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Abstract—Game logic was introduced by Rohit Parikh in the
1980s as a generalisation of propositional dynamic logic (PDL) for
reasoning about outcomes that players can force in determined
2-player games. Semantically, the generalisation from programs
to games is mirrored by moving from Kripke models to monotone
neighbourhood models. Parikh proposed a natural PDL-style
Hilbert system which was easily proved to be sound, but its
completeness has thus far remained an open problem.

In this paper, we introduce a cut-free sequent calculus for
game logic, and two cut-free sequent calculi that manipulate
annotated formulas, one for game logic and one for the monotone
µ-calculus, the variant of the polymodal µ-calculus where the
semantics is given by monotone neighbourhood models instead
of Kripke structures. We show these systems are sound and
complete, and that completeness of Parikh’s axiomatization
follows. Our approach builds on recent ideas and results by
Afshari & Leigh (LICS 2017) in that we obtain completeness
via a sequence of proof transformations between the systems. A
crucial ingredient is a validity-preserving translation from game
logic to the monotone µ-calculus.

I. INTRODUCTION

A. Game logic, background and motivations

Game logic was introduced by Parikh in the 1980s [1] as

a modal logic for reasoning about the outcomes that players

can force in determined 2-player games. We refer to the two

players as Angel and Demon, following [2]. A modal formula

〈γ〉ϕ should be read as, “Angel has a strategy in the game γ
to ensure an outcome in which ϕ holds”.

Syntactically, Parikh’s game logic is an extension of propo-

sitional dynamic logic (PDL) [3] as games are composed

from atomic games and constructors that denote sequential

composition of games, as well as choice, iteration and test for

Angel, and finally the dual operator which denotes swapping

the roles of the two players. In Parikh’s original language, the

strategic ability of Demon is thus only implicitly expressed

through the dual operator, and PDL programs can be viewed

as 1-player games (played by Angel). Semantically, the gen-

eralisation from 1-player games to 2-player games is obtained

by moving from Kripke structures to monotone neighbourhood

structures. Game logic is thus a non-normal, monotone modal

logic.

Just as PDL can be translated into the (normal) modal

µ-calculus [4], game logic can be naturally translated into

the monotone modal µ-calculus [5], and from there into the

normal modal µ-calculus for the language that has two normal

modalities for each monotone modality [6]. This was already

sketched by Parikh in [1], and later improved in [2], [5] to

show that the satisfiability of game logic is in EXPTIME. We

refer to [1] and the survey [2] for applications of game logic

and further results.

B. A landscape of logics for games

Parikh’s game logic is probably the first of a family of logics

designed to reason about different aspects of games. Since

then, modal logics for multi-player games that can express

strategic powers of groups of agents have appeared such as

ATL [7] and Coalition Logic [8]. There are also logics that

focus on 2-player games but go beyond game logic such as

strategy logics [9], [10], which treat strategies as first-order

objects, and dGL [11] which combines game operations and

first-order quantification for hybrid games.

C. The challenge of completeness for game logic

It is a long-standing open question whether a complete proof

system for game logic exists. The completeness result for dGL

in [11] is of a rather different nature, since it concerns the

completeness of a non-recursively enumerable logic relative

to some oracle logic. Parikh proposed in [1] a natural-looking

PDL-like Hilbert system Par, but a proof of its completeness

has thus far remained an open problem. Only (relatively easy)

partial results were known: completeness for the dual-free

fragment [1], and for the iteration-free fragment [2], [5].

Giving a completeness proof similar to the one for PDL from

[12] using canonical models seems impossible for the full

language of game logic as such a proof essentially involves

a filtration argument. It is not difficult to see, however, that

game logic is not well-behaved with respect to filtrations.

The difficulty of showing completeness for the entire lan-

guage of game logic can perhaps be explained by the fact that

in the presence of both angelic iteration and dual, game logic

(when interpreted over Kripke frames) spans all levels of the

alternation hierarchy of the (normal) modal µ-calculus [13].

This is in stark contrast with PDL, LTL and CTL∗ which

are all contained in low levels of the alternation hierarchy.

Over Kripke models, game logic is thus a highly expressive

fragment of the modal µ-calculus for which completeness is

highly involved. The classical automata-based approach to the

completeness of the µ-calculus from [14], [15] relies on thec©2019 IEEE.



existence of “disjunctive” normal forms in the language of the

µ-calculus. It is unlikely that a similar normal form can be

defined for the more rigid game logic syntax, as occurrences

of the ×-operator introduce greatest fixpoint operators that are

invariably tied to conjunctions.

D. Main results and approach

In this paper, we introduce three cut-free sequent calculi,

two for game logic and one for the monotone µ-calculus, that

we show all to be sound and complete. The first of these is the

system for game logic G which is a cut-free sequent calculus

with deep inference rules. We show that G is complete, and

that this implies completeness of Parikh’s Hilbert system.

One of the rules in G is a so-called strengthened induction

rule, which is inspired by the strengthened induction rule

in [16], and somewhat similar to Kozen’s context rule [14,

Proposition 5.7(vi)]. Our approach relies on game logic being

able to express this rule. Just as it is convenient to work with

µ-calculus formulas in negation normal form, the system G

works on game logic formulas in normal form, where negation

may only be applied to atomic propositions, and the dual game

operator only to atomic games. Consequently, the system G

is defined for the normal form language LNF which contains

demonic game constructors as primitives. Given a game logic

formula ϕ, nf(ϕ) is the formula obtained by bringing ϕ into

dual and negation normal form.

The second system for game logic, called CloG, is a cut-

free sequent calculus with a closure rule. In CloG, game logic

formulas from LNF are annotated with names for formulas

of the form 〈γ×〉ϕ. These names keep track of unfoldings

of these greatest fixpoint formulas, and together with the

closure rule they facilitate the detection of repeated unfolding

of greatest fixpoints formulas in the same context (which

closes the proof tree branch). Technically, this is achieved by

imposing side conditions on the closure rule in CloG. These

side conditions involve an order 4 on the set F consisting

of game logic formulas of the form 〈γ∗〉ϕ or 〈γ×〉ϕ. These

game logic fixpoint formulas will be in 1-1 correspondence

with fixpoint variables when we translate into the monotone

µ-calculus.

The third system, CloM, is a cut-free sequent calculus

for the monotone µ-calculus, also with a closure rule and

name annotations. This system is a monotone variant of the

system Clo for the normal modal µ-calculus introduced in [16].

In CloM, the side conditions are expressed with the usual

(priority/subsumption) order ≤ on fixpoint variables where

x ≤ y means that x is of higher priority than y.

Our approach to proving soundness and completeness builds

on recent work by Afshari & Leigh. In [16] they presented a

cut-free sequent calculus for the normal modal µ-calculus, and

proved its completeness via a series of transformations through

other proof systems, including the system Clo, and ending at

the complete tableaux systems with names developed in [17]

and [18]. We prove completeness of the systems G, CloG and

CloM by showing that we can transform derivations as follows:

Par
1)
←− G

2)
←− CloG

3)
←− CloM

4)
←− Clo

1) First, the transformation of G-derivations to Par-

derivations goes via an intermediate Hilbert system ParFull,

which is an extension of Par to the full language which has

angelic as well as explicit demonic operations and freely-

placed duals and negations. These transformations are rela-

tively straightforward using that Par essentially has cut via

modus ponens.

2) The transformation of CloG-derivations to G-derivations

requires non-trivial adaptations of the analogous result in [16,

Theorem VI.1]. It uses a translation (−)• that replaces anno-

tations on game logic formulas with certain “deep insertions

of demonic tests”, which are the game logic analogues of the

“deep disjunctions” of [16].

3) The transformation of CloM-derivations into CloG-

derivations relies on a novel translation (−)♯ from game logic

into the monotone µ-calculus. This translation is truth- and

validity-preserving, it commutes with fixpoint unfolding, and

crucially, it reflects the order on fixpoint variables in ϕ♯ into

the order on fixpoint formulas in F . Note that the translation

of game logic from [2] goes into the two-variable fragment of

modal µ-calculus, and it is therefore not useful for the proof

transformations in this paper. Indeed, we see the translation

(−)♯ as one of our main technical contributions.

4) Finally, we obtain completeness of CloM from the

completeness of Clo [16] by transforming Clo-derivations into

CloM-derivations via a validity-preserving translation (−)t

which is the fixpoint extension of a well-known translation

of monotone modal logic into normal modal logic [6].

To summarise, completeness of Parikh’s system Par is

obtained by the following argument. Assume that ϕ is a

game logic formula that is valid over monotone neighbourhood

models. As the above mentioned translations are validity-

preserving, the normal modal µ-calculus formula ((nf(ϕ))♯)t

is valid over Kripke models. By completeness of Clo, there

is a Clo-derivation of ((nf(ϕ))♯)t. By the above sequence of

transformations, we obtain a Par-derivation of ϕ.

E. Outline

The paper is organised as follows. In Section II we recall the

basic definitions of game logic, we introduce Parikh’s Hilbert-

style axiomatisation Par, we present the cut-free Gentzen style

system G and show that G-derivations can be transformed

into Par-derivations (Thm 11). In Section III, we introduce

the annotated proof system CloG for game logic and show

how CloG-derivations can be translated into G-derivations

(Thm. 15). In Section IV we define the annotated system

CloM for the monotone µ-calculus and prove its soundness

and completeness by connecting it to the Clo-system from [16]

using the standard simulation of monotone modal logic with

a binormal modal logic. In Section V, we show how CloM-

derivations can be transformed into corresponding CloG-

derivations using the translation (−)♯ of game logic into the
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monotone µ-calculus (Thm. 26). In Section VI, we apply the

transformation results to prove soundness and completeness

of CloG, G and Par. Finally, in Section VII we conclude and

discuss related and future work. Due to space limitations we

only provide proofs of key results. All proofs that have been

omitted from the main text can be found in the appendix.

II. TWO DERIVATION SYSTEMS

A. Game logic: basics

Throughout, we assume fixed countable sets P0 and G0

of atomic propositions and atomic games, respectively. Over

these sets we shall define three distinct languages of game

logic. Parikh’s original language LPar only allows the angelic

version of game constructors, while dual and negation may

occur freely, The normal form language LNF allows both

angelic and demonic game constructors, while negation and

duals may only occur in front of atoms. The full language

LFull allows all connectives and game constructors from the

other two languages, and freely placed duals and negations.

Definition 1. The languages LPar and LNF consist of the

formulas and games generated by the following grammars:

LPar ∋ ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | 〈γ〉ϕ, γ ∈ GPar
GPar ∋ γ ::= g | γ ; γ | γ ⊔ γ | γ∗ | γd | ϕ?, ϕ ∈ LPar
LNF ∋ ϕ ::= p | ¬p | ϕ ∨ ϕ | ϕ ∧ ϕ | 〈γ〉ϕ, γ ∈ GNF

GNF ∋ γ ::= g | gd | γ ; γ | γ ⊔ γ | γ ⊓ γ | γ∗ | γ×

| ϕ? | ϕ!, ϕ ∈ LNF

LFull ∋ ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | 〈γ〉ϕ, γ ∈ GFull
GFull ∋ γ ::= g | γ ; γ | γ ⊔ γ | γ ⊓ γ | γ∗ | γ× | γd

| ϕ?, ϕ ∈ LFull

where p ∈ P0 and g ∈ G0. In LPar and LFull we admit the

connectives →,∧,↔ as the usual abbreviations.

The game operations should be read as follows. The compo-

sition γ ; δ means first play γ, then play δ. The angelic choice

γ ⊔ δ is the game where Angel decides whether to play γ or

δ. The angelic iteration γ∗ is the game in which γ is played a

finite, possibly zero, number of times, with Angel at the start

and after each round deciding whether to stop or play one

more round of γ. The angelic test ψ? is the game in which ϕ
is evaluated, and Angel immediately “loses” if ψ is false, and

otherwise play continues. The dual game γd is the game in

which the roles of the two players are interchanged, i.e., the

strategies of Angel in γd are exactly the strategies of Demon

in γ, and vice versa. The definitions of the demonic operations

are such that (cf. [2]):

γ ⊓ δ = (γd ⊔ δd)d, γ× = ((γd)∗)d, ψ! = ((¬ψ)?)d (1)

The interpretation of the demonic operations is obtained by

replacing “Angel” with “Demon” in the above. However, since

a modal formula 〈γ〉ϕ expresses the strategic ability of Angel

in γ, 〈γ ⊓ δ〉ϕ means that Angel has a strategy to achieve ϕ
in both γ and δ, and 〈γ×〉ϕ means that Angel has a strategy

for maintaining ϕ indefinitely when playing γ repeatedly, and

not knowing when the iteration terminates. Finally, ψ! is the

game in which Angel immediately “wins” if ψ is true. Hence,

〈ψ!〉ϕ is true if at least one of ψ and ϕ is true.

We will often refer to formulas and games jointly as terms.

We denote the subterm relation by E, using ⊳ for the strict

version. For example, g× ⊳ 〈g× ;h〉p and h⊳ (〈h〉p?) ; g.

Formulas of the form 〈γ∗〉ϕ or 〈γ×〉ϕ will play the role of

fixpoint variables on the game logic side. In particular, we need

to define an order ≺ on them, but it is not immediately clear

how to do that. For example, a naive approach based on the

subformula-relation will not work, since we need that, e.g.,

〈(g× ⊔ h)×〉p ≺ 〈g×〉p. Our solution is to use the converse

subterm relation on the game terms that label the modalities.

Definition 2. We define the set of least, greatest, respectively

all, fixpoint formulas in LNF as follows:

F ∗ := {〈γ∗〉ϕ | γ ∈ GNF, ϕ ∈ LNF},
F× := {〈γ×〉ϕ | γ ∈ GNF, ϕ ∈ LNF},
F := F ∗ ∪ F×.

We define an order ≺ on F by setting 〈γ◦〉ϕ ≺ 〈δ†〉ψ for

◦, † ∈ {∗,×} if δ† ⊳ γ◦. We write 〈γ◦〉ϕ 4 〈δ†〉ψ if δ† ≺ γ◦

or δ† = γ◦.

It should be clear that ≺ is transitive and irreflexive.

We need the following notion of (Fischer-Ladner) closure.

Definition 3. The closure Cl(ξ) of a formula ξ ∈ LNF is the

smallest subset of LNF that contains ξ and is closed under

subformulas as well as the following rules: If 〈γ∗〉ϕ ∈ Cl(ξ)
then ϕ ∨ 〈γ〉〈γ∗〉ϕ ∈ Cl(ξ). If 〈γ×〉ϕ ∈ Cl(ξ) then ϕ ∧
〈γ〉〈γ×〉ϕ ∈ Cl (ξ). If 〈ψ?〉ϕ ∈ Cl (ξ) then ψ ∈ Cl(ξ). If

〈ψ!〉ϕ ∈ Cl(ξ) then ψ ∈ Cl(ξ). The sets F (ξ), F ∗(ξ), F×(ξ)
of all/least/greatest fixpoint formulas of a formula ξ ∈ LNF are

given as F (ξ) := F ∩ Cl(ξ), etc.

The simplest way to define the semantics of these languages

is as follows [2]. We denote byM(S) the set of all monotone

maps f : ℘(S) → ℘(S). An effectivity function for a game γ
on a set S is then a Eγ ∈ M(S), and s ∈ Eγ(Y ) means that

at position s, Angel is effective for Y in γ, i.e., Angel has a

strategy in γ that ensures that the outcome of γ is in Y .

Definition 4. A game model is a triple S = (S,E, V ) such

that V : P0 → ℘(S) is a valuation and E : G0 → M(S)
assigns an effectivity function on S to every atomic g ∈ G0.

By a mutual induction on formulas and games, we define the

meaning JϕKS of a formula ϕ in a model S, and the effectivity

3



function Eγ in S for complex games γ as follows:

JpKS := V (p)
J¬pKS := S \ p
Jϕ ∨ ψKS := JϕKS ∪ JψKS

Jϕ ∧ ψKS := JϕKS ∩ JψKS

J〈γ〉ϕKS := Eγ(JϕKS)

Eg(X) := E(g)(X)
E(γd)(X) := S \ Eγ(S \X)
Eγ ; δ(X) := Eγ(Eδ(X))
Eγ⊔δ(X) := Eγ(X) ∪ Eδ(X)
Eγ⊓δ(X) := Eγ(X) ∩ Eδ(X)
E(γ∗)(X) := lfpY.X ∪ Eγ(Y )
E(γ×)(X) := gfpY.X ∩Eγ(Y )
E(ϕ?)(X) := JϕKS ∩X
E(ϕ!)(X) := JϕKS ∪X

Notions like satisfiability, equivalence, etc., are defined in the

standard way. In particular, a game formula ϕ is valid, nota-

tion: |= ϕ, if JϕKS = S, for every game model S = (S,E, V ).

Proposition 5. There are recursively defined, truth-preserving

translations
nf(−) : LFull → LNF

pa(−) : LFull → LPar

As a corollary of this, negation is definable in LNF. We shall

need the following explicit definition in the sequel.

Definition 6. By a mutual induction we define the comple-

mentation ϕ := nf(¬ϕ) of an LNF-formula ϕ, and the dual

game γ̃ of an LNF-game γ:

p := ¬p
¬p := p

ϕ ∨ ψ := ϕ ∧ ψ
ϕ ∧ ψ := ϕ ∨ ψ

〈γ〉ϕ := 〈γ̃〉ϕ

g̃ := gd

(̃gd) := g

γ̃ ; δ := γ̃ ; δ̃

γ̃ ⊔ δ := γ̃ ⊓ δ̃

γ̃ ⊓ δ := γ̃ ⊔ δ̃

(̃γ∗) := (γ̃)×

(̃γ×) := (γ̃)∗

(̃ϕ?) := ϕ!

(̃ϕ!) := ϕ?

The following proposition is proved by a straightforward

induction. We leave the details to the reader.

Proposition 7. In any game model S = (S,E, V ) we have

JϕKS = S \ JϕKS and Eγ̃ = Eγd

for any formula ϕ ∈ LNF and game γ ∈ GNF.

B. Parikh’s Hilbert-style system

The first axiom system for game logic was proposed and

conjectured to be complete by Parikh [1]. This is a Hilbert-

style system for the language LPar that axiomatises the angelic

iteration with what Parikh calls Bar Induction. We will refer

to this system as Par, and it is shown in Figure 1 below. For

ϕ ∈ LPar, we write Par ⊢ ϕ if there is a Par-derivation of ϕ.

Par Axioms:

1) All propositional tau-

tologies.

2) 〈γ ; δ〉ϕ↔ 〈γ〉〈δ〉ϕ
3) 〈γ ⊔ δ〉ϕ↔ 〈γ〉ϕ∨〈δ〉ϕ
4) 〈γ∗〉ϕ↔ ϕ ∨ 〈γ〉〈γ∗〉ϕ
5) 〈ψ?〉ϕ↔ ψ ∧ ϕ
6) 〈γd〉ϕ↔ ¬〈γ〉¬ϕ

Par Rules:

ϕ ϕ→ ψ
MP

ψ

ϕ→ ψ
Mon

〈γ〉ϕ→ 〈γ〉ψ

〈γ〉ϕ→ ϕ
BarInd

〈γ∗〉ϕ→ ϕ

Fig. 1. Axioms and rules of Par.

The system Par is easily seen to be sound. A main contri-

bution of our paper is that we confirm Parikh’s completeness

conjecture. We prove Theorem 8 in section VI below.

Theorem 8 (Soundness and Completeness of Par). For every

formula ϕ ∈ LPar , we have: Par ⊢ ϕ iff |= ϕ.

C. The cut-free sequent system G for game logic

We now introduce a cut-free (Tait-style) sequent system

G for game logic formulas in normal form. A sequent is

thus defined as a finite set of LNF-formulas (to be read

disjunctively). For a finite set Φ ⊆ LNF, we define Φ ∈ LNF

as the normal form
∨
Φ of ¬(

∨
Φ).

The system G consists of several parts. Its core is the

sequent calculus version of monotone modal logic as shown

in Figure 2. In order to reason about game operators, in Fig. 3

Ax
Φ,Φ

Φ
weak

Φ, ϕ
ϕ, ψ

modm
〈g〉ϕ, 〈gd〉ψ

Φ, ϕ, ψ
∨

Φ, ϕ ∨ ψ

Φ, ϕ Φ, ψ
∧

Φ, ϕ ∧ ψ

Fig. 2. The basic rules of the sequent calculus mon-ML for Game Logic.

we list some rules, each of which directly mirrors the semantic

meaning of one game constructor.

Φ, ϕ ∨ 〈γ〉〈γ∗〉ϕ
∗

Φ, 〈γ∗〉ϕ

Φ, ϕ ∧ 〈γ〉〈γ×〉ϕ
×

Φ, 〈γ×〉ϕ

Φ, 〈γ〉ϕ ∨ 〈δ〉ϕ
⊔

Φ, 〈γ ⊔ δ〉ϕ

Φ, 〈γ〉ϕ ∧ 〈δ〉ϕ
⊓

Φ, 〈γ ⊓ δ〉ϕ

Φ, ψ ∧ ϕ
?

Φ, 〈ψ?〉ϕ

Φ, ψ ∨ ϕ
!

Φ, 〈ψ!〉ϕ

Fig. 3. The sequent calculus rules GameOp for game operations.

In the third part of the G proof system we have the three

“deep” derivation rules given in Figure 4. These rules are

needed for technical reasons, as will become clear in some

of the proofs further on.

The final ingredient of G is the strengthened induction rule

inds in Figure 5. This rule, just like the homonymous rule

in [16] on which it is based, detects unfoldings of greatest

fixpoints in the same context. This may become clearer when

4



Φ, ψ(γ)
Mon

g
dΦ, ψ(χ! ; γ)

Φ, ψ(ϕ)
Mon

f
dΦ, ψ(〈χ!〉ϕ)

Φ, ψ(〈γ〉〈δ〉ϕ)
;
d

Φ, ψ(〈γ ; δ〉ϕ)

Fig. 4. Deep rules for Game Logic: DeepG. The notation ψ(ϕ) should be
read as follows: ψ is a context, i.e., a formula with a unique occurrence of a
proposition letter p, and ψ(ϕ) is the formula obtained by substituting p for
ϕ in ψ.

we show in Theorem 15 how inds is used to translate the

closure rule of the system CloG. In this sense, inds plays a role

similar to the context rule [14, Proposition 5.7(vi)] in Kozen’s

completeness proof for the aconjunctive fragment of the modal

µ-calculus. Only, Kozen’s proof is based on satisfiability and

the context rule therefore deals with least fixpoint unfoldings.

Our approach is based on validity, and inds therefore detects

greatest fixpoint unfoldings.

Φ, ϕ ∧ 〈γ〉〈(Φ! ; γ)×〉〈Φ!〉ϕ
inds

Φ, 〈γ×〉ϕ

Fig. 5. Strengthened induction rule for Game Logic.

To obtain a more concrete understanding of the inds rule,

think of the formula 〈γ×〉ϕ as a greatest fixpoint formula

νx.ϕ ∧ 〈γ〉x. The “standard” fixpoint rule for γ× would read

as follows: “from ψ → ϕ ∧ 〈γ〉ψ infer ψ → 〈γ×〉ϕ”, or,

formulated as a Tait-style sequent rule:

Φ, ϕ ∧ 〈γ〉Φ
ind

Φ, 〈γ×〉ϕ

Now, observing that 〈Φ!〉ϕ ≡ Φ∨ϕ, one may see that inds is

indeed a variation of ind.

Some further understanding of the rule inds may be gained

by establishing its soundness. For this purpose we may reason

by contraposition, showing that the refutability of the conclu-

sion of inds implies the refutability of its premise. It is not hard

to see that this boils down to proving the following statement,

which is formulated using the dual formulas and games.

Proposition 9. If χ ∧ 〈γ∗〉ϕ is satisfiable, then so is either

χ ∧ ϕ or χ ∧ 〈γ〉〈(χ? ; γ)∗〉〈χ?〉ϕ.

In words, this Proposition states the following. Suppose that

there is a situation where χ holds and where Angel has a

strategy in the game γ∗ ensuring the outcome ϕ. Suppose

furthermore that χ and ϕ cannot be true simultaneously. Then

there is a situation where χ holds, and where Angel has a

strategy in γ∗ which not only ensures that ϕ holds afterwards,

but also guarantees that while playing γ∗, after each round of

playing γ, the formula χ holds.

The completeness of G will follow from the completeness

of the system CloG, which we introduce in the next section.

The proof of Theorem 10 will be outlined in Section VI.

Theorem 10 (Soundness and Completeness of G). For all ξ ∈
LNF, we have: G ⊢ ξ iff |= ξ.

The following theorem states the transformation results

between G and Par that are needed for transferring soundness

from Par to G, and completeness from G to Par.

Theorem 11. We have:

1) For all ϕ ∈ LPar, if G ⊢ nf(ϕ) then Par ⊢ ϕ.

2) For all ξ ∈ LNF, if G ⊢ ξ then Par ⊢ pa(ξ).

III. AN ANNOTATED PROOF SYSTEM

The completeness of G will follow from the completeness

of the annotated tableau system CloG which we introduce now.

A. The CloG system for Game Logic

In CloG, formulas are annotated with names that are used

to detect repeated unfoldings of greatest fixpoint formulas in

the same context. With each greatest fixpoint formula ϕ ∈
F× we associate a countable set Nϕ of names for ϕ. We

assume that Nϕ ∩Nψ = ∅ if ϕ 6= ψ. The set of all names is

N =
⋃
ϕ∈F× Nϕ. Names will typically be denoted by x, y, . . .

or with subscripts x0, x1, . . .. Names inherit the order 4 on

the set F of fixpoint formulas: For all x ∈ Nϕ, y ∈ Nψ,

we define x 4 y iff ϕ 4 ψ. For a sequence of names a =
x0, x1, . . . , xn−1 ∈ N

∗ and a fixpoint formula ϕ ∈ F , we will

write a 4 ϕ if for all xi occurring in a, xi ∈ Nψ such that

ψ 4 ϕ. The empty sequence is denoted by ε. An annotation

is a sequence a = x0, x1, . . . , xn−1 ∈ N∗ that is non-repeating

and monotone w.r.t. 4, i.e., for all i < n − 1, xi 4 xi+1.

An annotated game logic formula ϕa consists of a formula

ϕ ∈ LNF and an annotation a ∈ N∗. Annotated CloG-sequents

are finite sets of annotated game logic formulas, and will be

denoted by Φ,Ψ, etc.

The system CloG derives CloG-sequents using the axiom

and rules in Figure 6. The closure rule clox discharges all

occurrences of the sequent Φ, 〈γ×〉ϕax appearing as an as-

sumption above the proof node where the rule is applied.

The side conditions ensure that no fixpoint formula of higher

priority than 〈γ×〉ϕ is unfolded between the application of

clox and its discharged assumption.

A CloG-proof is a finite tree of CloG-inferences in which

each leaf is labelled by an axiom or a discharged assumption.

Intuitively, a CloG-proof can be understood as a finitary repre-

sentation of a non-wellfounded/circular proof. The discharged

assumptions are the nodes where the circularity is detected.

For a formula ξ ∈ LNF, we write CloG ⊢ ξ to mean that there

is a CloG-proof of ξε. Note that CloG is analytic in the sense

that any CloG-proof of ξε will contain only formulas from

Cl(ξ), and names for fixpoint formulas in F×(ξ).

Completeness of CloG will follow from the completeness

of the system CloM, which we introduce in Section IV-B. We

prove Theorem 12 in Section VI.

Theorem 12 (Soundness and Completeness of CloG). For all

ξ ∈ LNF, we have CloG ⊢ ξ iff |= ξ.
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Ax1
pε, (¬p)ε

Φ, ϕa, ψa

∨
Φ, (ϕ ∨ ψ)a

ϕa, ψb

modm
(〈g〉ϕ)a, (〈gd〉ψ)b

Φ, ϕa Φ, ψa

∧
Φ, (ϕ ∧ ψ)a

Φ, (〈γ〉ϕ ∨ 〈δ〉ϕ)a
⊔

Φ, (〈γ ⊔ δ〉ϕ)a
Φ, (〈γ〉ϕ ∧ 〈δ〉ϕ)a

⊓
Φ, (〈γ ⊓ δ〉ϕ)a

Φ
weak

Φ, ϕa

Φ, ϕab,
exp

Φ, ϕaxb

Φ, (〈γ〉〈δ〉ϕ)a
;

Φ, (〈γ ; δ〉ϕ)a

Φ, (ϕ ∨ 〈γ〉〈γ∗〉ϕ)a
(a 4 〈γ∗〉ϕ) ∗

Φ, (〈γ∗〉ϕ)a

Φ, (ϕ ∧ 〈γ〉〈γ×〉ϕ)a
(a 4 〈γ×〉ϕ) ×

Φ, (〈γ×〉ϕ)a

Φ, (ψ ∧ ϕ)a
?

Φ, (〈ψ?〉ϕ)a

Φ, (ψ ∨ ϕ)a
!

Φ, (〈ψ!〉ϕ)a

[Φ, 〈γ×〉ϕax]x

...

Φ, (ϕ ∧ 〈γ〉〈γ×〉ϕ)ax
(a 4 x ∈ N〈γ×〉ϕ, x /∈ Φ, a) clox

Φ, (〈γ×〉ϕ)a

Fig. 6. The axiom and rules of the system CloG. In the side condition of
clox, “x /∈ Φ, a” means that x does not occur in Φ or a.

B. Removing annotations with the bullet translation

In order to translate CloG-proofs into G-proofs, we must

remove annotations. First, we introduce some notation. We let

〈〈γ〉〉ϕ :=

{
〈〈γ1〉〉〈〈γ2〉〉ϕ if γ = γ1 ; γ2
〈γ〉ϕ otherwise

That is, if γ = γ1 ; · · · ; γk, and none of the game terms γi is

itself a composition, then 〈〈γ〉〉ϕ = 〈γ1〉 · · · 〈γk〉ϕ.

Given a sequence ~ϕ = ϕ1, . . . , ϕn of formulas and a game

term γ, we define

ϕ!
←−

:= ϕn! ;(. . . (ϕ1!) . . . )

ϕ! · γ
←−−−

:= ϕn! ;(. . . (ϕ1! ; γ) . . . ).

We can now define the translation (−)• which removes

annotations. Intuitively, what this translation does is to weaken

fixpoint formulas by adding dual tests corresponding to for-

mulas associated with names in the annotation of a fixpoint

formula. This will be used to “remember” contexts in which

greatest fixpoint formulas have been unfolded. The translation

needs to be set up carefully, so that it can be used to transform

CloG-proofs to G-proofs. In particular, it is tailored to fit with

the strengthened induction rule in G.

Definition 13. Assume that we have an assignment {χx | x ∈
N} of a game logic formula χx ∈ LNF to each name x. We

define the bullet translation (−)• from annotated game logic

formulas to LNF by ϕε• = ϕ, and for non-empty annotations

a as follows:

pa• := p,

(¬p)a• := ¬p,

(ϕ ∨ ψ)a• := ϕa• ∨ ψa•,

(ϕ ∧ ψ)a• := ϕa• ∧ ψa•,

(〈γ〉ϕ)a• := 〈〈β(γ, a, ϕ)〉〉ϕa•,

β(g, a, ϕ) := g,

β(gd, a, ϕ) := gd,

β(ψ?, a, ϕ) := (ψa•)?,

β(ψ!, a, ϕ) := (ψa•)!,

β(γ∗, a, ϕ) := γ∗,

β(γ ; δ, a, ϕ) := β(γ, a, 〈δ〉ϕ) ;β(δ, a, ϕ),

β(γ ⊔ δ, a, ϕ) := β(γ, a, ϕ) ⊔ β(δ, a, ϕ),

β(γ ⊓ δ, a, ϕ) := β(γ, a, ϕ) ⊓ β(δ, a, ϕ).

The crucial clause of the translation is the case for the demonic

iteration. If a = bx1 · · · xnc, where x1, . . . , xn are all the names

for 〈γ×〉ϕ in a, then we define

β(γ×, bx1 · · · xnc, ϕ) := (χ! · γ
←−−−

)×; χ!
←−

where ~χ := χx1 , . . . , χxn . Note that as a special case we have

β(γ×, a, ϕ) = γ× if there are no names for 〈γ×〉ϕ in a.

The bullet translation only affects the outermost fixpoint

operators of a game term. This does, however, not mean that

there is only ever one fixpoint affected in a formula. For in-

stance when following the trace of the formula 〈(g ;(h×))×〉p
in some CloG-proof the fixpoint might unravel such that we

obtain the formula 〈h×〉〈(g ;(h×))×〉p. Applying the bullet

translation to this formula might affect the outermost fixpoints

of both modalities.

The following lemma shows how the bullet translation

applies to annotated fixpoint formulas. It is needed in the proof

of Theorem 15 below.

Lemma 14. Let a = bx1 . . . xn where x1, . . . , xn are all the

names in a for 〈γ×〉ϕ ∈ F×. Then we have:

(〈γ×〉ϕ)
a•

= 〈(χ! · γ
←−−−

)×〉〈〈χ!
←−
〉〉ϕb• and (2)

(ϕ ∧ 〈γ〉〈γ×〉ϕ)
a•

= ϕb• ∧ 〈〈γ〉〉〈(χ! · γ
←−−−

)×〉〈〈χ!
←−
〉〉ϕb• (3)

C. Embedding CloG into G

We are now ready to show how CloG-derivations can be

transformed to G-derivations. This will be used in Section VI

to transfer completeness from CloG to G and soundness from

G to CloG.

Theorem 15. For all ξ ∈ LNF, if CloG ⊢ ξ then G ⊢ ξ.

Proof. Consider a game logic formula ξ and assume that π
is a proof of ξε in CloG. We assume that each application

of the clo-rule in π introduces a distinct name, i.e., for any

distinct pair of rule applications clox1 and clox2 in π we have

x1 6= x2. This assumption is w.l.o.g. as we can rename the

variable names occurring in π appropriately if needed. The

shape of the rules of CloG also imply that for each variable

name x occurring in π, there is a corresponding occurrence of

the clox-rule.

We now assign a formula χx to each variable name x

occurring in π. This assignment is defined by induction on the
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distance of the (unique) clox instance in π from the root of

π. Concretely, for a variable name x we consider the sequent

Φ consisting of the side formulas of the application of clox
in π and set χx := Φ•. Here the bullet translation of Φ is

well-defined as any variable name y occurring in Φ must have

been introduced by an instance of cloy that is closer to the root

of the proof tree than clox, so that the formula χy is already

defined by the induction hypothesis.

We now show how to transform the CloG-proof π of ξε into

a G-proof of ξ by demonstrating that (i) for all (discharged)

assumptions Φ of π there is a G-derivation of Φ•, and (ii) for

all CloG-rule applications Φ1/Φ2 in π there is a corresponding

G derivation of Φ2
• from assumptions in Φ1

•.

Consider first the bullet translation of an arbitrary dis-

charged assumption of an application of clox in π. Such a

translation is of the form Φ•, (〈γ×〉ϕ)
ax•

for some annotated

sequent Φ and a game logic formula (〈γ×〉ϕ). Furthermore,

by definition we have χx = Φ•. Now consider the following

G proof:

Φ•, χx
weak

Φ•, χx, θ
∨

Φ•, χx ∨ θ
!

Φ•, 〈χx!〉θ

Φ•, χx
weak

Φ•, χx, 〈χ! · γ
←−−−

〉〈(χx! ;χ! · γ
←−−−

)×〉〈χx!〉θ
∨

Φ•, χx ∨ 〈χ! · γ
←−−−

〉〈(χx! ;χ! · γ
←−−−

)×〉〈χx!〉θ

!
Φ•, 〈χx!〉〈χ! · γ

←−−−
〉〈(χx! ;χ! · γ

←−−−
)×〉〈χx!〉θ

;
d

Φ•, 〈χx! ;χ! · γ
←−−−

〉〈(χx! ;χ! · γ
←−−−

)×〉〈χx!〉θ
∧

Φ•, 〈χx!〉θ ∧ 〈χx! ;χ! · γ
←−−−

〉〈(χx! ;χ! · γ
←−−−

)×〉〈χx!〉θ
×

Φ•, 〈(χx! ;χ! · γ
←−−−

)×〉〈χx!〉θ

where θ := 〈〈χ!
←−
〉〉ϕa• and ~χ = χx1 , . . . , χxn with x1, . . . , xn

being all names of 〈γ×〉ϕ in a. The remaining assumption

in this G proof is the sequent Φ•, χx = Φ•,Φ•. But in fact

for any finite set Ψ = {ψ1, . . . , ψn} we can easily derive the

sequent Ψ,Ψ = Ψ, ψ1∧· · ·∧ψn in G using n instances of Ax

and weak followed by an application of ∧. Using Lemma 14

one can verify that

Φ•, 〈(χx! ;χ! · γ
←−−−

)×〉〈χx!〉θ = Φ•, (〈γ×〉ϕ)
ax•

which shows that we have constructed the required G deriva-

tion of the translated assumption.

We show claim (ii) above, ie., that for each rule application

in π there is a corresponding G derivation. We only consider

the rules exp and clo. For the other rules the reasoning is either

trivial or it follows from reasoning that is similar but simpler

as the one for clo.

Suppose that an instance of the exp-rule is applied in

π to obtain Φ, ϕaxb from Φ, ϕab. Let θ = 〈γ×〉ϕ′ be the

fixpoint formula corresponding to x and suppose w.l.o.g. that

θ ∈ F×(ϕ) and that the bullet translation ϕab• is of the form

ψ(〈〈(χ! · γ
←−−−

)×; χ!
←−
〉〉ψ′) where ~χ = χx1 . . . χxn are the context

formulas corresponding to the names x1, . . . , xn of θ that occur

in ab. Let ~χ′ = x1 . . . x . . . xn be the list of names of θ in axb.

Then ϕaxb• = ψ(〈〈(χ′! · γ
←−−−

)×;χ′!
←−
〉〉ψ′) and it is now easy to see

that this formula is derivable from ϕab• in G by applying the

Mon
g
d-rule twice for each occurrence of θ that got expanded

by the bullet translation.

Lastly, consider an application of the clo-rule in π that de-

rives from Φ, (ϕ ∧ 〈γ〉〈γ×〉ϕ)
ax

the conclusion Φ, (〈γ×〉ϕ)a.

We need to construct a corresponding G derivation. First

observe that by Lemma 14 we have

(〈γ×〉ϕ)
a•

= 〈(χ! · γ
←−−−

)×〉〈〈χ!
←−
〉〉ϕb•,

where b and ~χ are chosen as in the previous case. Furthermore

(ϕ ∧ 〈γ〉〈γ×〉ϕ)
ax•

= ϕ
b• ∧ 〈〈γ〉〉〈(χx! ;χ! · γ

←−−−
)×〉〈χx!〉〈〈χ!

←−
)〉〉ϕb•

,

= ϕ
b• ∧ 〈〈γ〉〉〈(Φ•! ;χ! · γ

←−−−
)×〉〈Φ•!〉〈〈χ!

←−
)〉〉ϕb•

where we again used Lemma 14 and the fact that χx = Φ•.

Now we build the following G derivation:

Φ•, ϕb• ∧ 〈〈γ〉〉〈(Φ•!;χ! · γ
←−−−

)×〉〈Φ•!〉〈〈χ!
←−
〉〉ϕb•

;d
Φ•, ϕb• ∧ 〈γ〉〈(Φ•!;χ! · γ

←−−−
)×〉〈Φ•!〉〈〈χ!

←−
〉〉ϕb•

Mon
g
d

Φ•, ϕb• ∧ 〈χ! · γ
←−−−

〉〈(Φ•!;χ! · γ
←−−−

)×〉〈Φ•!〉〈〈χ!
←−
〉〉ϕb•

Monfd
Φ•, 〈〈χ!

←−
〉〉ϕb• ∧ 〈χ! · γ

←−−−
〉〈(Φ•!;χ! · γ

←−−−
)×〉〈Φ•!〉〈〈χ!

←−
〉〉ϕb•

inds
Φ•, 〈(χ! · γ

←−−−
)×〉〈〈χ!

←−
〉〉ϕb•,

Here, the double lines indicate that multiple applications

of the specified rule could be required to reach the next

sequent. Using the equations given above the proof tree, we

have given a G-derivation of Φ•, (〈γ×〉ϕ)
a•

from assumption

Φ•, (ϕ ∧ 〈γ〉〈γ×〉ϕ)
ax•

. This shows that for each instance of

clo there is a corresponding G-derivation as required.

IV. THE MONOTONE µ-CALCULUS

In this section we give the basic definitions of the monotone

µ-calculus, and we introduce an annotated proof system for it.

A. The monotone µ-calculus: syntax and semantics

Additionally to the sets P0 and G0 from Section II-A we

now also fix a countable set Var of fixpoint variables. We shall

only consider µ-calculus formulas in negation normal form.

Definition 16. The language LµNF of the monotone µ-calculus

consists of the formulas:

LµNF ∋ A,B ::= p | ¬p | x | A ∨B | A ∧B
| 〈g〉A | 〈gd〉A | µx.A | νx.A

where p ∈ P0, g ∈ G0 and x ∈ Var .

We apply the usual notions concerning variable binding,

writing Var(A)/FVar(A) for the sets of all/all free variables

in A. A formula A is a sentence if FVar(A) = ∅.

This is essentially the language of a multi-modal µ-calculus,

except we write 〈gd〉ϕ instead of [g]ϕ in order to stay closer

to game logic syntax.

Given a LµNF-formula A, we define its (Fischer-Ladner) clo-

sure Cl(A) in the usual way (via subformulas and unfoldings).
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Our definition of the system CloM below crucially involves

the following priority order ≤A on Var(A), and a notion of

well-namedness from [16].

Definition 17. Let A be a µ-calculus formula and x, y ∈
Var(A). We write x <−

A y if for some subformula of A of

the form σy.B where σ ∈ {µ, ν}, the variable x occurs freely

in σy.B. We denote by <A the transitive closure of <−
A on

Var(A). We denote by ≤A the reflexive, transitive closure of

<−
A on Var(A). We say that A is locally well-named if <A

is irreflexive.

We show examples of <−
A in Examples 22 and 23 below.

The semantics of the monotone µ-calculus over the game

models from Section II-A is standard.

Definition 18. We define the meaning JAKSh of a formula

A ∈ LµNF in the game model S = (S,E, V ), relative to an

assignment h : Var → ℘(S), by a standard induction, where,

e.g., J〈gd〉AKSh := S \ Eg(S \ JAKSh), and

Jµx.AKSh := lfpX. JAKSh[x 7→X]

Jνx.AKSh := gfpX. JAKSh[x 7→X].

Here h[x 7→ X ] is the assignment h′ given by h′(x) := X
and h′(y) := h(y) for y 6= x.

The meaning of a sentence A in S does not depend on the

assignment, and so we denote this set as JAKS. Notions like

satisfiability, validity, etc., are all defined in the standard way.

B. The CloM-system for the monotone µ-calculus

The proof system CloM is the monotone analogue of the

annotated sequent system Clo for the µ-calculus from [16],

with one further difference. In order to prove our key Proposi-

tion 24 below, we need more control over the order on fixpoint

variables than allowed by the global order of [16]. Instead, we

will use the fixed order ≤C , for some ambient formula C, and

define CloM to be parametric in such a C.

So fix a well-named µ-calculus formula C. In the derivation

system CloMC , formulas are annotated with sequences of

names, as in the system CloG. To each variable x ∈ Var(C)
we link a set Nx of names for x , in such a way that

Nx ∩Ny = ∅ if x 6= y . As in Section III-A, we let the names

inherit the order ≤C over variables, introduce annotations,

and extend the relation ≤C to hold between annotations and

variables.

The proof rules of CloMC are in Figure 7. A CloMC -proof

is a finite tree of inferences in which each leaf is labelled by

an axiom or a discharged assumption. For a formula A ∈ LµNF,

we write CloM ⊢ A if there is a CloMA-proof of Aε.
Analogous to CloG, the system CloM is analytic in the

sense that any CloMC-proof of Cε contains only formulas

from Cl(C) and names for variables in Var(C). Hence, the

order ≤C is defined for these names and variables.

We show that CloM is sound and complete for the semantics

of the monotone µ-calculus given in Definition 18 by reduction

to the soundness and completeness of the system Clo with

respect to Kripke models, which has been proven in [16].

Ax1
pε, (¬p)ε

Γ, Aa, Ba

∨
Γ, (A ∨B)a

Aa, Bb

modm
〈g〉Aa, 〈gd〉Bb

Γ, Aa Γ, Ba

∧
Γ, (A ∧B)a

Γ
weak

Γ, Aa

Γ, A(µx.A(x))a
(a ≤C x ) µ

Γ, (µx.A(x))a

Γ, Aab,
exp

Γ, Aaxb

Γ, A(νx.A(x))a
(a ≤C x ) ν

Γ, (νx.A(x))a

[Γ, νx.A(x)ax]x

...

Γ, A(νx.A(x))ax
(a ≤C x ∈ Nx, x /∈ Γ, a) ν-clox

Γ, (νx.A(x))a

Fig. 7. The axiom and rules of the system CloMC .

The reduction uses a translation (−)t : LµNF → L
2µ
NF from

monotone µ-calculus into normal µ-calculus that is based on

well-known ideas, going back to [6], though our approach is

closer to the one from [19, Ch.10], for simulating monotone

modal logics with normal modal logics. The basic idea is

that an effectivity function E : ℘(S) → ℘(S) corresponds

to a monotone neighbourhood function N : S → ℘(℘(S))
which can be encoded with two Kripke relations on state space

S ∪ ℘(S): A relation RN ⊆ S × ℘(S) that relates states to

their neighbourhoods, and a relation R∋ ⊆ ℘(S) × S that

relates neighbourhoods to their elements. Conversely, from

two Kripke relations on a state space S one can define a

monotone neighbourhood function N : S → ℘(℘(S)) using

the same idea. The language L2µNF is the modal µ-calculus

language that has two (normal) modalities 〈gN 〉 and 〈g∋〉 for

each g ∈ G0. The translation of atomic formulas, Boolean

connectives and fixpoints is defined by straightforward re-

cursion. For modalities, we take (〈g〉A)t = 〈gN 〉[g∋](At),
and (〈gd〉A)t = [gN ]〈g∋〉(At). Using the model translatons

described above, we can show that (−)t preserves satisfiability

and validity.

Lemma 19. For all formulas C ∈ LµNF,

1) if C is satisfiable in a game model, then Ct is satisfiable

in a Kripke model for L2µNF.

2) if C is valid over game models, then Ct is valid over

Kripke models for L2µNF.

Lemma 19 gives the semantic part needed in the proof of

the following theorem.

Theorem 20 (Soundness and Completeness of CloM). For all

C ∈ LµNF, C is valid (on game models) iff CloM ⊢ C.

A detailed proof of Theorem 20 is found in the appendix.

Here we only give a sketch. What remains is to show that we

can translate between proofs in CloM and proofs in the similar
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annotated proof system Clo [16] for the normal µ-calculus.

First, we note that the translation (−)t extends to anno-

tated formulas and sequents in the obvious manner. For both

directions, we transform proof trees starting from the root

going up. The most interesting case is in the construction of

a CloM-proof for A ∈ LµNF from a Clo-proof of At ∈ L2µNF

when the modal rule from Clo is applied. So suppose some

node v in a Clo-proof π is obtained from an application of

the (normal) modal rule, and v is labelled with a sequent Γt

where Γ is a sequent of annotated LµNF-formulas. Then Γt must

have the form 〈gN 〉[g∋]A1, ..., 〈gN 〉[g∋]An, [gN ]〈g∋〉B, and

hence Γ must have the form 〈g〉C1, ..., 〈g〉Cn, 〈gd〉D where

Ct1 = A1, ..., C
t
n = An, Dt = B. By inspection of the rules

of Clo, and assuming that n ≥ 2 (since the other case is easier),

we see that the subtree of the Clo-proof π rooted at v must

have the following shape:

...

Ai, B
mod

[g∋]Ai, 〈g∋〉B
weak

[g∋]A1, ..., [g∋]An, 〈g∋〉B
mod

〈gN 〉[g∋]A1, ..., 〈gN 〉[g∋]An, [gN ]〈g∋〉B

We mimic this by the following CloM-derivation steps:

Ci, D
mod

〈g〉Ci, 〈gd〉D
weak

〈g〉C1, ..., 〈g〉Cn, 〈g
d〉D

The label of the top node of this derivation translates to Ai, B,

and so we can inductively continue the construction using the

corresponding smaller subtree of π.

V. GAME LOGIC AND THE MONOTONE µ-CALCULUS

In this section we define a novel translation from formulas

in game logic to formulas in the monotone µ-calculus, and

prove that if the translation of a formula is provable in CloM

then the formula is provable in CloG.

A. Translating Game Logic to the monotone µ-calculus

It is shown in [5, sec. 6.4.2] that game logic can be

translated into the two-variable fragment of the monotone µ-

calculus. However, we use more than two variables because

we need to keep track of the nesting of fixpoints. Before we

give the formal definition of our translation, we first explain

informally how we achieve this. Consider the translation of

a game logic formula ξ ∈ LNF. Formulas 〈γ◦〉ϕ ∈ F (ξ)
translate to fixpoint formulas of the form σx.A(x) on the µ-

calculus side. In order to synchronise the translation across

unfolding of fixpoint formulas, we syntactically encode 〈γ◦〉ϕ
into the fixpoint variable that it gives rise to in the translation

of ξ.

Definition 21. We define the translation (−)♯ : LNF → L
µ
NF

by a mutual induction on formulas and games as follows:

p♯ := p
(¬p)♯ := ¬p

(ϕ ∧ ψ)♯ := ϕ♯ ∧ ψ♯

(ϕ ∨ ψ)♯ := ϕ♯ ∨ ψ♯

(〈γ〉ϕ)♯ := τϕγ (ϕ
♯)

τϕg (A) := 〈g〉A
τϕ
gd
(A) := 〈gd〉A

τϕγ⊓δ(A) := τϕγ (A) ∧ τ
ϕ
δ (A)

τϕγ⊔δ(A) := τϕγ (A) ∨ τ
ϕ
δ (A)

τϕγ∗(A) := µx〈γ
∗〉ϕ.A ∨ τ

〈γ∗〉ϕ
γ (x〈γ

∗〉ϕ)

τϕ
γ×(A) := νx〈γ

×〉ϕ.A ∧ τ
〈γ×〉ϕ
γ (x〈γ

×〉ϕ)

τϕγ ; δ(A) := τ
〈δ〉ϕ
γ (τϕδ (A))

τϕψ?(A) := ψ♯ ∧ A

τϕψ!(A) := ψ♯ ∨ A

Example 22. For ϕ = 〈(a∗ ;(b× ⊔ c))×〉p, the translation is

ϕ♯ = νxϕ.p∧
µxψ .((νxθ .xϕ ∧ 〈b〉xθ) ∨ 〈c〉xϕ) ∨ 〈a〉xψ

with ψ = 〈a∗〉〈b× ⊔ c〉ϕ
θ = 〈b×〉ϕ

Applying the definitions of order on game logic fixpoint

formulas (Def. 2) and µ-calculus fixpoint variables (Def. 17),

we find that:

ϕ ≺ ψ, ϕ ≺ θ and xϕ <−
ϕ♯ x

ψ, xϕ <−
ϕ♯ x

θ

Example 23. For ϕ = 〈(a∗; (〈b×〉p)?)×〉〈c∗〉q,

ϕ♯ = νxϕ. (µxψ .q ∨ 〈c〉xψ)∧
(µxζ .((νxθ .p ∧ 〈b〉xθ) ∧ xϕ) ∨ 〈a〉xζ)

with ψ = 〈c∗〉q
ζ = 〈a∗〉〈〈b×〉p)?〉ϕ, and

θ = 〈b×〉p

Applying the definitions of order on game logic fixpoint

formulas (Def. 2) and µ-calculus fixpoint variables (Def. 17),

we find that:

ϕ ≺ ζ, ϕ ≺ θ and xϕ <−
ϕ♯ x

ζ

The above examples illustrate how the order on fixpoint

variables in µ-calculus is reflected in game logic fixpoints

along the translation, and that translations are always locally

well-named. These are the syntactic properties of (−)♯ that

are crucial to our proofs.

Proposition 24. For all ξ ∈ LNF the translation ξ♯ is locally

well-named, and for all ϕ, ψ ∈ F (ξ) we have xϕ, xψ ∈
Var(ξ♯), and that xϕ ≤ξ♯ x

ψ implies ϕ 4 ψ.

On the semantic side, our translation is adequate in the sense

that it is truth- and validity preserving. Recall that LNF and

LµNF are both interpreted over game models, i.e., monotone

neighbourhood models.

9



Proposition 25. For every ξ ∈ LNF and every game model S

it holds that JξKS = Jξ♯KS.

Proof. By a straightforward induction.

B. From CloM to CloG

We now show how to construct a CloG-derivation of a game

logic formula ξ from a CloM-derivation of ξ♯.
For this purpose, we identify the set Nϕ of names for

ϕ ∈ F (ξ) with the set Nxϕ of names for the variable

xϕ ∈ Var(ξ♯). This is possible since both sets are defined

to be arbitrary countable sets. We then extend the translation

(−)♯ to annotated formulas and sequents by taking

(ϕa)♯ := (ϕ♯)a and Φ♯ := {(ϕa)♯ | ϕa ∈ Φ}.

That is, the translation leaves annotations unchanged.

Theorem 26. For all ξ ∈ LNF, if CloM ⊢ ξ♯ then CloG ⊢ ξ.

Proof. We will prove the theorem by induction on the com-

plexity of proof trees, and for a proper development of the

induction we need to take care of derivations with open

branches because the clo-rule allows to discharge assumptions.

We shall write π : A ⊢CloMC
Γ to say that π is a CloMC -

derivation of Γ from assumptions in A, and similarly for CloG-

derivations with open assumptions.

More precisely, we shall prove, by induction on the com-

plexity of CloM-derivations, that every CloMξ♯-proof π satis-

fies the following property:

for every game logic sequent Φ: if π : A ⊢CloM
ξ♯

Φ♯

then there is a CloG-proof π′ : G ⊢CloG Φ where G♯ = A.
(∗)

Two preliminary remarks are in order before we dive into

the proof details. First, in the sequel we will often omit

the annotation of formulas, for the sake of readability. And

second, without loss of generality we may adopt the injectivity

assumption stating that for each formula A in Φ♯ there is

precisely one formula ϕ in Φ with ϕ♯ = A.

In the base case of our proof, the derivation π is either an

application of the axiom Ax1 or a one-node derivation of a

sequent Φ♯, where the set of assumptions of π is the singleton

set {Φ♯}. In both cases it is straightforward to see that the

derivation π′, consisting of a single node labelled Φ, meets

the requirements stated in (∗).

For the inductive step, first observe that we may assume

that none of the formulas in Φ is of the form 〈γ ; δ〉ψ. Should

ϕ ∈ Φ be of this form then we could apply the rule ; and

subsequently work with the formula 〈γ〉〈δ〉ψ, for which it

holds that (〈γ〉〈δ〉ψ)♯ = (〈γ ; δ〉ψ)♯. This can be repeated until

the resulting formula is of the required shape.

For the proof of the inductive step, we make a case

distinction as to the last applied rule in the CloM-derivation

π.

In case the last applied rule is the rule ∧, then Φ♯ must be

of the form Φ♯ = Γ, A0 ∧ A1 and the rule ∧ is applied to

the premises Γ, A0 and Γ, A1. By our injectivity assumption

there is precisely one formula ϕ in Φ such that Φ = Ψ, ϕ,

Ψ♯ = Γ and ϕ♯ = A0∧A1. But then it follows by the definition

of the translation (−)♯ and our assumption on the shape of

the formulas in Φ that there are three possibilities: either (i)

ϕ = ϕ0 ∧ ϕ1 such that ϕ♯0 = A0 and ϕ♯1 = A1, or (ii) ϕ =
〈γ0 ⊓ γ1〉ψ such that (〈γ0〉ψ)♯ = A0 and (〈γ1〉ψ)♯ = A1, or

(iii) ϕ = 〈ψ?〉χ such that ψ♯ = A0 and χ♯ = A1.

The other cases being similar, we only consider case (ii).

Here we have CloMξ♯-proofs π0, π1 of the sequents Ψ♯, 〈γ0〉ψ♯

and Ψ♯, 〈γ1〉ψ
♯, from two respective sets of assumptions A0

and A1 such that A0 ∪A1 = A. Use the induction hypothesis

to obtain, for i = 0, 1, a set Gi of game logic sequents such

that G♯i = Ai, as well as a CloG-proof π′
i : Ai ⊢ Ψ, 〈γi〉ψ. We

then apply the rule ∧ to get a proof of the sequent Ψ, 〈γ0〉ψ∧
〈γ1〉ψ, followed by the rule ⊓ to derive the sequent Φ =
Ψ, 〈γ0 ⊓ γ1〉ψ. Finally, the set of assumptions of the resulting

derivation π′ is the set G0 ∪ G1, which clearly satisfies the

condition that (G0 ∪ G1)
♯ = A.

The cases where the last rule applied in π is one of ∨,

modm, or weak, are similarly easy to deal with; we omit the

details.

Now consider the case where π ends with an application

of the rule µ for a least fixpoint. We then have that Φ♯ =
Γ, µx.A(x)a, the premise of this application of µ is the sequent

Γ, A(µx.A(x))a , and the side condition a ≤ξ♯ x is fulfilled. As

explained above we can assume that there is a single formula ϕ
in Φ such that Φ = {Ψ, ϕ}, ϕ♯Ψ = Γ and ϕ♯ = µx.A(x). As

we have already excluded the possibility that ϕ is a modality

whose main operator is the composition it follows from the

definition of the translation (−)♯ that ϕ = 〈γ∗〉ψ such that

A(x) = ψ♯∨τϕγ (x). Note that x = x〈γ
∗〉ψ by definition of the

translation (−)♯. Some further calculations show that

A(µx.A(x)) = ψ♯ ∨ τϕγ (µx.A(x)) = (ψ ∨ 〈γ〉〈γ∗〉ψ)♯.

We can thus apply the induction hypothesis to obtain a

CloG-proof of the sequent Ψ, ψ ∨ 〈γ〉〈γ∗〉ψ, from a set of

assumptions G satisfying G♯ = A. We then want to use the

rule ∗ to obtain a proof of Φ = Ψ, ϕ = Ψ, 〈γ∗〉ψ from the

same set G of assumptions. To do so we need to ensure that

the side condition a 4 〈γ∗〉ψ is satisfied. Hence consider any

name y that occurs in a and let χ be the fixpoint formula such

that y ∈ Nχ. From the side condition a ≤ξ♯ x it follows that

y ≤ξ♯ x, and then from Proposition 24 that χ 4 〈γ∗〉ψ, and

hence we obtain the required y 4 〈γ∗〉ψ.

If the last rule applied in π is the fixpoint rule ν for the

greatest fixpoint then we can use a similar argument as in the

paragraph using × instead of ∗.

Finally, consider the case where the last rule applied in π
is ν-clox for some name x, discharging the assumption Ω =
Γ, νx.A(x)ax. We then may observe that Φ♯ = Γ, νx.A(x)a,

that the premise of this application of ν-clox is the sequent

Γ, A(νx.A(x))ax , and that the side conditions a ≤ξ♯ x and

x 6∈ Γ, a are fulfilled. As explained above we can assume

that there is a single formula ϕ in Φ such that Φ = {Ψ, ϕ},
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Ψ♯ = Γ and ϕ♯ = νx.A(x). And, similar to the case of the

rule µ discussed above, we may assume that ϕ = 〈γ×〉ψ for

γ and ψ such that A(x) = ψ♯ ∧ τϕγ (x), and that

A(νx.A(x)) = ψ♯ ∧ τϕγ (νx.A(x)) = (ψ ∧ 〈γ〉〈γ×〉ψ)♯.

We then apply the induction hypothesis and obtain a CloG-

derivation of the premise of the ν-clox-rule from assump-

tions G ∪ G′, where each sequent in G′ translates to Ω (the

assumption discharged by the application of the ν-clox-rule

with conclusion Φ♯). It follows that every sequent in G′ must

be of the form Θ, ϕax
0 with Θ♯ = Γ and ϕ♯0 = νx.A(x).

From ϕ♯0 = νx.A(x) = ϕ♯ it follows that ϕ0 = ϕ (syntac-

tically), since we encode the formula ϕ = 〈γ×〉ψ into the

fixpoint variable x of its translation. That is, we may take

G′ = {Θ, 〈γ×〉ψax | Θ ∈ L} for some set L with L♯Σ = {Γ}.
Note, however, that the sequents in L will generally not be

identical to Ψ, which means that we cannot simply finish our

proof with an application of the ν-clox-rule of the CloG-system

here. We need a more elaborate construction.

In fact we need to generalise the statement about Ψ and a

to the observation below, where we let S be the (finite!) set

of game logic sequents Σ such that Σ♯ = Γ.

CLAIM 1. For every Σ ∈ S there are game logic sequents GΣ
and LΣ such that (†1) G♯Σ = A, L♯Σ = {Γ} and (†2) for every

b = ax1 · · · xk, with x1, . . . , xk names for 〈γ×〉ψ, there is a

CloG-proof

ρbΣ : GΣ ∪ {Θ, 〈γ
×〉ψb | Θ ∈ LΣ} ⊢ Σ, (ψ ∧ 〈γ〉〈γ×〉ψ)b

PROOF OF CLAIM Fix a sequent Σ ∈ S. Repeating the

argument that we just gave and that is directly based on the

inductive hypothesis, we obtain sets of game logic sequents

GΣ and LΣ satisfying condition (†1), together with a CloG-

derivation ρaxΣ of the sequent Σ, (ψ ∧ 〈γ〉〈γ×〉ψ)ax from the

assumptions GΣ ∪ {Θ, 〈γ×〉ψax | Θ ∈ LΣ}.
Now consider an annotation b = ax, where x = x1 · · · xk,

with k ≥ 1. We will transform the derivation ρaxΣ into the

desired derivation ρbΣ in two stages. First, we simply replace

every occurrence of x as (part of) an annotation in ρaxΣ with

x. This transforms ρaxΣ into a structure ρ′ which is almost a

proper CloG-proof. The only problem concerns applications in

ρaxΣ of the expansion rule exp of the form ∆, ϕcd/∆, ϕcxd. In ρ′

we may not be allowed to derive ∆, ϕcxd from ∆, ϕcd by one

application of the expansion rule, but we can easily take care

of this problem in the second state of the construction, namely

by deriving ∆, ϕcxd from ∆, ϕcd by a series of applications of

the expansion rule. This finishes the proof of the claim. ◭

We will use derivations of the form ρbΣ as building blocks

for our CloG-derivation of the sequent Ψ, 〈γ×〉ψa. The idea

is to first build up, step by step, a pseudo-derivation of

Ψ, 〈γ×〉ψa which differs from a proper CloG-proof in that not

all assumptions of prospective applications of the clo-rule are

discharged. Once we have completed the construction of this

pseudo-derivation, we transform it into a proper CloG-proof

by taking care of these undischarged assumptions. To do this

in a proper way we need to be precise about the annotations,

and we need to introduce some auxiliary definitions.

Most importantly, we define a pseudo-derivation to be

a proof in the derivation system CloG extended with the

derivation rule D:

Φ, (ϕ ∧ 〈γ〉〈γ×〉ϕ)ax
a 4 x ∈ N〈γ×〉ϕ, x /∈ Φ, a Dx

Φ, (〈γ×〉ϕ)a

Clearly, D is identical to the rule clo, apart from the fact that it

does not require that the assumptions of the form Ψ, 〈γ×〉ϕax

in the proof tree leading up to the premise of D are discharged.

We shall call a node t in a proof tree dangling if the rule

applied at t is D. Observe that a pseudo-derivation is a proper

CloG-derivation just in case it has no dangling nodes.

We now construct a pseudo-derivation for the sequent

Ψ, 〈γ×〉ψa. We shall make use of a set {xΣ | Σ ∈ S} of

special, fresh names, all associated with the fixpoint formula

〈γ×〉ψ. Our starting point of the construction is the one-node

derivation consisting of the sequent Ψ, 〈γ×〉ψa.

Now suppose that the current approximation σ of the

pseudo-derivation contains an assumption of the form

Σ, 〈γ×〉ψb, where Σ ∈ S and the annotation b is of the

form b = ax with xΣ not occurring in the sequence x =
xΣ1 · · · xΣk

. By our Claim 1, we may take a CloG-proof ρbxΣΣ

of the sequent Σ, (ψ ∧ 〈γ〉〈γ×〉ψ)bxΣ from the assumptions

GΣ ∪ {Θ, 〈γ×〉ψbxΣ | Θ ∈ LΣ}. We adjoin copies of the

derivation ρbxΣΣ to the derivation tree, linking each leaf in the

current approximation σ which is labelled as indicated, to the

root of a copy of ρbxΣΣ through an application of the rule DxΣ .

The above construction must terminate after finitely many

steps, basically as a consequence of the fact that the set S is

finite. Let ρ denote the pseudo-derivation that we arrive at in

this way, and let G be the set of assumptions of ρ that belong

to the set
⋃
{GΣ | Σ ∈ S}; clearly then we have that G♯ = A.

It is not difficult to verify that the pseudo-derivation ρ
satisfies the following conditions:

1) All leaves of ρ are labelled with an axiom, a sequent from

G, or else a sequent of the form Σ, 〈γ×〉ψb, where Σ ∈ S
and the annotation b is of the form b = axΣ1 · · · xΣk

, with

Σ1 = Ψ, Σ ∈ {Σ1, . . . ,Σk}, and the Σi are all distinct.

2) If a leaf l is labelled Σ, 〈γ×〉ψb, where b = axΣ1 · · · xΣk
,

then the path from the root r of ρ to l passes through

nodes r = t1, . . . , tk, in that order, such that (a) every tj
is either dangling or the conclusion of an application of

the clo-rule, and (b) the name xΣi
was introduced at the

successor of ti.
3) If t is a dangling node of ρ, labelled, say, with the

sequent Σ, 〈γ×〉ψb, and l is a leaf above t labelled with

Σ, 〈γ×〉ψc, then bxΣ is an initial segment of c.

Step by step we will now transform this pseudo-derivation

into a proper CloG-derivation. Clearly it suffices to prove that

we can turn any pseudo-derivation satisfying the conditions

1) – 3) into a pseudo-derivation that still satisfies mentioned

conditions, but has a smaller number of dangling nodes.

So let σ be such a pseudo-derivation, and pick a dangling

node, say, t, that has maximal distance to the root; this means
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in particular that there are no dangling nodes above t. Let t
and its successor be labelled with, respectively, the sequents

Σ, 〈γ×〉ψax and Σ, (ψ ∧ 〈γ〉〈γ×〉ψ)axxΣ , and let Lt be the set

of leaves above t that are labelled with a sequent of the form

Σ, 〈γ×〉ψb. Now make a case distinction.

If Lt is empty, the pseudo-derivation does not record a

proper circular dependency at t, so to speak. This is in fact

the simplest case: we obtain a pseudo-derivation σ′ from σ
by (a) replacing Dx with × as the rule applied at t, and (b)

simply erasing all occurrences of the name xΣ in the pseudo-

derivation above t.
If Lt is non-empty, consider an arbitrary leaf l in Lt, and

let Σ, 〈γ×〉ψbl be the sequent labelling l. It follows from

condition 3 that bl is of the form axxΣcl for some sequence

cl. Now, extend σ to σ′ by attaching a successor l′ to each

l ∈ Lt (so l′ is a leaf in σ′, but l is not), and label each such

l′ with the sequent Σ, 〈γ×〉ψaxxΣ , so that we may obtain the

sequent of l from that of l′ by applications of the expansion

rule. We then obtain the desired pseudo-derivation from σ′ by

discharging the assumption Σ, 〈γ×〉ψaxxΣ at every leaf l′ with

l ∈ Lt, and simultaneously changing the proof rule applied at

node t into a (now legitimate) application of the cloxΣ-rule.

In both cases it is not hard to verify that the structure σ′

is in fact a (pseudo-)derivation satisfying the clauses 1) – 3),

that the node t is not a dangling node of σ′, and that the

transformation of σ into σ′ has not created any new dangling

node.

Finally, as a result of these transformations we obtain, as

required, a CloG-derivation of the sequent Φ, 〈γ×〉ψ from the

collection of assumptions G for which we already saw that

G♯ = A.

This finishes the proof of Theorem 26, since the clo-rule

was the last rule to be considered in the induction step.

VI. SOUNDNESS AND COMPLETENESS VIA

TRANSFORMATIONS

We now prove the soundness and completeness of the proof

systems G (Theorem 10) and CloG (Theorem 12) as well

as the completeness of Par (Theorem 8). We do this using

the translations and transformations we introduced earlier. An

overview is given by the following diagram. Here, Clo is

the system from [16], and (LNF)
Ann, (LµNF)

Ann and (L2µNF)
Ann

denote, respectively, the sets of annotated formulas of LNF,

LµNF and L2µNF.

Par G
Thm 11
oo CloG

Thm. 15
oo CloM

Thm. 26
oo Clooo

LPar
nf(−)

// LNF
pa(−)
oo (LNF)

Ann
(−)•
oo

(−)♯
// (LµNF)

Ann
(−)t

// (L2µNF)
Ann

The completeness of CloG and G is obtained from the

completeness of CloM, and the fact that Proposition 25 implies

that the translation (−)♯ preserves validity over game models.

Hence for all ξ ∈ LNF we find (†)

|= ξ
Prop. 25
⇒ |= ξ♯

Thm. 20
⇒ CloM ⊢ ξ♯

Thm. 26
⇒ CloG ⊢ ξ

Thm. 15
⇒ G ⊢ ξ

From the completeness of G, we obtain the completeness

of Par as follows. For all ϕ ∈ LPar, we have

|= ϕ
Prop. 5
⇔ |= nf(ϕ)

(†)
⇒ G ⊢ nf(ϕ)

Thm 11(1)
⇒ Par ⊢ ϕ

To prove the soundness of G and CloG, let ξ ∈ LNF. We

then have,

CloG ⊢ ξ
Thm 15
⇒ G ⊢ ξ

Thm 11(2)
⇒ Par ⊢ pa(ξ)

By the soundness of Par, it follows that pa(ξ) is valid

over game models, and since pa(ξ) is equivalent with ξ by

Proposition 5, also ξ is valid over game models.

VII. CONCLUSION

In this paper we introduced two cut-free sequent calculi

for Parikh’s game logic and established their soundness and

completeness. From this result, we also obtained completeness

of the original Hilbert-style proof system for game logic. This

confirms a conjecture made by Parikh in [1]. The completeness

of these two systems was obtained by translating game logic

into the monotone µ-calculus, for which we also gave a

cut-free sequent calculus that we showed to be sound and

complete.

A. Discussion

Our proof makes essential use of ideas and results from

Afshari and Leigh’s paper [16]. In particular, the idea of

using the proof systems CloG and CloM to obtain cut-free

completeness is central here. An important reason that our

approach is possible is that these annotated proof systems

allow good control over the structure of proofs. In particular,

formal proofs in CloG and CloM only contain formulas that

are in the Fischer-Ladner closure of the formula at the root of

the proof. This means that if the root formula of an annotated

proof is the translation of a game logic formula, then indeed

the entire proof can in a sense be carried out within game

logic, modulo the translation. Also, the annotations provide a

powerful machinery for keeping track of unfoldings of fixpoint

formulas along traces in a proof tree. This is crucial in order

to decide where to apply the strengthened induction rule when

we construct cut-free sequent proofs from annotated ones.

B. Future research

Completeness for fixpoint logics is generally considered to

be difficult as witnessed by the long wait for a completeness

proof for the modal µ-calculus [14], [15] and game logic.

Our work demonstrates that the techniques from Afshari &

Leigh [16] can be transferred to other fixpoint logics, and we

expect that it is the beginning of a fruitful line of research into

cut-free complete proof systems for fixpoint logics.

More generally, we believe this approach can be used to

provide cut-free complete proof systems for coalgebraic µ-

calculi [20], [21], and for coalgebraic dynamic logics [22].

Also, there are many fragments of the modal µ-calculus that

could be studied by similar techniques. As one example, it

would be interesting to develop annotated proof systems for
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CTL∗, and see if this could help to simplify Reynold’s ax-

iomatization of CTL∗ [23]. It should also be checked whether

our proof can be adapted to provide a cut-free complete proof

system for PDL. An indication that this is possible is that the

deep rules in our system G are reminiscent of display calculi.

The latter have been successfully applied to obtain a complete

proof system for PDL [24].

Going the opposite direction, similar techniques could po-

tentially be applied to extensions of the µ-calculus, such

as the two-way µ-calculus [25], hybrid µ-calculus [26], and

alternating µ-calculus [7].

Finally, we would like to investigate applications of our cut-

free proof systems for game logic to prove interpolation.
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APPENDIX

A. Omitted proofs of Section II

Proposition 5 There are recursively defined, truth-preserving

translations
nf(−) : LFull → LNF

pa(−) : LFull → LPar

Below we give an explicit definition of the translations

nf(−) and pa(−), leaving it for the reader to check that

the translations land in the proper fragments and are truth-

preserving.

Translating from LPar to LNF is simply taking dual and

negation normal form.

Definition 27. We define the translation nf(−) : LFull → LNF

as follows:

nf(p) = p
nf(¬p) = ¬p
nf(¬¬ϕ) = nf(ϕ)
nf(¬(ϕ ∨ ψ)) = nf(¬ϕ) ∧ nf(¬ψ)
nf(¬(ϕ ∧ ψ)) = nf(¬ϕ) ∨ nf(¬ψ)
nf(¬〈γ〉ϕ) = 〈nf(γd)〉nf(¬ϕ)

nf(g) = g
nf(gd) = gd

nf((γd)d) = nf(γ)
nf((γ ⊔ δ)d) = nf(γd) ⊓ nf(δd)
nf((γ ⊓ δ)d) = nf(γd) ⊔ nf(δd)
nf((γ; δ)d) = nf(γd); nf(δd)
nf((γ∗)d) = nf(γd)×

nf((γ×)d) = nf(γd)∗

nf((ϕ?)d) = nf(¬ϕ)!
nf((ϕ!)d) = nf(¬ϕ)?

We translate from LNF to LPar by expanding demonic

operations as dual angelic ones.

Definition 28. We define the translation pa(−) : LFull → LPar
as follows:

pa(p) = p
pa(¬p) = ¬p
pa(ϕ ∧ ψ) = ¬(¬pa(ϕ) ∨ ¬pa(ψ)),
pa(ϕ ∨ ψ) = pa(ϕ) ∨ pa(ψ)
pa(〈γ〉ϕ) = 〈pa(γ)〉pa(ϕ)

pa(g) = g
pa(γd) = γd

pa(γ ⊔ δ) = pa(γ) ⊔ pa(δ)
pa(γ ⊓ δ) = (pa(γ)d ⊔ pa(δ)d)d,
pa(γ; δ) = pa(γ); pa(δ)
pa(γ∗) = pa(γ)∗

pa(γ×) = ((pa(γ)d)∗)d

pa(ϕ?) = pa(ϕ)?
pa(ϕ!) = ((¬pa(ϕ))?)d

B. Omitted proofs of Section III

1) Lemmas 14 and 34: We will work towards proving

Lemmas 14 and 34. To this end, we introduce some auxiliary

notions. For a ∈ N∗ and Γ ⊆ F×, let a↾Γ denote the

subsequence of a of all names x in a such that x ∈ Nϕ
for ϕ ∈ Γ. Similarly, for X ⊆ N we write a↾X to denote

the subsequence of a consisting of names from X . By minor

abuse of notation, we may write a ⊆ X to indicate that all

names occurring in a are in X .

We define the set S×(ϕ) ⊆ F×(ϕ) of surface level greatest

fixpoints of ϕ ∈ LNF as follows.

S×(p) = ∅

S×(¬p) = ∅

S×(ϕ ∧ ψ) = S×(ϕ) ∪ S×(ψ)

S×(ϕ ∨ ψ) = S×(ϕ) ∪ S×(ψ)

S×(〈γ〉ϕ) = S×(γ, ϕ) ∪ S×(ϕ)

S×(g, ϕ) = ∅

S×(gd, ϕ) = ∅

S×(γ∗, ϕ) = ∅

S×(γ×, ϕ) = {〈γ×〉ϕ}

S×(ψ?, ϕ) = S×(ψ)

S×(ψ!, ϕ) = S×(ψ)

S×(γ ⊔ δ, ϕ) = S×(γ, ϕ) ∪ S×(δ, ϕ)

S×(γ ⊓ δ, ϕ) = S×(γ, ϕ) ∪ S×(δ, ϕ)

S×(γ ; δ, ϕ) = S×(γ, 〈δ〉ϕ) ∪ S×(δ, ϕ)

In other words, S×(ϕ) are those 〈γ×〉ψ in

F×(ϕ) such that γ× is not a direct subterms of

another (angelic or demonic) iteration operator. For

example, S×(〈g× ;h×〉p) = {〈g×〉〈h×〉p, 〈h×〉p},
S×(〈g× ⊔ h×〉p) = {〈g×〉p, 〈h×〉p}, S×(〈(g×〉)∗p) = ∅,
and S×(〈(〈g×〉p?)×〉q) = {〈(〈g×〉p?)×〉q}. Note that

〈γ×〉ψ ∈ S×(ϕ) does not imply that 〈γ×〉ψ E ϕ.

Lemma 29. For all annotations a ∈ N∗, formulas ϕ ∈ LNF,

game terms γ ∈ GNF and X ⊆ N :

1) If a↾S×(ϕ) ⊆ X , then ϕa• = ϕa↾X•.

2) If a↾S×(γ,ϕ) ⊆ X , then β(γ, a, ϕ) = β(γ, a↾X , ϕ).

Proof. We prove the two claims by a mutual induction on the

subterm-relation, i.e., for any t ∈ LNF∪GNF the I.H. stipulates

that

• claim (1) holds for all formulas ψ such that ψ ⊳ t and

• claim (2) holds for all game terms δ such that δ ⊳ t.

For the first claim, the only interesting induction step is for

modal formulas 〈γ〉ϕ ∈ LNF. Suppose a↾S×(〈γ〉ϕ) ⊆ X .

We have S×(γ, ϕ) ⊆ S×(〈γ〉ϕ) and thus a↾S×(γ,ϕ) ⊆
a↾S×(〈γ〉ϕ) ⊆ X . By the induction hypothesis of (2) on γ
we get:

β(γ, a, ϕ) = β(γ, a↾X , ϕ)

Furthermore S×(ϕ) ⊆ S×(〈γ〉ϕ), so we have a↾S×(ϕ) ⊆ X .

So by the induction hypothesis of (1) on ϕ we get:

ϕa• = ϕa↾X•

Putting these observations together we get:

(〈γ〉ϕ)a• = 〈〈β(γ, a, ϕ)〉〉ϕa•

= 〈〈β(γ, a↾X , ϕ)〉〉ϕ
a↾X•

= 〈γ〉ϕa↾X•
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as required.

We now turn to the induction on game terms, for item

(2): the atomic cases for γ = g or γ = gd are trivial, and

the induction steps for ⊔,⊓ are straightforward. For compo-

sition suppose that S×(γ ; δ, ϕ) ⊆ X . Since S×(γ ; δ, ϕ) =
S×(γ, 〈δ〉ϕ) ∪ S×(δ, ϕ) we have a↾S×(γ,〈δ〉ϕ) ⊆ X and

a↾S×(δ,ϕ) ⊆ X . So the induction hypothesis on γ and δ gives:

β(γ ; δ, a, ϕ) = β(γ, a, 〈δ〉ϕ) ;β(δ, a, ϕ)

= β(γ, a↾X , 〈δ〉ϕ) ;β(δ, a↾X , ϕ)

= β(γ ; δ, a↾X , ϕ)

For angelic tests, suppose that a↾S×(ψ?,ϕ) ⊆ X . Since

S×(ψ?, ϕ) = S×(ψ) ∪ S×(ϕ) we get a↾S×(ψ) ⊆ X . Using

the induction hypothesis of (1) on the formula ψ, we now get:

β(ψ?, a, ϕ) = ψa•?

= ψa↾X•?

= β(ψ?, a↾X , ϕ)

The reasoning for ! is the same.

The induction step for ∗ is trivial since β(γ∗, a, ϕ) = γ∗ for

any annotation a. Finally, the induction step for × is handled

as follows: suppose that a↾S×(γ×,ϕ) ⊆ X . Let x1, . . . , xn be

all the names in a for the fixpoint 〈γ×〉ϕ. Since S×(γ×, ϕ) =
{〈γ×〉ϕ}, this means that X contains x1, . . . , xn, and so these

are also all the names for 〈γ×〉ϕ in a↾X . From this it is

immediate from the definition of β(−,−,−) that:

β(γ×, a, ϕ) = β(γ×, a↾X , ϕ)

as required.

Lemma 30. For all δ, γ ∈ GNF and ϕ, ψ ∈ LNF:

1) If 〈δ×〉ψ ∈ S×(ϕ) then δ× ⊳ ϕ.

2) If 〈δ×〉ψ ∈ S×(γ, ϕ) then δ× E γ.

Proof. By a mutual induction on ϕ and γ The easy argument

is left to the reader.

Lemma 31. For all annotations a ∈ N∗, γ ∈ GNF, ϕ ∈ LNF

and ◦ ∈ {×, ∗}, if a 4 〈γ◦〉ϕ then β(γ, a, 〈γ◦〉ϕ) = γ.

Proof. By Lemma 29 (taking X = S×(γ, 〈γ◦〉ϕ)), we

have that β(γ, a, 〈γ◦〉ϕ) = β(γ, a↾S×(γ,〈γ◦〉ϕ), 〈γ
◦〉ϕ). Hence,

it suffices to show that a↾S×(γ,〈γ◦〉ϕ) = ε, because

β(γ, ε, 〈γ◦〉ϕ) = γ.

So let x ∈ N〈δ×〉ψ be a name occurring in a. By the

assumption that a 4 〈γ◦〉ϕ, it follows that 〈δ×〉ψ 4 〈γ◦〉ϕ,

i.e., γ◦Eδ× and hence γ⊳δ×, so it is not the case that δ×Eγ.

By Lemma 30(2) this entails that 〈δ×〉ψ /∈ S×(γ, 〈γ◦〉ϕ). We

have therefore shown that a↾S×(γ,〈γ◦〉ϕ) = ε, which concludes

the proof.

We denote by C(ϕ), the number of occurrences of the

demonic iteration symbol × in the formula ϕ ∈ LNF. A

precise, inductive definition is left to the reader.

Lemma 32. For all ϕ, ψ ∈ LNF and γ ∈ GNF:

1) If ψ ∈ S×(ϕ) then C(ψ) ≤ C(ϕ).

2) If ψ ∈ S×(γ, ϕ) then C(ψ) ≤ C(γ) + C(ϕ)

Proof. The two items can be proved by a straightforward

mutual induction on the complexity of game terms γ and

formulas ϕ.

Lemma 33. Consider a sequence a = bx1 . . . xn where

x1, . . . , xn are all the names of a fixpoint 〈γ×〉ϕ. Then we

have that ϕb• = ϕa•

Proof. First, we observe that ϕa• = ϕa↾
S×(ϕ)•. This is an

instance of Lemma 29, if we take X to be the set of all

names associated with a fixpoint in S×(ϕ). It therefore suffices

to prove that x1, . . . , xn do not appear in a↾S×(ϕ). Since

x1, . . . , xn are all the names for 〈γ×〉ϕ, it suffices to prove

〈γ×〉ϕ /∈ S×(ϕ). By Lemma 32(1), 〈γ×〉ϕ ∈ S×(ϕ) would

imply that C(〈γ×〉ϕ) ≤ C(ϕ), which is clearly impossi-

ble.

We are now ready to prove Lemma 14.

Proof of Lemma 14 For item (2), we apply the definition of

the bullet translation to obtain:

(〈γ×〉ϕ)
a•

= 〈〈β(γ×, a, ϕ)〉〉ϕa•

= 〈(χ! · γ
←−−−

)×〉〈〈χ!
←−
〉〉ϕa•

The result now follows since ϕa• = ϕb•, by Lemma 33.

For item (3), we apply the bullet translation again to get:

(ϕ ∧ 〈γ〉〈γ×〉ϕ)
a•

= ϕa• ∧ 〈〈β(γ, a, 〈γ×〉ϕ)〉〉〈〈β(γ×, a, ϕ)〉〉ϕa•

= ϕa• ∧ 〈〈β(γ, a, 〈γ×〉ϕ)〉〉〈(χ! · γ
←−−−

)×〉〈〈χ!
←−
〉〉ϕa•

= ϕb• ∧ 〈〈β(γ, a, 〈γ×〉ϕ)〉〉〈(χ! · γ
←−−−

)×〉〈〈χ!
←−
〉〉ϕb•

where for the last step we used Lemma 33 again. By

Lemma 31, we get β(γ, a, 〈γ×〉ϕ) = γ, and so we are done.

We also need the following simpler analogue of Lemma 14

for least fixpoints.

Lemma 34. For a least fixpoint formula 〈γ∗〉ϕ ∈ F ∗ and an

annotation a 4 〈γ∗〉ϕ, we have

(ϕ ∨ 〈γ〉〈γ∗〉ϕ)a• = ϕa• ∨ 〈γ〉〈γ∗〉ϕa•. (4)

Proof. We use the definition of the bullet translation to com-

pute as follows:

(ϕ ∨ 〈γ〉〈γ∗〉ϕ)a• = ϕa• ∨ 〈β(γ, a, 〈γ∗〉ϕ)〉〈β(γ∗, a, ϕ)〉ϕa•

= ϕa• ∨ 〈β(γ, a, 〈γ∗〉ϕ)〉〈γ∗〉ϕa•

By Lemma 31 we get β(γ, a, 〈γ∗〉ϕ) = γ, and so we are

done.

15



2) Missing cases in Theorem 15: We now give more details

for the translation of some of the rules from CloG to G in the

proof of Theorem 15.

For the weakening rule this is trivial. The case of Ax1:

Φ = pε, pε is also immediate as Φ• = p, p which is an instance

of Ax. Equally straightforward to translate are the CloG rules

dealing with the Boolean and the (basic) modal operators. Here

one simply has to observe that these connectives commute

with the bullet translation. Concerning the rules for tests and

for angelic and demonic choice we consider only the demonic

choice operator in detail and leave the other similar cases to

the reader. Suppose we derive Φ, (〈γ ⊓ δ〉ϕ)a within the CloG

proof π via an application of the ⊓-rule. The translation of the

assumption of the rule is Φ•, (〈γ〉ϕ)a•∧(〈δ〉ϕ)a•. Spelling out

the details of the bullet translation, this can be rewritten as

Φ•, 〈〈β(γ, a, ϕ)〉〉ϕa• ∧ 〈〈β(δ, a, ϕ)〉〉ϕa•. From here we obtain

the following G derivation steps:

Φ•, 〈〈β(γ, a, ϕ)〉〉ϕa• ∧ 〈〈β(δ, a, ϕ)〉〉ϕa•

(*)
Φ•, 〈β(γ, a, ϕ)〉ϕa• ∧ 〈β(δ, a, ϕ)〉ϕa•

⊓
Φ•, 〈β(γ ⊓ δ, a, ϕ)〉ϕa•

where (*) possibly involves applying the ;d-rule multiple

times. It is easy to see that the conclusion of the G derivation

is equal to Φ•, (〈γ ⊓ δ〉ϕ)a• as required.

To see how to deal with the ∗-rule consider an application

of the rule in π of the form

Φ, (ϕ ∨ 〈γ〉〈γ∗〉ϕ)a
∗

Φ, (〈γ∗〉ϕ)a

The premise of this rule translates to Φ•, ϕa• ∨ 〈γ〉〈γ∗〉ϕa• -

this can be seen using Lemma 34 and the side condition of the

∗-rule. An application of the ∗-rule in G yields Φ•, 〈γ∗〉ϕa•

which in turn equals Φ•, (〈γ∗〉ϕ)a• as required.

For the × rule consider a rule application

Φ, (ϕ ∧ 〈γ〉〈γ×〉ϕ)a
×

Φ, (〈γ×〉ϕ)a

By the side condition of the ×-rule we can assume that a is of

the form bx1 . . . xn where x1 . . . xn are all the names of 〈γ×〉ϕ
occurring in a. Applying Lemma 14 we get that the premise

of the rule translates to Φ•, ϕb• ∧ 〈〈γ〉〉〈(χ! · γ
←−−−

)×〉〈〈χ!
←−
〉〉ϕb•

where ~χ consists of the context sequents as in previous cases.

Consider now the following G derivation steps:

Φ•, ϕb• ∧ 〈〈γ〉〉〈(χ! · γ
←−−−

)×〉〈〈χ!
←−
〉〉ϕb•

;d
Φ•, ϕb• ∧ 〈γ〉〈(χ! · γ

←−−−
)×〉〈〈χ!

←−
〉〉ϕb•

Mon
g
d, Monfd

Φ•, 〈〈χ!
←−
〉〉ϕb• ∧ 〈χ! · γ

←−−−
〉〈(χ! · γ
←−−−

)×〉〈〈χ!
←−
〉〉ϕb•

×
Φ•, 〈(χ! · γ

←−−−
)×〉〈〈χ!

←−
〉〉ϕb•,

where the double line indicates multiple applications of

the deep monotonicity rules. Observe now that the con-

clusion Φ•, 〈(χ! · γ
←−−−

)×〉〈〈χ!
←−
〉〉ϕb•, is by Lemma 14 equal to

Φ•, (〈γ×〉ϕ)
a•

as required.

C. Omitted proofs of Section IV

This part of the appendix contains definitions and lemmas

that lead up to a detailed proof of Theorem 20.

First, we translate monotone µ-calculus into normal µ-

calculus by extending the translation from [6], [19] of mono-

tonic modal logic into normal bimodal logic. More precisely,

we define the language L2µNF to be the set of modal µ-calculus

formulas over the set of labels L = {gN | g ∈ G0}∪{g∋ | g ∈
G0} defined in the usual way, and interpret L2µNF over Kripke

models that have an accessibility relation for each label in L.

We define the translation (−)t : LµNF → L
2µ
NF follows:

• pt = pt and (¬p)t = ¬p.

• For Boolean connectives: compositionally.

• (µx.A)t = µx.(At) and (νx.A)t = νx.(At),
• (〈g〉A)t = 〈gN〉[g∋](At),
• (〈gd〉A)t = [gN ]〈g∋〉(At).

Proof of Lemma 19 Item 1) Given a game model S =
(S,E, V ) we construct a Kripke model St for L2µNF with state

space S ∪ ℘(S) and valuation V ′(p) = V (p), by taking

RgN = {(s, U) ∈ S × ℘(S) | U ∈ Eg(s)},
Rg∋ = {(U, s) ∈ ℘(S)× S | s ∈ U}.

It is straightforward to show by induction that for all s ∈ S
and all C ∈ LµNF: s ∈ JCKS iff s ∈ JCtKS. It follows that (−)t

preserves satisfiability.

Item 2) Given a Kripke L2µNF- model K with state space W
and valuation V , we can construct a game model Km with the

same state space and valuation, and by defining for g ∈ G0 an

effectivity function Eg by

Eg(Z) = {w ∈ W | ∃v ∈ W (wRgN v and Rg∋ [v] ⊆ Z)}.

It is again routine to show that for all Kripke models K and

for all C ∈ LµNF, we have: JCKKm = JCtKK.

From this it follows that if C is valid over game models

(for LµNF) then Ct is valid over Kripke models (for L2µNF).

We will now show how to transform derivations from the

system Clo [16] into CloM using the translation (−)t.

Lemma 35. For all C ∈ LµNF, if Clo ⊢ Ct then CloMC ⊢ C.

Proof. Given a Clo-proof π for Ct, we shall construct step by

step a tree rooted at a node labelled C in which every edge

is labelled by a proof rule of CloMC , every node is labelled

by a sequent or an expression [Γ]x marking the sequent Γ as

a discharged assumption. We also construct a map h sending

each node in the tree to some node in the proof tree π, such

that the label of h(u) is Γt if the label of u is Γ. Here, we

are extending the translation (−)t to annotated sequents in the

obvious way. Rather than performing an induction on the size

of proofs, the construction will simply proceed from the root

up, and will be carried out in such a way that the end result

will clearly be a CloMC -proof.

We start by creating a root node labelled with Cε and letting

h map this node to the root of the proof tree π. Whenever we

create a node in the construction that is mapped via h to a
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discharged assumption [Γt]x, we make sure to label that node

by the discharged assumption [Γ]x. Note that we can always

assume that for each A in the label of h(l), there is at most

one B in the label of l with Bt = A. (Otherwise, we just

apply the weakening rule.)

Now, given that we have constructed the tree up to some

point, but we do not yet have a proper CloMC-proof, we pick

a leaf l of the tree that is not a discharged assumption and not

an axiom of CloMC , and continue the construction by a case

distinction. Most of the cases are handled in a trivial manner,

and we only give two examples of the easy cases: if the leaf l is

mapped to a node h(l) labelled Γ, νx.Aa, and is the conclusion

to an instance of the ν-clox-rule with premise Γ, A(νx.A)a,

then there must be some Ψ, B such that Ψt = Γ, B = A and

l is labelled Ψ, νx.B. We add a new child of l which we label

Ψ, B(νx.B)ax. We let h map this child to the premise of h(l),
and label the edge by the rule ν-clox. For another example,

if the leaf l is mapped to h(l) labelled Γ, A ∧ B, and is the

conclusion to an instance of the ∧-rule with premises Γ, A
and Γ, B, then l must be labelled Ψ, C ∧ D where Ψt = Γ,

Ct = A and Dt = B. We add two new children of l which

we label Ψ, C and Ψ, D respectively. We extend the map h by

sending each child to its corresponding premise, and labelling

the edges by the ∧-rule.

The only non-trivial case is when the node h(l) is

a conclusion to an instance of the modal rule. This

is only possible if h(l) has a label of the form

〈gN 〉[g∋]A1, ..., 〈gN 〉[g∋]An, [gN ]〈g∋〉B, where l is labelled

with the sequent 〈g〉C1, ..., 〈g〉Cn, 〈g
d〉D and Ct1 =

A1, ..., C
t
n = An, Dt = B. By inspection of the rules of

Clo, and assuming that n ≥ 2 (since the other case is easier),

we can see that the subtree of the proof π rooted at the node

h(l) must have the following shape, since these are the only

rules that are applicable:

...

Ai, B
mod

[g∋]Ai, 〈g∋〉B
weak

[g∋]A1, ..., [g∋]An, 〈g∋〉B
mod

〈gN 〉[g∋]A1, ..., 〈gN 〉[g∋]An, [gN ]〈g∋〉B

for some i ∈ {1, ..., n}. We thus continue the construction as

follows:

Ci, D
mod

〈g〉Ci, 〈gd〉D
weak

〈g〉C1, ..., 〈g〉Cn, 〈gd〉D

Finally, we extend the map h by sending the new leaf labelled

Ci, D to the node in the previous figure labelled Ai, B.

Lemma 36. For all C ∈ LµNF, if CloM ⊢ C then Clo ⊢ Ct.

Proof. The proof is very similar to the proof of Lemma 35

above. In this case –again starting from the root– we turn a

CloMC -proof π of a given formula C ∈ LµNF into a corre-

sponding Clo-proof of Ct. Unlike in the proof of Lemma 35

we only sketch the construction. First we note that all cases of

non-modal rules are even easier than in the proof of Lemma

35 as the non-modal CloMC -rules are instances of Clo-rules.

For the modal case suppose that we have constructed

a partial Clo-proof of Ct with a leaf labelled with

(〈g〉D1)
t, (〈gd〉D2)

t and that the corresponding node in the

CloMC -proof π labelled with 〈g〉D1, 〈gd〉D2 has been derived

via an application of the modal rule:

...

D1, D2
mod

〈g〉D1, 〈gd〉D2

By definition we have (〈g〉D1)
t = 〈gN 〉[g∋]D

t
1 and

(〈gd〉D2)
t = [gN ]〈g∋〉Dt

2. Therefore we can extend the Clo-

proof of Ct as follows:

Dt
1, D

t
2

mod
[g∋]D

t
1, 〈g∋〉D

t
2

mod
〈gN 〉[g∋]Dt

1, [gN ]〈g∋〉D
t
2

This finishes the proof sketch.

Proof of Theorem 20 Soundness: Let C ∈ LµNF, such that

CloM ⊢ C. Then by Lemma 36, Clo ⊢ Ct and hence by the

soundness of Clo it follows that Ct is valid on all Kripke

models for L2µNF. Suppose now that C would not be valid in

all game models, i.e., there is a game modelM and a state w
in M such thatM, w � C . Since (−)t preserves satisfiability

(Lemma 19(1)), it follows that C
t

is satisfiable in a Kripke

model for L2µNF. Finally, since C
t

is equivalent with Ct this

would imply that Ct is not valid, a contradiction.

Completeness: Assume that C is valid over game models.

Then by Lemma 19(2), Ct is valid over Kripke models for

L2µNF. From the completeness of Clo [16], it follows that Clo ⊢
Ct, and hence by Lemma 35 that CloM ⊢ C.

D. Omitted proofs of Section V

1) Proof of Proposition 24: This part of the appendix

contains a detailed proof for Proposition 24, which summarises

the most important properties of our translation from game

logic into the monotone µ-calculus.

We address the claims in the proposition with separate

lemmas. The first of this lemmas entails that xϕ ∈ Var(ξ♯)
for all ϕ ∈ F (ξ):

Lemma 37.

1) For all game logic formulas ϕ, ψ: If ψ ∈ F (ϕ) then

xψ ∈ Var(ϕ♯).
2) For all game logic formulas χ, ψ and games γ: If ψ ∈

F (γ, χ) then xψ ∈ Var(τχγ (χ
♯)).

Proof. Both items are are proven with a mutual induction over

the complexity of the formula ϕ and of the game term γ.
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Base case (1): If ϕ is of the form p or ¬p, then F (ϕ) = ∅,
hence (1) holds trivially. Base case (2): Similarly, if γ is is of

the form g or gd, then F (γ, ϕ) = ∅, hence (2) holds trivially.

Induction hypotheses: Assume (1) holds for all formulas

that are proper subterms of ϕ or γ. Assume (2) holds for all

games that are proper subterms of ϕ or γ.

Induction step (1): Suppose ϕ = ϕ1 ∨ ϕ2. We then have

that F (ϕ) = F (ϕ1) ∪ F (ϕ2). Let i ∈ {1, 2} and assume

ψ ∈ F (ϕi) then by IH for (1), we have xψ ∈ Var(ϕ♯i) and

hence xψ ∈ Var(ϕ♯) = Var(ϕ♯1) ∪ Var(ϕ♯2).
The argument for ϕ = ϕ1 ∧ ϕ2 is similar.

Suppose now ϕ = 〈δ〉ϕ0. We then have F (ϕ) = F (δ, ϕ0)∪
F (ϕ0). For all ψ ∈ F (ϕ0), we have by the IH for (1) that xψ ∈
Var(ϕ♯0), and since ϕ♯0 is a subterm of (〈δ〉ϕ0)

♯ = τϕ0

δ (ϕ♯0),

it follows that Var(ϕ♯0) ⊆ Var(ϕ♯). For all ψ ∈ F (δ, ϕ0), we

have by the IH for (2) that xψ ∈ Var(τϕ0

δ (ϕ♯0)) = Var(ϕ♯).

Induction step (2): Let χ be an arbitrary game logic formula.

Suppose that γ = γ1⊔γ2. We then have F (γ, χ) = F (γ1, χ)∪
F (γ2, χ). Let i ∈ {1, 2} and assume that ψ ∈ F (γi, χ).
Then by IH for (2), we have that xψ ∈ Var(τχγi(χ

♯)) ⊆
Var(τχγ1(χ

♯) ∨ τχγ2(χ
♯)) = Var(τχγ (χ

♯)). The case for γ =
γ1 ⊓ γ2 is similar.

Suppose γ = γ1 ; γ2. We then have F (γ, χ) =
F (γ1, 〈γ2〉χ) ∪ F (γ2, χ). If ψ ∈ F (γ1, 〈γ2〉χ), then by

IH for (2), we have that xψ ∈ Var(τ
〈γ2〉χ
γ1 ((〈γ2〉χ)♯)) =

Var(τχγ1;γ2(χ
♯)). If ψ ∈ F (γ2, χ), then by IH for (2), we

have that xψ ∈ Var(τχγ2(χ
♯)) ⊆ Var(τ

〈γ2〉χ
γ1 (τχγ2(χ

♯))) =
Var(τχγ1;γ2(χ

♯)).
Suppose γ = δ∗. We then have F (γ, χ) = {〈δ∗〉χ} ∪

F (δ, 〈δ∗〉χ). If ψ = 〈δ∗〉χ, we use that τχδ∗(χ
♯) =

µx〈δ
∗〉χ.χ♯ ∨ τ

〈δ∗〉χ
δ (x〈δ

∗〉χ) and hence xψ = x〈δ
∗〉χ ∈

Var(τχδ∗(χ
♯)). If ψ ∈ F (δ, 〈δ∗〉χ), then by IH for (2), we

have that xψ ∈ Var(τ
〈δ∗〉χ
δ ((〈δ∗〉χ)♯)). It therefore suffices

to show that Var(τ
〈δ∗〉χ
δ ((〈δ∗〉χ)♯)) ⊆ Var(τχδ∗(χ

♯)) =

Var(µx〈δ
∗〉χ.χ♯∨τ

〈δ∗〉χ
δ (x〈δ

∗〉χ)). Since the context τ
〈δ∗〉χ
δ (−)

occurs on both sides of the inclusion, it suffices to show

that Var((〈δ∗〉χ)♯) ⊆ Var(τχδ∗(χ
♯)), and this holds since

(〈δ∗〉χ)♯ = τχδ∗(χ
♯).

Suppose γ = ϕ?. By IH for (1) it follows that xψ ∈
Var(ϕ♯). Since τχϕ?(χ

♯) = ϕ♯ ∨ χ♯, we have that xψ ∈

Var(τχϕ?(χ
♯)).

The case for γ = ϕ! is similar.

To show that ξ♯ is locally well-named and that xϕ ≤ξ♯ x
ψ

implies ϕ 4 ψ we prove a series of lemmas leading to the

central property from Lemma 43 below.

Lemma 38. For all game logic formulas ϕ, all games γ and

all µ-calculus formulas A, we have that FVar(τϕγ (A)) ⊆
FVar(A), i.e., all free variables in τϕγ (A), occur free in A.

Proof. The proof is a simple induction on the complexity of

γ in the recursive clauses defining τϕγ (A).

Definition 39. A call triple is a triple (γ, ϕ,A) where γ is a

game term, ϕ is a game logic formula and A is a formula of

the monotone µ-calculus. The set of call triples is denoted by

CTr.

Definition 40. Given a game logic formula ξ, the set of

recursive calls of τ on ξ, denoted Cξ , is the least fixpoint of

the monotone map cξ : P(CTr) → P(CTr) defined by setting

t ∈ cξ(X), for X ⊆ CTr, iff:

• t = (γ, ϕ, ϕ♯) for some subformula 〈γ〉ϕ of ξ, or

• t is of the form (γ, ϕ,A) or (γ′, ϕ, A) where (γ ⊔
γ′, ϕ, A) ∈ X , or

• t is of the form (γ, ϕ,A) or (γ′, ϕ, A) where (γ ⊓
γ′, ϕ, A) ∈ X , or

• t is of the form (γ, 〈γ×〉ϕ, x〈γ
×〉ϕ) and there exists some

A for which (γ×, ϕ, A) ∈ X ,

• t is of the form (γ, 〈γ∗〉ϕ, x〈γ
∗〉ϕ) and there exists some

A for which (γ∗, ϕ, A) ∈ X ,

• t is of the form (γ′, ϕ, A) or (γ, 〈γ′〉ϕ, τγ
′

ϕ (A)) for some

γ, γ′, ϕ and A such that ((γ ; γ′), ϕ, A) ∈ X .

Lemma 41. Let ξ be a game logic formula and let ηx〈δ
◦〉ϕ.B

be a subformula of ξ♯. Then there exists some A such that

ηx〈δ
◦〉ϕ.B = τϕδ◦(A)

and, furthermore, (δ◦, ϕ, A) ∈ Cξ .

Proof. We show with mutual induction on the complexity on

subformula ψ of ξ and game terms γ occurring in ξ that

1) If ηx〈δ
◦〉ϕ.B is a subformula of ψ♯ then there exists

some A such that ηx〈δ
◦〉ϕ.B = τδ

◦

ϕ (A) and, furthermore,

(δ◦, ϕ, A) ∈ Cξ .

2) If ηx〈δ
◦〉ϕ.B is a subformula of τχγ (D) and (γ, χ,D) ∈

Cξ then it is either a subformula of D or there exists

some A such that ηx〈δ
◦〉ϕ.B = τδ

◦

ϕ (A) and, furthermore,

(δ◦, ϕ, A) ∈ Cξ .

In the inductive argument we distinguish the following cases:

• In the base case we have that either ψ = p, ψ = ¬p,

γ = g or γ = gd. The inductive claims are trivially

satisfied for all of these cases because ηx〈δ
◦〉ψ.B is not

a subformula of either ψ♯ or of τχγ .

• If ψ = χ1 ∧ χ2 or ψ = χ1 ∨ χ2 and ηx〈δ
◦〉ϕ.B is a

subformula of ψ♯ then ηx〈δ
◦〉ϕ.B is already a subformula

of χ♯i for some i ∈ {1, 2}. It follows from (1) in the

inductive assumption for χi that there is some A such

that ηx〈δ
◦〉ϕ.B = τδ

◦

ϕ (A) and that (δ◦, ϕ, A) ∈ Cξ . This

is already the inductive claim we needed to show.

• Consider the case where ψ = 〈γ〉χ and assume that

ηx〈δ
◦〉ϕ.B is a subformula of ψ♯ = τχγ (χ

♯). Because

〈γ〉χ is a subformula of ξ it follows from the definition

of Cξ that (γ, χ, χ♯) ∈ Cξ. We can thus apply (2) from

inductive hypotheses to γ to obtain that either ηx〈δ
◦〉ϕ.B

is a subformula of χ♯ or there exists some A such that

ηx〈δ
◦〉ϕ.B = τδ

◦

ϕ (A) and (δ◦, ϕ, A) ∈ Cξ . In the latter

case we are done and in the former we can apply (1)

from the inductive hypothesis to the subformula χ of ψ
and obtain the required properties as well.

• For the cases where γ = γ1 ⊓ γ2 or γ = γ1 ⊔ γ2
assume that ηx〈δ

◦〉ϕ.B is a subformula of τχγ (D) and
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that (γ, χ,D) ∈ Cξ. From the former it follows then

that ηx〈δ
◦〉ϕ.B is already a subformula of τχγi(D) for

some i ∈ {1, 2}. From the latter it follows with the

closure conditions of Cξ that (γi, χ,D) ∈ Cξ . We can

thus immediately apply (2) of the inductive hypothesis

for the respective γi to obtain the required property.

• The interesting case is where γ = ρ◦ with ◦ ∈ {∗,×}.
We only consider the case where ◦ = ∗. Assume that

(ρ∗, χ,D) ∈ Cξ and that ηx〈δ
◦〉ϕ.B is a subformula of

τχρ∗(D) = µx〈ρ
∗〉χ.D ∨ τ 〈ρ

∗〉ϕ
ρ (x〈ρ

∗〉χ).

There are three possibilities how the latter might be the

case.

First, ηx〈δ
◦〉ϕ.B might be equal to τχρ∗(D). In that case

ηx〈δ
◦〉ϕ.B is of the required shape and (ρ∗, χ,D) ∈ Cξ

holds by assumption.

Second, it might be that ηx〈δ
◦〉ϕ.B is a subformula of D,

in which case we are done immediately.

Third and last, ηx〈δ
◦〉ϕ.B might be a subformula of

τ
〈ρ∗〉χ
ρ (x〈ρ

∗〉χ). In that case we can apply (2) of the

inductive hypothesis to ρ because (ρ, 〈ρ∗〉χ, x〈ρ
∗〉χ) ∈ Cξ

follows from the assumption that (ρ∗, χ,D) ∈ Cξ to-

gether with the closure conditions from the definition

of Cξ . Hence, it follows that either ηx〈δ
◦〉ϕ.B is a

subformula of x〈ρ
∗〉χ, which is impossible, or that there is

some A such that ηx〈δ
◦〉ϕ.B = τδ

◦

ϕ (A) and, furthermore,

(δ◦, ϕ, A) ∈ Cξ . . The latter is exactly what we have to

show.

• For the case where γ = γ1 ; γ2 assume that ηx〈δ
◦〉ϕ.B

is a subformula of τχγ1 ; γ2(D) = τ
〈γ2〉χ
γ1 (τχγ2(D)) and

that (γ1 ; γ2, χ,D) ∈ Cξ . From the latter it follows

with the definition of Cξ that (γ1, 〈γ2〉χ, τχγ2(D)) ∈ Cξ.
Hence, we can apply (2) of the induction hypothesis to

γ1 and obtain that either ηx〈δ
◦〉ϕ.B is already of the

required shape or it is a subterm of τχγ2(D). In the latter

case we can use the fact that (γ2, χ,D) ∈ Cξ , which

also follows from (γ1 ; γ2, χ,D) ∈ Cξ , to apply the

induction hypothesis again, this time to γ2, and obtain

that ηx〈δ
◦〉ϕ.B is either of the required shape or that it is

a subterm of D. This is precisely what we need to show.

• Of the cases where γ = α? or γ = α! we just consider the

former because the latter goes analogously. Assume that

ηx〈δ
◦〉ϕ.B is a subformula of τχα?(D) = α♯ ∨D and that

(α?, χ,D) ∈ Cξ . The former means that ηx〈δ
◦〉ϕ.B is

either a subformula of D, in which case we are done, or it

is a subformula of α♯. But if ηx〈δ
◦〉ϕ.B is a subformula of

α♯ we can apply (1) to the subformula α of ξ to conclude

that ηx〈δ
◦〉ϕ.B must be of the required shape.

Lemma 42. Let ξ be a game logic formula, let (γ, ϕ,A) be

a recursive call of τ on ξ and let x〈δ
◦〉ψ be a bound variable

of ξ♯. If x〈δ
◦〉ψ is free in A, then γ is a proper subterm of δ◦.

Proof. We prove this by least fixpoint induction: let X be

the set of all call triples (γ, ϕ,A) such that, for every bound

variable x〈δ
◦〉ψ of ξ♯ such that x〈δ

◦〉ψ is free in A, we have

that γ is a strict subterm of δ. We show that cξ(X) ⊆ X ,

hence Cξ ⊆ X as required.

So suppose that the triple t is in cξ(X). We make a case

distinction:

• t = (γ, ϕ, ϕ♯) for some subformula 〈γ〉ϕ of ξ. Then

t ∈ X since no bound variable of ξ appears free in ϕ♯,
which means that the defining condition of the set X
holds trivially.

• t is of the form (γ, ϕ,A) or (γ′, ϕ, A) where (γ ⊔
γ′, ϕ, A) ∈ X . Given a bound variable x〈δ

◦〉ψ of ξ♯ such

that x〈δ
◦〉ψ is free in A, since (γ ⊔ γ′, ϕ, A) ∈ X it

follows that γ ⊔ γ′ is a proper subterm of δ◦. So clearly

this also holds for both γ and γ′. Hence (γ, ϕ,A) ∈ X
and (γ′, ϕ, A) ∈ X as required.

• The case where t is of the form (γ, ϕ,A) or (γ′, ϕ, A)
for (γ ⊓ γ′, ϕ, A) ∈ X is similar.

• Suppose t is of the form (γ, 〈γ×〉ϕ, x〈γ
×〉ϕ) and there

exists some A for which (γ×, ϕ, A) ∈ X . Given a bound

variable x〈δ
◦〉ψ of ξ♯, the only possible way that x〈δ

◦〉ψ

can appear free in x〈γ
×〉ϕ is if x〈δ

◦〉ψ = x〈γ
×〉ϕ, so

〈δ◦〉ψ = 〈γ×〉ϕ and therefore δ◦ = γ×. Since γ is

a proper subterm of γ×, this means that the required

conclusion holds.

• The case where t is of the form (γ, 〈γ∗〉ϕ, x〈γ
∗〉ϕ) is

similar.

• Suppose t is of the form (γ′, ϕ, A) for some γ, γ′, ϕ
and A such that ((γ ; γ′), ϕ, A) ∈ X . If x〈δ

◦〉ψ is a

bound variable of ξ♯ that appears free in A, then since

((γ ; γ′), ϕ, A) ∈ X it follows that γ ; γ′ is a proper

subterm of δ◦. Hence, so is γ′.
• Finally, suppose t is of the form (γ, 〈γ′〉ϕ, τγ

′

ϕ (A)) for

some γ, γ′, ϕ and A such that ((γ ; γ′), ϕ, A) ∈ X . If

x〈δ
◦〉ψ is a bound variable of ξ♯ that appears free in

τγ
′

ϕ (A), then by Lemma 38 x〈δ
◦〉ψ appears free in A as

well. Since ((γ ; γ′), ϕ, A) ∈ X it follows that γ ; γ′ is a

proper subterm of δ◦, hence so is γ.

We have shown that t ∈ cξ(X) implies t ∈ X , so the proof is

finished.

Lemma 43. Let ξ be a game logic formula and 〈γ◦〉ϕ, 〈δ†〉ψ ∈
F (ξ), where ◦, † ∈ {∗,×}. If x〈δ

†〉ψ <−
ξ♯
x〈γ

◦〉ϕ then 〈δ†〉ψ ≺
〈γ◦〉ϕ.

Proof. We consider the case that γ◦ = γ×. The case where

◦ = ∗ is similar.

Assume that the variable x〈δ
†〉ψ is free in some subformula

νx〈γ
×〉ϕ.B of ξ♯. By Lemma 41, there exists some A such

that

νx〈γ
×〉ϕ.B = τγ

×

ϕ (A)

and furthermore, (γ×, ϕ, A) ∈ Cξ . But we have:

τϕ
γ×(A) = νx〈γ

×〉ϕ.A ∧ τ 〈γ
×〉ϕ

γ (x〈γ
×〉ϕ),

so

νx〈γ
×〉ϕ.B = νx〈γ

×〉ϕ.A ∧ τ 〈γ
×〉ϕ

γ (x〈γ
×〉ϕ),
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so the variable x〈δ
†〉ψ must occur freely in either A or

in τ
〈γ×〉ϕ
γ (x〈γ

×〉ϕ). If the variable x〈δ
†〉ψ occurs freely in

τ
〈γ×〉ϕ
γ (x〈γ

×〉ϕ) then by Lemma 38, 〈γ×〉ϕ = 〈δ†〉ψ, hence

x〈γ
×〉ϕ = x〈δ

†〉ψ. But this contradicts our assumption that

x〈δ
†〉ψ <−

ξ♯
x〈γ

×〉ϕ, since <−
ξ♯

is an irreflexive relation.

So the only possibility is that x〈δ
†〉ψ occurs freely in A.

Since (γ×, ϕ, A) ∈ Cξ was a recursive call of τ on ξ, it

follows from Lemma 42 that γ× is a proper subterm of δ†.

Hence 〈δ†〉ψ ≺ 〈γ×〉ϕ as required.

Proof of Proposition 24 From Lemma 43 it follows that ξ♯ is

locally well-named: If ξ♯ was not locally well-named then the

transitive closure <ξ♯ of <−
ξ♯

would be reflexive and hence by

Lemma 43 the relation ≺ would be reflexive as well. But ≺
is irreflexive, since the strict subterm relation is irreflexive.

That xϕ ≤ξ♯ xψ implies ϕ 4 ψ follows also from

Lemma 43 because ≤ξ♯ is the reflexive and transitive closure

of <−
ξ♯

and 4 is transitive and reflexive, as it is defined via

the subterm relation.

E. Omitted proofs of Section VI

We prove completeness for Par from completeness of G

by going via an intermediate Hilbert system ParFull for the

language LFull. Note that LPar ⊆ LFull. The system ParFull
is defined as the extension of Par with the axioms and rules

listed in Figure 8 below.

Additional axioms:

• 〈γ ⊓ δ〉ϕ↔ 〈γ〉ϕ∧ 〈δ〉ϕ
• 〈γ×〉ϕ↔ ϕ ∧ 〈γ〉〈γ×〉ϕ
• 〈ψ!〉ϕ↔ ψ ∨ ϕ

Additional rule:

ϕ→ 〈γ〉ϕ
BarInd×

ϕ→ 〈γ×〉ϕ

Fig. 8. Additional axioms and rules of ParFull.

The next lemma shows that ParFull is a conservative exten-

sion of Par.

Lemma 44. For all ϕ ∈ LFull, if ParFull ⊢ ϕ then Par ⊢ pa(ϕ).

Proof. We need to check that the pa()-translation of every

axiom of ParFull is derivable in Par, and that the pa()-
translation of every instance of a rule of ParFull is admissible

in Par. We shall allow defined propositional connectives like

→,↔,∧ as abbreviations here.

Case: 〈γ ⊓ δ〉ϕ ↔ 〈γ〉ϕ ∧ 〈δ〉ϕ. The translation of this

axiom becomes:

〈(pa(γ)d ⊔ pa(δ)d)d〉pa(ϕ)↔ 〈pa(γ)〉pa(ϕ) ∧ 〈pa(δ)〉pa(ϕ)

We derive this through the following chain of provable equiv-

alences in Par:

〈(pa(γ)d ⊔ pa(δ)d)d〉pa(ϕ)

⇔ ¬〈pa(γ)d ⊔ pa(δ)d〉¬pa(ϕ)

⇔ ¬(〈pa(γ)d〉¬pa(ϕ) ∨ 〈pa(δ)d〉¬pa(ϕ))

⇔ ¬〈pa(γ)d〉¬pa(ϕ) ∧ ¬〈pa(δ)d〉¬pa(ϕ)

⇔ ¬¬〈pa(γ)〉¬¬pa(ϕ) ∧ ¬¬〈pa(δ)〉¬¬pa(ϕ))

⇔ 〈pa(γ)〉pa(ϕ) ∧ 〈pa(δ)〉pa(ϕ))

Case: 〈γ×〉ϕ↔ ϕ∧〈γ〉〈γ×〉ϕ. The translation of this axiom

becomes:

〈((pa(γ)d)∗)d〉pa(ϕ)↔ pa(ϕ) ∧ 〈pa(γ)〉〈((pa(γ)d)∗)d〉pa(ϕ)

We derive this through the following chain of provable equiv-

alences in Par:

〈((pa(γ)d)∗)d〉pa(ϕ)

⇔ ¬〈(pa(γ)d)∗〉¬pa(ϕ)

⇔ ¬(¬pa(ϕ) ∨ 〈pa(γ)d〉〈(pa(γ)d)∗〉¬pa(ϕ))

⇔ ¬(¬pa(ϕ) ∨ ¬〈pa(γ)〉¬〈(pa(γ)d)∗〉¬pa(ϕ))

⇔ pa(ϕ) ∧ 〈pa(γ)〉¬〈(pa(γ)d)∗〉¬pa(ϕ)

⇔ pa(ϕ) ∧ 〈pa(γ)〉〈((pa(γ)d)∗)d〉pa(ϕ)

Case: 〈ψ!〉ϕ↔ ψ∨ϕ The translation of this axiom becomes:

〈(¬pa(ψ)?)d〉pa(ϕ)↔ pa(ψ) ∨ pa(ϕ)

We derive this through the following chain of provable equiv-

alences in Par:

〈(¬pa(ψ)?)d〉pa(ϕ)

⇔ ¬〈¬pa(ψ)?〉¬pa(ϕ)

⇔ ¬(¬pa(ψ) ∧ ¬pa(ϕ))
′ ⇔ pa(ψ) ∨ pa(ϕ)

Case:
ϕ→ 〈γ〉ϕ

ϕ→ 〈γ×〉ϕ

We show that the translation of this rule is derivable in Par.

It then follows that it is admissible. The translation of the

premise of this rule is pa(ϕ)→ 〈pa(γ)〉pa(ϕ), and the conclu-

sion becomes pa(ϕ)→ 〈((pa(γ)d)∗)d〉pa(ϕ). So suppose that

Par ⊢ pa(ϕ)→ 〈pa(γ)〉pa(ϕ). Then Par ⊢ ¬〈pa(γ)〉pa(ϕ)→
¬pa(ϕ), which gives Par ⊢ 〈pa(γ)d〉¬pa(ϕ) → ¬pa(ϕ). Bar

Induction gives:

Par ⊢ 〈(pa(γ)d)∗〉¬pa(ϕ)→ ¬pa(ϕ)

Contraposition now gives:

Par ⊢ pa(ϕ)→ ¬〈(pa(γ)d)∗〉¬pa(ϕ),

and the desired conclusion follows by the equivalence

¬〈(pa(γ)d)∗〉¬pa(ϕ)⇔ 〈((pa(γ)d)∗)d〉pa(ϕ). This concludes

the proof.

The convenience of working in a Hilbert system for the full

language is that we can prove the following lemma.
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Lemma 45. For all ϕ ∈ LFull, ParFull ⊢ ϕ↔ nf(ϕ).

Proof. Straightforward induction on the complexity of formu-

las.

Since we eventually want to connect G-provability of nf(ϕ)
with Par-provability of ϕ via ParFull, the following proposition

takes care of one of the steps.

Proposition 46. For all ϕ ∈ LPar, if ParFull ⊢ nf(ϕ) then

Par ⊢ ϕ.

Proof. Due to Lemma 45, it suffices to show that for all

ϕ ∈ LPar, if ParFull ⊢ ϕ then Par ⊢ ϕ. This follows from

Lemma 44. since, if ϕ ∈ LPar then pa(ϕ) = ϕ.

We now show that we can translate G-derivations into

ParFull-derivations.

Proposition 47. For all sequents Φ ⊆ LNF,

G ⊢ Φ implies ParFull ⊢
∨

Φ.

Consequently, for all ξ ∈ LNF, if G ⊢ ξ then ParFull ⊢ ξ.

Proof. To prove this proposition, we need to prove that the

disjunction of any axiom of G is derivable in ParFull, and that

every rule R of G is admissible in ParFull in the following

sense: if the disjunction of the premise of an instance of

R is derivable in ParFull, then so is the disjunction of the

corresponding conclusion. Axioms of G are taken care of by

Lemma 45, since they are of the form Φ,Φ, and the disjunction

of such a sequent is the nf()-translation of a propositional

tautology. For admissibility of the G-rules inds and Mon
g
d

is shown in Lemmas 49 and 48 below. The other cases are

straightforward, and we leave the details to the reader.

Lemma 48. The rule inds is admissible in the system ParFull:

if ParFull ⊢
∨
Γ ∨ (ϕ ∧ 〈γ〉〈(Γ! ; γ)×〉〈Γ!〉ϕ) then ParFull ⊢∨

Γ ∨ 〈γ×〉ϕ as well.

Proof. Suppose that:

ParFull ⊢
∨

Γ ∨ (ϕ ∧ 〈γ〉〈(Γ! ; γ)×〉〈Γ!〉ϕ)

We show that ParFull ⊢
∨
Γ∨〈γ×〉ϕ. Note that we can rewrite

the assumption as:

(∗) ParFull ⊢ Γ→ (ϕ ∧ 〈γ〉〈(Γ! ; γ)×〉〈Γ!〉ϕ)

and the desired conclusion as: ParFull ⊢ Γ→ 〈γ×〉ϕ.

CLAIM 2. ParFull ⊢ Γ→ ϕ ∧ 〈γ〉〈(Γ! ; γ)×〉ϕ

PROOF OF CLAIM By our assumption (∗) we get ParFull ⊢
Γ → ϕ, and since ParFull ⊢ 〈Γ!〉ϕ ↔ Γ ∨ ϕ we get

ParFull ⊢ 〈Γ!〉ϕ → ϕ. Together with Monotonicity applied

to the consequent in (∗), we get

ParFull ⊢ Γ→ ϕ ∧ 〈γ〉〈(Γ! ; γ)×〉ϕ

as required. ◭

CLAIM 3. ParFull ⊢ 〈(Γ! ; γ)×〉 → 〈γ×〉〈(Γ! ; γ)×〉

PROOF OF CLAIM First, by simply unfolding the fixpoint and

applying propositional reasoning we get:

ParFull ⊢ 〈(Γ! ; γ)
×〉 → 〈Γ! ; γ〉〈(Γ! ; γ)×〉

But the consequent of this implication is equivalent to:

Γ ∨ 〈γ〉〈(Γ! ; γ)×〉

By Claim 2 applied to the left disjunct of this formula we get:

ParFull ⊢ 〈(Γ! ; γ)
×〉 → 〈γ〉〈(Γ! ; γ)×〉

By the Bar Induction rule we get:

ParFull ⊢ 〈(Γ! ; γ)
×〉 → 〈γ×〉〈(Γ! ; γ)×〉

as required. ◭

CLAIM 4. ParFull ⊢ Γ→ 〈(Γ! ; γ)×〉ϕ

PROOF OF CLAIM By Claim 2 we get ⊢ Γ → ϕ ∧
〈γ〉〈(Γ! ; γ)×〉ϕ. By propositional reasoning we have:

ParFull ⊢ 〈γ〉〈(Γ! ; γ)
×〉ϕ→ Γ ∨ 〈γ〉〈(Γ! ; γ)×〉ϕ

But the consequent of this implication is equivalent to

〈Γ! ; γ〉〈(Γ! ; γ)×〉ϕ, so we get:

⊢ Γ→ ϕ ∧ 〈Γ! ; γ〉〈(Γ! ; γ)×〉ϕ

But the consequent of this implication is just the unfolding of

the fixpoint 〈(Γ! ; γ)×〉ϕ, so we get:

ParFull ⊢ Γ→ 〈(Γ! ; γ)×〉ϕ

as required. ◭

CLAIM 5. ParFull ⊢ 〈(Γ! ; γ)×〉ϕ→ ϕ

PROOF OF CLAIM Just unfold the fixpoint 〈(Γ! ; γ)×〉ϕ to ϕ∧
〈Γ ; γ〉〈(Γ! ; γ)×〉ϕ. ◭

We can now prove the lemma: by Claim 4 we have:

(i) ParFull ⊢ Γ→ 〈(Γ! ; γ)×〉ϕ

Combining (i) with Claim 3 we get:

(ii) ParFull ⊢ Γ→ 〈γ×〉〈(Γ! ; γ)×〉ϕ

By Claim 5 and Monotonicity we get:

(iii) ParFull ⊢ 〈γ
×〉〈(Γ! ; γ)×〉ϕ→ 〈γ×〉ϕ

Putting (ii) and (iii) together we get:

ParFull ⊢ Γ→ 〈γ×〉ϕ

as required.

Lemma 49. The rule Mon
g
d is derivable in the system ParFull.

Proof. We shall prove this by induction on the complexity of

formulas in dual normal form. To keep notation simple, in this

proof we abbreviate ParFull ⊢ ϕ by ⊢ ϕ, and ParFull ⊢ ϕ→ ψ
by ϕ ⊢ ψ. The induction hypothesis on a formula ϕ(δ) is that

ϕ(δ) ⊢ ϕ(χ! ; δ).
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CLAIM 6. For every game term γ(δ) in dual normal form and

every formula ϕ, we can prove the following implication in

ParFull:

〈γ(δ)〉ϕ→ 〈γ(χ! ; δ)〉ϕ

provided that the main induction hypothesis holds for every

formula θ corresponding to a subterm θ! or θ? of γ(δ).

PROOF OF CLAIM We prove that the implication holds for

all ϕ by induction on the complexity of the game term γ(δ),
treating δ as an atomic case.

Atomic case, γ(δ) = δ. For all ϕ we have:

〈δ〉ϕ ⊢ χ ∨ 〈δ〉ϕ ⊢ 〈χ!〉〈δ〉ϕ ⊢ 〈χ! ; δ〉ϕ

as required.

Atomic case for game terms g or gd: trivial.

Case for θ(δ)? or θ(δ)!: follows immediately from the

induction hypothesis on θ, since ⊢ 〈θ(δ)?〉ϕ ↔ θ(δ) ∧ ϕ and

⊢ 〈θ(δ)!〉ϕ↔ θ(δ) ∨ ϕ.

Case for ⊔ : the induction hypothesis on the subterms γ1(δ)
and γ2(δ) of (γ1 ⊔ γ2)(δ) gives ⊢ 〈γ1(δ)〉ϕ → 〈γ1(χ! ; δ)〉ϕ
and ⊢ 〈γ2(δ)〉ϕ→ 〈γ2(χ! ; δ)〉ϕ. We get:

〈γ1(δ) ⊔ γ2(δ)〉ϕ ⊢ 〈γ1(δ)〉ϕ ∨ 〈γ2(δ)〉ϕ

⊢ 〈γ1(χ! ; δ)〉ϕ ∨ 〈χ! ; γ2(δ)〉ϕ

⊢ 〈γ1(χ! ; δ) ⊔ γ2(χ! ; δ)〉ϕ

as required.

Case for ⊓: similar.

Case for ;: consider the formula 〈γ1(δ) ; γ2(δ)〉ϕ. The

induction hypothesis on γ2(δ) instantiated for the formula ϕ
gives

⊢ 〈γ2(δ)〉ϕ→ 〈γ2(χ! ; δ)〉ϕ

By monotonicity we get:

⊢ 〈γ1(δ)〉〈γ2(δ)〉ϕ→ 〈γ1(δ)〉〈γ2(χ! ; δ)〉ϕ

But the induction hypothesis on γ1(δ) instantiated for the

formula 〈γ2(χ! ; δ)〉ϕ gives:

〈γ1(δ)〉〈γ2(χ! ; δ)〉ϕ→ 〈γ1(χ! ; δ)〉〈γ2(χ! ; δ)〉ϕ

Putting these implications together we get:

⊢ 〈γ1(δ)〉〈γ2(δ)〉ϕ→ 〈γ1(χ! ; δ)〉〈γ2(χ! ; δ)〉ϕ

The required result now follows from the reduction axioms

for ; applied to both the antecedent and the consequent in

this implication.

Case for ∗: by the induction hypothesis we have, for

every formula ψ, ⊢ 〈γ(δ)〉ψ → 〈γ(χ! ; δ)〉ψ. We wish to

show that for all ϕ, we have ⊢ 〈γ(δ)∗〉ϕ → 〈γ(χ! ; δ)∗〉ϕ.

By the induction hypothesis instantiated with the formula

ψ = 〈γ(χ! ; δ)∗〉ϕ we have

⊢ 〈γ(δ)〉〈γ(χ! ; δ)∗〉ϕ→ 〈γ(χ! ; δ)〉〈γ(χ! ; δ)∗〉ϕ

But by the unfolding axiom for angelic iteration and proposi-

tional reasoning we get:

⊢ 〈γ(χ! ; δ)〉〈γ(χ! ; δ)∗〉ϕ→ 〈γ(χ! ; δ)∗〉ϕ

Hence, putting these two implications together, we get:

⊢ 〈γ(δ)〉〈γ(χ! ; δ)∗〉ϕ→ 〈γ(χ! ; δ)∗〉ϕ

By the Bar Induction rule for angelic iteration, we now get:

(†) ⊢ 〈γ(δ)∗〉〈γ(χ! ; δ)∗〉ϕ→ 〈γ(χ! ; δ)∗〉ϕ

Applying unfolding and propositional reasoning again, we get:

⊢ ϕ→ 〈γ(χ! ; δ)∗〉ϕ

By the monotonicity rule we get:

(‡) ⊢ 〈γ(δ)∗〉ϕ→ 〈γ(δ)∗〉〈γ(χ! ; δ)∗〉ϕ

Putting together the implications (†) and (‡), we get:

⊢ 〈γ(δ)∗〉ϕ→ 〈γ(χ! ; δ)∗〉ϕ

as required.

Case for ×: by the induction hypothesis we have, for

every formula ψ, ⊢ 〈γ(δ)〉ψ → 〈γ(χ! ; δ)〉ψ. We wish to

show that for all ϕ, we have ⊢ 〈γ(δ)×〉ϕ → 〈γ(χ! ; δ)×〉ϕ.

By the induction hypothesis instantiated with the formula

ψ = 〈γ(δ)×〉ϕ we have

⊢ 〈γ(δ)〉〈γ(δ)×〉ϕ→ 〈γ(χ! ; δ)〉〈γ(δ)×〉ϕ

But by unfolding 〈γ(δ)×〉ϕ to ϕ ∧ 〈γ(δ)〉〈γ(δ)×〉ϕ, we see

that:

⊢ 〈γ(δ)×〉ϕ→ 〈γ(δ)〉〈γ(δ)×〉ϕ

Putting together the implications we have established so far,

we get:

⊢ 〈γ(δ)×〉ϕ→ 〈γ(χ! ; δ)〉〈γ(δ)×〉ϕ

By the Bar Induction rule for × we now get:

(†) ⊢ 〈γ(δ)×〉ϕ→ 〈γ(χ! ; δ)×〉〈γ(δ)×〉ϕ

But we have ⊢ 〈γ(δ)×〉ϕ→ ϕ, so by monotonicity we get:

(‡) ⊢ 〈γ(χ! ; δ)×〉〈γ(δ)×〉ϕ→ 〈γ(χ! ; δ)×〉ϕ

Putting together (†) and (‡) we get:

⊢ 〈γ(δ)×〉ϕ→ 〈γ(χ! ; δ)×〉ϕ

as required.

◭

We can now complete the main induction: the atomic cases

for literals and induction steps for ∨,∧ are easy. The only

interesting step is for a formula of the form (〈γ〉ϕ)(δ) =
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〈γ(δ)〉ϕ(δ). By the induction hypothesis on ϕ(δ) we get

⊢ ϕ(δ)→ ϕ(χ! ; δ), so by monotonicity we get

⊢ 〈γ(χ! ; δ)〉ϕ(δ)→ 〈γ(χ! ; δ)〉ϕ(χ! ; δ)

By the induction hypothesis on all subformulas θ occurring in

subterms θ! or θ? of γ(δ), we can apply Claim 6 and get

⊢ 〈γ(δ)〉ϕ(δ)→ 〈γ(χ! ; δ)〉ϕ(δ)

Putting together these implications we get:

⊢ 〈γ(δ)〉ϕ(δ)→ 〈γ(χ! ; δ)〉ϕ(χ! ; δ)

as required.

We are now ready to prove the transformations between G

and Par.

Proof of Theorem 11 For item 1, let ϕ ∈ LPar such that

G ⊢ nf(ϕ). By Proposition 47, ParFull ⊢ nf(ϕ), and by

Proposition 46, we obtain Par ⊢ ϕ.

For item 2, let ξ ∈ LNF such that G ⊢ ξ. By Proposition 47,

ParFull ⊢ ξ, and since LNF ⊆ LFull, we obtain Par ⊢ pa(ξ)
from Lemma 44.
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