
ar
X

iv
:1

80
2.

03
64

2v
1

 [
cs

.A
I]

 1
0

Fe
b

20
18

Graph Planning with Expected Finite Horizon

Krishnendu Chatterjee† Laurent Doyen§

†
IST Austria

§
CNRS & LSV, ENS Paris-Saclay, France

Abstract

Graph planning gives rise to fundamental algorithmic questions such as shortest path, traveling
salesman problem, etc. A classical problem in discrete planning is to consider a weighted graph and
construct a path that maximizes the sum of weights for a given time horizon T . However, in many
scenarios, the time horizon is not fixed, but the stopping time is chosen according to some distribution
such that the expected stopping time is T . If the stopping time distribution is not known, then to ensure
robustness, the distribution is chosen by an adversary, to represent the worst-case scenario.

A stationary plan for every vertex always chooses the same outgoing edge. For fixed horizon or fixed
stopping-time distribution, stationary plans are not sufficient for optimality. Quite surprisingly we show
that when an adversary chooses the stopping-time distribution with expected stopping time T , then sta-
tionary plans are sufficient. While computing optimal stationary plans for fixed horizon is NP-complete,
we show that computing optimal stationary plans under adversarial stopping-time distribution can be
achieved in polynomial time. Consequently, our polynomial-time algorithm for adversarial stopping time
also computes an optimal plan among all possible plans.

1 Introduction

Graph search algorithms. Reasoning about graphs is a fundamental problem in computer science, which is
studied widely in logic (such as to describe graph properties with logic [6, 2]) and artificial intelligence [13, 9].
Graph search/planning algorithms are at the heart of such analysis, and gives rise to some of the most
important algorithmic problems in computer science, such as shortest path, travelling salesman problem
(TSP), etc.

Finite-horizon planning. A classical problem in graph planning is the finite-horizon planning problem [9],
where the input is a directed graph with weights assigned to every edge and a time horizon T . The weight
of an edge represents the reward/cost of the edge. A plan is an infinite path, and for finite horizon T the
utility of the plan is the sum of the weights of the first T edges. An optimal plan maximizes the utility. The
computational problem for finite-horizon planning is to compute the optimal utility and an optimal plan. The
finite-horizon planning problem has many applications: the qualitative version of the problem corresponds
to finite-horizon reachability, which plays an important role in logic and verification (e.g., bounded until in
RTCTL, and bounded model-checking [3, 1]); and the more general quantitative problem of optimizing the
sum of rewards has applications in artificial intelligence and robotics [13, Chapter 10, Chapter 25], and in
control theory and game theory [4, Chapter 2.2], [11, Chapter 6].

Solutions for finite-horizon planning. For finite-horizon planning the classical solution approach is dynamic
programming (or Bellman equations), which corresponds to backward induction [8, 4]. This approach not
only works for graphs, but also for other models (e.g., Markov decision processes [12]). A stationary plan is a
path where for every vertex always the same choice of edge is made. For finite-horizon planning, stationary
plans are not sufficient for optimality, and in general, optimal plans are quite involved, and represented
as transducers optimal plans require storage proportional to at least T (see Example 1). Since in general
optimal plans are involved, a related computational question is to compute effective simple plans, i.e., plans
that are optimal among stationary plans.

1

http://arxiv.org/abs/1802.03642v1

arbitrary stationary arbitrary stationary

Fixed horizon PTIME NP-complete O(T) O(|V |)

Expected horizon PTIME O(|V|)

Table 1: Computational complexity (left) and plan complexity (right). New results in boldface.

Expected finite-horizon planning. A natural variant of the finite-horizon planning problem is to consider
expected time horizon, instead of the fixed time horizon. In the finite-horizon problem the allowed stopping
time of the planning problem is a Dirac distribution at time T . In expected finite-horizon problem the
expected stopping time is T . A well-known example where the fixed finite-horizon and the expected finite-
horizon problems are fundamentally different is playing Prisoner’s Dilemma: if the time horizon is fixed,
then defection is the only dominant strategy, whereas for expected finite-horizon problem cooperation is
feasible [10, Chapter 5]. Another classical example that is very well-studied is the notion of discounting,
where at each time step the stopping probability is λ, and this corresponds to the case that the expected
stopping time is 1/λ [4].

Specified vs. adversarial distribution. For the expected finite-horizon problem there are two variants: (a) spec-
ified distribution: the stopping-time distribution is specified; and (b) adversarial distribution: the stopping-
time distribution is unknown and decided by an adversary. The expected finite-horizon problem with adver-
sarial distribution represents the robust version of the planning problem, where the distribution is unknown
and the adversary represents the worst-case scenario. Thus this problem presents the robust extension of
the classical finite-horizon planning that has a wide range of applications.

Results. In this work we consider the expected finite-horizon planning problems in graphs. To the best of
our knowledge this problem has not been studied in the literature.

• Our first simple result is that for the specified distribution problem, the optimal value can be computed
in polynomial time (Theorem 1). However, since the specified distribution generalizes the fixed finite-
horizon problem, the optimal plan description as an explicit transducer is of size T . Hence the output
complexity is not polynomial in general. Second, we consider the decision problem whether there is a
stationary plan to ensure a given utility. We show that this problem is NP-complete (Theorem 2).

Our most interesting and surprising results are for the adversarial distribution problem, which we describe
below:
• We show that stationary plans suffice for optimality (Theorem 3). This result is surprising and counter-
intuitive. Both in the classical finite-horizon problem and the specified distribution problem the ad-
versary does not have any choice, and in both cases stationary plans do not suffice for optimality.
Surprisingly we show that in the presence of an adversary the simpler class of stationary plans suffices
for optimality.
• For the expected finite-horizon problem with adversarial distribution, the backward induction approach
does not work, as there is no a-priori bound on the stopping time. We develop new algorithmic ideas
to show that the optimal value can still be solved in polynomial time (Theorem 4). Moreover, our
algorithm also computes and outputs an optimal stationary plan in polynomial time. Note that our
algorithm also computes stationary optimal plans (which are as well optimal among all plans) in
polynomial time, whereas computing stationary optimal plans for fixed finite horizon is NP-complete.

Our results are summarized in Table 1 and are relevant for synthesis of robust plans for expected finite-
horizon planning.

2

2 Preliminaries

Weighted graphs. A weighted graph G = 〈V,E,w〉 consists of a finite set V of vertices, a set E ⊆ V × V of
edges, and a function w : E → Z that assigns a weight to each edge of the graph.

Plans and utilities. A plan is an infinite path in G from a vertex v0, that is a sequence ρ = e0e1 . . . of edges
ei = (vi, v

′
i) ∈ E such that v′i = vi+1 for all i ≥ 0. A path induces the sequence of utilities u0, u1, . . . where

ui =
∑

0≤k≤i w(ek) for all i ≥ 0. We denote by UG the set of all sequences of utilities induced by the paths of
G. For finite paths ρ = e0e1 . . . ek (i.e., finite prefixes of paths), we denote by start(ρ) = v0 and end(ρ) = v′k
the initial and last vertex of ρ, and by |ρ| = k + 1 the length of ρ.

Plans as transducers. A plan is described by a transducer (Mealy machine or Moore machine [7]) that given
a prefix of the path (i.e., a finite sequence of edges) chooses the next edge. A stationary plan is a path
where for every vertex the same choice of edge is made always. A stationary plan as a Mealy machine has
one state, and as a Moore machine has at most |V | states. Given a graph G we denote by SG the set of all
sequences of utilities induced by stationary plans in G.

Distributions and stopping times. A sub-distribution is a function δ : N → [0, 1] such that pδ =
∑

t∈N
δ(t) ∈

(0, 1]. The value pδ is the probability mass of δ. Note that pδ 6= 0. The support of δ is Supp(δ) = {t ∈
N | δ(t) 6= 0}, and we say that δ is the sum of two sub-distributions δ1 and δ2, written δ = δ1 + δ2, if
δ(t) = δ1(t)+ δ2(t) for all t ∈ N. A stopping-time distribution (or simply, a distribution) is a sub-distribution
with probability mass equal to 1. We denote by ∆ the set of all stopping-time distributions, and by ∆⇈ the
set of all distributions δ with |Supp(δ)| ≤ 2, called the bi-Dirac distributions.

Expected utility and expected time. The expected utility of a sequence u = u0, u1, . . . of utilities under a
sub-distribution δ is Eδ(u) =

1
pδ
·
∑

t∈N
ut · δ(t). In particular, the expected utility of the identity sequence

0, 1, 2, . . . is called the expected time, denoted by Eδ.

3 Expected Finite-horizon: Specified Distribution

Given a stopping-time distribution δ with finite support, we show that the optimal expected utility can be
computed in polynomial time. This result is straightforward.

Theorem 1. Let G be a weighted graph. Given a stopping-time distribution δ = {(t1, p1), . . . , (tk, pk)} ⊆
N × Q, with all numbers encoded in binary, the optimal expected utility supu∈UG

Eδ(u) can be computed in
polynomial time.

A special case of the problem in Theorem 1 is the fixed-length optimal path problem, which is to find
an optimal path (that maximizes the total utility) of fixed length T , corresponding to the distribution
δ = {(T, 1)}. A pseudo-polynomial time solution is known for this problem, based on a value-iteration
algorithm [9, Section 2.3]. The algorithm runs in time O(T · |V |2) (where T is encoded in binary), and relies
on the following recursive relation, where At(v) is the optimal value among the paths of length t that start
in v:

At(v) = max
v′∈V

w(v, v′) +At−1(v
′).

A polynomial algorithm running in O(log(T) · |V |3) to obtain AT (v) is to compute, in the max-plus
algebra1, the T -th power of the transition matrixM of the weighted graph, whereMij = w(i, j) if (i, j) ∈ E,
and Mij = −∞ otherwise. The power MT can be computed in time O(log(T) · |V |3) by successive squaring
of M and summing up according to the binary representation of T , which gives a polynomial algorithm to
compute AT (v) since it is the largest element in the column of MT corresponding to v (note that the entries
of the matrix MT are bounded by |V | ·W , where W is the largest absolute weight in the graph). We now
present the proof of Theorem 1.

1In the max-plus algebra, the matrix product C = A ·B is defined by Cij = maxk Aik + Bkj .

3

v0 v1 v2 . . . vn−2 vn−1vn
−1 0 0 0 0

1

1

−1

Figure 1: A weighted graph (with n + 1 vertices) where the optimal path (of length T = k · n + 1) is not
simple: at v0, the optimal plan chooses k times the edge (v0, v1), and then the edge (v0, vn).

Proof of Theorem 1. Given the weighted graphG = 〈V,E,w〉 and the distribution δ = {(t1, p1), . . . , (tk, pk)},
we reduce the problem to finding an optimal path of length k in a layered graph G′ where the transitions
between layer i and layer i+1 mimic sequences of ti+1− ti transitions in the original graph. For t ≥ 2, define
the t-th power of E recursively by Et = {(v0, v2) | ∃v1 : (v0, v1) ∈ E ∧ (v1, v2) ∈ E

t−1} where E1 = E. Let
M be the transition matrix of the original weighted graph. We construct the graph G′ = 〈V ′, E′, w′〉 where

• V ′ = V × {0, . . . , k},

• E′ = {(〈v, i〉, 〈v′, i+ 1〉) | (v, v′) ∈ Eti+1−ti ∧ 0 ≤ i < k} where t0 = −1, and

• w′(〈v, i〉, 〈v′, i+ 1〉) = (pi+1 + pi+2 + · · ·+ pk) · (M
ti+1−ti)v,v′ .

The optimal expected utility supu∈UG
Eδ(u) is the same as the optimal fixed-length path value for length k

in G′. The correctness of this reduction relies on the fact that the probability of not stopping before time
ti+1 is pi+1+ pi+2+ · · ·+ pk and the largest utility of a path of length ti+1− ti from v to v′ is (M ti+1−ti)v,v′ .
Given a path (v0, v1)(v1, v2) . . . (vk−1, vk) of length k in G′ (that induces a sequence w′

0 . . . w
′
k−1 of weights),

we can construct a path of length tk+1 in G (visiting vi at time ti and inducing a sequence u of utilities), and
we show that the value of the path of length k in G′ is the same as the expected utility of the corresponding
path in G with stopping time distributed according to δ, as follows (where ut0 = 0):

k−1∑

i=0

w′
i =

k−1∑

i=0

k∑

j=i+1

pj

 · (uti+1
− uti)

=

k∑

j=1

pj ·

j−1
∑

i=0

(uti+1
− uti)

=

k∑

j=1

pj · utj

Conversely, given an arbitrary path in G, let vi be the vertex visited at time ti, and consider the path
(〈v0, 0〉, 〈v1, 1〉)(〈v1, 1〉, 〈v2, 2〉) . . . (〈vk−1, k − 1〉, 〈vk, k〉) in G

′, which has a total utility at least the same as
the expected utility of the given path in G.

Therefore, the problem can be solved by finding the optimal fixed-length path value for length k in G′,
which can be done in polynomial time (see the remark after Theorem 1).

In the fixed-horizon problem with δ = {(T, 1)}, the optimal plan need not be stationary. The example
below shows that in general the transducer for optimal plans require O(T/|V |) states as Mealy machine, and
O(T) states as Moore machine.

Example 1. Consider the graph of Figure 1 with |V | = n + 1 vertices, and time bound T = k · n + 1 (for
some constant k). The optimal plan from v0 is to repeat k times the cycle v0, v1, . . . , vn−1 and then switch
to vn. This path has value 1, and all other paths have lower value: if only the cycle v0, v1, . . . , vn−1 is used,

4

v0 v1
1

0

0

0

L1

L2

L3

−1

Figure 2: Three loops of respective length L1 = 6 = 2 · 3, L2 = 10 = 2 · 5, and L3 = 15 = 3 · 5. For
T = 32 = 6 + 10 + 15 + 1, the optimal plan needs to visit each cycle once.

then the value is at most 0, and the same holds if the cycle on vn is ever used before time T . The optimal
plan can be represented by a Mealy machine of size O(T/|V |) that counts the number of cycle repetitions
before switching to vn. A Moore machine requires size T as it needs a new memory state at every step of the
plan.

Example 2. In the example of Figure 2 the optimal plan needs to visit several different cycles, not just
repeating a single cycle and possible switching only at the end. The graph consists of three loops on v0
with weights 0 and respective length 6, 10, and 15, and an edge to v1 with weight 1. For expected time
T = 6 + 10 + 15 + 1, the optimal plan has value 1 and needs to stop exactly when reaching v1 (to avoid the
negative self-loop on v1). It is easy to show that the remaining length T − 1 = 31 can only be obtained by
visiting each cycle once: as 31 is not an even number, the path has to visit a cycle of odd length, thus the
cycle of length 15; analogously, as 31 is not a multiple of 3, the path has to visit the cycle of length 10, etc.
This example can be easily generalized to an arbitrary number of cycles by using more prime numbers.

We now consider the complexity of computing optimal plans among stationary plans.

Theorem 2. Let G be a weighted graph and λ be a rational utility threshold. Given a stopping-time dis-
tribution δ, whether supu∈SG

Eδ(u) ≥ λ (i.e., whether there is a stationary plan with utility at least λ) is
NP-complete. The NP-hardness holds for the fixed-horizon problem δ = {(T, 1)}, even when T and all weights
are in O(|V |), and thus expressed in unary.

Proof. The NP upper bound is easily obtained by guessing a stationary plan (i.e., one edge for each vertex
of the graph) and checking that the value of the induced path is at least λ.

The NP hardness follows from a result of [5] where, given a directed graph G and four vertices w, x, y, z,
the problem of deciding the existence of two (vertex) disjoint simple paths (one from w to x and the other
from y to z) is shown to be NP-complete. It easily follows that given a directed graph, and two vertices
v1, v2, the problem of deciding the existence of a simple cycle that contains v1 and v2 is NP-complete. We
present a reduction from the latter problem, illustrated in Figure 3. We construct a weighted graph from G,
by adding two vertices start and sink, and all edges have weight 0 except those from v2 with weight 1, and
the edge (v1, sink) with weight n + 1 where n is the number of vertices in G. Let T = n+ 1 and the utility
threshold λ = n+ 2.

If there exists a simple cycle containing v1 and v2 in G, then there exists a stationary plan from start

that visits v2 then v1 in at most n steps. This plan can be prolonged to a plan of n + 1 steps by going to
sink and using the self-loop. The total weight is n+ 2 = λ.

If there is no simple cycle containing v1 and v2 in G, then no stationary plan can visit first v2 then v1.
We show that every stationary plan has value at most n + 1 < λ. First if a stationary plan uses the edge
(v1, sink), then v2 is not visited and all weights are 0 except the weight n+1 from v1 to sink. Otherwise, if a
stationary plan does not use the edge (v1, sink), then all weights are at most 1, and the total utility is at most
n+ 1. In both cases, the utility is smaller than λ, which establishes the correctness of the reduction.

5

G

v1

v2

start

sink

·

·

·

· · ·

1 1 1

n+ 1

0

Figure 3: The NP-hardness reduction of Theorem 2.

4 Expected Finite-horizon: Adversarial Distribution

We now consider the computation of the following optimal values under adversarial distribution. Given a
weighted graph G and an expected stopping time T ∈ Q, we define the following:
• Optimal values of plans. For a plan ρ that induces the sequence u of utilities, let

val (ρ, T) = val(u, T) = inf
δ∈∆:Eδ=T

Eδ(u).

• Optimal value. The optimal value is the supremum value over all plans:

val(G, T) = sup
u∈UG

val (u, T).

Our two main results are related to the plan complexity and a polynomial-time algorithm.

Theorem 3. For all weighted graphs G and for all T we have

val(G, T) = sup
u∈UG

val(u, T) = sup
u∈SG

val(u, T),

i.e., optimal stationary plans exist for expected finite-horizon under adversarial distribution.

Remark 1. Note that in contrast to fixed finite-horizon problem, where stationary plans do not suffice, we
show in the presence of an adversary, the simpler class of stationary plans are sufficient for optimality in
expected finite-horizon. Moreover, while optimal plans require O(T/|V |)-size Mealy (resp., O(T)-size Moore)
machines for fixed-length plans, our results show that under adversarial distribution optimal plans require
O(1)-size Mealy (resp., O(|V |)-size Moore) machines.

Theorem 4. Given a weighted graph G and expected finite-horizon T , whether val(G, T) ≥ 0 can be decided
in O(|V |16 · log(T)) time, and computing val (G, T) can be done in O(|V |16 · log(W · |V |) · log(T)) time.

4.1 Theorem 3: Plan Complexity

In this section we prove Theorem 3. We start with the notion of sub-distributions. Two sub-distributions
δ, δ′ are equivalent if they have the same probability mass, and the same expected time, that is pδ = pδ′ and
Eδ = Eδ′ . The following result is straightforward.

Lemma 1. If δ1, δ
′
1 are equivalent sub-distributions, and δ1+δ2 is a sub-distribution, then δ1+δ2 and δ′1+δ2

are equivalent sub-distributions.

6

0 t1

x

t2

y

T t3

z

Figure 4: Timeline.

4.1.1 Bi-Dirac distributions are sufficient

By Lemma 1, we can decompose distributions as the sum of two sub-distributions, and we can replace one
of the two sub-distributions by a simpler (yet equivalent) one to obtain an equivalent distribution. We show
that, given a sequence u of utilities, for all sub-distributions with three points t1, t2, t3 in their support
(see Figure 4), there exists an equivalent sub-distribution with only two points in its support that gives a
lower expected value for u. Intuitively, if one has to distribute a fixed probability mass (say 1) among three
points with a fixed expected time T , assigning probability pi at point ti, then we have p3 = 1− p1 − p2 and
p1 · t1 + p2 · t2 + p3 · t3 = T , i.e.,

p1 · (t1 − t3)
︸ ︷︷ ︸

p′

1

+ p2 · (t2 − t3)
︸ ︷︷ ︸

p′

2

= T − t3.

The expected utility is

p1 · ut1 + p2 · ut2 + p3 · ut3 = p′1 ·
ut1 − ut3
t1 − t3

+ p′2 ·
ut2 − ut3
t2 − t3

+ ut3

which is a linear expression in variables {p′1, p
′
2} where the sum p′1+p

′
2 is constant. Hence the least expected

utility is obtained for either p′1 = 0, or p′2 = 0. This is the main argument2 to show that bi-Dirac distributions
are sufficient to compute the optimal expected value.

Lemma 2 (Bi-Dirac distributions are sufficient). For all sequences u of utilities, for all time bounds T , the
following holds:

inf{Eδ(u) | δ ∈ ∆ ∧ Eδ = T } =

inf{Eδ(u) | δ ∈ ∆⇈ ∧ Eδ = T },

i.e., the set ∆⇈ of bi-Dirac distributions suffices for the adversary.

Proof. First, we show that for all distributions δ ∈ ∆ with Eδ = T ,

(i) there exists an equivalent distribution δ′ ∈ ∆ such that |Supp(δ′) ∩ [0, T − 1]| ≤ 1 and Eδ′(u) ≤ Eδ(u),
i.e., only one point before T in the support is sufficient, and

(ii) there exists an equivalent distribution δ′ ∈ ∆ such that |Supp(δ′) ∩ [T,∞)| ≤ 1 and Eδ′(u) ≤ Eδ(u),
i.e., only one point after T in the support is sufficient.

The result of the lemma follows from these two claims.
To prove claim (i), first consider an arbitrary sub-distribution δ with Supp(δ) = {t1, t2, t3} where t1 <

t2 < t3. Then t1 < Eδ < t3 and either Eδ ≤ t2, or t2 ≤ Eδ.
We show that among the sub-distributions δ′ equivalent to δ and with Supp(δ′) ⊆ {t1, t2, t3}, the smallest

expected utility of u is obtained for Supp(δ′) ({t1, t2, t3}. We present below the argument in the case t2 ≤ Eδ,
and show that either δ′(t1) = 0, or δ′(t2) = 0. A symmetric argument in the case Eδ ≤ t2 shows that either
δ′(t2) = 0, or δ′(t3) = 0.

2This argument works here because T > t2, which implies that 0 ≤ p2 ≤ 1 when p1 = 0, and vice versa. A symmetric
argument can be used in the case T < t2, to show that then either p2 = 0, or p3 = 0.

7

Let x = δ′(t1), y = δ′(t2), and z = δ′(t3). Since δ
′ and δ are equivalent, we have

x+ y + z = pδ

x · t1 + y · t2 + z · t3 = pδ · Eδ

Hence

z = pδ − x− y

x · (t1 − t3)
︸ ︷︷ ︸

x′

+ y · (t2 − t3)
︸ ︷︷ ︸

y′

= pδ · (Eδ − t3)

The expected utility of u under δ′ is

Eδ′ (u) = x · ut1 + y · ut2 + z · ut3

= x · (ut1 − ut3) + y · (ut2 − ut3) + ut3 · pδ

= x′ ·
ut1 − ut3
t1 − t3

+ y′ ·
ut2 − ut3
t2 − t3

+ ut3 · pδ (1)

Since x′ + y′ is constant and x′, y′ ≤ 0, the least value of Eδ′ (u) is obtained either for x′ = 0 (if
ut1

−ut3

t1−t3
≤

ut2
−ut3

t2−t3
), or for y′ = 0 (otherwise), thus either for x = 0, or for y = 0. Note that for x = 0, we have

y = pδ·(Eδ−t3)
t2−t3

and z = pδ·(t2−Eδ)
t2−t3

, which is a feasible solution as 0 ≤ y ≤ 1 and 0 ≤ z ≤ 1 since t2 ≤ Eδ ≤ t3,
and 0 < pδ ≤ 1. Symmetrically, for y = 0 we have a feasible solution.

As an intermediate remark, note that for pδ = 1 and Eδ = T , we get (for y = y′ = 0, and symmetrically
for x = x′ = 0)

Eδ′(u) = ut3 +
T − t3
t1 − t3

· (ut1 − ut3). (2)

To complete the proof of Claim (i), given an arbitrary distribution δ with Eδ = T , we use the above
argument to construct a distribution equivalent3 to δ with smaller expected utility and one less point in
the support. We repeat this argument until we obtain a distribution δ′ with support that contains at most
two points in the interval [0, k] where k is such that

∑

i≤k δ(i) · i > T − 1. Such a value of k exists since
Eδ =

∑

i∈N
δ(i) · i = T . By the construction of δ′, we have

∑

i≤k δ
′(i) · i > T − 1 and therefore at most one

point in the support of δ′ lies in the interval [0, T − 1], which completes the proof of Claim (i).
To prove claim (ii), consider a distribution δ with Eδ = T , and by claim (i) we assume that δ(t0) 6= 0 for

some t0 < T , and δ(t) = 0 for all t < T with t 6= t0. Let ν = inft≥T
ut−ut0

t−t0
, and we consider two cases:

• if for all t ≥ T such that t ∈ Supp(δ), we have
ut−ut0

t−t0
= ν, then by an analogous of Equation (1), we get

Eδ(u) = ut0 +
∑

t≥T

δ(t) · (t− t0) ·
ut − ut0
t− t0

= ut0 + ν ·
∑

t≥0

δ(t) · (t− t0) = ut0 + ν · (T − t0)

which is the expected utility of u under a bi-Dirac distribution with support {t0, t} where t ≥ T is any
element of Supp(δ) (see Equation (2));

• otherwise there exists t ≥ T such that t ∈ Supp(δ) and
ut−ut0

t−t0
> ν. By an analogous of Equation (1), we

have

Eδ(u)− ut0 =
∑

t≥T

δ(t) · (t− t0) ·
ut − ut0
t− t0

where
∑

t≥T

δ(t) · (t− t0) = T − t0,

3Equivalence follows from Lemma 1.

8

0 Tt1 t2 t

optimal value of the path

(a) When an optimal distribution exists

0 Tt1 t

optimal value of the path

(b) When no optimal distribution exists

Figure 5: Geometric interpretation of the value of a path.

that is
Eδ(u)−ut0

T−t0
is a convex combination of elements greater than or equal to ν, among which one is

greater than ν. It follows that
Eδ(u)−ut0

T−t0
> ν, and thus there exists ǫ > 0 such that

Eδ(u)−ut0

T−t0
> ν + ǫ.

Consider t1 such that
ut1

−ut0

t1−t0
< ν+ǫ (which exists by definition of ν), and let δ′ be the bi-Dirac distribution

δ′ with support {t0, t1} and expected time T . By an analogous of Equation (2), we have

Eδ′ (u)− ut0 =
T − t0
t1 − t0

· (ut1 − ut0)

< (T − t0) · (ν + ǫ) < Eδ(u)− ut0

Therefore, Eδ′ (u) < Eδ(u) which concludes the proof since δ′ is a bi-Dirac distribution with Eδ′ = T .

4.1.2 Geometric interpretation

It follows from the proof of Lemma 2 (and Equation (2)) that the value of the expected utility of a sequence
u of utilities under a bi-Dirac distribution with support {t1, t2} (where t1 < T < t2) and expected time T is

ut1 +
T − t1
t2 − t1

· (ut2 − ut1).

In Figure 5a, this value is obtained as the intersection of the vertical axis at T and the line that connects
the two points (t1, ut1) and (t2, ut2). Intuitively, the optimal value of a path is obtained by choosing the two
points t1 and t2 such that the connecting line intersects the vertical axis at T as down as possible.

Lemma 3. For all sequences u of utilities, if ut ≥ a · t+ b for all t ≥ 0, then the value of the sequence u is
at least a · T + b.

Proof. By Lemma 2, it is sufficient to consider bi-Dirac distributions, and for all bi-Dirac distributions δ

9

with arbitrary support {t1, t2} the value of u under δ is

ut1 +
T − t1
t2 − t1

· (ut2 − ut1)

=
ut1 · (t2 − T) + ut2 · (T − t1)

t2 − t1

≥
(a · t1 + b) · (t2 − T) + (a · t2 + b) · (T − t1)

t2 − t1
≥ a · T + b

It is always possible to fix an optimal value of t1 (because t1 ≤ T is to be chosen among a finite set of
points), but the optimal value of t2 may not exist, as in Figure 5b. The value of the path is then obtained
as t2 → ∞. In general, there exists t1 ≤ T such that it is sufficient to consider bi-Dirac distributions with
support containing t1 to compute the optimal value. We say that t1 is a left-minimizer of the expected
value in the path. Given such a value of t1, let ν = inft2≥T

ut2
−ut1

t2−t1
, and we show in Lemma 4 that

ut ≥ ut1 + (t− t1) · ν, for all t ≥ 0. This motivates the following definition.

Line of equation fu(t). Given a left-minimizer t1, we define the line of equation fu(t) as follows:

fu(t) = ut1 + (t− t1) · ν.

Note that the optimal expected utility is

min
0≤t1≤T

inf
t2≥T

ut1 +
T − t1
t2 − t1

· (ut2 − ut1) = min
0≤t1≤T

ut1 + (T − t1) · ν = fu(T).

In other words, fu(T) is the optimal value.

Lemma 4 (Geometric interpretation). For all sequences u of utilities, we have ut ≥ fu(t) for all t ≥ 0, and
the expected value of u is fu(T).

Proof. The result holds by definition of ν for all t ≥ T . For t < T , assume towards contradiction that
ut < ut1 + (t− t1) · ν. Let ε > 0 such that ut = ut1 + (t− t1) · ν − ε. We obtain a contradiction by showing
that there exists a bi-Dirac distribution under which the expected value of u is smaller than the optimal
value of u. Consider a bi-Dirac distribution with support {t, t2} where the value t2 is defined later.

We need to show that

ut +
T − t

t2 − t
· (ut2 − ut) < ut1 + (T − t1) · ν,

that is
ut · (t2 − T) + ut2 · (T − t)

t2 − t
< ut1 + (T − t1) · ν

which, since ut = ut1 + (t− t1) · ν − ε, holds if (successively)

ut1 · (t2 − T) + (t− t1) · (t2 − T) · ν + ut2 · (T − t) ≤

ε · (t2 − T) + ut1 · (t2 − t) + (t2 − t) · (T − t1) · ν

ut1 · (t− T) + ut2 · (T − t) ≤

ε · (t2 − T)− ν · (t · t2 + t1 · T − t2 · T − t · t1)

(ut2 − ut1) · (T − t) + ν · (t2 − t1) · (t− T) ≤

ε · (t2 − T)

(T − t) ·
(

ut2
−ut1

t2−t1
− ν

)

· (t2 − t1) ≤ ε · (t2 − T)

10

0 Tt1 t2 t

optimal value of the path

(a) For the example of Figure 5a.

0 Tt1 t

optimal value of the path

(b) For the example of Figure 5b.

Figure 6: Convex hull interpretation of the value of a path.

We consider two cases: (i) if the infimum ν is attained, then we have ν =
ut2

−ut1

t2−t1
for some t2 ≥ T ,

and the inequality holds; (ii) otherwise, we can choose t2 arbitrarily, and large enough to ensure that

(T − t) ·
(

ut2
−ut1

t2−t1
− ν

)

is smaller than ε
2 , so that the inequality holds.

A corollary of the geometric interpretation lemma is that the value of a path can be obtained as the
intersection of the vertical line at point T with the boundary of the convex hull of the region above the
sequence of utilities, namely convexHull({(t, y) ∈ N× R | y ≥ ut}). This result is illustrated in Figure 6.

4.1.3 Simple lassos are sufficient

A lasso is a path of the form ACω where A and C are finite paths (with C a nonempty cycle), where ACω

is A followed by infinite repetition of the cycle C. A lasso is simple if all strict prefixes of the finite path AC
are acyclic. In other words, simple lassos correspond to stationary plans.

We show that there is always a simple lasso with optimal value. Our proof has four steps. Given a path
ρ that gives the utility sequence u, let ν be the slope of fu(t). Given a cycle C in the path ρ, let SC be the
sum of the weights in C and let MC = SC

|C| be the average weight of the cycle edges. The cycle C is good if

MC ≥ ν, i.e., the average weight of the cycle is at least ν, and bad otherwise.

• First, we show (in Lemma 5) that every path contains a good cycle.

• Second, we show (in Lemma 6) that if the first cycle in a path is good, then repeating the cycle cannot
decrease the value of the path.

• Third, we show (in Lemma 7) that removing a bad cycle from a path cannot decrease the value of the
path.

• Finally, we show (in Lemma 8) that given any path, using the above two operations of removal of bad
cycles and repetition of good cycles, we obtain a simple lasso that does not decrease the value of the
original path.

Thus we establish that simple lassos (or stationary plans) are sufficient for optimality. To formalize the ideas
we consider the notion of cycle decomposition.

Cycle decomposition. The cycle decomposition of a path ρ = e0e1 . . . is an infinite sequence of simple cycles
C1, C2, . . . obtained as follows: push successively e0, e1, . . . onto a stack, and whenever we push an edge that
closes a (simple) cycle, we remove the cycle from the stack and append it to the cycle decomposition. Note
that the stack content is always a prefix of a path of length at most |V |.

11

fu(t)

ρ

ρ′

C

C

C

(a) Repeating a good cycle (Lemma 6).

fu(t)

ρ

ρ′

C

(b) Removing a bad cycle (Lemma 7).

Figure 7: Constructing a lasso without decreasing the value (Lemma 6 and Lemma 7).

Lemma 5. Let T ∈ N. Given a path ρ that induces a sequence u of utilities, let ν =
min0≤t1≤T inft2≥T

ut2
−ut1

t2−t1
. Then, in the cycle decomposition of ρ there exists a simple cycle C withMC ≥ ν.

Proof. Towards contradiction, assume that all the (finitely many) cycles C in the cycle decomposition of ρ
are such thatMC < ν. Let t1 be a left-minimizer of ρ. Since all cycles in ρ have average weight smaller than
ν, we have:

lim inf
t2→∞

ut2 − ut1
t2 − t1

< ν

Since the infimum is bounded by the liminf, it follows that

min
0≤t1≤T

inf
t2≥T

ut2 − ut1
t2 − t1

< ν

which is in contradiction with the definition of ν.

We show that repeating a good cycle, and removing a bad cycle from a path cannot decrease the value
of the path.

Lemma 6. Let T ∈ N. If the first cycle C in the cycle decomposition of a path ρ is good, i.e., MC ≥ ν
where ν = min0≤t1≤T inft2≥T

ut2
−ut1

t2−t1
, then there exists a lasso ρ′ such that val(ρ′, T) ≥ val (ρ, T).

Proof. Let u be the sequence of utilities induced by ρ. Since C is the first cycle in ρ, there is a prefix of ρ of
the form AC where A is a finite path. Consider the lasso ρ′ = ACω and its induced sequence of utilities u′.

We show that the value of ρ′ is at least the value of ρ. By Lemma 4, the optimal value of u is fu(T), and
the sequence u is above the line fu(t) (which has slope ν), i.e., u(t) ≥ fu(t) for all t ≥ 0. By Lemma 3 it is
sufficient to show that u′ is above the line fu(t) to establish that the optimal value of u′ is at least fu(T),
that is val (ρ′, T) ≥ val (ρ, T), and conclude the proof (the argument is illustrated in Figure 7a).

We show that u′(t) ≥ fu(t) for all t ≥ 0: either t ≤ |A| + |C|, and then u′(t) = u(t) ≥ fu(t), or
t > |A|+ |C|, and then let k ∈ N such that |A| ≤ t− k · |C| ≤ |A|+ |C|, and we have

u′(t) = u(t− k · |C|) + k · SC (ρ′ = ACω)

≥ fu(t− k · |C|) + k ·MC · |C| (u is above fu(t) and SC =MC · |C|)

≥ fu(t)− ν · k · |C|+ k ·MC · |C| (fu(t) is linear with slope ν)

≥ fu(t) + k · |C| · (MC − ν)

≥ fu(t). (MC ≥ ν)

12

Lemma 7. Let T ∈ N. If a path ρ contains a bad cycle C, that is such that MC < ν where
ν = min0≤t1≤T inft2≥T

ut2
−ut1

t2−t1
, then removing C from ρ gives a path ρ′ such that val(ρ′, T) ≥ val(ρ, T).

Proof. Let u, u′ be the sequences of utilities induced by respectively ρ and ρ′, By the same argument as in
the proof of Lemma 6 (using Lemma 3 and Lemma 4), it is sufficient to show that u′ is above the line fu(t).
Since C is a cycle in ρ, there is a prefix of ρ of the form AC where A is a finite path, and for all t ≥ 0 we
have (the argument is illustrated in Figure 7b): either t ≤ |A|, then u′(t) = u(t) ≥ fu(t), or t > |A|, and
then

u′(t) = u(t+ |C|)− SC (C is removed from ρ to get ρ′)

≥ fu(t+ |C|)−MC · |C| (u is above fu(t) and SC =MC · |C|)

≥ fu(t) + ν · |C| −MC · |C| (fu(t) is linear with slope ν)

≥ fu(t) + |C| · (ν −MC)

≥ fu(t). (MC < ν)

Now we can show how to construct a simple lasso with value at least the value of a given arbitrary path,
and it follows that simple lassos are sufficient for optimality.

Lemma 8. Let T ∈ N. There exists a simple lasso ACω such that val (ACω , T) = val(G, T).

Proof. Given an arbitrary path ρ, we construct a simple lasso with at least the same value as ρ. It follows
that the optimal value is obtained by stationary plans. The construction repeats the following steps:

1. Let C be the first cycle in the cycle decomposition of ρ;

2. if C is a bad cycle for the original path ρ, then we remove it to obtain a new path ρ′. We continue the
procedure with ρ′ (go to step 1.);

3. otherwise C is a good cycle for the original path ρ. Let A be the prefix of ρ until C starts, and we
construct the lasso ACω.

First, note that if the above procedure terminates, then the constructed lasso has a value at least the
value of the original path ρ (by Lemma 6 and Lemma 7), and it is a simple lasso by definition of the cycle
decomposition.

Now we show that the procedure always terminates. By Lemma 5, there always exists a good cycle in the
cycle decomposition of ρ, and thus eventually a good cycle becomes the first cycle in the path constructed
by the above procedure, which then terminates.

Theorem 3 follows from the above lemmas.

4.2 Theorem 4: Algorithm and Complexity Analysis

In this section we present our algorithm and then the complexity analysis.

13

0 T

t

ρ′

ρ

ρ has greater sum
of weights

ρ is less constraining on
the slope of the line
f(t) =M · (t− T)

(a) The path length is smaller than T .

0 T

t

ρ′

ρ

ρ has greater sum
of weights

ρ is less constraining on
the slope of the line
f(t) =M · (t− T)

slope M = 1

slope M = 1
2

ϕρ ≡
1
8 ≤M ≤ 1

ϕρ′ ≡ 1
4 ≤M ≤

1
2

(b) The path length is greater than T .

Figure 8: The path ρ is preferred to ρ′.

4.2.1 Algorithm

The key challenges to obtain an algorithm are as follows. First, while for the fixed-horizon problem back-
ward induction or powering of transition matrix leads to an algorithm, for expected time horizon with an
adversary, there is no a-priori bound on the number of steps, and hence the backward induction approach is
not applicable. Second, stationary optimal plans suffice, and as shown in Theorem 2 computing optimal sta-
tionary plans for the fixed horizon problem is NP-hard. We present an algorithm that iteratively constructs
the most promising candidate paths according to a partial order of the paths, and the key is to define the
partial order.

It follows from the geometric interpretation lemmas (Lemma 3 and Lemma 4) that the value of a path is
at least 0 if its sequence of utilities is above some line that contains the point (T, 0).

Lemma 9. The value of a sequence u of utilities is at least 0 if and only if there exists a slope M ∈ R such
that ut ≥M · (t− T) for all t ≥ 0.

Proof. If the value of u is at least 0, then fu(T) ≥ 0 and by Lemma 4 we have ut ≥ fu(t) for all t ≥ 0. Then
ut ≥ fu(t)− fu(T) (which is a linear function of t) and we can take for M the value of the coefficient of t in
the expression fu(t)− fu(T).

To prove the other direction, consider the line of equation f(t) =M · (t−T), and by Lemma 3, the value
of the sequence u is at least f(T) = 0.

The expression ut−M · (t−T) that appears in the condition of Lemma 9 can be obtained by subtracting
M to each weight of the graph, and shifting the sum of the weights by the constant T ·M . Since M is
unknown, we can define the following symbolic constraint on M (associated with a path ρ) that ensures, if it
is satisfiable, that the sequence of utilities of ρ = e0e1 . . . ek is above the line of equation f(t) =M · (t−T) :

ϕρ ≡
∧

0≤i≤k

(ui ≥M · (i− T))

Note that k = |ρ| − 1, and the constraint ϕρ represents an interval (possibly empty, possibly unbounded)
of values for M . Intuitively, a finite path is more promising (thus preferred) in order to be prolonged to
an infinite path with value at least 0 if the total sum of weights is large and the constraint ϕρ is weak (see
Figure 8a and Figure 8b). To each finite path ρ, we associate a pair 〈u, ψ〉 consisting of the sum u of the
weights in ρ, and the constraint ψ = ϕρ.

Given two pairs 〈u, ψ〉, 〈u′, ψ′〉 (associated with paths ρ and ρ′ respectively), we write 〈u, ψ〉 � 〈u′, ψ′〉 if
u ≥ u′ and ψ′ implies ψ, and we say that ρ is preferred to ρ′ (this is a partial order). Given a set S of such

14

Algorithm 1 BestPaths(t0, v0, u0, ψ0)

Input : t0 ∈ N is an initial time point, v0 is an initial vertex, u0 is the initial sum of weights, and
ψ0 is the initial constraint on the slope parameter M .

Output: The table of �-maximal values of paths from v0 with initial values t0, u0, ψ0.

begin
/* initialization */

1 D[t0, v0]← {〈u0, ψ0〉}
2 for v ∈ V \ {v0} do

3 D[t0, v]← ∅

/* iterations */

4 for i = 1, . . . , |V | do

5 for v ∈ V do

6 D[t0 + i, v]← ∅

7 for v1 ∈ V and 〈u1, ψ1〉 ∈ D[t0 + i− 1, v1] do

8 if (v1, v) ∈ E then

9 u← u1 + w(v1, v)
10 t← t0 + i− 1
11 ψ ← ψ1 ∧ (r ≥M · (t− T))
12 D[t0 + i, v]← D[t0 + i, v] ∪ {〈u, ψ〉}

13 D[t0 + i, v]←
⌈
D[t0 + i, v]

⌉

14 return D
end

pairs, denote by
⌈
S
⌉
= {z1 ∈ S | ∀z2 ∈ S : z2 � z1 → z1 � z2} the set of �-maximal elements of S. Note

that the elements of
⌈
S
⌉
are pairwise �-incomparable.

Intuitively, if ρ and ρ′ end in the same vertex, and ρ is preferred to ρ′, then it is easier to extend ρ
than ρ′ to obtain an (infinite) path with expected value at least 0. Formally, for all infinite paths π with
start(π) = end(ρ) = end(ρ′) we have val(ρ · π, T) ≥ val(ρ′ · π, T). We use this result in the following form.

Lemma 10. Let ρ1, ρA be two paths of the same length with the same end state, i.e., end(ρ1) = end(ρA). If
ρ1 is preferred to ρA, then for all paths ρC with start(ρC) = end(ρA), the path ρ1 · ρC is preferred to the path
ρA · ρC.

Proof sketch. Let ρ1C = ρ1 · ρC an ρAC = ρA · ρC . Denote by u1, uA, u1C , and uAC the sum of the weights
of the paths ρ1, ρA, ρ1 · ρC , and ρA · ρC respectively.

Since u1 ≥ uA and ϕρ
A
→ ϕρ1

, it is easy to see that u1C ≥ uAC , and that for every length |ρ1| ≤ k ≤
|ρ1| + |ρC |, the sum of the weights of the prefix of length k of ρ1 · ρC at least as large as the sum of the
weights of the prefix of length k of ρA · ρC . It follows that ϕρAC

→ ϕρ1C
as well, hence ρ1 · ρC is preferred to

ρA · ρC .

Our algorithm uses the procedure BestPaths(t0, v0, u0, ψ0) (shown as Algorithm 1) that computes the
�-maximal pairs 〈u, ψ〉 corresponding to the paths ρ1 of length 1, 2, . . . , |V | that start at time t0 in vertex
v0 (see Figure 9), and that prolong a path ρ♯ with sum of weight u0 and constraint ψ0 on M (where u is the
sum of weights along ρ♯ · ρ1, and ψ ≡ ϕρ♯·ρ1

). We give a precise statement of this result in Lemma 11.

Lemma 11 (Correctness of BestPaths). Let ρ♯ be a finite path of length t0, that ends in state end(ρ♯) = v0
with sum of weight u0 and associated constraint ψ0 on M . Let D = BestPaths(t0, v0, u0, ψ0). Then,

15

0 t0 t0 + i

ρ♯
u0
v0

ρ1

u
v1

ψ ≡ ϕρ♯·ρ1

〈u, ψ〉 ∈ D[t0 + i, v1]

where D = BestPaths(t0, v0, u0, ψ0)

Figure 9: The result of the computation of BestPaths(t0, v0, u0, ψ0).

• for all 0 ≤ i ≤ |V |, for all v1 ∈ V , for all pairs 〈u, ψ〉 ∈ D[t0 + i, v1], there exists a path ρ1 of length i
with start(ρ1) = v0 and end(ρ1) = v1, such that

– u is the sum of weights of the path ρ♯ · ρ1, and

– ψ ≡ ϕρ♯·ρ1
is the constraint on M associated with the path ρ♯ · ρ1;

• for all paths ρ1 of length i ≤ |V | such that start(ρ1) = v0 and end(ρ1) = v1, there exists a pair
〈u′, ψ′〉 ∈ D[t0 + i, v1] such that 〈u′, ψ′〉 � 〈u, ψ〉 where

– u is the sum of weights of the path ρ♯ · ρ1, and

– ψ ≡ ϕρ♯·ρ1
is the constraint on M associated with the path ρ♯ · ρ1.

Proof. For the first item, the proof is by induction on i. The case i = 0 holds since D[t0, v1] is nonempty only
for v1 = v0 (lines 1-3 of Algorithm 1), and we can take for ρ1 the empty path since then D[t0, v0] = {〈u0, ψ0〉}
contains the pair associated with ρ♯ = ρ♯ · ρ1.

For the inductive case, consider length i ≥ 1 and assume that the result holds for length i− 1. Then for
all pairs 〈u1, ψ1〉 ∈ D[t0 + i − 1, v1] where v1 ∈ V (see also line 7 of Algorithm 1), there exists a path ρ1 of
length i− 1 such that 〈u1, ψ1〉 is the pair associated with ρ♯ · ρ1. It is easy to see that the pair 〈u, ψ〉 added
to D[t0 + i, v] at line 12 of Algorithm 1 is associated with the path ρ♯ · ρ1 · (v1, v) where u = u1 + w(v1, v)
and ψ ≡ ψ1 ∧ (r ≥M · (t− T)) with t = t0 + i− 1 = |ρ♯ · ρ1 · (v1, v)| − 1. Since the assignment at line 13 of
Algorithm 1 can only remove pairs from D[t0 + i, v], the result follows.

For the second item, the result follows from similar arguments as above, a proof by induction on i using
Lemma 10, and the fact that the algorithm explores all successors v of each vertex v1 that ends a path
associated with a pair 〈u1, ψ1〉 ∈ D[t0 + i− 1, v1].

As we know that simple lassos are sufficient for optimal value (Lemma 8), our algorithmic solution is to
explore finite paths from the initial vertex, until a loop is formed. Thus it is sufficient to explore paths of
length at most |V |. However, given a simple lasso ρA · ρ

ω
C , it is not sufficient that the finite path ρA · ρC lies

above a line M · (t − T) (where M satisfies the constraint ψAC associated with ρA · ρC) to ensure that the
value of the lasso ρA · ρ

ω
C is at least 0. The reason is that by repeating the cycle ρC several times, the path

may eventually cross the line M · (t − T). We show (in Lemma 12) that this cannot happen if the average
weight MC of the cycle is greater than the slope of the line (i.e., MC ≥M).

Lemma 12. Given a lasso ρA · ρ
ω
C , let ψAC be the symbolic constraint on M associated with the finite path

ρA · ρC , and let MC be the average weight of the cycle ρC . The lasso ρA · ρ
ω
C has value at least 0 if and only

if the formula ψAC ∧ (MC ≥M) is satisfiable.

Proof. First, if the lasso ρA · ρ
ω
C has value at least 0, then by Lemma 9, there exists a slope M ∈ R such that

ut ≥M · (t− T) for all t ≥ 0 (where ut is the sum of weights at time t in ρA · ρ
ω
C). For such value of M , the

formula ψAC holds (by definition), and it is easy to see that MC ≥ M (otherwise, there would exist t ≥ 0
such that ut < M · (t− T)). Therefore ψAC ∧ (MC ≥M) is satisfiable.

Second, if the formula ψAC ∧ (MC ≥M) is satisfiable, then let M be a satisfying value, and by Lemma 9
and a similar argument as above, the lasso ρA · ρ

ω
C has value at least 0.

16

Algorithm 2 ExistsPositivePath(v0)

Input : v0 is an initial vertex.

Output: true iff there exists a path from v0 with expected utility at least 0.

begin

1 A← BestPaths(0, v0, 0, true)
2 for i = 0, . . . , |V | do

3 for v̂ ∈ V and 〈u1, ψ1〉 ∈ A[i, v̂] do

4 C ← BestPaths(i, v̂, u1, ψ1)
5 for j = 1, . . . , |V | − i do

6 for 〈u2, ψ2〉 ∈ C[i+ j, v̂] do

7 if ψ2 ∧
u2−u1

j
≥M is satisfiable then return true

8 return false

end

The algorithm ExistsPositivePath(v0) explores the paths from v0, and keeps the �-preferred paths, that is
those with the largest total weight and weakest constraint onM . There may be several�-incomparable paths
of a given length i that reach a given vertex v̂, therefore we need to compute a set A[i, v̂] of �-incomparable
pairs (line 1 of Algorithm 2).

Given a pair 〈u1, ψ1〉 ∈ A[i, v̂], the algorithm ExistsPositivePath further explores (for-loop at line 3 of
Algorithm 2) the paths from v̂, until a cycle ρC of length j is formed around v̂, with average weight
MC = u2−u1

j
and associated pair 〈u2, ψ2〉 ∈ C[i + j, v̂] (line 7 of Algorithm 2) such that ψ2 ∧ (MC ≥ M) is

satisfiable. We claim that there exists such a cycle if and only if there exists a lasso with value at least 0.
The claim is established in the following lemma.

Lemma 13 (Correctness of ExistsPositivePath). There exists an infinite path from v0 with value at least 0 if
and only if ExistsPositivePath(v0) returns true.

Proof. (First part)
For the first direction of the proof, if there exists an infinite path with value at least 0, then by Lemma 8

there exists a lasso ρ = ρA · ρ
ω
C with value at least 0.

Consider the call A ← BestPaths(t0, v0, u0, ψ0) in ExistsPositivePath (line 1 of Algorithm 2) where t0 =
u0 = 0 and ψ0 ≡ true. Let v̂ = end(ρA) and let i be the length of ρA (note that i < |V | because ρA is acyclic).
By the correctness result of BestPaths (Lemma 11 (item 2), where ρ♯ is the empty path), there is a pair
〈u1, ψ1〉 ∈ A[i, v̂] such that 〈u1, ψ1〉 � 〈uA, ψA〉 where 〈uA, ψA〉 is the pair associated with ρA, thus u1 ≥ uA
and ψA → ψ1 holds. Then by Lemma 11 (item 1), there is a path ρ1 of length i from v0 to v̂, and u1 is the
sum of weights of ρ1, and ψ1 ≡ ϕρ1

is the constraint on M associated with ρ1 (i.e., ρ1 is preferred to ρA).
Now consider the call C ← BestPaths(i, v̂, u1, ψ1) in ExistsPositivePath (line 4 of Algorithm 2). Let ρ♯ = ρ1

in Lemma 11 and note that the assumptions of that lemma are satisfied, namely 〈u1, ψ1〉 is the pair associated
with ρ1, and v̂ = end(ρ1).

Since ρA · ρ
ω
C is a lasso, we have start(ρC) = end(ρC) = end(ρA) = v̂ and let j be the length of ρC (note

that i+ j ≤ |V |). By Lemma 11 (item 2), there is a pair 〈u2, ψ2〉 ∈ C[i+ j, v̂] such that 〈u2, ψ2〉 � 〈u1C , ψ1C〉
where 〈u1C , ψ1C〉 is the pair associated with ρ1 · ρC , thus u2 ≥ u1C and ψ1C → ψ2 holds, and by Lemma 11
(item 1), there is a path ρ2 of length j such that start(ρ2) = end(ρ2) = v̂ and u2 is the sum of weights of
ρ1 · ρ2, and ψ2 ≡ ϕρ1·ρ2

is the constraint on M associated with ρ1 · ρ2.

17

Now we show that ψ2 ∧
u2−u1

j
≥M is satisfiable, and thus ExistsPositivePath(v0) returns true (Line 7 of

Algorithm 2). First, by Lemma 12 the formula ψAC ∧ (MC ≥ M) is satisfiable, and by Lemma 10 we have
ψAC → ψ1C . We showed above that ψ1C → ψ2, thus ψ2 ∧ (MC ≥ M) is satisfiable. Now, since the length
of the cycle ρC (and of ρ2) is j − i (i.e., the length of ρA · ρC minus the length of ρA), we have MC = SC

j
.

Moreover we showed above that u2 ≥ u1C = u1 + SC , thus MC = SC

j
≤ u2−u1

j
, and since ψ2 ∧ (MC ≥M) is

satisfiable it follows that ψ2 ∧
u2−u1

j
≥M is satisfiable as well.

(Second part)
For the second direction of the proof, if ExistsPositivePath(v0) returns true, then there exists

i, j, v̂, 〈u1, ψ1〉, 〈u2, ψ2〉 (corresponding to the for-loops in lines 2, 3, 5, 6 of Algorithm 2) such that:

• 0 ≤ i ≤ |V | and 1 ≤ j ≤ |V | − i,

• v̂ ∈ V ,

• 〈u1, ψ1〉 ∈ A[i, v̂] and 〈u2, ψ2〉 ∈ C[i + j, v̂] where A = BestPaths(0, v0, 0, true), and C =
BestPaths(i, v̂, u1, ψ1),

• ψ2 ∧
u2−u1

j
≥M is satisfiable.

Therefore, by Lemma 11 (item 1), there exist paths ρA and ρC such that:

• ρA is a path of length i from v0 to v̂, such that u1 is the sum of weights of the path ρA, and ψ1 ≡ ϕρ
A
;

• ρC is a path of length j with start(ρC) = end(ρC) = v̂ (thus ρC is a cycle), such that u2 is the sum of
weights of the path ρA · ρC , and ψ2 ≡ ϕρ

A
·ρ

C
is the constraint on M associated with the path ρA · ρC .

Therefore, u2 − u1 is the sum of the weights along ρC , and thus MC = u2−u1

j
. Since the formula

ψ2 ∧
u2−u1

j
≥M is satisfiable, it follows that ϕρ

A
·ρ

C
∧ (MC ≥M) is satisfiable, and by Lemma 12, the lasso

ρA · ρ
ω
C has value at least 0.

Optimal value. We can compute the optimal value using the procedure ExistsPositivePath as follows. From

Lemma 4, the optimal value is either of the form
ut1

·(t2−T)+ut2
·(T−t1)

t2−t1
, or of the form ut1 +(T − t1) · ν where

the following bounds hold (ν = inft2≥T
ut2

−ut1

t2−t1
):

• 0 ≤ t1 ≤ t2 ≤ |V |

• 0 ≤ t2 − t1 ≤ |V |

• 0 ≤ T − t1 ≤ |V |

• 0 ≤ t2 − T ≤ |V |

• −W · |V | ≤ ut1 , ut2 ≤W · |V |

• ν is a rational number p
q
where −W · |V | ≤ p ≤W · |V | and 1 ≤ q ≤ |V |

Therefore, in both cases we get the following result.

Lemma 14. The optimal value belongs to the set

ValueSpace =

{
p

q
| −2W · |V |2 ≤ p ≤ 2W · |V |2 and 1 ≤ q ≤ |V |

}

.

18

Given a value p
q
, we can decide if there exists a path with expected value at least p

q
by subtracting p

q·T
from all the weights the graphs, and asking if there exists a path with expected value at least 0 in the
modified graph. Indeed, if we define w′(e) = w(e) + η for all edges e ∈ E, then for all paths ρ, if u is the
sequence of utilities along ρ according to w, and u′ is the sequence of utilities along ρ according to w′, then

∑

i

pi · u
′
i =

∑

i

pi · (ui + η · i) = η ·
∑

i

pi · i+
∑

i

pi · ui = T · η +
∑

i

pi · ui,

thus the value of the path is shifted by T · η. Then it follows from Lemma 14 that the optimal value can
be computed by a binary search using O(|ValueSpace|) = O(log(W · |V |)) calls to ExistsPositivePath.

Optimal path. An optimal path can be constructed by a slight modification of the algorithm. In BestPaths,
we can maintain a path associated to each pair in D as follows: the empty path is associated to the pair
〈u0, ψ0〉 added at line 1 of Algorithm 1, and given the path ρ1 associated with the pair 〈u1, ψ1〉 (line 7 of
Algorithm 1), we associate the path ρ1 · (v1, v) with the pair 〈u, ψ〉 added to D at line 12 of Algorithm 1. It
is easy to see that for every pair 〈u, ψ〉 in D, the associated path can be used as the path ρ1 in Lemma 11
(item 1). Therefore, when ExistsPositivePath(v0) returns true (line 7 of Algorithm 2), we can output the path
ρ1 · ρ

ω
2 where ρi is the path associated with the pair 〈ui, ψi〉 (i = 1, 2).

4.2.2 Complexity analysis

We present the running-time analysis of ExistsPositivePath (Algorithm 2). The key challenge is to bound the
number of �-incomparable pairs. The number of such pairs corresponds to the number of simple paths in a
graph, and hence can be exponential in general. Our main argument is to establish a polynomial bound on
the number of �-incomparable pairs.

To analyze the complexity of the algorithm, we need to bound the size of the array D computed by
BestPaths (Algorithm 1). We show that there cannot be too many different pairs in a given entry D[t0+i, v1].
By Lemma 11, to each pair 〈u, ψ〉 ∈ D[t0 + i, v1] we can associate a path ρ of length i with start(ρ) = v0
and end(ρ) = v1, such that (our analysis holds for all paths ρ♯ in Lemma 11, and as ρ♯ plays no role in the
argument, we proceed with empty ρ♯ for simplicity of the exposition4):

• u is the sum of weights of the path ρ, and

• ψ ≡ ϕρ is the constraint on M associated with the path ρ.

It is important to note that the constraint ψ is determined by (at most) two points tL, tR in ρ (see also
Figure 8a and Figure 8b), one before T and one after T , namely

ψ ≡
(
utL ≥M · (tL − T)

)
∧
(
utR ≥M · (tR − T)

)

where tL = argmax0≤i≤T (
ui

i−T
) and tR = argminT≤i≤|ρ|(

ui

i−T
).

Note that the first constraint in the above expression is a lower bound on M since tL ≤ T , and the
second constraint (which may not exist, if |ρ| < T) is an upper bound on M . For simplicity of exposition,
we assume that |ρ| ≥ T . The case |ρ| < T is handled analogously (tR is undefined in that case).

Define the down-point of ρ = e0e1 . . . e|ρ|−1 as downpoint(ρ) = 〈tL, vL, tR, vR〉 where tL and tR are
defined above, and vL = end(e0e1 . . . etL), and vR = end(e0e1 . . . etR) (for |ρ| < T , the down-point of ρ is
downpoint(ρ) = 〈tL, vL〉).

Decompose ρ into ρL = e0e1 . . . etL , ρM = etL+1etL+2 . . . etR , and ρR = etR+1etR+2 . . . e|ρ|−1. We claim
that the paths corresponding to two different pairs in D[t0+ i, v1] have different down-points, which will give
us a polynomial bound on the size of D[t0+ i, v1]. Intuitively, and towards contradiction, if two down-points
are the same in two different paths, then we can select the best pieces among (ρL, ρM , ρR) from the two
paths and construct a path that is preferred, and thus whose pair is in D[t0 + i, v1] and subsumes some pair
in D[t0 + i, v1], which is a contradiction since the elements of D[t0 + i, v1] are �-maximal.

4The proof can be carried out analogously by considering ρ♯ · ρ instead of ρ with heavier notation.

19

Lemma 15. Let D = BestPaths(t0, v0, u0, ψ0) and 1 ≤ i ≤ |V |. For all pairs 〈u, ψ〉, 〈u′, ψ′〉 ∈ D[t0 + i, v1],
let ρ, ρ′ be their respective associated path; if 〈u, ψ〉 6= 〈u′, ψ′〉, then the down-points of ρ and ρ′ are different
(downpoint(ρ) 6= downpoint(ρ′)).

Proof. We prove the contrapositive, for |ρ| ≥ T (the case |ρ| < T is simpler, and proved analogously). Assume
that 〈tL, vL, tR, vR〉 = 〈t

′
L, v

′
L, t

′
R, v

′
R〉 (the down-points are equal), and we show that then 〈u, ψ〉 = 〈u′, ψ′〉.

First, since tL = t′L and vL = v′L, we claim that the sum of weights at time tL is the same in ρ and in
ρ′, that is utL = u′tL , and therefore, ϕρL

≡ ϕρ′

L
(remember that the constraint ψ associated with ρ and ρ′ is

determined by tL = t′L). The proof of this claim is by contradiction. Assume that utL > u′tL (the argument
for the case utL < u′tL is analogous). Consider the path ρ = ρL · ρ

′
M · ρ

′
R, and note that ρ is indeed a path5,

as end(ρL) = vL = v′L = start(ρ′M). Comparing ρ and ρ′, since utL > u′tL it is easy to see that ū > u′ where
ū is the sum of weights of ρ, and by the same argument we have ψ′ → ψρ. It follows that ρ is preferred to
ρ′, and by Lemma 11 the set D[t0 + i, v1] contains a pair 〈u∗, ψ∗〉 � 〈ū, ϕρ〉 � 〈u

′, ψ′〉. Since D[t0 + i, v1] is
a set of �-maximal elements (line 13 of Algorithm 1), it follows that 〈u′, ψ′〉 6∈ D[t0 + i, v1], in contradiction
with the assumption of the lemma.

Second, by an analogous argument, since tR = t′R and vR = v′R, the sum of weights at time tR is the same
in ρ and in ρ′, that is utR = u′tR , and therefore, ϕρR

≡ ϕρ′

R
. Finally u = u′ and ψ ≡ ψ′, which concludes the

proof.

It follows from Lemma 15 that the size of all sets D[t0 + i, v1] for 1 ≤ i ≤ |V | and v1 ∈ V is at most |V |4,
the maximum number of different down-points.

We now show that the worst-case complexity of BestPaths and ExistsPositivePath is polynomial, and thus
the optimal expected value problem is solvable in polynomial time.

The worst-case complexity of BestPaths is O(|V |10), as there are two nested for-loops over V (line 4 and
line 5 in Algorithm 1), in which the dominating operation is the computation of the �-maximal elements of
D[t0 + i, v] (line 13), which is quadratic in the size of D[t0 + i, v], thus in O(|V |8).

The worst-case complexity of ExistsPositivePath is O(|V | · |V | · |V |4 · |V |10) = O(|V |16), as a product of the
size of the three outermost for-loops, and the dominating call to BestPaths (line 4) in O(|V |10). Therefore
we obtain Theorem 4.

5 Conclusion

In this work we consider the expected finite-horizon problem. Our most interesting results are for the case
of adversarial distribution of stopping times, for which we establish stationary plans are sufficient, and
present polynomial-time algorithms. In terms of algorithmic complexity, our main goal was to establish
polynomial-time algorithms, and we expect that better algorithms and refined complexity analysis can be
obtained.

References

[1] A. Biere, A. Cimatti, E. M. Clarke, O. Strichman, and Y. Zhu. Bounded model checking. Advances in
Computers, 58:117–148, 2003.

[2] B. Courcelle and J. Engelfriet. Graph Structure and Monadic Second-Order Logic: A Language-Theoretic
Approach. Cambridge University Press, New York, NY, USA, 1st edition, 2012.

[3] E. A. Emerson, A. K. Mok, A. P. Sistla, and J. Srinivasan. Quantitative temporal reasoning. Real-Time
Systems, 4(4):331–352, 1992.

[4] J. Filar and K. Vrieze. Competitive Markov Decision Processes. Springer-Verlag, 1997.

5Note that if ρ and ρ′ have a common prefix (such as ρ♯), then ρ also has the same prefix.

20

[5] S. Fortune, J. E. Hopcroft, and J. Wyllie. The directed subgraph homeomorphism problem. Theor.
Comput. Sci., 10:111–121, 1980.

[6] E. Grädel, P. G. Kolaitis, L. Libkin, M. Marx, J. Spencer, M. Y. Vardi, Y. Venema, and S. Weinstein.
Finite Model Theory and Its Applications (Texts in Theoretical Computer Science. An EATCS Series).
Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2005.

[7] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages, and Computation.
Addison-Wesley, 1979.

[8] H. Howard. Dynamic Programming and Markov Processes. MIT Press, 1960.

[9] S. M. LaValle. Planning algorithms. Cambridge University Press, 2006.

[10] M. A. Nowak. Evolutionary dynamics. Harvard University Press, 2006.

[11] M. J. Osborne and A. Rubinstein. A Course in Game Theory. MIT Press, 1994.

[12] C. H. Papadimitriou and J. N. Tsitsiklis. The complexity of Markov decision processes. Mathematics
of Operations Research, 12:441–450, 1987.

[13] S. J. Russell and P. Norvig. Artificial Intelligence - A Modern Approach (3rd ed.). Pearson Education,
2010.

21

	1 Introduction
	2 Preliminaries
	3 Expected Finite-horizon: Specified Distribution
	4 Expected Finite-horizon: Adversarial Distribution
	4.1 Theorem ??: Plan Complexity
	4.1.1 Bi-Dirac distributions are sufficient
	4.1.2 Geometric interpretation
	4.1.3 Simple lassos are sufficient

	4.2 Theorem ??: Algorithm and Complexity Analysis
	4.2.1 Algorithm
	4.2.2 Complexity analysis

	5 Conclusion

