)♯(∆,α β,δ+γ )
.

Proof Sketch. Checking of the axioms of graded monad is straightforward since all struc-

tures are inherited from the sub-Giry monad G. It suffices to prove the well-definedness of the

above maps. For example, we check the well-definedness of the Kleisli lifting of a morphism

(h,k, l) : (X ,Y ,Φ, ρ1, ρ2) → (Z ,W ,Ψ, ρ ′1, ρ ′2)♯(∆,α,δ ) in Span(Meas). To prove this, we first show

that the third component (π1 ◦ l)♯ × (π2 ◦ l)♯ of the Kleisli lifting forms a measurable function from

W (Φ,∆, β,γ ) toW (Ψ,∆,αβ ,δ +γ ) by using the composability of ∆ where measurability is obvious

sinceW (Φ,∆, β ,γ ) andW (Ψ,∆,αβ ,δ + γ ) are the subspaces of GΦ × GΦ and GΨ × GΨ. Next, we
show Gρ ′

1
◦ π1 ◦ ((π1 ◦ l)♯ × (π2 ◦ l)♯) = h♯ ◦ ρ1 and Gρ ′2 ◦ π2 ◦ ((π1 ◦ l)♯ × (π2 ◦ l)♯) = k♯ ◦ ρ2, but

this is given from the assumption ρ ′
1
◦ l = h ◦ ρ1 and ρ ′

2
◦ l = k ◦ ρ2.

Similary, the well-definedness of functor part and unit are proved by using the composability

and reflexivity of ∆; the inclusion is obtained from the definition ofA-graded family of divergences;

the double strength is obtained from the additivity of ∆. □

5.1 Remark: Adaptive Compositions
Many composition theorems of differential privacy are based on the notion of k-fold adaptive

composition [Winograd-Cort et al. 2017, Definition 2.3] and [Dwork et al. 2010, Section A]. Roughly

speaking, for k programs q1, . . . ,qk their k-fold adaptive composition q1 ▷ q2 ▷ · · · ▷ qk calculates

in the following way:

(1) The first program q1 takes an input x in X , and returns an output y1 in Y1.
(2) The second program q2 takes an input x ∈ X and the output y1 ∈ Y1 of the previous program

q1, and returns an output y2 ∈ Y2.
. . .
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(k) The k-th program qk takes an input x ∈ X and the outputs y1, . . . ,yk−1 of previous programs

q1, . . . ,qk−1, and returns an output yk ∈ Yk .

We observe that our definition of composability of divergences covers the standard composability

with respect to k-fold adaptive composition.
6
For example, adaptive composition of two randomized

programs can be formulated categorically as follows: let f : X → GY and f : Y × X → GX be two

randomized programs. The adaptive composition f ▷ д : X → G(Y × Z ) is defined by

f ▷ д = (stY ,Z ◦ (idY × д) ◦ αY ,Y ,Z )♯ ◦ st′Y×Y ,X ◦ (GcopyY × idX ) ◦ (f × idX ) ◦ copyX .

Here, st
′
Y×Y ,X is the costrengthG(Y×Y )×X → G((Y×Y )×X ); copyX is the diagonal mapX → X×X

(x 7→ (x ,x)) on X ; αY ,Y ,Z is the associativity (Y × Y ) × Z → Y × (Y × Z ) of cartesian product of

Meas. We show that the composability of ∆ is stronger than the adaptive composability. Suppose

that ∆ reflexive, continuous and composable. Since (−)♯(∆,α,δ ) is a graded span-lifting with a double

strength, the adaptive composition of the following two morphisms (f1, f2, f3) : Φ→ Ψ♯(∆,α,δ )
and

(д1,д2,д3) : Ψ Û×Φ→ Ω♯(∆,β,γ )
of spans is given by (f1 ▷д1, f2 ▷д2, l) : Φ→ (Ψ Û× Ω)♯(∆,α β,δ+γ ) (we

omit details of l ).

5.2 Approximate Span-liftings for DP, RDP, and zCDP
Finally, we build approximate span-liftings for DP, RDP, zCDP, and tCDP by combining Theorems

4.10, 4.11, 4.12, and 4.13 with the construction of categorical structures of approximate span-liftings

(Theorem 5.3).

Theorem 5.4 (Approximate span-lifting forDP, RDP, zCDP, tCDP). The following approximate
span-liftings are graded liftings with a double strength ofG×G alongU : Span(Meas) → Meas×Meas.

Privacy (Graded family of )Divergence Approximate span-lifting Grading Monoid

DP ∆DP = {∆DP(ε )}0≤ε {(−)♯(∆DP,ε,δ )}0≤ε,0≤δ R≥0 × R≥0
RDP Dα (Rényi divergence; see (1)) {(−)♯(Dα ,∗,ρ)}∗∈{∗},ρ ∈R R

zCDP ∆zCDP = {∆zCDP(ξ )}0≤ξ (see (6)) {(−)♯(∆zCDP,ξ ,ρ)}
0≤ξ ,ρ ∈R R≥0 × R

tCDP ∆ω−tCDP = {∆ω−tCDP} (see (7)) {(−)♯(∆ω−tCDP,∗,ρ)}∗∈{∗},ρ ∈R R

6 CASE STUDY: THE PROGRAM LOGIC SPAN-APRHL
The previous section showed that the RDP, zCDP, and tCDP relaxations of differential privacy

can be captured by relational liftings with the same categorical properties enjoyed by relational

liftings for standard differential privacy. As a result, we can use these liftings to give the semantic

foundation for formal verification of these relaxations. To demonstrate a concrete application, we

design a program logic span-apRHL that can prove DP, RDP, zCDP, and tCDP for randomized

algorithms, supporting both discrete and continuous random samplings.

6
For differential privacy, there are advanced composition theorems such as Dwork et al. [2010, Theorem 3.3], Dwork and

Roth [2013, Theorem 3.20], which give stronger privacy guarantees.
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6.1 The Language pWHILE
We take a standard, first-order language pWHILE, augmenting the usual imperative commands

with a random sampling statement (we omit the grammar of expressions which is largely standard).

τ ::= bool | int | real | τd (d ∈ N) | . . . (basic types)

e ::= x | b ∈ B | n ∈ Z | r ∈ R | e1 ⊕ e2 | e1 ▷◁ e2 | e1[e2] | . . . (expressions)

⊕ ::= + | − | ∗ | / | min | max | ∧ | ∨ ▷◁ ::= ≤ | ≥ | = | , | < | >
ν ::= Dirac(e) | Bern(e) | Lap(e1, e2) | Gauss(e1, e2) | . . . (probabilistic expression)

c ::= skip | x $←− ν | c1; c2 | if e then c1 else c2 | while e do c (commands)

Here, b, n, and r are constants; τ is a value type; x is a variable; e is an expression; ν is a probabilistic
expression; Dirac, Bern, Lap, and Gauss represent the Dirac, Bernoulli, Laplace, and the Gaussian

distributions, respectively; c is a command/program. We will use the following shorthands: x ←
e =def x

$←− Dirac(e) and if b then c =def if b then c else skip. We consider programs that are well

typed. The type system is largely standard, with three kinds of judgments: Γ ⊢t e : τ , Γ ⊢p ν : τ ,
and Γ ⊢ c for expressions, distributions and programs, respectively. For details, see Appendix.

6.2 Relational Assertions
Our assertion logic uses formulas of the form

Φ,Ψ ::= E | Φ ∧ Ψ | Φ ∨ Ψ | ¬Φ

where E represents basic relational expressions, namely:

E ::= e1⟨1⟩ ▷◁ e2⟨2⟩ | (e1⟨1⟩ ⊕1 e2⟨2⟩) ▷◁ (e3⟨1⟩ ⊕2 e4⟨2⟩).

As usual in relational logics, we use the tags ⟨1⟩ and ⟨2⟩ to distinguish expressions evaluated in

the first and second memory, respectively. For simplicity, we consider only the relations given in

the above syntax, the language can be easily extended with other constructions. In the following

we will use some syntactic sugar for constant k : (e ⟨1⟩ ▷◁ k) =def (e ▷◁ k)⟨1⟩ = true⟨2⟩, and (e ⟨2⟩ ▷◁
k) =def true⟨1⟩ = (e ▷◁ k)⟨2⟩. We consider only relation expression Φ that are well-formed in a

context Γ, and we denote this by the judgment Γ ⊢R Φ. Rules for deriving this kind of judgments

are standard, and postponed to Appendix.

Since we use span-liftings instead of relational liftings, we interpret relational assertions as

spans, that is, as Span(Meas)-objects. This can be done by first interpreting assertions Γ ⊢R Φ as

binary relations JΦK ⊆ JΓK × JΓK, and then converting to spans (JΓK, JΓK, JΦK,π1,π2). We describe

the semantics of relation assertions in the next section.

We will also use implications of relations Γ ⊢I Φ =⇒ Ψ, which is defined when Γ ⊢R Φ and

Γ ⊢R Ψ, and the implication Φ =⇒ Ψ forms a tautology under the typing context Γ. For example,

we have the following inclusion, where Γ ⊢t x : real:

Γ ⊢I ((x ⟨1⟩ ≤ x ⟨2⟩) ∧ (x ⟨1⟩ ≥ x ⟨2⟩)) =⇒ (x ⟨1⟩ = x ⟨2⟩).

6.3 Relational Program Logic Judgments, Axioms and Rules
In span-apRHL we can prove three kinds of judgments corresponding to differential privacy, RDP,

zCDP, and tCDP. For well-typed commands Γ ⊢ c1 and Γ ⊢ c2 and assertions Γ ⊢R Φ and Γ ⊢R Ψ, we
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Γ ⊢ x1 ← e1 ∼∆
1A,0

x2 ← e2 : Φ{e1⟨1⟩, e2⟨2⟩/x1⟨1⟩,x2⟨2⟩} =⇒ Φ [assn]

Γ ⊢ c1 ∼∆
α,δ c ′

1
: Φ =⇒ Φ′ Γ ⊢ c2 ∼∆

β,γ c ′
2
: Φ′ =⇒ Ψ

[seq]

Γ ⊢ c1; c2 ∼∆
α β,δ+γ c ′

1
; c ′

2
: Φ =⇒ Ψ

Γ ⊢I Φ′ =⇒ Φ Γ ⊢I Ψ =⇒ Ψ′ Γ ⊢ c1 ∼∆
α,δ c2 : Φ =⇒ Ψ α ≤ β δ ≤ γ

[weak]

Γ ⊢ c1 ∼∆
β,γ c2 : Φ

′ =⇒ Ψ′

Fig. 1. Selection of span-apRHL basic rules.

define judgments:

Γ ⊢ c1 ∼DPε,δ c2 : Φ =⇒ Ψ (ε,δ )-differential privacy (DP)

Γ ⊢ c1 ∼α−RDPρ c2 : Φ =⇒ Ψ (α , ρ)-Rényi differential privacy (RDP)

Γ ⊢ c1 ∼zCDPξ ,ρ c2 : Φ =⇒ Ψ (ξ , ρ)-zero-concentrated differential privacy (zCDP)

Γ ⊢ c1 ∼ω−tCDPρ c2 : Φ =⇒ Ψ (ω, ρ)-truncated-concentrated differential privacy (tCDP)

We divide the proof rules of span-apRHL in four classes: basic rules (Figure 1), rules for basic

mechanisms (Figure 2), rules for reasoning about transitivity (Figure 3), and rules for conversions

(Figure 4). The basic rules can be used to reason about either differential privacy, RDP, zCDP, and

tCDP. We describe the basic rules in a parametric way by considering {∼∆
α,δ }α ∈A,0≤δ to stand for

one of the families {∼DPε,δ }0≤ε,0≤δ , {∼
α−RDP
ρ }∗∈{∗},0≤ρ , {∼zCDPξ ,ρ }0≤ξ ,0≤ρ , and {∼

ω−tCDP
ρ }0≤ρ . We give

a selection of the proof rules in Figure 1; the rest of the rules are standard and we defer them to

the appendix. Here, we comment briefly on the rules. The [assn] rule for assignment is mostly

standard, the only non-standard aspect is that depending on which notion of privacy we want to

use, we need to select the corresponding unit 1A. The rule [seq] is the sequential composition of

commands and takes the same form no matter which family of divergence we consider. The rule

[weak] is our version of the usual consequence rule, where additionally we can weaken also the

privacy parameters for each of the privacy definitions.

In Figure 2, we show some rules for the basic mechanisms that we support: Bernoulli, Laplace,

and Gauss. We give several of them to show the difference, in terms of the parameters, for the same

mechanism, that we have in the different logics. All of them are supported in the continuous case.

We show only DP rules for Bernoulli and Laplace mechanisms, and postpone other Bernoulli and

Laplace mechanism rules to the Appendix.

In Figure 3, we show rules for transitivity in span-apRHL. Transitivity is important because

it allows one to reason about group privacy [Dwork and Roth 2013]. The different flavors of the

logic have different numeric parameters for these rules, reflecting the slight differences in group

privacy [Bun and Steinke 2016; Dwork and Roth 2013; Mironov 2017]. Finally, Figure 4 gives

rules for converting between judgments for different flavors of differential privacy. In some of

them we have a loss in the parameters, in others there is no loss. These rules correspond to the

different conversion theorems for the different logics [Bun and Steinke 2016; Mironov 2017]. Notice

that most of these rules require lossless programs because they have been formulated in terms of

distributions, rather than subdistributions.
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Γ ⊢ x1
$←− Bern(e1) ∼DP

logmax(p,1−p)−logmin(p,1−p),0 x2
$←− Bern(e2) :

((e1⟨1⟩ = p) ∧ (1 − e1⟨1⟩ = e2⟨2⟩) =⇒ (x1⟨1⟩ = x2⟨2⟩) [DP-Bern]

Γ ⊢ x1
$←− Bern(e1) ∼DP0,0 x2

$←− Bern(e2) :
(e1⟨1⟩ = e2⟨2⟩) =⇒ (x1⟨1⟩ = x2⟨2⟩) [DP-Bern-Eq]

Γ ⊢ x1
$←− Lap(e1, λ) ∼DPr/λ,0 x2

$←− Lap(e2, λ) :
(|e1⟨1⟩ − e2⟨2⟩| ≤ r ) =⇒ (x1⟨1⟩ = x2⟨2⟩) [DP-Lap]

Γ ⊢ x1
$←− Gauss(e1,σ 2) ∼α−RDPαr 2/2σ 2

x2
$←− Gauss(e2,σ 2)

(|e1⟨1⟩ − e2⟨2⟩| ≤ r ) =⇒ (x1⟨1⟩ = x2⟨2⟩) [RDP-G]

Γ ⊢ x1
$←− Gauss(e1,σ 2) ∼zCDP

0,r 2/2σ 2
x2

$←− Gauss(e2,σ 2)
(|e1⟨1⟩ − e2⟨2⟩| ≤ r ) =⇒ (x1⟨1⟩ = x2⟨2⟩) [zCDP-G]

Γ ⊢ x1
$←− Gauss(e1,σ 2) ∼tCDP

0,r 2/2σ 2
x2

$←− Gauss(e2,σ 2)
(|e1⟨1⟩ − e2⟨2⟩| ≤ r ) =⇒ (x1⟨1⟩ = x2⟨2⟩) [tCDP-G]

∃c > 1+
√
3

2
. (2 log(0.66/δ ) ≤ c2) ∧ ( crε ≤ σ )

Γ ⊢ x1
$←− Gauss(e1,σ 2) ∼DPε, δ x2

$←− Gauss(e2,σ 2) :
(|e1⟨1⟩ − e2⟨2⟩| ≤ r ) =⇒ (x1⟨1⟩ = x2⟨2⟩)

[DP-G]

1 < 1/√ρ ≤ A/δ

Γ ⊢ x1
$←− e1 +A · arsinh

(
1

AGauss(0,δ 2/2ρ)
)

∼A/8δ−tCDP
16ρ x2

$←− e2 +A · arsinh
(
1

AGauss(0,δ 2/2ρ)
)
:

(|e1⟨1⟩ − e2⟨2⟩| ≤ δ ) =⇒ (x1⟨1⟩ = x2⟨2⟩)

[tCDP-SinhG]

Fig. 2. Rules for basic mechanisms for DP, RDP, zCDP, and tCDP in span-apRHL.

Γ ⊢ c1 ∼DPε1,δ1 c2 : Φ =⇒ x1⟨1⟩ = x2⟨2⟩ Γ ⊢ c2 ∼DPε2,δ2 c3 : Ψ =⇒ x2⟨1⟩ = x3⟨2⟩
Γ ⊢ c1 ∼DPε1+ε2, max(eε2δ1+δ2,eε1δ2+δ1) c3 : Φ ◦ Ψ =⇒ x1⟨1⟩ = x3⟨2⟩

[DP-Trans]

Γ ⊢ c1 ∼pα−RDPρ1 c2 : Φ =⇒ x1⟨1⟩ = x2⟨2⟩
Γ ⊢ c2 ∼q(pα−1)/p−RDPρ2 c3 : Ψ =⇒ x2⟨1⟩ = x3⟨2⟩ 1

p +
1

q = 1 1 < p 1 < q

Γ ⊢ c1 ∼α−RDP((pα−1)ρ1/p(α−1))+ρ2 c3 : Φ ◦ Ψ =⇒ x1⟨1⟩ = x3⟨2⟩

[RDP-Trans]

Γ ⊢ c1 ∼zCDPξ (k−1)∑k−1
i=1 ,(k2−1)ρ

c2 : Φ =⇒ x1⟨1⟩ = x2⟨2⟩
Γ ⊢ c2 ∼zCDPξ ,ρ c3 : Ψ =⇒ x2⟨1⟩ = x3⟨2⟩ k ∈ N 1 < k

Γ ⊢ c1 ∼zCDPξk
∑k
i=1,k2ρ

c3 : Φ ◦ Ψ =⇒ x1⟨1⟩ = x3⟨2⟩

[zCDP-Trans]

Fig. 3. Span-apRHL transitivity rules for group privacy

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.



Approximate Span Liftings 1:17

Γ ⊢ c1 ∼DPε, 0 c2 : Φ =⇒ Ψ c1, c2: lossless
[D/z]

Γ ⊢ c1 ∼zCDPε, 0 c2 : Φ =⇒ Ψ c1, c2: lossless

Γ ⊢ c1 ∼zCDP0, ρ c2 : Φ =⇒ Ψ
[z/R]∀α > 1. Γ ⊢ c1 ∼α−RDPρ c2 : Φ =⇒ Ψ

Γ ⊢ c1 ∼zCDPξ , ρ c2 : Φ =⇒ Ψ c1, c2: lossless 0 < δ < 1

[z/D]

Γ ⊢ c1 ∼DP
ξ+ρ+2

√
ρ log(1/δ ), δ

c2 : Φ =⇒ Ψ

Γ ⊢ c1 ∼ω−tCDPρ c2 : Φ =⇒ Ψ, c1, c2: lossless, β = min(ω, 1 +
√
log(1/δ )/ρ), 0 < δ < 1

[t/D]

Γ ⊢ c1 ∼DPρβ+log(1/δ )/(β−1), δ c2 : Φ =⇒ Ψ

Γ ⊢ c1 ∼α−RDPρ c2 : Φ =⇒ Ψ c1, c2: lossless 0 < δ < 1

[R/D]

Γ ⊢ c1 ∼DPρ−log δ/(α−1), δ c2 : Φ =⇒ Ψ

Fig. 4. Rules for conversions between DP, RDP and zCDP in span-apRHL.

6.4 Denotational Semantics of pWHILE
To prove the soundness of span-apRHL we interpret pWHILE in Meas using the sub-Giry monad

G. Most of the definitions are standard. The value types are interpreted as expected. To give a

semantics to expressions, distribution expressions, and commands, we interpret their associated

typing/well-formedness judgments in some context Γ, which is interpreted as usual as a product.

We interpret an expression judgment Γ ⊢t e : τ as a measurable function JΓ ⊢t e : τ K : JΓK→ Jτ K;
for instance, the variable case Γ ⊢t x : τ is interpreted as the projection πx : JΓK→ Jτ K. Note that
all operators ⊕ and comparisons ▷◁ are interpreted to measurable functions ⊕ : Jτ K× Jτ K→ Jτ K and
▷◁ : Jτ K× Jτ K→ JboolK respectively. Likewise, we interpret a distribution expression judgment Γ ⊢p
ν : τ as a measurable function JΓ ⊢p ν : τ K : JΓK→ GJτ K; for instance, the Gaussian expression Γ ⊢p
Gauss(e1, e2) : real is interpreted as a Gaussian distribution. N(JΓ ⊢t e1 : realK, JΓ ⊢t e2 : realK).
Finally, we interpret a command judgment Γ ⊢ c as a measurable function JΓ ⊢ cK : JΓK → GJΓK
defined inductively as

JΓ ⊢ x $←− νK = G(rw⟨Γ | x : τ ⟩) ◦ stJΓK,Jτ K ◦ ⟨idJΓK, JνK⟩, JΓ ⊢ c1; c2K = JΓ ⊢ c2K♯ ◦ JΓ ⊢ c1K,

JΓ ⊢ skipK = ηJΓK JΓ ⊢ if b then c1 else c2K = [JΓ ⊢ c1K, JΓ ⊢ c2K] ◦ br⟨Γ⟩ ◦ ⟨JΓ ⊢ bK, idJΓK⟩

Here, rw⟨Γ | x : τ ⟩ : JΓK × Jx : τ K → JΓK (x : τ ∈ Γ) is an overwriting operation of memory

((a1, . . . ,ak , . . . ,an),bk ) 7→ (a1, . . . ,bk , . . . ,an), which is given from the Cartesian products in

Meas. The function br⟨Γ⟩ : 2 × JΓK→ JΓK + JΓK comes from the canonical isomorphism 2 × JΓK �
JΓK + JΓK given from the distributivity of Meas.
To interpret loops, we introduce the dummy “abort” command Γ ⊢ null that is interpreted by

the null/zero measure JΓ ⊢ nullK = 0, and the following commands corresponding to the finite
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unrollings of the loop:

[while b do c]n =
{
if b then null else skip, if n = 0

if b then c; [while b do c]k , if n = k + 1

We then interpret loops as: JΓ ⊢ while b do cK = supn∈N JΓ ⊢ [while e do c]nK. This is well-defined,
since the family {JΓ ⊢ [while e do c]nK}n∈N is an ω-chain with respect to the ωCPO⊥-enrichment

⊑ of MeasG .

6.5 Semantics of Relations
Since we use span-liftings instead of relational liftings, we need to interpret relation expressions

to spans, that is, Span(Meas)-objects. We proceed in two steps: first interpreting expressions as

binary relations, and then converting relations to spans. In the first step, we interpret a relation

expression Γ ⊢R Φ as a binary relation over JΓK:

LΓ ⊢R e1⟨1⟩ ▷◁ e2⟨2⟩M
=

{
(m1,m2) ∈ JΓK × JΓK | JΓ ⊢t e1 : τ K(m1) ▷◁ JΓ ⊢t e2 : τ K(m2)

}
LΓ ⊢R (e1⟨1⟩ ⊗1 e2⟨2⟩) ▷◁ (e3⟨1⟩ ⊗2 e4⟨2⟩)M

=

{
(m1,m2) ∈ JΓK × JΓK | JΓ ⊢t e1 : τ K(m1) ⊗1 JΓ ⊢t e2 : τ K(m2)

▷◁ JΓ ⊢t e3 : τ K(m1) ⊗2 JΓ ⊢t e4 : τ K(m2)

}
We interpret the connectives in the expected way:

LΓ ⊢R Φ ∧ ΨM = LΓ ⊢R ΦM ∩ LΓ ⊢R ΨM LΓ ⊢R Φ ∨ ΨM = LΓ ⊢R ΦM ∪ LΓ ⊢R ΨM

LΓ ⊢R ¬ΦM = (JΓK × JΓK) \ LΓ ⊢R ΦM

Then, we can convert the binary relation LΓ ⊢R ΦM ⊆ JΓK × JΓK to the span

JΓ ⊢R ΦK = (JΓK, JΓK, LΓ ⊢R ΦM,π1 |LΓ⊢RΦM,π2 |LΓ⊢RΦM).

We interpret the implication Γ ⊢I Φ =⇒ Ψ by the following morphism in Span(Meas):

JΓ ⊢I Φ =⇒ ΨK = (idJΓK, idJΓK, (idJΓK × idJΓK)|LΓ⊢RΦM) : JΓ ⊢R ΦK→ JΓ ⊢R ΨK.

6.6 Validity of Judgments
We say a judgment Γ ⊢ c1 ∼∆

α,δ c2 : Φ =⇒ Ψ is valid if there exists a measurable function

l : LΓ ⊢R ΦM→W (JΓ ⊢R ΨK,∆,α ,δ ) (we call it a witness function) such that

(JΓ ⊢ c1K, JΓ ⊢ c2K, l) : JΓ ⊢R ΦK→ JΓ ⊢R ΨK♯(∆,α,δ )

is a morphism in Span(Meas). Concretely, we define the validity in span-apRHL as follows:

Γ |= c1 ∼DPε,δ c2 : Φ =⇒ Ψ iff ∃l . (JΓ ⊢ c1K, JΓ ⊢ c2K, l) : JΓ ⊢R ΦK→ JΓ ⊢R ΨK♯(∆
DP,ε,δ )

,

Γ |= c1 ∼α−RDPρ c2 : Φ =⇒ Ψ iff ∃l . (JΓ ⊢ c1K, JΓ ⊢ c2K, l) : JΓ ⊢R ΦK→ JΓ ⊢R ΨK♯(D
α ,∗,ρ)

,

Γ |= c1 ∼zCDPξ ,ρ c2 : Φ =⇒ Ψ iff ∃l . (JΓ ⊢ c1K, JΓ ⊢ c2K, l) : JΓ ⊢R ΦK→ JΓ ⊢R ΨK♯(∆
zCDP,ξ ,ρ)

Γ |= c1 ∼ω−tCDPρ c2 : Φ =⇒ Ψ iff ∃l . (JΓ ⊢ c1K, JΓ ⊢ c2K, l) : JΓ ⊢R ΦK→ JΓ ⊢R ΨK♯(∆
ω−tCDP,∗,ρ)

.
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6.7 Soundness
Theorem 6.1. If Γ ⊢ c1 ∼∆

α,δ c2 : Φ =⇒ Ψ is derivable in span-apRHL, then it is valid.

Proof sketch. The soundness of the basic rules is derived from the unit, graded Kleisli liftings,

and inclusions of the graded span-lifting {(−)♯(∆,α,δ )}α,δ given in Section 5. We focus here on the

soundness of the [seq] rule. Since the judgments Γ ⊢ c1 ∼∆
α,δ c ′

1
: Φ =⇒ Φ′ and Γ ⊢ c2 ∼∆

α β,δ+γ
c ′
2
: Φ′ =⇒ Ψ are valid, for some witness functions l1 and l2 we have

(JΓ ⊢ c1K, JΓ ⊢ c ′1K, l1) : JΦK→JΦ′K♯(∆,α,δ ), (JΓ ⊢ c2K, JΓ ⊢ c ′2K, l2) : JΦ′K→JΨK♯(∆,β,γ ).

By taking the graded Kleisli extension of the second morphism (JΓ ⊢ c2K, JΓ ⊢ c ′2K, l2), for some

witness function l3 given by the construction in Theorem 5.3 (Kleisli lifting), we have the following

morphism in the category Span(Meas):

(JΓ ⊢ c2K♯, JΓ ⊢ c ′2K
♯, l3) : JΦ′K♯(∆,α,δ ) → JΨK♯(∆,α β,δ+γ ).

Composing them, we conclude the validity of Γ ⊢ c1; c2 ∼∆
α β,δ+γ c ′

1
; c ′

2
: Φ =⇒ Ψ.

The soundness of the mechanism rules are proved by interpreting known results of mechanisms

for DP, RDP, zCDP, and tCDP to span-liftings. For example, the soundness of [RDP-G] proved by

interpreting the Rényi differential privacy of Gaussianmechanism to span-liftings. First, the function

f = N(−,σ 2) : R → GR describing a Gaussian mechanism is measurable. From the previous

result Mironov [2017, Proposition 7] of Rényi differential privacy of the Gaussian mechanism, the

measurable function f satisfies the following implication:

|x − y | ≤ r =⇒ Dα (f (x)| | f (y)) ≤ αr 2/2σ 2.

This implies that we have the below morphism in the category Span(Meas):

(f , f , (f × f )|Φ) : { (x ,y) ∈ R × R | |x − y | ≤ r } → Eq
♯(Dα ,∗,αr 2/2σ 2)
R .

From this, by straightforward calculations, we obtain the soundness of [RDP-G].

Note that we need to give measurable functions l selecting witness distributions when proving

these rules—in the discrete case, these functions can be obtained by the axiom of choice. In the

case of [RDP-G], we could give the witness l = f × f directly.

Similary, the soundness of the rest of mechanism rules follows from the following previous

results on DP, RDP, zCDP and tCDP: Mironov [2017, Propositions 6], Dwork et al. [2006, Proposition

1], Sato [2016, Lemma 4.2] (an enhancement of Dwork and Roth [2013, Theorem 3.22]), and Bun

et al. [2018, Theorem 19], and the soundness of transitive rules follows from: Olmedo [2014, Lemma

4.2(iii)], Bun and Steinke [2016, Proposition 27] and Langlois et al. [2014, Lemma 4.1]. The soundness

of the conversion rules follows by applying the comparison theorems of divergences Bun and

Steinke [2016, Proposition 4], Mironov [2017, Proposition 3], Bun and Steinke [2016, Lemmas 3.2,

3.5], Bun et al. [2018, Lemma 8] to the following inclusion between the approximate span-liftings:

(∆1

α ≤ δ =⇒ ∆2

β ≤ γ ) =⇒ ((id, id, id) : (Φ)♯(∆1,α,δ ) → (Φ)♯(∆2,β,γ )
in Span(Meas)).

□

7 VERIFICATION EXAMPLES
We show how we can use the span-pRHL program logic to verify concrete programs. We stress an

important point here, since the guarantees provided by RDP, zCDP, and tCDP can all be converted in

guarantees about (ϵ,δ )-differential privacy, one could just use the latter for analyze all the examples

we will show. The interest however in performing as much reasoning as possible using these
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relaxations is that one can achieve better values of the parameters. This will become particularly

evident in the last example.

7.1 One-way Marginals
As a warm up, we begin with the following classic example of a one-way marginal algorithm with

additive noise.

Algorithm 1 A mechanism estimates the attribute means

1: procedure AttMean(n : int, ρ : real (const.), x : booln (dataset), i : int, y, z,w : real)
2: i ← 0;y ← 0;

3: while i < n do
4: y ← y + x[i]; i ← i + 1;

5: z ← y/n;
6: w

$←− Gauss(z, 1/2n2ρ);

We first show the Rényi-differential privacy of AttMean. We set a typing context Γ of AttMean by

x : booln (dataset), i : int, and y, z,w : real. We show the following judgment:

Γ ⊢ AttMean ∼RDPαρ AttMean : adj(x ⟨1⟩,x ⟨2⟩) =⇒ w ⟨1⟩ = w ⟨2⟩.

Here, the adjacent relation adj(x ⟨1⟩,x ⟨2⟩) means that two datasets x ⟨1⟩ and x ⟨2⟩ differs at most

in one record. Explicitly, we define it by the following relation expression:

adj(x ⟨1⟩,x ⟨2⟩) =
∧

1≤i≤n

(
(x[i]⟨1⟩ , x[i]⟨2⟩) =⇒

∧
1≤j<i,i<j≤n

(x[j]⟨1⟩ = x[j]⟨2⟩)
)
.

The proof of this judgment follows by splitting AttMean into two commands LoopAM; NoiseGwhere

NoiseG = w
$←− Gauss(z, 1/2n2ρ), and LoopAM is the rest of the program. Since the loop part LoopAM

is deterministic, by standard reasoning, we obtain:

Γ ⊢ LoopAM ∼α−RDP
0

LoopAM : adj(x ⟨1⟩,x ⟨2⟩) =⇒ (|z⟨1⟩ − z⟨2⟩| ≤ 1/n).

By applying [RDP-G], for the noise-adding step NoiseG we have:

Γ ⊢ NoiseG ∼α−RDPαρ NoiseG : (|z⟨1⟩ − z⟨2⟩| ≤ 1/n) =⇒ (w ⟨1⟩ = w ⟨2⟩).

Thus, by applying [seq] we complete the proof. A similar proof could have been carried out with

both the rules for differential privacy, zCDP, and tCDP. Due to the simplicity of the example (that

is, LoopAM is deterministic), the resulting guarantee would have been the same.

Algorithm 2 A mechanism estimates the attribute means with SinhNormal noise

1: procedure AMSinh(n : int, ρ : real (const.), x : booln (dataset), i : int, y, z,w : real)
2: i ← 0;y ← 0;

3: while i < n do
4: y ← y + x[i]; i ← i + 1;

5: z ← y/n;
6: w

$←− w +A · arsinh
(
1

AGauss(0, /2n2ρ)
)
;
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We change the noise in the algorithm AttMean from Gaussian noise to SinhNormal noise. Explicitly,

we define a new algorithm AMSinh = LoopAM; NoiseSinh where the noise-adding part is changed

to NoiseSinh = w
$←− w + A · arsinh

(
1

AGauss(0, /2n2ρ)
)
, where A is a constant satisfying 1 <

1/√ρ ≤ A/n. In the similar way as the previous example AttMean, for the loop part LoopAM, we
obtain:

Γ ⊢ LoopAM ∼n ·A/8−tCDP
0

LoopAM : adj(x ⟨1⟩,x ⟨2⟩) =⇒ (|z⟨1⟩ − z⟨2⟩| ≤ 1/n).
By applying [tCDP-SinhG], the noise-adding part NoiseSinh satisfies

Γ ⊢ NoiseSinh ∼n ·A/8−tCDP
16ρ NoiseSinh : (|z⟨1⟩ − z⟨2⟩| ≤ 1/n) =⇒ (w ⟨1⟩ = w ⟨2⟩).

Thus, by applying [seq], we conclude that the algorithm AMSinh is (16ρ,n · A/8)-tCDP.

7.2 Histograms
The following algorithm gives the histograms of dataset x over the finite set T with additive noise.

We use a primitive data type T as a finite set of size T .

Algorithm 3 A mechanism estimates the histogram

1: procedure Histogram(nint, ρ : real (const.), x : [T ]n (dataset), y, z : realT ,i : int)
2: i ← 0; y ← (0, . . . , 0);
3: while i < n do
4: y[x[i]] ← y[x[i]] + 1; i ← i + 1;

5: i ← 0; z ← (0, . . . , 0);
6: while i < T do
7: z[i] $←− Gauss(y[i], 1/ρ); i ← i + 1;

We show the zCDP of the algorithm Histogram. We set a typing context Γ by x : [T ]n (dataset),

y, z : realT , and i : int. We want to prove the validity of the following judgment:

Γ ⊢ Histogram ∼zCDP
0,ρ Histogram : adj(x ⟨1⟩,x ⟨2⟩) =⇒ z⟨1⟩ = z⟨2⟩.

Here, adj(x ⟨1⟩,x ⟨2⟩) is defined in the similar way as the previous algorithm. We split the algorithm

Histogram into Histogram = HGCalc; HGNoisewhere HGNoise is the second loop for adding noise,
and HGCalc is the rest of the program that calculates a histogram without noise. We can now define

two additional assertions for 0 ≤ K , L < T and 0 ≤ I < n:

ΦI,K,L = (x[I ]⟨1⟩ , x[I ]⟨2⟩) ∧ (i , I =⇒ x[i]⟨1⟩ = x[i]⟨2⟩) ∧ (x[I ]⟨1⟩ = K) ∧ (x[I ]⟨2⟩ = L)
ΨK,L = (y[K]⟨1⟩ = y[K]⟨2⟩ + 1) ∧ (y[L]⟨1⟩ + 1 = y[L]⟨2⟩) ∧ (j , K ,L =⇒ y[j]⟨1⟩ = y[j]⟨2⟩).

It is easy to see that adj(x ⟨1⟩,x ⟨2⟩) ⇐⇒ ∃I ,K ,L. ΦI,K,L . Using this and some standard reasoning,

we have

Γ ⊢ HGCalc ∼zCDP
0,0 HGCalc : Φ(I ,K ,L)(x ⟨1⟩,x ⟨2⟩) =⇒ Θ(K ,L) ∧ (i⟨1⟩ = 0)

whereΘ(K ,L) = Ψ(K ,L)∧(z⟨1⟩ = z⟨2⟩)∧(i⟨1⟩ = i⟨2⟩). For proving the right judgment for HGNoise
we also use the following additional axiom for zCDP that concludes (0, 0)-zCDP if both noises and

inputs are the same (the soundness is rather straightforward):

Γ ⊢ x1
$←− Gauss(e1,σ 2) ∼zCDP

0,0 x2
$←− Gauss(e2,σ 2) : (e1⟨1⟩ = e2⟨2⟩) =⇒ (x1⟨1⟩ = x2⟨2⟩).

Now by using this axiom, [zCDP-G], and some basic reasoning for the loop we obtain:

Γ ⊢ HGNoise ∼zCDP
0,ρ HGNoise : Θ(K ,L) ∧ (i⟨1⟩ = 0) =⇒ Θ(K ,L) ∧ (i⟨1⟩ = T ).
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Roughly speaking, we may regard HGNoise as a composition c[0]; c[1]; · · · ; c[T − 1] where c[j] is
the j-th execution of the loop body of HGNoise. For j , K ,L by using the new axiom,

Γ ⊢ c[j] ∼zCDP
0,0 c[j] : Θ(K ,L) ∧ (i⟨1⟩ = j) =⇒ Θ(K ,L) ∧ (i⟨1⟩ = j + 1).

On the other hand, for j = K ,L by applying [zCDP-G] (with σ 2 = ρ/2), we obtain

Γ ⊢ c[j] ∼zCDP
0,ρ/2 c[j] : Θ(K ,L) ∧ (⟨1⟩ = j) =⇒ Θ(K ,L) ∧ (i⟨1⟩ = j + 1).

Note that the second case occurs twice. The [seq] rule sums up the grading of each execution c[j],
and we conclude ρ-zCDP of HGNoise. Finally, by using [seq] and some conditional computations,

we complete the proof.

7.3 A k-fold Gaussian mechanism
Consider a type DATA of dataset and an predicate ADJ(−,=) of adjacency for the type DATA, and
consider K queries q(i,−) : DATA→ real (0 ≤ i < K ) with sensitivity 1, that is,

ADJ(D,D ′) =⇒ |q(i,D) − q(i,D ′)| ≤ 1.

We want now to prove private the following K-fold Gaussian mechanism. Even though standard

DP can already be handled by other verification techniques, our proof applies the conversion

rules between DP and zCDP along with composition in zCDP, yielding a more precise analysis for

standard DP.

Algorithm 4 Sum of K Gaussian mechanisms

1: procedure FoldGK (K : int, σ : real (const.), D : DATA, x ,y, z : real, i : int )
2: i ← 0; z ← 0;

3: while i < K do
4: x ← q(i,D);y $←− Gauss(0,σ ); z ← x + y + z; i ← i + 1;

We set a typing context of FoldGK by D : DATA, x ,y, z : real, and i : int. Following sensitivity of

queries q, for any 0 ≤ i < K we may assume

Γ ⊢ x ← q(i,D) ∼zCDP
0,0 x ← q(i,D) : ADJ(D⟨1⟩,D⟨2⟩) =⇒ |x ⟨1⟩ − x ⟨2⟩| ≤ 1.

Thus, for the loop body c (line 4), by applying [zCDP-G], [seq] and [assn], we have

Γ ⊢ c ∼zCDP
0,1/2σ 2

c : ADJ(D⟨1⟩,D⟨2⟩) ∧ (z⟨1⟩ = z⟨2⟩) =⇒ z⟨1⟩ = z⟨2⟩.

Then, by applying [assn], [seq], and [while] (the proof rule for while-loop) rules, we conclude

Γ ⊢ FoldGK ∼zCDP
0,K/2σ 2

FoldGK : ADJ(D⟨1⟩,D⟨2⟩) =⇒ z⟨1⟩ = z⟨2⟩.

Hence, the algorithm FoldGK is (0,K/2σ 2)-zCDP. Furthermore, by applying [z/D], we conclude

that the algorithm FoldGK is

(
K
2σ 2
+

√
2K log(1/δ )

σ ,δ

)
-DP for any 0 < δ < 1/2.

This analysis gives a more precise bound compared to reasoning in terms of standard differential

privacy. First, by [DP-G], [seq] and [assn], for any 0 < δ1 < 1/2, the loop body c satisfies

Γ ⊢ c ∼DP
max((1+

√
3)/2σ ,
√
2 log(0.66/δ1)/σ ),δ1

c : adj(D⟨1⟩,D⟨2⟩) ∧ (z⟨1⟩ = z⟨2⟩) =⇒ z⟨1⟩ = z⟨2⟩.
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Let ε = max((1+
√
3)/2σ ,

√
2 log(0.66/δ1)/σ ). The algorithm FoldGK can be seen asK-fold adaptive

composition of the loop body c; · · · ; c . By applying the advanced composition theorem [Dwork

and Roth 2013, Theorem 3.20], the algorithm FoldGK is(
ε ·

√
2K log(1/δ2) + Kε2,Kδ1 + δ2

)
-DP for any 0 < δ1,δ2 < 1/2.

We compare this bound and the bound given in the avove.When δ2 < 0.4, we have 2 log(0.66/δ2) > 1.

We also have ε > 1.36/σ by the definition. Then, we can compute:

K

2σ 2
+

√
2K log(1/δ2)

σ
<

K

2σ 2
+

√
2K log(1/δ2)

σ
·
√
2 log(0.66/δ1) ≤ ε ·

√
2K log(1/δ2) + Kε2.

Hence, ε ·
√
2K log(1/δ2) + Kε2 > K

2σ 2
+

√
2K log(1/δ )

σ whenever δ = Kδ1 + δ2 and δ2 < 0.4.
We can conclude that verification via zCDP is actually better than advanced composition for the

algorithm FoldG. First, in the verification via zCDP, the approximation error δ is given regardless of

the number of queries K . Second, if the approximation error satisfies δ < 0.4 then the verification

is significantly better than advanced composition. The restriction δ < 0.4 is quite weak since the

approximation error δ in the (ε,δ )-DP is thought as the probability of failure of ε-DP. Moreover in

practical use of (ε,δ )-DP, the parameter δ is usually taken to be quite small (e.g., δ ≈ 10
−5
).

8 RELATEDWORKS
8.1 Relational liftings for f -divergences
As we have mentioned, our work is inspired by work on verifying probabilistic relational properties

involving f -divergences by Barthe and Olmedo [2013]; we generalize their results to a broader

class of divergences and also to handle continuous distributions. Barthe and Olmedo also consider

f -divergences that satisfy a more limited version of composability, called weak composability.
Roughly, these composition results only apply when corresponding pairs of distributions have

equal weight; the KL-divergence, Hellinger distance, and χ 2 divergences only satisfy this weaker

version of composability. While we do not detail this extension, our framework can naturally handle

weakly composable divergences in the continuous case.

A similar approach has also been used by Barthe et al. [2016a] in the context of an higher order

functional language for reasoning about Bayesian inference. Their type system uses a graded

monad to reason about f -divergences. The graded monad supports only discrete distributions and

is interpreted via a set-theoretic semantics, again using the lifting by Barthe and Olmedo [2013].

8.2 Relational liftings for differential privacy
Approximate relational liftings were originally proposed for program logics targeting differential

privacy. The first such system used a one-witness definition of lifting [Barthe et al. 2013], which

was subsequently refined to several notions of two-witness lifting [Barthe et al. 2016b; Barthe and

Olmedo 2013]. Sato [2016] developed approximate liftings and a program logic for continuous distri-

bution using witness-free lifting based on a categorical monad lifting [Katsumata 2005; Katsumata

and Sato 2015]. A witness-free relational lifting for differential privacy was introduced by Sato

[2016]. This can be seen as an application of the general construction of graded relational lifting
[Katsumata 2014, Section 5] to the Giry monad, using the technique of codensity lifting [Katsumata

and Sato 2015, Section 3.3] instead of ⊤⊤-lifting. The witness-free relational lifting by Sato [2016]
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sends a binary relation R between measurable spaces X ,Y to the following one between GX ,GY :

R⊤⊤(ε,δ ) =
⋂

(k,l ) : R Û→S (ε′,δ ′)
(k♯ × l ♯)−1S (ε+ε ′,δ+δ ′)

where S (ε
′,δ ′) =

{
(x ,y) ∈ G1 × G1 | x ≤ eε

′
y + δ ′

}
.

where G is the sub-Giry monad, k♯
and l ♯ denote the Kleisli extensions of k and l respectively,

Û→ denotes a relation-preserving map, and ⊤⊤ is used to denote the codensity lifting and to

distinguish it from our 2-witness lifting. Here, the intersection is taken over all measurable functions

k : X → G1, l : Y → G1 mapping pairs related by R to those related by S (ε
′,δ ′)

. We note that the

binary relation S (ε
′,δ ′)

is a parameter of this witness-free lifting, and by changing it, we can derive

other graded relational liftings of G.
Checking the membership for R⊤⊤(ε,δ ) is complex: we have to test the pair (x ,y) against every

pair (k, l) of measurable functions such that (k, l) : R Û→S (ε,δ ). Fortunately, since the divergence

∆DP(ε )
is defined by a linear inequality of measures, the witness-free lifting R⊤⊤(ϵ,δ ) can be simplified

to the following

R⊤⊤(ε,δ ) = { (d1,d2) ∈ GX × GY | ∀A ⊆ ΣX . d1(A) ≤ eεd2(R(A)) + δ } .

While we would like to generalize this lifting construction to handle more general divergences for

RDP, zCDP, and tCDP, there are at least two obstacles. First, it is not clear how to find a parameter

S to derive the suitable graded relational lifting for a given general divergence. Second, even if we

can find a suitable parameter S , it is awkward to work with the lifting unless we can simplify the

large intersection into a more convenient form. In contrast, 2-witness liftings seem more concrete

and easier to work with: It suffices to give witness distributions to check the membership of lifted

relations.

In the discrete case, witness-free liftings are equivalent to the witness-/span-based liftings

by Barthe et al. [2017]. Recent work also considers liftings with more fine-grained parameters that

can vary over different pairs of samples [Albarghouthi and Hsu 2018].

8.3 Other techniques for verifying privacy
Rényi and zero-concentrated differential privacy were recently proposed in the differential privacy

literature; to the best of our knowledge, we are the first to verify these properties. In contrast, there

are now numerous systems targeting differential privacy using a wide range of techniques beyond

program logics, including dynamic analyses [McSherry 2009], linear [Azevedo de Amorim et al.

2014; Gaboardi et al. 2013; Reed and Pierce 2010] and dependent [Barthe et al. 2015] type systems,

product programs [Barthe et al. 2014], partial evaluation [Winograd-Cort et al. 2017], and constraint-

solving [Albarghouthi and Hsu 2018; Zhang and Kifer 2017]; see the recent survey [Barthe et al.

2016c] for more details.

9 CONCLUSION AND FUTUREWORK
We have developed a framework for reasoning about three relaxations of differential privacy: Rényi

differential privacy, zero concentrated differential privacy, and truncated concentrated differential

privacy.We extended the notion of divergences to amore general class, and to support subprobability

measures. Additionally, we have introduced a novel notion of approximate span-lifting supporting

these divergences and continuous distributions.

One promising direction for future work is to study the moment-accountant composition

method [Abadi et al. 2016]. This composition method tracks the moments of the privacy loss
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random variable, although it does not directly correspond to composition for RDP or zCDP. An-

other interesting direction would be to analyze recently-proposed RDP mechanisms for posterior

sampling [Geumlek et al. 2017], and the GAP-Max tCDP algorithm by Bun et al. [2018].
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A CONTINUITY OF f -DIVERGENCES OF SUBPROBABILITY MEASURES
In this section we show the subprobability version of continuity of f -divergences [Liese and Vajda

2006, Theorem 16] in a different way from the paper [Liese and Vajda 2006].

Theorem A.1 (Theorem 4.7 / Subprobability version of[Liese and Vajda 2006, Theorem

16]). For any weight function f , the f -divergence ∆f is continuous: for any subprobability measures

µ1, µ2 ∈ GX on X , we have

∆
f
X (µ1, µ2) = sup

{
n∑
i=0

µ2(Ai )f
(
µ1(Ai )
µ2(Ai )

)
| {Ai }ni=0 is a measurable finite partition of X

}
.

To prove this proposition, we introduce the singularity of measures. Two measures µ1 and µ2 on
X are said to be mutually singular (written ν1 ⊥ ν2) if there are partition A1,A2 ∈ ΣX of X such

that µi (E) = µi (Ai ∩ E) for any E ∈ ΣX (i = 1, 2).

Lemma A.2 (Lebesgue’s Decomposition Theorem). Let µ1 and µ2 be σ -finite measures on X .
There are unique finite measures µ•

1
and µ⊥

1
on X such that µ•

1
≪ µ2 and µ⊥

1
⊥ µ2.

We recall that the f -divergence for subprobability measures is defined by for any µ1, µ2, µ ∈ GX
such that µ1, µ2 ≪ µ,

∆
f
X (µ1, µ2) =

∫
X

dµ2
dµ

f

(
dµ1/dµ
dµ2/dµ

)
dµ .

We remark that µ satisfying µ1, µ2 ≪ µ always exists (e.g. (µ1 + µ2)/2), and the ∆
f
X (µ1, µ2) does not

depend on the choice of µ. We want to prove the continuity:

∆
f
X (µ1, µ2) = sup

{
n∑
i=0

µ2(Ai )f
(
µ1(Ai )
µ2(Ai )

)
| {Ai }ni=0 is a finite measurable partition of X

}
.

We define the following restricted sum of f -divergences. For any measurable subset D ∈ ΣX ,

∆
f
X (µ1, µ2)|D =

∫
D

dµ2
dµ

f

(
dµ1/dµ
dµ2/dµ

)
dµ .

∆
f
X (µ1, µ2)|D = sup

{
n∑
i=0

µ2(Ai )f
(
µ1(Ai )
µ2(Ai )

)
| {Ai }ni=0 is a finite measurable partition of D

}
= sup

{ ∑
i ∈I

µ2(k−1(i))f
(
µ1(k−1(i))
µ2(k−1(i))

)
| I ∈ Fin,k : D → I

}
Of course, ∆

f
X (µ1, µ2) = ∆

f
X (µ1, µ2)|X . We write ∆

f
X (µ1, µ2) = ∆

f
X (µ1, µ2)|X

We temporary consider a positive weight function f .

Lemma A.3. If µ1 ≪ µ2 then ∆
f
X (µ1, µ2)|D ≤ ∆

f
X (µ1, µ2)|D for any D ∈ ΣX .

Proof. Since µ1 ≪ µ2, we may assume µ = µ2 (hencedµ2/dµ = 1). Then, we have ∆
f
X (µ1, µ2)|D =∫

D f (dµ1dµ2
)dµ2. Since f is convex, there is α ∈ R≥0 which makes that f is monotone increasing on

the interval [0,α) and monotone decreasing on [α ,∞). Let {Ai }ni=0 be an arbitrary finite partition

of D which is finer than the partition { dµ1dµ2

−1
([0,α)) ∩ D, dµ1dµ2

−1
([α ,∞)) ∩ D}. The function f ◦ dµ1

dµ2
is

either monotone increasing or monotone decreasing, on each partitionAi . Hence, infx ∈Ai f (
dµ1
dµ2
)(x)
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is either f (infx ∈Ai
dµ1
dµ2
(x)) or f (supx ∈Ai

dµ1
dµ2
(x)). From the mean-value theorem for measures, we

obtain

inf

x ∈Ai

dµ1
dµ2
(x) ≤ µ1(Ai )

µ2(Ai )
≤ sup

x ∈Ai

dµ1
dµ2
(x).

Hence,

n∑
i=0

µ2(Ai ) inf
x ∈Ai

f (dµ1
dµ2
)(x) ≤

n∑
i=0

µ2(Ai )f (
µ1(Ai )
µ2(Ai )

).

Since {Ai }ni=0 is arbitrary, we conclude ∆
f
X (µ1, µ2)|D ≤ ∆

f
X (µ1, µ2)|D . □

Lemma A.4. If µ1 ≪ µ2 and the Radon-Nikodym derivative dµ1/dµ2 is bounded on D then
∆
f
X (µ1, µ2)|D = ∆

f
X (µ1, µ2)|D .

Proof. We fix a positive integer 1 ≤ K ∈ N such that 0 ≤ dµ1
dµ2
≤ M . For given N ∈ N, we define

the partition {Ai }2
N K

i=0 of D by

Ai =

((
dµ1
dµ2

)−1
(Bi )

)
∩ D, Bi =


[ i
2
N ,

i+1
2
N ) 0 ≤ i < 2

N

{1} i = 2
N

( i−1
2
N ,

i
2
N ] 2

N < i ≤ 2
NK .

Since µ1 ≪ µ2 and 0f (0/0) = 0, if µ2(Ai ) = 0 then µ2(Ai ) µ1(Ai )µ2(Ai ) = 0. If µ2(Ai ) > 0 then���dµ1dµ2
(x) − µ1(Ai )

µ2(Ai )

��� ≤ 2
−(N−1)

for all x ∈ Ai , from the definition of {Ai }2
N K

i=0 ,

i − 1
2
N ≤ inf

x ∈Ai

dµ1
dµ2
(x) ≤ µ1(Ai )

µ2(Ai )
≤ sup

x ∈Ai

dµ1
dµ2
(x) ≤ i + 1

2
N .

Consider an arbitrary ε > 0. Since f is uniformly continuous on the closed interval [0,K], there
are large enough N2 ∈ N and the corresponding partition {Ai }2

N K
i=0 such that

µ2(Ai ) > 0 =⇒
���� infx ∈Ai

f (dµ1
dµ2
)(x) − f (µ1(Ai )

µ2(Ai )
)
���� < ε

Hence, for any partition {Ci }ni=0 of D finer than {Ai }2
N K

i=0 , we obtain

n∑
i=0

µ2(Ci )f
(
µ1(Ci )
µ2(Ci )

)
≤

n∑
i=0

µ2(Ci )
(
inf

x ∈Ci
f

(
dµ1
dµ2

)
(x)

)
+ ε .

This implies ∆
f
X (µ1, µ2)|D ≤ ∆

f
X (µ1, µ2)|D + ε . Since ε > 0 is arbitrary, we conclude ∆

f
X (µ1, µ2)|D ≤

∆
f
X (µ1, µ2)|D . □

Lemma A.5. We have ∆f
X (µ1, µ2)|D = ∆

f
X (µ1, µ2)|D when µ1 ≪ µ2.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.



Approximate Span Liftings 1:29

Proof. Let Dn =

((
dµ1
dµ2

)−1
[n,n + 1)

)
∩ D (n ∈ N). From Jensen’s inequality, we obtain for any

partition {Ai }mi=0 of D,
m∑
i=0

µ2(Ai )f
(
µ1(Ai )
µ2(Ai )

)
=

m∑
i=0

(
∑
n∈N

µ2(Dn ∩Ai ))f
(∑

n∈N µ1(Dn ∩Ai )∑
n∈N µ2(Dn ∩Ai )

)
≤

m∑
i=0

∑
n∈N

µ2(Dn ∩Ai )f
(
µ1(Dn ∩Ai )
µ2(Dn ∩Ai )

)
=

∑
n∈N

m∑
i=0

µ2(Dn ∩Ai )f
(
µ1(Dn ∩Ai )
µ2(Dn ∩Ai )

)
This implies ∆

f
X (µ1, µ2)|D ≤

∑∞
n=0 ∆

f
X (µ1, µ2)|Dn for each n ∈ N.

Since the Radon-Nikodym derivative
dµ1
dµ2

is bounded on each Dn , by Lemmas A.3 and A.4,

∆
f
X (µ1, µ2)|Dn = ∆

f
X (µ1, µ2)|Dn for each n ∈ N. Hence,

∆
f
X (µ1, µ2) ≤

∞∑
n=0

∆
f
X (µ1, µ2)|Dn =

∞∑
n=0

∆
f
X (µ1, µ2)|Dn = ∆

f
X (µ1, µ2) ≤ ∆

f
X (µ1, µ2).

This implies ∆
f
X (µ1, µ2) = ∆

f
X (µ1, µ2). □

Theorem 4.7, Positive Case. We show that for any positive weight function f , the continuity

∆
f
X (µ1, µ2) = ∆

f
X (µ1, µ2) holds. Let (µ•1 , µ⊥1 ) be the Lebesgue decomposition of µ1 with respect

to µ2. Since (µ•1 , µ⊥1 ) is the Lebesgue decomposition of µ1 with respect to µ2, there is A ∈ ΣX
such that µ2(E) = µ2(E \ A) and µ⊥

1
(E) = µ⊥

1
(E ∩ A) for any E ∈ ΣX . The subset A also satisfies

µ1(E \A) = µ•
1
(E \A) for any E ∈ ΣX . We then obtain

∆
f
X (µ1, µ2) = ∆

f
X (µ1, µ2)|X \A + ∆

f
X (µ1, µ2)|A = ∆

f
X (µ

•
1
, µ2)|X \A + ∆f

X (µ
⊥
1
, µ2)|A

= ∆
f
X (µ•1 , µ2)|X \A + ∆

f
X (µ⊥1 , µ2)|A = ∆

f
X (µ1, µ2)|X \A + ∆

f
X (µ1, µ2)|A = ∆

f
X (µ1, µ2)

From Lemma A.5, ∆
f
X (µ•1 , µ2)|X \A = ∆

f
X (µ•1 , µ2)|X \A holds, and using the dual f ∗ we have

∆
f
X (µ

⊥
1
, µ2)|A =

∫
A

dµ2
dµ

f

(
dµ⊥

1
/dµ

dµ2/dµ

)
dµ =

∫
A
f ∗(0)

dµ⊥
1

dµ
dµ = f ∗(0)µ1(A) = ∆

f
X (µ⊥1 , µ2)|A.

□

Theorem 4.7, General case. We show the continuity of ∆f
for arbitrary weight function f . Let

α , β : R≥0 → R the functions be defined by α(t) = a and β(t) = bt respectively where a,b ≥ 0.

Since f is convex, there are α and β that makes f + α + β positive. Hence,

∆
f
X (µ1, µ2) + aµ2(X ) + bµ1(X ) = ∆

f +α+β
X (µ1, µ2)

= ∆
f +α+β
X (µ1, µ2)

= ∆
f
X (µ1, µ2) + aµ2(X ) + bµ1(X ).

This completes the proof. □
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B OMITTED STRUCTURES OF THE PROGRAM LOGIC
B.1 Typing Rules for Expressions and Programs
Before we give the semantics of programs, we first give a type system for expressions, distributions,

and programs. A typing context is a finite set Γ = {x1 : τ1,x2 : τ2, . . . ,xn : τn} of pairs of a variable
and a value type such that each variable occurs only once in the context. The type system is largely

standard, with two kinds of judgments: Γ ⊢t e : τ states that expression e has type τ in context Γ,
while Γ ⊢p ν : τ states that ν is a distribution over τ in context Γ. The third judgment Γ ⊢ c states
that program c is well-typed in context Γ, e.g., all guards are booleans, assignments are well-typed,

etc. The expression typing rules are as follows:

x : τ ∈ Γ
Γ ⊢t x : τ

Γ ⊢t e1 : τ Γ ⊢t e2 : τ
Γ ⊢t e1 ⊕ e2 : τ

Γ ⊢t e1 : τ Γ ⊢t e2 : τ
Γ ⊢t e1 ▷◁ e2 : bool

Γ ⊢t e1 : τd Γ ⊢t e2 : int
Γ ⊢t e1[e2] : τ

Γ ⊢t e : real
Γ ⊢p Bern(e) : bool

Γ ⊢t e1 : real Γ ⊢t e2 : real
Γ ⊢p Lap(e1, e2) : real

Γ ⊢t e1 : real Γ ⊢t e2 : real
Γ ⊢p Gauss(e1, e2) : real

Γ ⊢t e : τ
Γ ⊢p Dirac(e) : τ Γ ⊢ skip

Γ,x : τ ⊢p ν : τ

Γ,x : τ ⊢ x $←− ν
Γ ⊢ c1 Γ ⊢ c2

Γ ⊢ c1; c2

Γ ⊢t b : bool Γ ⊢ c1 Γ ⊢ c2
Γ ⊢ if b then c1 else c2

Γ ⊢t b : bool Γ ⊢ c
Γ ⊢ while b do c

B.1.1 Forming Relation Expressions. The judgment Γ ⊢R Φ states that the relation expression Φ
is well-formed in context Γ.

Γ ⊢t e1 ▷◁ e2 : bool
Γ ⊢R e1⟨1⟩ ▷◁ e2⟨2⟩

Γ ⊢t (e1 ⊕1 e2) ▷◁ (e3 ⊕2 e4) : bool
Γ ⊢R (e1⟨1⟩ ⊕1 e2⟨2⟩) ▷◁ (e3⟨1⟩ ⊕2 e4⟨2⟩)

Γ ⊢R Φ Γ ⊢R Ψ

Γ ⊢R Φ ∧ Ψ

Γ ⊢R Φ Γ ⊢R Ψ

Γ ⊢R Φ ∨ Ψ

Γ ⊢R Φ

Γ ⊢R ¬Φ

B.1.2 Basic proof rules. The basic proof rules are given in Figure 5.

B.2 mechanism rules
Figure 6 is the list of mechanism rules in span-apRHL.

B.3 Denotational Semantics of pWHILE
To prove the soundness of span-apRHL we interpret pWHILE in Meas using the sub-Giry monad

G. First, we interpret the value types bool, int, and real as the finite discrete space B = 1 +

1 = {true, false}, the countable discrete space Z = {0, 1, . . .}, and the Lebesgue measurable

space R respectively. We interpret τd as the product Jτ Kd and we interpret a typing context

Γ = {x1 : τ1,x2 : τ2, . . . ,xn : τn} as a product Jτ1K × Jτ2K × · · · × JτnK.
To give a semantics to expressions, distribution expressions, and commands, we interpret their

associated typing/well-formedness judgments in a context Γ. We interpret an expression judgment

Γ ⊢t e : τ as a measurable function JΓ ⊢t e : τ K : JΓK→ Jτ K; for instance, the variable case Γ ⊢t x : τ
is interpreted as the projection πx : JΓK→ Jτ K.
We interpret a reference JΓ ⊢t e1[e2] : τ K of an element by ref ⟨τ ,n⟩(JΓ ⊢t e1K, JΓ ⊢t e2K) where

ref ⟨τ ,n⟩ : Jτ Kn × Z→ Jτ K is defined by ref ⟨τ ,n⟩((x0, . . . ,xn−1),k) = x
min(max(k,0),n).

7

7
We can describe it categorically by using products and coproducts in Meas.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.



Approximate Span Liftings 1:31

Γ ⊢ x1 ← e1 ∼∆
1A,0

x2 ← e2 : Φ{e1⟨1⟩, e2⟨2⟩/x1⟨1⟩,x2⟨2⟩} =⇒ Φ [assn]

Γ ⊢ c1 ∼∆
α,δ c ′

1
: Φ =⇒ Φ′ Γ ⊢ c2 ∼∆

β,γ c ′
2
: Φ′ =⇒ Ψ

[seq]

Γ ⊢ c1; c2 ∼∆
α β,δ+γ c ′

1
; c ′

2
: Φ =⇒ Ψ

Γ ⊢ skip ∼∆
1A,0

skip : Φ =⇒ Φ [skip]

Γ ⊢I Φ =⇒ b⟨1⟩ = b ′⟨2⟩
Γ ⊢ c1 ∼∆

α,δ c ′
1
: Φ ∧ b⟨1⟩ =⇒ Ψ Γ ⊢ c2 ∼∆

α,δ c ′
2
: Φ ∧ ¬b⟨1⟩ =⇒ Ψ

[cond]

⊢ if b then c1 else c2 ∼∆
α,δ if b ′ then c ′

1
else c ′

2
: Φ =⇒ Ψ

Γ ⊢t e : int Γ ⊢I Θ =⇒ Θ ∧ (b1⟨1⟩ = b2⟨2⟩) Γ ⊢I Θ ∧ (e ⟨1⟩ ≥ n) =⇒ Θ ∧ ¬b1⟨1⟩
∀0 ≤ k ≤ n − 1. Γ ⊢ c1 ∼∆

αk ,δk
c2 : Θ ∧ (e ⟨1⟩ = k) ∧ (e ⟨1⟩ ≤ n) =⇒ Θ ∧ (e ⟨1⟩ > k)

[while]

Γ ⊢ while b1do c1 ∼∆∏n−1
k=0 αk ,

∑n−1
k=0 δk

while b2do c2 : Θ ∧ b1⟨1⟩ ∧ (e ⟨1⟩ ≥ 0) =⇒ Θ ∧ ¬b1⟨1⟩

Γ ⊢ c1 ∼∆
α,δ c2 : Φ1 =⇒ Ψ Γ ⊢ c1 ∼∆

α,δ c2 : Φ2 =⇒ Ψ
[case]

Γ ⊢ c1 ∼∆
α,δ c2 : Φ1 ∨ Φ2 =⇒ Ψ

Γ ⊢I Φ′ =⇒ Φ Γ ⊢I Ψ =⇒ Ψ′ Γ ⊢ c1 ∼∆
α,δ c2 : Φ =⇒ Ψ α ≤ β δ ≤ γ

[weak]

Γ ⊢ c1 ∼∆
β,γ c2 : Φ

′ =⇒ Ψ′

Fig. 5. Basic rules.

All operators ⊕ and comparisons ▷◁ are interpreted as measurable functions ⊕ : Jτ K × Jτ K→ Jτ K
and ▷◁ : Jτ K× Jτ K→ JboolK respectively. Likewise, we interpret a distribution expression judgment

Γ ⊢p ν : τ as a measurable function JΓ ⊢p ν : τ K : JΓK→ GJτ K as follows:

JΓ ⊢p Dirac(e) : τ K = ηJτ K ◦ JΓ ⊢t e : τ K,

JΓ ⊢p Bern(e) : boolK = Bern(JΓ ⊢t e : realK),
JΓ ⊢p Lap(e1, e2) : realK = Lap(JΓ ⊢t e1 : realK, JΓ ⊢t e2 : realK),

JΓ ⊢p Gauss(e1, e2) : realK = N(JΓ ⊢t e1 : realK, JΓ ⊢t e2 : realK).

Finally, we interpret a command judgment Γ ⊢ c inductively as ameasurable function JΓ ⊢ cK : JΓK→
GJΓK by

JΓ ⊢ x $←− νK = G(rw⟨Γ | x : τ ⟩) ◦ stJΓK,Jτ K ◦ ⟨idJΓK, JνK⟩,

JΓ ⊢ c1; c2K = JΓ ⊢ c2K♯ ◦ JΓ ⊢ c1K,
JΓ ⊢ skipK = ηJΓK

JΓ ⊢ if b then c1 else c2K = [JΓ ⊢ c1K, JΓ ⊢ c2K] ◦ br⟨Γ⟩ ◦ ⟨JΓ ⊢ bK, idJΓK⟩

Here, rw⟨Γ | x : τ ⟩ : JΓK×Jx : τ K→ JΓK (x : τ ∈ Γ) is an overwriting operation of memories mapping

((a1, . . . ,ak , . . . ,an),bk ) 7→ (a1, . . . ,bk , . . . ,an); this is given by the Cartesian products in Meas.
The function br⟨Γ⟩ : 2× JΓK→ JΓK+ JΓK comes from the canonical isomorphism 2× JΓK � JΓK+ JΓK
from the distributivity of Meas.
To interpret loops, we introduce the dummy “abort” command Γ ⊢ null that is interpreted by

the null/zero measure JΓ ⊢ nullK = 0, and the following commands corresponding to the finite
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Γ ⊢ x1
$←− Bern(e1) ∼DP

logmax(p,1−p)−logmin(p,1−p),0 x2
$←− Bern(e2) :

((e1⟨1⟩ = p) ∧ (1 − e1⟨1⟩ = e2⟨2⟩) =⇒ (x1⟨1⟩ = x2⟨2⟩) [DP-Bern]

Γ ⊢ x1
$←− Bern(e1) ∼DP0,0 x2

$←− Bern(e2) :
(e1⟨1⟩ = e2⟨2⟩) =⇒ (x1⟨1⟩ = x2⟨2⟩) [DP-Bern-Eq]

Γ ⊢ x1
$←− Bern(e1) ∼α−RDP1

α−1 ((1−p)1−αpα+p1−α (1−p)α )
x2

$←− Bern(e2) :

(e1⟨1⟩ = p) ∧ (1 − e1⟨1⟩ = e2⟨2⟩) =⇒ (x1⟨1⟩ = x2⟨2⟩) [RDP-Bern]

Γ ⊢ x1
$←− Bern(e1) ∼α−RDP0

x2
$←− Bern(e2) :

(e1⟨1⟩ = e2⟨2⟩) =⇒ (x1⟨1⟩ = x2⟨2⟩) [RDP-Bern-Eq]

Γ ⊢ x1
$←− Bern(e1) ∼zCDP

logmax(p,1−p)−logmin(p,1−p),0 x2
$←− Bern(e2) :

(e1⟨1⟩ = p) ∧ (1 − e1⟨1⟩ = e2⟨2⟩) =⇒ (x1⟨1⟩ = x2⟨2⟩) [zCDP-Bern]

Γ ⊢ x1
$←− Bern(e1) ∼zCDP0,0 x2

$←− Bern(e2) :
(e1⟨1⟩ = e2⟨2⟩) =⇒ (x1⟨1⟩ = x2⟨2⟩) [zCDP-Bern-Eq]

Γ ⊢ x1
$←− Lap(e1, λ) ∼DPr/λ,0 x2

$←− Lap(e2, λ) :
(|e1⟨1⟩ − e2⟨2⟩| ≤ r ) =⇒ (x1⟨1⟩ = x2⟨2⟩) [DP-Lap]

Γ ⊢ x1
$←− Lap(e1, λ) ∼α−RDP1

α−1 log{
α

2α−1 e
(α−1)/λ+ α−1

2α−1 e
−α /λ } x2

$←− Lap(e2, λ) :

(|e1⟨1⟩ − e2⟨2⟩| ≤ 1) =⇒ (x1⟨1⟩ = x2⟨2⟩) [RDP-Lap]

Γ ⊢ x1
$←− Lap(e1, λ) ∼zCDPr/λ,0 x2

$←− Lap(e2, λ) :
(|e1⟨1⟩ − e2⟨2⟩| ≤ r ) =⇒ (x1⟨1⟩ = x2⟨2⟩) [zCDP-Lap]

Γ ⊢ x1
$←− Gauss(e1,σ 2) ∼α−RDPαr 2/2σ 2

x2
$←− Gauss(e2,σ 2)

(|e1⟨1⟩ − e2⟨2⟩| ≤ r ) =⇒ (x1⟨1⟩ = x2⟨2⟩) [RDP-G]

Γ ⊢ x1
$←− Gauss(e1,σ 2) ∼zCDP

0,r 2/2σ 2
x2

$←− Gauss(e2,σ 2)
(|e1⟨1⟩ − e2⟨2⟩| ≤ r ) =⇒ (x1⟨1⟩ = x2⟨2⟩) [zCDP-G]

Γ ⊢ x1
$←− Gauss(e1,σ 2) ∼tCDP

0,r 2/2σ 2
x2

$←− Gauss(e2,σ 2)
(|e1⟨1⟩ − e2⟨2⟩| ≤ r ) =⇒ (x1⟨1⟩ = x2⟨2⟩) [tCDP-G]

∃c > 1+
√
3

2
. (2 log(0.66/δ ) ≤ c2) ∧ ( crε ≤ σ )

Γ ⊢ x1
$←− Gauss(e1,σ 2) ∼DPε, δ x2

$←− Gauss(e2,σ 2) :
(|e1⟨1⟩ − e2⟨2⟩| ≤ r ) =⇒ (x1⟨1⟩ = x2⟨2⟩)

[DP-G]

1 < 1/√ρ ≤ A/δ

Γ ⊢ x1
$←− e1 +A · arsinh

(
1

AGauss(0,δ 2/2ρ)
)

∼tCDP
16ρ,A/8δ x2

$←− e2 +Aarsinh
(
1

AGauss(0,δ 2/2ρ)
)
:

(|e1⟨1⟩ − e2⟨2⟩| ≤ δ ) =⇒ (x1⟨1⟩ = x2⟨2⟩)

[tCDP-SinhG]

Fig. 6. Rules for basic mechanisms for DP, RDP, zCDP, and tCDP in span-apRHL.
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unrollings of the loop:

[while b do c]n =
{
if b then null else skip, if n = 0

if b then c; [while b do c]k , if n = k + 1

We then interpret loops as the supremum of interpretations of finite executions:
8

JΓ ⊢ while b do cK = sup

n∈N
JΓ ⊢ [while e do c]nK.

B.4 Proof of Soundness of the Program Logic
Lemma B.1. The [assn] rule is sound.

Proof. We may assume x1 , x2 without loss of generality. Let

((ϕ1,a1
1
,a1

2
), (ϕ2,a2

1
,a2

2
)) ∈ LΓ ⊢R Φ{e1⟨1⟩, e2⟨2⟩/x1⟨1⟩,x2⟨2⟩}M

where aij is a value of variable x j (i = 1, 2). Since x1 and x2 are not free variables in e1 and e2
respectively, we have

((ϕ1, JΓ ⊢t e1 : τ K(ϕ1,a1
1
,a1

2
),a1

2
), (ϕ2,a2

1
, JΓ ⊢t e2 : τ K(ϕ2,a2

1
,a2

2
)) ∈ LΓ ⊢R ΦM.

Therefore,

(f1(ϕ1,a1
1
,a1

2
), f2(ϕ2,a2

1
,a2

2
)) ∈ LΓ ⊢R ΦM

where fi = rw⟨Γ | xi : τ ⟩ ◦ ⟨idJΓK, JΓ ⊢t ei : τ K⟩ (i = 1, 2). Therefore, we obtain the following

morphism of spans (note that both JΓ ⊢R Φ{e1⟨1⟩, e2⟨2⟩/x1⟨1⟩,x2⟨2⟩}K and JΓ ⊢R ΦK are binary

relation converted to spans) ,

(f1, f2, (f1 × f2)|LΓ⊢RΦ{e1 ⟨1⟩,e2 ⟨2⟩/x1 ⟨1⟩,x2 ⟨2⟩ }M) :
JΓ ⊢R Φ{e1⟨1⟩, e2⟨2⟩/x1⟨1⟩,x2⟨2⟩}K→ JΓ ⊢R ΦK.

Letting дi = ηJΓK ◦ fi = JΓ ⊢ xi ← eiK, we conclude

(д1,д2, ⟨ηΦ,ηΦ⟩ ◦ (д1 × д2)|LΓ⊢RΦ{e1 ⟨1⟩,e2 ⟨2⟩/x1 ⟨1⟩,x2 ⟨2⟩ }M) :

JΓ ⊢R Φ{e1⟨1⟩, e2⟨2⟩/x1⟨1⟩,x2⟨2⟩}K→ JΓ ⊢R ΦK♯(∆,1A,0).

□

Lemma B.2. The [seq] rule is sound.

Proof. Since the judgments Γ ⊢ c1 ∼∆
α,δ c ′

1
: Φ =⇒ Φ′ and Γ ⊢ c2 ∼∆

β,γ c ′
2
: Φ′ =⇒ Ψ are valid,

we obtain the following two morphisms in Span(Meas) for witness functions l1 and l2:

(JΓ ⊢ c1K, JΓ ⊢ c ′1K, l1) : JΓ ⊢R ΦK→ JΓ ⊢R Φ′K♯(∆,α,δ )

(JΓ ⊢ c2K, JΓ ⊢ c ′2K, l2) : JΓ ⊢R Φ′K→ JΓ ⊢R ΨK♯(∆,β,γ )

By taking the graded Kleisli lifting of the second morphism (JΓ ⊢ c2K, JΓ ⊢ c ′2K, l2), for some witness

function l3, we have a Span(Meas)-morphism

(JΓ ⊢ c2K♯, JΓ ⊢ c ′2K
♯, l3) : JΓ ⊢R Φ′K♯(∆,α,δ ) → JΓ ⊢R ΨK♯(∆,α β,δ+γ ).

Composing, we have a span-morphism giving validity of Γ ⊢ c1; c2 ∼∆
α β,δ+γ c ′

1
; c ′

2
: Φ =⇒ Ψ :

(JΓ ⊢ c2K♯ ◦ JΓ ⊢ c1K, JΓ ⊢ c ′2K
♯ ◦ JΓ ⊢ c ′

1
K, l3 ◦ l1) : JΓ ⊢R ΦK→ JΓ ⊢R ΨK♯(∆,α β,δ+γ ).

8
This is well-defined, since the family {JΓ ⊢ [while e do c]nK}n∈N is an ω-chain with respect to the ωCPO⊥-enrichment

⊑ of MeasG .
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□

Lemma B.3. The [weak] rule is sound

Proof. Since the judgment Γ ⊢ c1 ∼∆
α,δ c2 : Φ =⇒ Ψ is valid, we have a witness function

l : LΓ ⊢R ΦM→W (JΓ ⊢R ΨK,∆,α ,δ ) such that

(JΓ ⊢ c1K, JΓ ⊢ c2K, l) : JΓ ⊢R ΦK→ JΓ ⊢R ΨK♯(∆,α,δ )

From the inclusions Γ ⊢I Φ′ =⇒ Φ and Γ ⊢I Ψ =⇒ Ψ′ of relations, we have

(idJΓK, idJΓK, (idJΓK × idJΓK)|LΓ⊢RΦ′M) : JΓ ⊢R Φ′K→ JΓ ⊢R ΦK

(idJΓK, idJΓK, (idJΓK × idJΓK)|LΓ⊢RΨM) : JΓ ⊢R ΨK→ JΓ ⊢R Ψ′K.

Thanks to the inclusion structure of the span-lifting (−)♯(∆), we obtain

(GidJΓK,GidJΓK, (GidJΓK × GidJΓK)|W (JΓ⊢RΦK,∆,α,δ )) : JΓ ⊢R Ψ′K♯(∆,α,δ ) → JΓ ⊢R Ψ′K♯(∆,β,γ )

Therefore, we conclude

(JΓ ⊢ c1K, JΓ ⊢ c2K, l |LΓ⊢RΦ′M) : JΓ ⊢R Φ′K→ JΓ ⊢R Ψ′K♯(∆,β,γ )

□

Lemma B.4. The [cond] rule is sound.

Proof. Since the judgments Γ ⊢ c1 ∼∆
α,δ c2 : Φ∧b⟨1⟩ =⇒ Ψ and Γ ⊢ c ′

1
∼∆
α,δ c ′

2
: Φ∧¬b⟨1⟩ =⇒

Ψ are valid, we have two witness functions lT : LΓ ⊢R Φ ∧ b⟨1⟩M → W (JΓ ⊢R ΨK,∆,α ,δ ) and
lF : LΓ ⊢R Φ ∧ ¬b⟨1⟩M→W (JΓ ⊢R ΨK,∆,α ,δ ) that make the following morphisms in Span(Meas):

(JΓ ⊢ c1K, JΓ ⊢ c2K, lT ) : JΓ ⊢R Φ ∧ b⟨1⟩K→ JΓ ⊢R ΨK♯(∆,α,δ )

(JΓ ⊢ c ′
1
K, JΓ ⊢ c ′

2
K, lF ) : JΓ ⊢R Φ ∧ ¬b⟨1⟩K→ JΓ ⊢R ΨK♯(∆,α,δ ).

By the coproduct structure of Span(Meas), we have the following span-morphism:

([JΓ ⊢ c1K, JΓ ⊢ c ′1K], [JΓ ⊢ c2K, JΓ ⊢ c ′2K], [lT , lF ]) :

JΓ ⊢R Φ ∧ b⟨1⟩K Û+ JΓ ⊢R Φ ∧ ¬b⟨1⟩K→ JΓ ⊢R ΨK♯(∆,α,δ ).

We write д1 = br⟨Γ⟩ ◦ ⟨JΓ ⊢t bK, idJΓK⟩ and д2 = br⟨Γ⟩ ◦ ⟨JΓ ⊢t ¬bK, idJΓK⟩. We construct the

following morphism by using Γ ⊢I Φ =⇒ b⟨1⟩ = b ′⟨2⟩

(д1,д2,H ◦ (д1 × д2)|LΓ⊢RΦM) : JΓ ⊢R ΦK→ JΓ ⊢R Φ ∧ b⟨1⟩K Û+ JΓ ⊢R Φ ∧ ¬b⟨1⟩K, (8)

where H is the composition H3 ◦ H2 ◦ H1 of

• H1 : (JΓK + JΓK) × (JΓK + JΓK) � 4 × (JΓK × JΓK)
defined by (ιi (ϕ1), ι j (ϕ2)) 7→ ((i, j), (ϕ1,ϕ2)) where i, j ∈ 2,
• H2 : 4 × (JΓK × JΓK) → 2 × (JΓK × JΓK)
defined by ((b1,b2),ϕ1,ϕ2) 7→ (b1,ϕ1,ϕ2),
• H3 : 2 × (JΓK × JΓK) � (JΓK × JΓK) + (JΓK × JΓK)
defined by (b, (ϕ1,ϕ2)) 7→ ιb (ϕ1,ϕ2).
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Here, ιi are coprojections ι1 : A→ A + B and ι2 : B → A + B. The bijections H1 and H3 are given

from the distributivity of products and coproducts in Meas, and H2 is given by a projection.

Now, let (ϕ1,ϕ2) ∈ LΓ ⊢R ΦM. Since we suppose Γ ⊢I Φ =⇒ b⟨1⟩ = b ′⟨2⟩, we have

(д1(ϕ1),д2(ϕ2)) =
{
((1,ϕ1), (1,ϕ2)) (ϕ1,ϕ2) ∈ LΓ ⊢R Φ ∧ b⟨1⟩M = LΓ ⊢R Φ ∧ b ′⟨2⟩M
((2,ϕ1), (2,ϕ2)) (ϕ1,ϕ2) ∈ LΓ ⊢R Φ ∧ ¬b⟨1⟩M = LΓ ⊢R Φ ∧ ¬b ′⟨2⟩M.

We observe the role of H in the first case ((ϕ1,ϕ2) ∈ LΓ ⊢R Φ ∧ b⟨1⟩M),
H (д1(ϕ1),д2(ϕ2)) = H3 ◦ H2 ◦ H1((1,ϕ1), (1,ϕ2))

= H3 ◦ H2((1, 1), (ϕ1,ϕ2)) = H3(1, (ϕ1,ϕ2)) = ι1(ϕ1,ϕ2).
In the sameway, we haveH (д1(ϕ1),д2(ϕ2)) = ι2(ϕ1,ϕ2) in the second case. Therefore, themeasurable

function H ◦ (д1 ×д2)|LΓ⊢RΦM forms a function from LΓ ⊢R ΦM to LΓ ⊢R Φ ∧ b⟨1⟩M+ LΓ ⊢R Φ ∧ ¬b⟨1⟩M
satisfying (8).

Since JΓ ⊢ if b then c else c ′K = [JΓ ⊢ cK, JΓ ⊢ c ′K] ◦ br⟨Γ⟩ ◦ ⟨JΓ ⊢t bK, idJΓK⟩, we conclude the
soundness. □

Remark B.1. Similarly, we have soundness of [case].

Remark B.2. The soundness of the [while] rule is a consequence of the soundness of [seq], [weak],
and the [case] rule since the [while] in our logic deal only with finite-loops.

Lemma B.5. The rule [RDP-G] is sound.

Proof. We assume x1 , x2. First, it can be directly checked that the function f = N(−,σ 2) : R→
GR is measurable. From Mironov [2017, Proposition 3], the function f satisfies Dα (f (x)| | f (y)) ≤
αr 2/2σ 2

whenever |x − y | ≤ r . Hence, (f , f , (f × f )|Φ) is a span-morphism Φ→ Eq
♯(Dα ,∗,αr 2/2σ 2)
R

where Φ = { (x ,y) ∈ R × R | |x − y | ≤ r } is regarded as a span.

We next construct a span-morphism (h1,h2, (h1 × h2)|Θ) mapping Θ→ Eq
♯(Dα ,∗,αr 2/2σ 2)
R where

Θ = JΓ ⊢R |e1⟨1⟩ − e2⟨2⟩| ≤ rK and hi = JΓ ⊢p Gauss(ei ,σ 2) : realK (i = 1, 2). We write дi =
JΓ ⊢t ei : realK (i = 1, 2). It is clear that (д1,д2, (д1 × д2)|Θ) is a span-morphism Θ → Φ. Since

hi = fi ◦ дi (i = 1, 2), the triple (h1,h2, (h1 × h2)|Θ) is a span-morphism Θ→ Eq
♯(Dα ,∗,αr 2/2σ 2)
R .

Now, the triple (idJΓK×h1, idJΓK×h2, (idJΓK×idJΓK)×(h1×h2)|Θ) is a morphism of spans⊤JΓK Û×Θ→
⊤JΓK Û×(EqR)♯(D

α ,∗,αr 2/2σ 2)
where⊤JΓK = (JΓK, JΓK, JΓK×JΓK,π1,π2). Thanks to the unit and the dou-

ble strength of the span-lifting {(−)♯(Dα ,∗,ρ)}ρ , the triple (stJΓK,R, stJΓK,R, ⟨stJΓK,R ◦ (π1×π1), stJΓK,R ◦
(π2×π2)⟩|(JΓK×JΓK)×W (EqR,Dα ,∗,αr 2/2σ 2)) is a morphism of spans⊤JΓK Û×(EqR)♯(D

α ,∗,αr 2/2σ 2) → (⊤JΓK Û×
EqR)♯(D

α ,∗,αr 2/2σ 2)
.

We write ki = rw⟨Γ | xi : real⟩ (i = 1, 2). For any (((ϕ1,a1
1
,a1

2
), r ), ((ϕ2,a2

1
,a2

2
), r )) ∈ ⊤JΓK Û× EqR

where aij is a value of variable x j (i = 1, 2), we have

(rw⟨Γ | x1 : real⟩((ϕ1,a1
1
,a1

2
), r 1), rw⟨Γ | x2 : real⟩((ϕ2,a2

1
,a2

2
), r 2))

= ((ϕ1, r ,a1
2
), (ϕ2,a2

1
, r )) ∈ LΓ ⊢R x1⟨1⟩ = x2⟨2⟩M

Hence, the triple (k1,k2, (k1×k2)|(JΓK×JΓK)×EqR ) forms amorphism of spans (⊤JΓK Û×EqR) → JΓ ⊢R x1⟨1⟩ = x2⟨2⟩K.
(Note that (⊤JΓK Û× EqR) and JΓ ⊢R x1⟨1⟩ = x2⟨2⟩K are binary relations converted to spans.)

By the functoriality of the span-lifting {(−)♯(Dα ,∗,ρ)}ρ , we obtain in Span(Meas),

(k1,k2, (k1 × k2)|(JΓK×JΓK)×EqR )
♯(Dα ,∗,αr 2/2σ 2)

:

(⊤JΓK Û× EqR)♯(D
α ,∗,αr 2/2σ 2) → JΓ ⊢R x1⟨1⟩ = x2⟨2⟩K

♯(Dα ,∗,αr 2/2σ 2)
.
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Since JΓ ⊢ xi
$←− Gauss(ei ,σ 2)K = Gki ◦ stJΓK,R ◦ ⟨idJΓK,hi ⟩ (i = 1, 2), we conclude the soundness

of [RDP-G]:

(JΓ ⊢ x1
$←− Gauss(e1,σ 2)K, JΓ ⊢ x2

$←− Gauss(e2,σ 2)K, l)

= (k1,k2, (k1 × k2)|(JΓK×JΓK)×EqR )
♯(Dα ,∗,αr 2/2σ 2)

◦ (stJΓK,R, stJΓK,R, ⟨stJΓK,R ◦ (π1 × π1), stJΓK,R ◦ (π2 × π2)⟩|(JΓK×JΓK)×W (EqR,Dα ,∗,αr 2/2σ 2))
◦ (idJΓK × h1, idJΓK × h2, (idJΓK × idJΓK) × (h1 × h2)|Θ)
◦ (⟨idJΓK, idJΓK⟩, ⟨idJΓK, idJΓK⟩, ⟨idJΓK×JΓK |Θ, idΘ⟩) :

Θ→ JΓ ⊢R x1⟨1⟩ = x2⟨2⟩K
♯(Dα ,∗,αr 2/2σ 2)

.

□

Soundness of other mechanism rules follows similarly using Mironov [2017, Propositions 5, 6, 7],

Dwork et al. [2006, Proposition 1], Sato [2016, Lemma 4.2] (a refinement of Dwork and Roth [2013,

Theorem 3.22]), the soundness of the transitivity rules are proved by Olmedo [2014, Lemma 4.2(iii)],

Bun and Steinke [2016, Proposition 27] and Lemma 4.2, and the soundness of the conversion rules

follows by Bun and Steinke [2016, Proposition 4], Mironov [2017, Proposition 3], and Bun and

Steinke [2016, Lemmas 3.2, 3.5].

C OMITTED PROOFS
Theorem C.1 (Theorem 4.4). An A-graded family ∆ is additive if it is continuous and composable.

Proof. From the continuity of ∆,

∆
α β
X×Y (µ1 ⊗ µ3, µ2 ⊗ µ4) = sup

{
∆
α β
I (Gk(µ1 ⊗ µ3),Gk(µ2 ⊗ µ4))

��� k : X × Y → I
}
.

We fix k : X ×Y → I . For any µ ∈ GY , we defineKµ : X → GI byKµ = Gk◦stX ,Y ◦(idX ×µ)◦ρ−1X
where µ is the generalized element 1 → GY assigning µ, and ρX is a canonical isomorphism

X � X × 1. We then obtain for any µ ∈ GX ,

K ♯
µ (µ ′) = Gk ◦ µX×Y ◦ GstX ,Y ◦ G(idX × µ) ◦ Gρ−1X (µ ′)

= Gk ◦ µX×Y ◦ GstX ,Y ◦ G(idX × µ) ◦ st′X ,1 ◦ ρ−1GX (µ ′)
= Gk ◦ µX×Y ◦ GstX ,Y ◦ st′X ,GY ◦ (idGX × µ) ◦ ρ

−1
GX (µ ′)

= Gk ◦ dstX ,Y (µ ′, µ) = Gk(µ ′ ⊗ µ).

We also obtain Kµ (x) = Gk(dx ⊗ µ) for any x ∈ X . This implies Kµ (x) = Gk(x ,−)(µ) where
k(x ,−)Y → I is measurable because (dx ⊗ µ)(k−1(A)) = µ((k−1(A))|x ) = µ(k(x ,−)−1(A)) for any A ⊆ I .
From the composability and continuity of ∆, we have

∆
α β
I (Gk(µ1 ⊗ µ3),Gk(µ2 ⊗ µ4)) = ∆

α β
I (K

♯
µ3 (µ1),K

♯
µ4 (µ2))

≤ ∆α
X (µ1, µ2) + sup

x ∈X
∆
β
I (Kµ3 (x),Kµ4 (x))

= ∆α
X (µ1, µ2) + sup

x ∈X
∆
β
I (Gk(x ,−)(µ3),Gk(x ,−)(µ4))

≤ ∆α
X (µ1, µ2) + ∆

β
Y (µ3, µ4).

Since k : X × Y → I is arbitrary, we conclude the additivity of ∆. □
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Theorem C.2 (Theorem 4.6). A continuous approximable A-graded family ∆ is composable if
finite-composable.

Proof. Let µ1, µ2 ∈ GX and f ,д : X → GY . Since ∆ is continuous, approximable, and finite

composable, we obtain,

∆
α β
Y (f

♯(µ1),д♯(µ2))

≤ sup

{
∆
α β
I (Gk(f

♯(µ1)),Gk(f ♯(µ2))) | I ∈ Fin,k : X → I
}

≤ sup

{
lim

n→∞
∆
α β
I ((Gk ◦ f ◦mn ◦m∗n)♯(µ1), (Gk ◦ д ◦mn ◦m∗n)♯(µ2)) | I ∈ Fin,k : X → I .

}
≤ sup

{
lim

n→∞
∆α
Jn (Gm

∗
n(µ1),Gm∗n(µ2)) | I ∈ Fin,k : X → I

}
+ sup

{
lim

n→∞
sup

j ∈Jn
∆
β
I (Gk ◦ f ◦mn(j),Gk ◦ д ◦mn(j)) | I ∈ Fin,k : X → I

}

Regarding the first term of the last inequality, since m∗n : X → Jn where Jn ∈ Fin, and ∆α
is

continuous, we have

∆α
Jn (Gm

∗
n(µ1),Gm∗n(µ2)) ≤ ∆α

X (µ1, µ2).

Concerning the second term, since mn(j) ∈ X for any n and j ∈ Jn , and k : I → X and ∆β
is

continuous, we obtain

sup

j ∈Jn
∆
β
I (Gk ◦ f ◦mn(j),Gk ◦ д ◦mn(j)) ≤ sup

x ∈X
∆
β
I (Gk ◦ f (x),Gk ◦ д(x)) ≤ sup

x ∈X
∆
β
Y (f (x),д(x)).

This completes the proof. □

Theorem C.3 (Theorem 4.8). The f -divergence ∆f is approximable for any weight function f .

Proof. Consider h,k : X → GI . Let |I | = N . We may regard GI ⊆ [0, 1]N . We define a partition

{Cn
j1 ...j2N }j1, ..., j2N ∈{0,1, ...,2n−1} of X by

Cn
j1 ...j2N = h

−1(Bnj1 ...jN ) ∩ k
−1(BnjN+1 ...j2N )

where Bnj1 ...jN = Aj1 × · · · ×AjN , An
0
= {0} and An

l+1 = (l/2
n , (l + 1)/2n] .

Wedefine Jn =
{
(j1, . . . , j2N ) | j1, . . . , j2N ∈ {0, 1, . . . , 2n − 1},Cn

j1 ...j2N , ∅
}
.We next definem∗n : X →

Jn and mn : Jn → X as follows: m∗n(x) is the unique element (j1, . . . , j2N ) ∈ Jn satisfying x ∈
Cn
j1, ..., j2N , andmn(j1, . . . , j2N ) is an element of Cn

j1, ..., j2N .

From the construction of {Cn
j1 ...j2N }j1, ..., j2N ∈{0,1, ...,2n−1} , for any n ∈ N, x ∈ X , and i ∈ I ,

|h(x)(i) − (h ◦mn ◦m∗n)(x)(i)| ≤ 2/2n , |k(x)(i) − (k ◦mn ◦m∗n)(x)(i)| ≤ 2/2n

holds. In particular, for any i ∈ I , the sequences of functions {(h ◦mn ◦m∗n)(−)(i)}n∈N and {(k ◦mn ◦
m∗n)(−)(i)}n∈N converge uniformly to h(−)(i) and k(−)(i) respectively. Hence, for any µ1, µ2 ∈ GX ,

we have

h♯(µ1)(i) =
∫
X
h(−)(i) dµ1 = lim

n→∞

∫
X
(h ◦mn ◦m∗n)(−)(i) dµ1 = lim

n→∞
(h ◦mn ◦m∗n)♯(µ1)(i),

д♯(µ2)(i) =
∫
X
k(−)(i) dµ2 = lim

n→∞

∫
X
(k ◦mn ◦m∗n)(−)(i) dµ2 = lim

n→∞
(k ◦mn ◦m∗n)♯(µ2)(i).
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Therefore,

∆
f
I (h

♯(µ1),k♯(µ2)) =
∑
i ∈I

д♯(µ2)(i)f
(
h♯(µ1)(i)
д♯(µ2)(i)

)
=

∑
i ∈I
( lim
n→∞
(k ◦mn ◦m∗n)♯(µ2)(i))f

(
limn→∞(h ◦mn ◦m∗n)♯(µ1)(i)
limn→∞(k ◦mn ◦m∗n)♯(µ2)(i)

)
= lim

n→∞

∑
i ∈I
(k ◦mn ◦m∗n)♯(µ2)(i)f

(
(h ◦mn ◦m∗n)♯(µ1)(i)
(k ◦mn ◦m∗n)♯(µ2)(i)

)
= lim

n→∞
∆
f
I ((h ◦mn ◦m∗n)♯(µ1), (k ◦mn ◦m∗n)♯(µ2))

Remark that the third equality in the above calculation is obtained from the continuity of the weight

function f . We then conclude that ∆f
is approximable. □

Theorem C.4 (Theorem 4.11). For any α > 1, the Rényi divergence Dα of order α is reflexive,
continuous, approximable, composable, and additive (as a singleton-graded family).

Proof. By Theorems 4.7 and 4.8, the f -divergence ∆R(α )
of the weight function f (t) = tα

is continuous and approximable. Since the function д : R≤0 → R defined by д(t) = 1

α−1 log(t) is
monotone and continuous,Dα = 1

α−1 log∆
R(α )

is also continuous and approximable. Thus, it suffices

to show the reflexivity and finite-composability of Dα
. The reflexivity is obvious: Dα

X (µ | |µ)X =
1

α−1 log µ(X ) ≤ 0. We show the finite-composability. Let I , J ∈ Fin, d1,d2 ∈ G J , and h,k : J → GI .
We calculate by Jensen’s inequality:

∆R(α )
I (h♯d1,k♯d2) =

∑
i ∈I

(∑
j ∈J

d2(j) · k(j)(i)
) (∑

j ∈J d1(j) · h(j)(i)∑
j ∈J d2(j) · k(j)(i)

)α
≤

∑
j ∈J

d2(j)
(
d1(j)
d2(j)

)α ∑
i ∈I

k(j)(i)
(
h(j)(i)
k(j)(i)

)α
≤

∑
j ∈J

d2(j)
(
d1(j)
d2(j)

)α
· ∆R(α )

α (h(j),k(j))

≤ ∆R(α )
J (d1,d2) · sup

j ∈J
∆R(α )
I (h(j),k(j)).

This implies Dα
I (h♯d1 | |k♯d2) ≤ Dα

J (d1 | |d2) + supj ∈J Dα
I (h(j)| |k(j)). □

Proposition C.1 (Proposition 4.1). If 1 < α ≤ β then

Dα
X (µ1 | |µ2) ≤ D

β
X (µ1 | |µ2).

Proof. The proof is almost the same as Van Erven and Harremoës [2014, Theorem 3]. Since

Dα
and Dβ

are continuous, it suffices to prove in finite discrete case. We denote by |p | the sum∑
i ∈I pi . We may assume |p | > 0 since if |p | = 0 then Dα

I (p | |q) = D
β
I (p | |q) = −∞. We remark that
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the function t 7→ t
α−1
β−1

is concave. We have

(
1

|p |

) α−1
β−1 ≤ 1

|p | since 1 ≤
1

|p | . Therefore,

1

α − 1 log

∑
i ∈I

pαi q
1−α
i =

1

α − 1 log

©«|p |
∑
i ∈I

pi
|p |

((
pi
qi

)
1−β

) α−1
β−1 ª®¬

≤ 1

α − 1 log

©«|p |
(∑
i ∈I

pi
|p |

(
pi
qi

)
1−β

) α−1
β−1 ª®¬

≤ 1

α − 1 log

(
|p | ·

∑
i ∈I

pi
|p |

(
pi
qi

)
1−β

) α−1
β−1

=
1

β − 1 log

∑
i ∈I

p
β
i q

1−β
i

This completes the proof. □

Proposition C.2 (Proposition 4.2). For any α > 1, µ1, µ2, µ3 ∈ GX , and p,q > 1 satisfying
1

p +
1

q = 1, we have

Dα
X (µ1 | |µ3) ≤

pα − 1
p(α − 1)D

pα
X (µ1 | |µ2) + D

q
p (pα−1)
X (µ1 | |µ2).

Proof. Recall that if µ1 3 µ2 then Dα
X (µ1 | |µ2) = ∞. Hence, we may assume µ1 ≪ µ2 ≪ µ3

without loss of generality (if not so, the right-hand side should be infinity). By chain rule of

Radon-Nikodym derivative and Hölder’s inequality,

∆R(α )
X (µ1, µ3) =

∫
X

(
dµ1
dµ3

)α
dµ3

=

∫
X

(
dµ1
dµ2
· dµ2
dµ3

)α
dµ3

=

∫
X

(
dµ1/dµ3
dµ2/dµ3

)α
·
(
dµ2
dµ3

) 1

p

·
(
dµ2
dµ3

)α− 1

p

dµ3

≤
(∫

X

(
dµ1/dµ3
dµ2/dµ3

)pα
·
(
dµ2
dµ3

)
dµ3

) 1

p

·
(∫

X

(
dµ2
dµ3

)q(α− 1

p )
dµ3

) 1

q

= ∆
R(pα )
X (µ1 | |µ2)

1

p · ∆
R(qα− qp )
X (µ2 | |µ3)

1

q

We then conclude Dα
X (µ1 | |µ3) ≤

pα−1
p(α−1)D

pα
X (µ1 | |µ2) + D

q
p (pα−1)
X (µ1 | |µ2). □

Theorem C.5 (Theorem 4.12). The R≥0-graded family ∆zCDP = {∆zCDP(ξ )}0≤ξ is reflexive, continu-
ous, composable, and additive.

Proof. Consider anyα > 1.We consider a (R≥0,+, 0, ≤)-graded family∆zCDP+(α ) = {∆zCDP+(ξ ,α )}ξ ∈R≥0
of the following divergences:

∆
zCDP+(ξ ,α )
X (µ1, µ2) =

1

α
(Dα (µ1 | |µ2)) − ξ ) .
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By the previous theorem 4.11, this family is reflexive and continuous for any α > 1. The compos-

ability of the family ∆zCDP+(α ) = {∆zCDP+(ξ ,α )}ξ ∈R≥0 is the direct consequence of the composability

of α-Rényi divergence: for any µ1, µ2 ∈ GX , and f ,д : X → GY ,
1

α
(Dα

X (f ♯(µ1)| |д♯(µ2)) − (ξ1 + ξ2)) ≤
1

α
(Dα

X (µ1 | |µ2) − ξ1) + sup

x ∈X

1

α
(Dα

Y (f (x)| |д(y)) − ξ2).

Since∆zCDP(ξ ) = supα>1 ∆
zCDP+(ξ ,α )

, the graded family∆zCDP = {∆zCDP(ξ )}0≤ξ is reflexive, continuous,
and composable.

9
The additivity is obtained from Theorem 4.4. □

C.1 Detailed Construction and Proof of Well-definedness of Approximate Span-lifting
Definition C.6 (Functors). If the family ∆ is functorial then the structure of endofunctor on

Span(Meas) of the approximate span-lifting (−)♯(∆,α,δ ) is given as follows: for all α ∈ A, δ ∈ R, and
(h,k, l) : (X ,Y ,Φ, ρ1, ρ2) → (X ′,Y ′,Ψ, ρ ′1, ρ ′2) in Span(Meas),

(Gh,Gk, (Gl × Gl)|W (Φ,∆,α,δ )) : (X ,Y ,Φ, ρ1, ρ2)♯(∆,α,δ ) → (X ′,Y ′,Ψ, ρ ′1, ρ ′2)♯(∆,α,δ ). (9)

Theorem C.7 (Well-definedness). If ∆ is functorial then the above structure (−)♯(∆,α,δ ) forms
indeed an endofunctor on Span(Meas).

Proof. Wefirst show thewell-definedness of (9).We fix (h,k, l) : (X ,Y ,Φ, ρ1, ρ2) → (X ′,Y ′,Ψ, ρ ′1, ρ ′2)
in Span(Meas) and parameters α ∈ A and δ ∈ R. Let (ν1,ν2) ∈ W (Φ,∆,α ,δ ). The pair satisfies
∆α
Φ(ν1,ν2) ≤ δ . Since the divergence ∆α

is functorial, we have ∆α
Ψ(G(l)(ν1),G(l)(ν2)) ≤ δ . Thus,

(Gl × Gl)|W (Φ,∆,α,δ ) is a measurable function fromW (Φ,∆,α ,δ ) toW (Ψ,∆,α ,δ ).10 Since G is a

functor on Meas, we obtain,

Gρ ′
1
◦ π1 ◦ (Gl × Gl)|W (Φ,∆,α,δ ) = Gρ ′1 ◦ Gl ◦ π1 |W (Φ,∆,α,δ ) = Gh ◦ Gρ1 ◦ π1 |W (Φ,∆,α,δ ),

Gρ ′
2
◦ π2 ◦ (Gl × Gl)|W (Φ,∆,α,δ ) = Gρ ′2 ◦ Gl ◦ π2 |W (Φ,∆,α,δ ) = Gk ◦ Gρ2 ◦ π2 |W (Φ,∆,α,δ ).

Thus, the construction (9) is a mapping on Span(Meas)-morphisms.

The functoriality is obvious by definition. □

Definition C.8 (Graded monad structures). If the family ∆ is reflexive and composable then the

structure of A × (R,+, 0, ≤)-graded monad on Span(Meas) is given as follows.

Unit: for any span (X ,Y ,Φ, ρ1, ρ2), we define
(ηX ,ηY , ⟨ηΦ,ηΦ⟩) : (X ,Y ,Φ, ρ1, ρ2) → (X ,Y ,Φ, ρ1, ρ2)♯(∆,1A,0). (10)

Kleisli extensions: for any morphism (h,k, l) : (X ,Y ,Φ, ρ1, ρ2) → (X ′,Y ′,Ψ, ρ ′1, ρ ′2)♯(∆,α,δ ) in
Span(Meas), we define

(h♯,k♯, ((π1 |W (Ψ,∆,α,δ ) ◦ l)♯ × (π2 |W (Ψ,∆,α,δ ) ◦ l)♯)|W (Φ,∆,β,γ )) :
(X ,Y ,Φ, ρ1, ρ2)♯(∆,β,γ ) → (X ′,Y ′,Ψ, ρ ′1, ρ ′2)♯(∆,α β,δ+γ ) (11)

Inclusions: for any α ⪯ β , δ ≤ γ , and (X ,Y ,Φ, ρ1, ρ2) in Span(Meas), we define
(idGX , idGY , (idGΦ × idGΦ)|W (Φ,∆,α,δ )) : (X ,Y ,Φ, ρ1, ρ2)♯(∆,α,δ )→ (X ,Y ,Φ, ρ1, ρ2)♯(∆,β,γ ). (12)

We remark here that each (−)♯(∆,α,δ ) is also an endofunctor because ∆ is the functorial since it is

both reflexive and composable.

9
We obtain these properties from commutativity supy∈Y supx∈X f (x, y) = supx∈X supy∈Y f (x, y) of supremums. We

drop the approximability, which is not given by a supremum but rather by a limit.

10
Strictly speaking, we consider the functionW (Φ, ∆, α, δ )

(Gl×Gl )|W (Φ,∆,α ,δ )−−−−−−−−−−−−−−−−−→ (Image) inclusion−−−−−−−→W (Φ, ∆, α, δ ) through
the image (Image). Functoriality shows the existence of the inclusion.
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Theorem C.9 (Well-definedness). If ∆ is reflexive and composable then the above structures
(−)♯(∆,α,δ ) form indeed an A × R-graded monad on Span(Meas).

Proof. We first prove that the components are well-defined.

Unit: We show the well-definedness of (10). We fix (X ,Y ,Φ, ρ1, ρ2) in Span(Meas). For any
ϕ ∈ Φ, we have ⟨ηΦ,ηΦ⟩(ϕ) = (dϕ , dϕ ). Since ∆ is reflexive, we have ∆1A (dϕ , dϕ ) ≤ 0. Thus,

⟨ηΦ,ηΦ⟩ is indeed a measurable function from (X ,Y ,Φ, ρ1, ρ2) toW (Φ,∆, 1A, 0). Since η is a

unit of the sub-Giry monad G, we obtain

Gρ1 ◦ π1 |W (Φ,∆,1A,0) ◦ ⟨ηΦ,ηΦ⟩ = Gρ1 ◦ ηΦ = ηX ◦ ρ1,
Gρ2 ◦ π2 |W (Φ,∆,1A,0) ◦ ⟨ηΦ,ηΦ⟩ = Gρ2 ◦ ηΦ = ηY ◦ ρ2.

Thus (10) is well-defined.

Kleisli extensions: We show the well-definedness of (11). We fix a Span(Meas)-morphism

(h,k, l) : (X ,Y ,Φ, ρ1, ρ2) → (X ′,Y ′,Ψ, ρ ′1, ρ ′2)♯(∆,α,δ )

and parameters β ∈ A andγ ∈ R. For anyϕ ∈ Φ, we have∆α
Ψ(π1 |W (Ψ,∆,α,δ )◦l(ϕ),π2 |W (Ψ,∆,α,δ )◦

l(ϕ)) ≤ δ . Since ∆ is composable, we have for any (ν1,ν2) ∈W (Φ,∆,δ ,γ ),

∆
α β
Ψ ((π1 |W (Ψ,∆,α,δ ) ◦ l)

♯(ν1), (π2 |W (Ψ,∆,α,δ ) ◦ l)♯(ν2)) ≤ δ + γ

This implies that ((π1 |W (Ψ,∆,α,δ ) ◦ l)♯ × (π2 |W (Ψ,∆,α,δ ) ◦ l)♯)|W (Φ,∆,β,γ ) is indeed a measurable

function from W (Φ,∆, β,γ ) to W (Ψ,∆,αβ ,δ + γ ). Since (−)♯ is the Kleisli lifting of the

sub-Giry monad, we obtain

Gρ ′
1
◦ π1 |W (Ψ,∆,α β,δ+γ ) ◦ ((π1 |W (Ψ,∆,α,δ ) ◦ l)♯ × (π2 |W (Ψ,∆,α,δ ) ◦ l)♯)|W (Φ,∆,β,γ )

= Gρ ′
1
◦ (π1 |W (Ψ,∆,α,δ ) ◦ l)♯ ◦ π1 |W (Φ,∆,β,γ ) = (Gρ ′1 ◦ π1 |W (Ψ,∆,α,δ ) ◦ l)♯ ◦ π1 |W (Φ,∆,β,γ )

= h♯ ◦ Gρ1 ◦ π1 |W (Φ,∆,β,γ )
Gρ ′

2
◦ π2 |W (Ψ,∆,α β,δ+γ ) ◦ ((π1 |W (Ψ,∆,α,δ ) ◦ l)♯ × (π2 |W (Ψ,∆,α,δ ) ◦ l)♯)|W (Φ,∆,β,γ )

= k♯ ◦ Gρ2 ◦ π2 |W (Φ,∆,β,γ )
Thus (11) is well-defined.

Inclusions: We show the well-definedness of (12). We fix (X ,Y ,Φ, ρ1, ρ2) in Span(Meas) and
parameters α ⪯ β and δ ≤ γ . Since ∆ is anA-graded family of divergences, we have ∆β ≤ ∆α

.

This implies that there is the inclusion functionW (Φ,∆,α ,δ ) ↪→ W (Φ,∆, β ,γ ) in Meas.
Hence, by treating the restrictions of functions, we obtain

idGX ◦ Gρ1 ◦ π1 |W (Φ,∆,α,δ ) = Gρ1 ◦ π1 ◦ (idGΦ × idGΦ)|W (Φ,∆,α,δ )
idGY ◦ Gρ2 ◦ π2 |W (Φ,∆,α,δ ) = Gρ2 ◦ π2 ◦ (idGΦ × idGΦ)|W (Φ,∆,α,δ ).

Therefore (12) is well defined.

Therefore, the components of graded monad structures are well-defined. It is easy to check the

axioms of graded monad in Katsumata [2014, Definition 2.3] by using monad structure of the

sub-Giry monad G since the graded monad structure of the approximate span-lifting is given by

using the monad structure of G and restrictions. □

Definition C.10 (Double strength). If the family ∆ is reflexive, composable, and additive then a

double strength of the graded monad (−)♯(∆,α,δ ) is given as follows: for any pair (X ,Y ,Φ, ρ1, ρ2) and
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(X ′,Y ′,Ψ, ρ ′
1
, ρ ′

2
) of spans,

(dstX ,X ′, dstY ,Y ′, ⟨dstΦ,Ψ ◦ (π1 × π1), dstΦ,Ψ ◦ (π2 × π2)⟩|W (Φ,∆,α,δ )×W (Ψ,∆,β,γ )) :
(X ,Y ,Φ, ρ1, ρ2)♯(∆,α,δ ) Û× (X ′,Y ′,Ψ, ρ ′1, ρ ′2)♯(∆,β,γ ) → (Φ Û× Ψ)♯(∆,α β,δ+γ ). (13)

Theorem C.11 (Well-definedness (Theorem 5.3)). If∆ is reflexive, composable, and additive then
the above structure forms indeed a double strength of the graded monad (−)♯(∆,α,δ ) on Span(Meas).

Proof. Since ∆ is reflexive and composable, (−)♯(∆,α,δ ) forms an A × R-graded monad on

Span(Meas).We show thewell-definedness of (13).We fix spans (X ,Y ,Φ, ρ1, ρ2) and (X ′,Y ′,Ψ, ρ ′1, ρ ′2)
and parameters α , β ∈ A and γ ,δ ∈ R. Since ∆ is additive, ⟨dstΦ,Ψ ◦ (π1 × π1), dstΦ,Φ′ ◦ (π2 ×
π2)⟩|W (Φ,∆,α,δ )×W (Ψ,∆,β,γ ) is indeed a measurable function fromW (Φ,∆,α ,δ ) ×W (Ψ,∆, β,γ ) to
W (Φ Û× Ψ,∆,αβ ,δ + γ ). From the binaturality of the double strength dst of the sub-Giry monad G,
we have

G(ρ1 × ρ ′1) ◦ π1 |W (Φ Û×Ψ,∆,α β,δ+γ ) ◦ ⟨dstΦ,Ψ ◦ (π1 × π1), dstΦ,Ψ ◦ (π2 × π2)⟩|W (Φ,∆,α,δ )×W (Ψ,∆,β,γ )
= G(ρ1 × ρ ′1) ◦ dstΦ,Ψ ◦ (π1 × π1)|W (Φ,∆,α,δ )×W (Ψ,∆,β,γ )
= G(ρ1 × ρ ′1) ◦ dstΦ,Ψ ◦ (π1 |W (Φ,∆,α,δ ) × π1 |W (Ψ,∆,β,γ ))
= dstX ,X ′ ◦ ((Gρ1 ◦ π1 |W (Φ,∆,α,δ )) × (Gρ ′1 ◦ π1 |W (Ψ,∆,β,γ ))),
G(ρ2 × ρ ′2) ◦ π1 |W (Φ Û×Ψ,∆,α β,δ+γ ) ◦ ⟨dstΦ,Ψ ◦ (π1 × π1), dstΦ,Ψ ◦ (π2 × π2)⟩|W (Φ,∆,α,δ )×W (Ψ,∆,β,γ )
= dstY ,Y ′ ◦ ((Gρ2 ◦ π1 |W (Φ,∆,α,δ )) × (Gρ ′2 ◦ π1 |W (Ψ,∆,β,γ ))).

Hence, (13) is well-defined. It is easy to check the axioms of double strength (modulo grading) by

using double strength of the sub-Giry monad G. □
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