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A type theory for cartesian closed bicategories

Marcelo Fiore Philip Saville

Department of Computer Science and Technology, University of Cambridge

Index Terms—typed lambda calculus, higher category theory,
Curry-Howard-Lambek correspondence, cartesian closed bicate-
gories

Abstract—We construct an internal language for cartesian
closed bicategories. Precisely, we introduce a type theory mod-
elling the structure of a cartesian closed bicategory and show that
its syntactic model satisfies an appropriate universal property,
thereby lifting the Curry-Howard-Lambek correspondence to the
bicategorical setting. Our approach is principled and practical.
Weak substitution structure is constructed using a bicategori-

fication of the notion of abstract clone from universal algebra,
and the rules for products and exponentials are synthesised from
semantic considerations. The result is a type theory that employs
a novel combination of 2-dimensional type theory and explicit
substitution, and directly generalises the Simply-Typed Lambda
Calculus. This work is the first step in a programme aimed at
proving coherence for cartesian closed bicategories.

I. INTRODUCTION

2-categories axiomatise the structures formed by classes of

categories, such as the 2-category Cat of small categories,

functors and natural transformations. In such settings the

associativity and unit laws of composition hold strictly (‘on the

nose’). In many situations—in particular where composition

is defined by a universal property—these laws only hold up

to coherent isomorphism: the resulting structure is that of a

bicategory. Bicategories are rife in mathematics and theoretical

computer science, arising for instance in algebra [1], [2],

semantics of computation [3], [4], datatype models [5], [6],

categorical logic [7], [8], and categorical algebra [9], [10],

[11].

The layers of coherence data required to witness the asso-

ciativity and unit laws makes calculating in bicategories (and

weak n-categories more generally) notoriously difficult. One

approach is to reduce bicategorical structure to categorical

structure by quotienting, but the loss of intensional information

this entails is often unsatisfactory.

There are two main strategies for working with structures

defined up to isomorphism. One strategy looks for coherence

theorems establishing that some class of diagrams always com-

mute. For bicategories and bicategorical limits (bilimits [12])

there are well-known coherence results [13], [14]; however,

we know of no analogous result in the literature for closed

structure. Another strategy employs a type theory that matches

the categorical structure (see e.g. [15], [16], [8]); such a system

is sometimes called the internal language [17] or internal

logic [18].

In this paper we carry out the internal-language strategy

for cartesian closed bicategories, and thereby set up the

scene for the coherence strategy to be presented elsewhere.

We construct an internal language Λx,Ñ
ps for cartesian closed

bicategories (where ‘ps’ stands for pseudo), thus reducing

the problem of coherence for cartesian closed bicategories

to a property of Λx,Ñ
ps . This type theory provides a practical

calculus for reasoning in such settings and directly generalises

the STLC (Simply-Typed Lambda Calculus) [19].

Our work is motivated by the complexities of calculating in

the cartesian closed bicategories of generalised species [7] and

of cartesian distributors [9], specifically for their application to

higher-dimensional category theory [20]. However, the internal

language we present applies to other examples: cartesian

closed bicategories also appear in categorical algebra [10] and

game semantics [21].

A. 2-dimensional type theories and bicategorical composition

There is a natural connection between 2-categories and

rewriting. If objects are types and morphisms are terms, then

2-cells are rewrites between terms. This idea was explored as

early as the 1980s in the work of Rydeheard & Stell [22] and

Power [23]. For STLC, Seely [24] suggested that η-expansion

and β-contraction may naturally be interpreted as the unit and

counit of the adjunction defining (lax) exponentials in a 2-

category, an approach followed by Hilken [25] and advocated

by Ghani & Jay [26], [27]. More recently, type-theoretic con-

structions modelling 2-categories with strict cartesian closed

structure have been pursued in programming-language the-

ory [28] and proof theory [29] while a directed 2-dimensional

type theory in the style of Martin-Löf [30] has been introduced

by Licata & Harper [31].

It is crucial to our approach that the equational theory of

Λx,Ñ
ps does not identify any more structure than the axioms of

cartesian closed bicategories. This entails distinguishing more

terms than in STLC. For instance, note that terms such as

tru1{x1, u2{x2srv{ys and tru1rv{ys{x1, u2rv{ys{x2s

are respectively interpreted in a Lambek-style semantics [17]

by the equal maps

JtK ˝ xJu1K, Ju2Ky ˝ JvK and JtK ˝ xJu1K ˝ JvK, Ju2K ˝ JvKy

In contrast, in the bicategorical setting these composites are

only isomorphic.1 Hence, substitution ought to be associa-

tive only up to isomorphism. This places us outside the

2-categorical world of previous work, as well as setting

1This issue is similar to that identified by Curien [32], who attempts
to rectify the mismatch between locally cartesian closed categories and
Martin-Löf dependent type theory caused by interpreting the (strictly as-
sociative) substitution operation as a pullback (associative up to coherent
isomorphism).
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our work apart from type theories in which weak structure

is modelled in a strict language, such as Homotopy Type

Theory (c.f. [33], [34]).

B. The type theory Λx,Ñ
ps

We will construct the internal language Λx,Ñ
ps in stages.

First we will construct the internal language of bicategories

Λb
ps (Section V) and then the internal language of bicate-

gories with finite products Λx
ps (Section VII); the type theory

Λx,Ñ
ps extends both these systems (Section IX). In each case

we construct the syntactic model and prove an appropriate

2-dimensional freeness universal property.

We introduce substitution formally using a version of ex-

plicit substitution [35], [36]. This syntactic structure and the

axioms it is subject to are synthesised from a bicategorification

of the abstract clones [37] of universal algebra (Section IV).

Abstract clones are a natural bridge between syntactic structure

(in the form of intuitionistic type theories or calculi) and se-

mantic structure (in the form of Lawvere theories or cartesian

multicategories).

Cartesian closed structure is synthesised from universal

arrows at both the global (2-dimensional) and the local

(1-dimensional) levels. From this approach we recover ver-

sions of the usual βη-laws of STLC, while keeping the rules

to a minimum (Sections VII and Section IX). Our formulation

points towards similar constructions for tricategories (weak

3-categories [38], [39]) or even 8-categories.

The type theory Λx,Ñ
ps is, in a precise sense, a language for

cartesian closed bicategories. It is capable of being formalised

in proof assistants such as Agda [40] and the principled nature

of its construction makes it readily amenable to the addition

of further structure. We leave such extensions for future work.

II. BICATEGORIES

We recall the definition of bicategory, pseudofunctor and

biequivalence. For leisurely introductions consult e.g. [1], [2,

§9].

Definition II.1 ([1]). A bicategory B consists of

‚ a class of objects obpBq,

‚ for every X,Y P obpBq a hom-category
`

BpX,Y q, ‚, id
˘

with objects 1-cells f : X Ñ Y and morphisms

2-cells α : f ñ f 1 : X Ñ Y ; composition of 2-cells is

called vertical composition,

‚ for every X , Y , Z P obpBq an identity functor

IdX : 1 Ñ BpX,Xq and a horizontal composition functor

˝X,Y,Z : BpY, Zq ˆ BpX,Y q Ñ BpX,Zq,
‚ invertible 2-cells

ah,g,f : ph ˝ gq ˝ f ñ h ˝ pg ˝ fq :W Ñ Z

lf : IdX ˝ f ñ f :W Ñ X

rg : g ˝ IdX ñ g : X Ñ Y

for every f : W Ñ X , g : X Ñ Y and h : Y Ñ
Z , natural in each of their arguments and satisfying two

coherence laws.

The functoriality of horizontal composition gives rise to

an interchange law: for suitable 2-cells τ, τ 1, σ, σ1 one has

pτ 1 ‚ τq ˝ pσ1 ‚σq “ pτ 1 ˝ σ1q ‚pτ ˝ σq.

A morphism of bicategories is called a pseudofunctor (or

homomorphism). It is a mapping on objects, 1-cells and 2-cells

that preserves horizontal composition up to isomorphism.

Definition II.2 ([1]). A pseudofunctor F : B Ñ C between

bicategories B and C consists of

‚ a mapping F : obpBq Ñ obpCq,

‚ a functor FX,Y : BpX,Y q Ñ CpFX,FY q for every

X,Y P obpBq,

‚ an invertible 2-cell ψX : IdFX ñ F pIdXq for every

X P obpBq,

‚ an invertible 2-cell φf,g : F pfq ˝ F pgq ñ F pf ˝ gq for

every g : X Ñ Y and f : Y Ñ Z , natural in f and g

subject to three coherence laws. A pseudofunctor for which ψ

and φ are both the identity is called strict.

Example II.3. Every 2-category is a bicategory and every

2-functor is a strict pseudofunctor. A one-object bicategory

is equivalently a monoidal category; a monoidal functor is

equivalently a pseudofunctor between one-object bicategories.

Bicategorical products and exponentials are defined using

the appropriate notion of adjunction, called a biadjunction.

For our purposes, the characterisation of biadjoints in terms

of biuniversal arrows [41] is most natural (c.f. [7]); this is

the bicategorical version of the well-known description of

adjunctions via universal arrows (e.g. [42, Chapter III, §1]).

For biuniversal arrows and their relationship to biadjunctions,

see e.g. [43].

Definition II.4 ([12]). Let F : B Ñ C be a pseudofunctor. To

give a right biadjoint U to F is to give

1) a mapping U : obpCq Ñ obpBq on objects,

2) a family of 1-cells pqC : FUC Ñ CqCPobpCq,
3) for every B P obpBq and C P obpCq an adjoint equiva-

lence

BpB,UCq CpFB,Cq

qC˝F p´q

%

p´q5

Morphisms of pseudofunctors are called pseudonatural

transformations [12] and morphisms of pseudonatural transfor-

mations are called modifications [1]. Bicategories, pseudofunc-

tors, pseudonatural transformations and modifications organise

themselves into a tricategory we denote Bicat.

Example II.5. For every pair of bicategories B and C there

is a bicategory HompB, Cq of pseudofunctors, pseudonatural

transformations and modifications.

Bicategories provide a convenient setting for abstractly

describing many categorical concepts (e.g. [44], [45]).

Definition II.6. Let B be a bicategory.

1) An adjunction pA,B, f, g, η, ǫq in B is a pair of objects

pA,Bq with arrows f : A Ô B : g and 2-cells



η : IdA ñ g ˝ f and ǫ : f ˝ g ñ IdB subject to two

triangle laws.

2) An equivalence pA,B, f, g, η, ǫq in B is a pair of objects

pA,Bq with arrows f : A Ô B : g and invertible 2-cells

η : IdA
–
ùñ g ˝ f and ǫ : f ˝ g

–
ùñ IdB .

3) An adjoint equivalence is an adjunction that is also an

equivalence.

The appropriate notion of equivalence between bicategories

is called biequivalence [46].

Definition II.7. A biequivalence between bicategories B and

C consists of pseudofunctors F : B Ô C : G with equivalences

G ˝F » idB and F ˝G » idC in the bicategories HompB,Bq
and HompC, Cq, respectively.

III. SIGNATURES FOR 2-DIMENSIONAL TYPE THEORIES

The STLC with constants is determined by a choice of base

types and constant terms (e.g. [17]). For constants defined in

arbitrary contexts such a choice is determined by a multigraph;

that is, a set of nodes A1, . . . , An, B, . . . connected by mul-

tiedges rA1, . . . , Ans Ñ B. A multigraph consisting solely of

edges (i.e. multiedges of the form rAs Ñ B) is called a graph.

Notation III.1. In the following definition, and throughout, we

write A‚ for a finite sequence rA1, . . . , Ans pn P Nq.

Definition III.2. A 2-multigraph G is a set G0 of nodes

equipped with a graph GpA‚;Bq of edges and surfaces for

every n P N and A1, . . . , An, B P G0. A homomorphism of

2-multigraphs h : G Ñ G1 is a map h : G0 Ñ G1
0 together with

functions

hA1,...,An;B : GpA‚;Bq Ñ G
1prhA1, . . . , hAns ;hBq

hf,g : GpA‚;Bqpf, gq Ñ G
1prhA1, . . . , hAns ;hBqphf, hgq

for every n P N, A1, . . . , An, B P G0 and f, g P GpA‚;Bq.

We denote the category of 2-multigraphs by 2-MGrph. The

full subcategory 2-Grph of 2-graphs is formed by restricting

to 2-multigraphs G such that GprA1, . . . , Ans ;Bq “ H
whenever n ‰ 1.

IV. SUBSTITUTION STRUCTURE UP TO ISOMORPHISM

The type theory we shall construct has types, terms, rewrites

and an explicit substitution operation. It is therefore deter-

mined by a 2-multigraph together with a specified substitution

structure. Accordingly, to synthesise our language we intro-

duce an intermediate step between 2-multigraphs and bicate-

gories, which we call biclones. These are a bicategorification

of the abstract clones of universal algebra [37], which capture

a presentation-independent notion of equational theory with

substitution.

Definition IV.1. An S-biclone C is a set S of sorts

equipped with the following for all n, m P N and

X1, . . . , Xn, Y, Y1, . . . , Ym, Z P S:

‚ a category CpX‚;Y q with objects 1-cells f : X‚ Ñ Y

and morphisms 2-cells α : f ñ g : X‚ Ñ Y ,

‚ distinguished projection functors pi : 1 Ñ CpX‚;Xiq for

1 ď i ď n,

‚ a substitution functor

subX‚;Y‚;Z : CpY‚;Zq ˆ
m

ź

j“1

CpX‚;Yjq Ñ CpX‚;Zq

which we denote by

subX‚;Y‚;Z

`

f, pg1, . . . , gmq
˘

:“ f rg1, . . . , gms

(we write trv‚rw‚ss or trv1rw‚s, . . . , vnrw‚ss for the it-

erated substitution trv1rw1, . . . , wls, . . . , vnrw1, . . . , wlss,
c.f. Notation III.1),

‚ natural families of invertible 2-cells

assoct,u‚,v‚ : tru1, . . . , unsrv‚s ñ tru1rv‚s, . . . , unrv‚ss

ιu : u ñ urp1, . . . , pns

̺pkq
u1,...,un

: pkru1, . . . , uns ñ uk pk “ 1, . . . , nq

for every t P CpY‚, Zq, uj P CpX‚, Yjq, vi P CpW‚, Xiq
and u P CpX‚, Y q (i “ 1, . . . , n and j “ 1, . . . ,m).

This data is subject to two compatibility laws:

tru1, . . . , uns trp1, . . . , pnsru1, . . . , uns

tru1, . . . , uns trp1ru1, . . . , uns, . . . , pnru1, . . . , unss

ιru1,...,uns

id assoc

tr̺p1q,...,̺pnqs

tru‚srv‚srw‚s tru‚rv‚ssrw‚s tru‚rv‚srw‚ss

tru‚srv‚rw‚ss tru‚rv‚rw‚sss

assoc

assoc rw‚s assoc

trassoc ,...,assoc s

assoc

When the set S of sorts is clear we refer to an S-biclone as

simply a biclone.

Thinking of a bicategory as roughly a 2-category with struc-

ture up to isomorphism, one may think of a biclone as roughly

a Cat-enriched clone with structure up to isomorphism. In-

deed, the definition of clone may be generalised to hold in any

cartesian category (and even more generally, e.g. [47], [48]):

if the structural 2-cells ι, ̺ and assoc are all the identity, a

biclone is equivalently a 2-clone, i.e. a clone in the cartesian

category Cat. We have directed the 2-cells to match the

definition of a skew monoidal category [49]; the definition

should therefore generalise to the lax setting (c.f. also the lax

bicategories of Leinster [50, §3.4]).

Every S-biclone C has an underlying linear-core bicate-

gory Cℓc with objects S and hom-categories CℓcpX,Y q “
C

`

rXs ;Y
˘

(c.f. [51]). Every 2-multigraph freely induces a

sorted biclone, and one may introduce bicategorical substitu-

tion structure into a type theory with base types, constant terms

and constant rewrites specified by a 2-graph G by postulating

the structure of the free sorted biclone on G and then restricting

it to its underlying linear core. This is the gist of the following

section.



var p1 ď k ď nq
x1 : A1, . . . , xn : An $ xk : Ak

`

c P GpA1, . . . , An;Bq
˘

const
x1 : A1, . . . , xn : An $ cpx1, . . . , xnq : B

x1 : A1, . . . , xn : An $ t : B p∆ $ ui : Aiqi“1,...,n
horiz-comp

∆ $ ttx1 ÞÑ u1, . . . , xn ÞÑ unu : B

Figure 1. Introduction rules on basic terms

x1 : A1, . . . , xn : An $ t : B
ι-intro

x1 : A1, . . . , xn : An $ ιt : t ñ ttxi ÞÑ xiu : B

x1 : A1, . . . , xn : An $ ι´1
t : ttxi ÞÑ xiu ñ t : B

x1 : A1, . . . , xn : An $ xk : Ak p∆ $ ui : Aiqi“1,...,n
̺pkq-intro p1 ď k ď nq

∆ $ ̺
pkq
u1,...,un : xktxi ÞÑ uiu ñ uk : Ak

∆ $ ̺
p´kq
u1,...,un : uk ñ xktxi ÞÑ uiu : Ak

y1 : B1, . . . , yn : Bn $ t : C px1 : A1, . . . , xm : Am $ vi : Biqi“1,...,n p∆ $ uj : Ajqj“1,...m
assoc-intro

∆ $ assoct,v‚,u‚ : ttyi ÞÑ viutxj ÞÑ uju ñ ttyi ÞÑ vitxj ÞÑ ujuu : C

∆ $ assoc´1
t,v‚,u‚

: ttyi ÞÑ vitxj ÞÑ ujuu ñ ttyi ÞÑ viutxj ÞÑ uju : C

Figure 2. Introduction rules on structural rewrites

Γ $ t : A
id-intro

Γ $ idt : t ñ t : A

`

σ P GpA1, . . . , An;Bqpc, c1q
˘

2-const
x1 : A1, . . . , xn : An $ σpx1, . . . , xnq : cpx1, . . . , xnq ñ c1px1, . . . , xnq : B

Figure 3. Introduction rules on basic rewrites

Γ $ τ 1 : t1 ñ t2 : A Γ $ τ : t ñ t1 : A
vert-comp

Γ $ τ 1 ‚ τ : t ñ t2 : A

x1 : A1, . . . , xn : An $ τ : t ñ t1 : B p∆ $ σi : ui ñ u1
i : Aiqi“1,...,n

horiz-comp
∆ $ τtxi ÞÑ σiu : ttxi ÞÑ uiu ñ t1txi ÞÑ u1

iu : B

Figure 4. Constructors on rewrites

Introduction rules for Λb
ps, Λ

x
ps and Λx,Ñ

ps . For Λb
ps these rules are restricted to unary contexts.

V. A TYPE THEORY FOR BICATEGORIES

We follow the tradition of 2-dimensional type theories con-

sisting of types, terms and rewrites, e.g. [24], [25], [31], [29].

Following Hilken [25], we consider two forms of judgement.

Alongside the usual Γ $ t : A to indicate ‘term t has type

A in context Γ’, we write Γ $ τ : t ñ t1 : A to indicate ‘τ

is a rewrite from term t of type A to term t1 of type A, in

context Γ’.

For now we do not want to assume our model has products

so we restrict to unary contexts. Base types, constants and

rewrites are therefore specified by a 2-graph G. The term

introduction rules are collected in Figure 1 and the rewrite

introduction rules in Figures 2–4. We denote the language thus

defined by Λb
pspGq.

The terms are variables x, y, . . . , constant terms cpxq,

c1pxq, . . . and explicit substitutions ttx ÞÑ uu. Thus for every

term u and term t with free variable x we postulate a

term ttx ÞÑ uu; this is a formal analogue of the term tru{xs
defined by the meta-operation of capture-avoiding substitu-

tion (c.f. [35], [36]). The variable x is bound by this operation,

and we work with terms up to α-equivalence defined in the

standard way. Instead of being typed in the empty context,

constants are given by the edges of G. The restriction to

unary contexts ensures the syntactic model is a bicategory,

rather than a biclone. When we construct the type theory for

bicategories with finite products we shall allow constants and

explicit substitution to be multi-ary.

The grammar for rewrites is synthesised from the free

biclone on G. The structural rewrites assoc, ι and ̺ witness

the three laws of a biclone; we slightly abuse notation by

simultaneously introducing these rewrites and their inverses.

The constant rewrites σpxq are specified by the surfaces of G



and for every term t we have an identity rewrite idt. The

explicit substitution operation mirrors that for terms while

vertical composition is captured by a binary operation on

rewrites (c.f. [25], [29]). We make use of the same conventions

on binding and α-equivalence as for terms.

Notation V.1. We adopt the following abuses of notation.

1) Writing t for idt in a rewrite.

2) Writing ttxi ÞÑ uiu
n
i“1 or simply ttxi ÞÑ uiu for

ttx1 ÞÑ u1, . . . , xn ÞÑ unu, and similarly on rewrites.

3) Writing ctt1, . . . , tnu for the explicit substitution

cpx1, . . . , xnqtxi ÞÑ tiu for constants c, and similarly on

rewrites.

The equational theory ” on rewrites is derived directly from

the axioms of a biclone; these are collected in Figures 5–8.

In this extended abstract, the rules for the invertibility of the

structural rewrites and the congruence rules on ” are omitted.

The type theory Λb
pspGq satisfies the expected well-

formedness properties (c.f. [52, Chapter 4] for STLC). Unique-

ness of typing is obtained by adding type annotations on bound

variables, constants and vertical compositions; we omit this

extra information for readability.

A. The syntactic model for Λb
ps

We construct the syntactic model for Λb
pspGq and prove

that it enjoys a 2-dimensional freeness universal property

analogous to that of [39, §2.2.1]. Put colloquially, Λb
pspGq

is the internal language for bicategories with signature a 2-

graph G. The bicategorical structure is induced directly from

the biclone structure.

Construction V.2. For any 2-graph G, define a bicat-

egory T b
pspGq as follows. Objects are unary contexts

px : Aq. The hom-category T b
pspGq

`

px : Aq, py : Bq
˘

has objects α-equivalence classes of derivable terms

px : A $ t : Bq and morphisms α”-equivalence classes of

rewrites px : A $ τ : t ñ t1 : Bq under vertical composition.

Horizontal composition is given by explicit substitution and

the identity on px : Aq by the var rule px : A $ x : Aq.

The structural isomorphisms l, r and a are ̺, ι´1 and assoc,

respectively.

Construction V.3. For any 2-graph G, bicategory B and

2-graph homomorphism h : G Ñ B, the semantics of

Figure 13 restricted to T b
pspGq induces a strict pseudofunctor

h# : T b
pspGq Ñ B.

The universal extension pseudofunctor h# cannot be char-

acterised by a strict universal property; for instance, for

each type A the bicategory T b
pspGq contains countably many

equivalent objects px : Aq for x ranging over variables. To

obtain the desired universal property, we restrict to a sub-

bicategory in which there is a single variable name.

Construction V.4. Let Sb
pspGq denote the bicategory with

objects unary contexts px : Aq for x a fixed variable and

horizontal and vertical composition operations as in T b
pspGq.

The bicategories Sb
pspGq and T b

pspGq are biequivalent, and

the restricted model Sb
pspGq is free on G in the following sense.

Theorem V.5. Let G be a 2-graph. For any bicategory B and

2-graph homomorphism h : G Ñ B, there exists a unique

strict pseudofunctor h# : Sb
pspGq Ñ B such that h# ˝ ι “ h,

for ι : G ãÑ Sb
pspGq the inclusion.

The full model T b
pspGq therefore satisfies the universal

property up to biequivalence. Proving the freeness universal

property in this way has the benefit of allowing us to establish

uniqueness without reasoning about uniqueness of pseudonat-

ural transformations or modifications. It follows that Λb
ps is an

internal language for bicategories. By Example II.3, restricting

to a single base type gives rise to an internal language for

monoidal categories.

The argument in this section applies with only minor ad-

justments to biclones. Thus, allowing Λb
pspGq to have contexts

with fixed variables over a 2-multigraph G gives rise to

the free biclone on G in the sense of Theorem V.5. This

relies on a straightforward generalisation of the notions of

pseudofunctor, transformation and modification. Details will

be given elsewhere.

VI. FP-BICATEGORIES

We recall the notion of bicategory with finite products,

defined as a bilimit [12]. To avoid confusion with the ‘cartesian

bicategories’ of Carboni and Walters [53], [54], we use the

term fp-bicategories. fp-Bicategories are the objects of a

tricategory fp-Bicat.

It is convenient to work directly with n-ary prod-

ucts pn P Nq. This reduces the need to deal with the equiv-

alent objects given by rebracketing binary products. For bi-

categories B1, . . . ,Bn the product bicategory
śn

i“1 Bi has

objects pB1, . . . , Bnq P
śn

i“1 obpBiq and structure given

pointwise. An fp-bicategory is therefore a bicategory B

equipped with a right biadjoint to the diagonal pseudofunc-

tor ∆n : B Ñ Bˆn : B ÞÑ pB, . . . , Bq for each n P N. This

unwinds to the following definition.

Definition VI.1. An fp-bicategory is a bicategory B equipped

with the following data for every n P N and A1, . . . , An P B:

1) a product object
ś

npA1, . . . , Anq,

2) projection 1-cells πk :
ś

npA1, . . . , Anq Ñ Ak for

1 ď k ď n,

3) for every X P B an adjoint equivalence

B
`

X,
ś

n
pA1, . . . , Anq

˘
śn

i“1
BpX,Aiq

pπ1˝´,...,πn˝´q

%

x´,...,“y

(1)

We call the right adjoint x´, . . . ,“y the n-ary tupling.

Remark VI.2. One obtains a lax n-ary product structure by

merely asking for an adjunction in diagram (1).

Example VI.3. Every small fp-bicategory
`

B,Πnp´q
˘

defines

an obpBq-biclone Bcℓ by setting BcℓprX1, . . . , Xns ;Y q to be

B
`
ś

npX1, . . . , Xnq, Y
˘

.



Γ $ τ : t ñ t1 : A
‚-right-unit

Γ $ τ ‚ idt ” τ : t ñ t1 : A

Γ $ τ : t ñ t1 : A
‚-left-unit

Γ $ τ ” idt1 ‚ τ : t ñ t1 : A

Γ $ τ2 : t2 ñ t3 : A Γ $ τ 1 : t1 ñ t2 : A Γ $ τ : t ñ t1 : A
‚-assoc

Γ $ pτ2 ‚ τ 1q ‚ τ ” τ2 ‚pτ 1 ‚ τ q : t ñ t3 : A

Figure 5. Categorical structure of vertical composition

x1 : A1, . . . , xn : An $ t : B p∆ $ ui : Aiqi“1,...,n
id-preservation

∆ $ idttxi ÞÑ uiu ” idttxi ÞÑuiu : ttxi ÞÑ uiu ñ ttxi ÞÑ uiu : B

x1 : A1, . . . , xn : An $ τ : t ñ t1 : B

x1 : A1, . . . , xn : An $ τ 1 : t1 ñ t2 : B

p∆ $ σi : ui ñ u1
i : Aiqi“1,...,n

p∆ $ σ1
i : u

1
i ñ u2

i : Aiqi“1,...,n
interchange

∆ $ τ 1txi ÞÑ σ1
iu ‚ τtxi ÞÑ σiu ” pτ 1 ‚ τ qtxi ÞÑ σ1

i ‚σiu : ttxi ÞÑ uiu ñ t2txi ÞÑ u2
i u : B

Figure 6. Preservation rules

p∆ $ σi : ui ñ u1
i : Aiqi“1,...,n

p1 ď k ď nq

∆ $ ̺
pkq

u1
1
,...,u1

n
‚ xktxi ÞÑ σiu ” σk ‚ ̺

pkq
u1,...,un : xktxi ÞÑ uiu ñ u1

k : Ak

x1 : A1, . . . , xn : An $ τ : t ñ t1 : B

x1 : A1, . . . , xn : An $ ιt1 ‚ τ ” τtxi ÞÑ xiu ‚ ιt : t ñ t1txi ÞÑ xiu : B

y1 : B1, . . . , yn : Bn $ τ : t ñ t1 : C px1 : A1, . . . , xm : Am $ σi : vi ñ v1
i : Biqi“1,...,n p∆ $ µj : uj ñ u1

j : Ajqj“1,...m

∆ $ assoct1,v‚,u‚
‚ τtyi ÞÑ σiutxj ÞÑ µju ” τtyi ÞÑ σitxj ÞÑ µjuu ‚ assoct,v‚,u‚ : ttyi ÞÑ viutxj ÞÑ uju ñ t1tyi ÞÑ v1

itxj ÞÑ u1
juu : C

Figure 7. Naturality rules on structural rewrites

x1 : A1, . . . , xn : An $ t : B p∆ $ ui : Aiqi“1,...,n

∆ $ ttxi ÞÑ ̺
piq
u‚ u ‚ assoct,x‚,u‚ ‚ ιttxi ÞÑ uiu ” idttxi ÞÑuiu : ttxi ÞÑ uiu ñ ttxi ÞÑ uiu : B

z1 : C1, . . . , zl : Cl $ t : D

py1 : B1, . . . , yn : Bn $ wj : Ckqk“1,...,l

px1 : A1, . . . , xm : Am $ vi : Biqi“1,...,n

p∆ $ uj : Ajqj“1,...m

∆ $ ttzk ÞÑ assocwk,v‚,u‚ u ‚ assoct,w‚tyj ÞÑvju,u‚
‚ assoct,w‚,v‚ txj ÞÑ uju ” assoct,w‚,v‚txj ÞÑuiu ‚ assocttzk ÞÑwku,v‚,u‚

: ttzk ÞÑ wkutyi ÞÑ viutxj ÞÑ uju ñ ttzk ÞÑ wktyi ÞÑ vitxj ÞÑ ujuuu : D

Figure 8. Biclone laws

Equational theory for structural rewrites in Λb
ps, Λ

x
ps and Λx,Ñ

ps . For Λb
ps the rules are restricted to unary contexts.

Notation VI.4.

1) We write A1ˆ¨ ¨ ¨ˆAn or
śn

i“1Ai for
ś

npA1, . . . , Anq
and denote the terminal object

ś

0pq by 1.

2) We write xfiyi“1,...,n or simply xf‚y for the n-ary

tupling xf1, . . . , fny.

There are different ways of specifying the adjoint equiv-

alence (1) (see e.g. [42, Chapter IV]). One option is to

specify an invertible unit and counit subject to natural-

ity and triangle laws. This matches the η-expansion and

β-reduction rules of STLC (c.f. [24], [26], [27], [29]), but

in the pseudo or lax settings requires a cumbersome pro-

liferation of introduction rules. Instead, we characterise the

counit ̟ “ p̟p1q, . . . , ̟pnqq as a universal arrow. Thus,

for any finite family of 1-cells pti : X Ñ Aiqi“1,...,n

we require a 1-cell xt1, . . . , tny : X Ñ
ś

npA1, . . . , Anq

and a family of 2-cells p̟
pkq
t1,...,tn

: πk ˝ xt‚y ñ tkqk“1,...,n,

universal in the sense that for any family of 2-cells

pαi : πi ˝ u ñ ti : Γ Ñ Aiqi“1,...,n there exists a unique 2-

cell p:pα1, . . . , αnq : u ñ xt‚y : Γ Ñ
śn

i“1 Ai such that

̟
pkq
t1,...,tn

‚
`

πk ˝ p:pα1, . . . , αnq
˘

“ αk : πk ˝ u ñ tk

for k “ 1, . . . , n.

Example VI.5. In any bicategory, unary-product structure may

be chosen to be canonically given as follows: Π1pAq “ A,

πA
1 “ IdA, xty “ t and ̟t “ lt : Id ˝ t ñ t.



Remark VI.6. As it is well-known, product structure

is unique up to equivalence. Given adjoint equivalences

pg : C Ô Πn
i“1Bi : hq and pei : Bi Ô Ai : fiqi“1,...,n in a bi-

category B, the composite

BpX,
śn

i“1
Biq

śn
i“1

BpX,Biq

BpX,Cq
śn

i“1
BpX,Aiq

pπ1˝´,...,πn˝´q

h˝´

%

x´,...,“y

Π
n
i“1

pei˝´q

%%

g˝´

Π
n
i“1

pfi˝´q

yields an adjoint equivalence

BpX,Cq
śn

i“1 BpX,Aiq

p ppe1˝π1q˝gq˝´,...,ppen˝πnq˝gq˝´ q

%

h˝xf1˝´,...,fn˝“y

presenting C as the product of A1, . . . , An.

Definition VI.7. An fp-pseudofunctor pF, kxq between

fp-bicategories
`

B,Πnp´q
˘

and
`

C,Πnp´q
˘

is a pseudofunc-

tor F : B Ñ C equipped with adjoint equivalences
`

F
`

śn
i“1Ai

˘

,
śn

i“1 F pAiq, xFπ1, . . . , Fπny, kxA1,...,An

˘

for every n P N and A1, . . . , An P B.

We call pF, kxq strict if F is strict and satisfies

F
`

ΠnpA1, . . . , Anq
˘

“ ΠnpFA1, . . . , FAnq

F pπA1,...,An

i q “ π
FA1,...,FAn

i

F xt1, . . . , tny “ xFt1, . . . , F tny

F̟
piq
t1,...,tn

“ ̟
piq
Ft1,...,F tn

kxA1,...,An
“ IdΠnpFA1,...,FAnq

and the adjoint equivalences are canonically induced by the

2-cells p:prπ1
, . . . , rπn

q : Id
–
ùñ xπ1, . . . , πny.

Thus, a strict fp-pseudofunctor strictly preserves both

(global) biuniversal arrows and (local) universal arrows.

VII. A TYPE THEORY FOR FP-BICATEGORIES

We extend the basic language Λb
ps to a type theory Λx

ps

with finite products. The addition of products enables us to

use arbitrary contexts, defined as finite lists of variable-and-

type pairs in which variable names must not be repeated.

The underlying signature is therefore a 2-multigraph and the

bicategorical structure of Λb
ps is extended to a biclone.

The additional structure required for products is synthesised

directly from the cases in Definition VI.1. These additional

rules are collected in Figures 9–11. As for Λb
ps, we work up

to α-equivalence of terms and rewrites. The well-formedness

properties of Λb
ps extend to Λx

ps.

For every n P N and types A1, . . . , An we introduce a

product type
ś

npA1, . . . , Anq; the case n “ 0 yields the unit

type 1. We fix a set of base types S and let the set of types

T0pSq be generated by the grammar

A1, . . . , An ::“ X P S

|
ś

npA1, . . . , Anq pn P Nq

On top of this, we fix a 2-multigraph G with G0 “ T0pSq.

We generally abuse notation by adopting the conventions

of Notation VI.4(1). For the biuniversal arrows we introduce

distinguished constants πkppq : Ak (k “ 1, . . . , n) for every

context
`

p :
ś

npA1, . . . , Anq
˘

. As for adjunction (1), we

postulate an operator tupp´, . . . ,“q, a family of rewrites

̟t1,...,tn “
`

̟
pkq
t1,...,tn

: πkttuppt1, . . . , tnqu ñ tk
˘

k“1,...,n

(recall Notation V.1(3)) for every family of derivable terms

pΓ $ ti : Aiqi“1,...,n, and provide a natural bijective corre-

spondence between rewrites as follows:

αi : πituu ñ ti pi “ 1, . . . , nq

p:pα1, . . . , αnq : u ñ tuppt1, . . . , tnq
(2)

The rules of Figure 11 achieve this by making ̟ universal:

this is precisely the content of Lemma VII.2 below. These

rules define lax products. To obtain the adjoint equivalence (1)

one introduces explicit inverses for the unit and counit. In this

extended abstract these are omitted.

Remark VII.1. The product structure arises from two nested

universal transposition structures. We conjecture that a cal-

culus for fp-tricategories (resp. fp-8-categories) would have

three (resp. a countably infinite tower of) such correspon-

dences.

A. The product structure of Λx
ps

The product structure derives from the following universal

property of ̟.

Lemma VII.2. If the judgements pΓ $ αi : πituu ñ ti :

Aiqi“1,...,n are derivable in Λx
pspGq then p:pα1, . . . , αnq :

u ñ tuppt1, . . . , tnq is the unique rewrite γ (modulo

α”-equivalence) such that the following equality is derivable

for k “ 1, . . . , n:

Γ $ ̟
pkq
t1,...,tn

‚ πktγu ” αk : πituu ñ tk : Ak

From this lemma it follows that the tupp´, . . . ,“q operator

extends to a functor on rewrites, and that one may define the

unit of adjunction (1) by applying the universal property to

the identity.

Definition VII.3.

1) For every family of derivable rewrites pΓ $ τi :

ti ñ t1i : Aiqi“1,...,n define tuppτ1, . . . , τnq :

tuppt1, . . . , tnq ñ tuppt11, . . . , t
1
nq to be the rewrite

p:pτ1 ‚̟
p1q
t1,...,tn

, . . . , τn ‚̟
pnq
t1,...,tn

q in context Γ.

2) For every derivable term Γ $ t :
ś

npA1, . . . , Anq
define the unit ςt : t ñ tuppπ1ttu, . . . , πnttuq to be

the rewrite p:pidπ1ttu, . . . , idπnttuq in context Γ.

Likewise, one obtains naturality and the triangle laws re-

lating the unit ς and counit ̟ “ p̟p1q, . . . , ̟pnqq, thereby

recovering a presentation of products in the style of [24], [25],

[29]. These admissible rules are collected in Figure 12.



Γ $ t1 : A1 . . . Γ $ tn : An
n-pair

Γ $ tuppt1, . . . , tnq :
ś

n
pA1, . . . , Anq

k-proj (1 ď k ď n)
p :

ś

n
pA1, . . . , Anq $ πkppq : Ak

Figure 9. Terms for product structure

Γ $ t1 : A1 . . . Γ $ tn : An
̟pkq-intro (1 ď k ď n)

Γ $ ̟
pkq
t1,...,tn

: πkttuppt1, . . . , tnqu ñ tk : Ak

Γ $ u :
ś

n
pA1, . . . , Anq Γ $ α1 : π1tuu ñ t1 : A1 . . . Γ $ αn : πntuu ñ tn : An

p:-intro
Γ $ p:pα1, . . . , αnq : u ñ tuppt1, . . . , tnq :

ś

n
pA1, . . . , Anq

Figure 10. Rewrites for product structure

Γ $ α1 : π1tuu ñ t1 : A1 . . . Γ $ αn : πntuu ñ tn : An
U1 (1 ď k ď n)

Γ $ αk ” ̟
pkq
t1,...,tn

‚πktp:pα1, . . . , αnqu : πktuu ñ tk : Ak

Γ $ γ : u ñ tuppt1, . . . , tnq :
ś

n
pA1, . . . , Anq

U2

Γ $ γ ” p:p̟
p1q
t1,...,tn

‚π1tγu, . . . ,̟
pnq
t1,...,tn

‚ πntγuq : u ñ tuppt1, . . . , tnq :
ś

npA1, . . . , Anq

`

Γ $ αi ” α1
i : πituu ñ ti : Ai

˘

i“1,...,n
cong

Γ $ p:pα1, . . . , αnq ” p:pα1
1, . . . , α

1
nq : u ñ tuppt1, . . . , tnq :

ś

n
pA1, . . . , Anq

Figure 11. Universal property of ̟

Rules for Λx
pspGq.

B. The syntactic model for Λx
ps

We construct the syntactic model for Λx
ps and prove the

freeness universal property establishing that it is the internal

language of fp-bicategories. We begin with a model in which

we allow arbitrary variables and consider all contexts. We then

restrict to unary contexts and a single named variable (c.f. Con-

structions V.2 and V.4) in order to obtain a strict universal

property (c.f. Theorem V.5).

Construction VII.4. Define a bicategory T x
pspGq as fol-

lows. The objects are contexts Γ,∆, . . . . The 1-cells

Γ Ñ pyj : Bjqj“1,...,m are m-tuples of α-equivalence classes

of terms pΓ $ tj : Bjqj“1,...,m derivable in Λx
pspGq; the

2-cells are m-tuples of α”-equivalence classes of rewrites

pΓ $ τ : tj ñ t1j : Bjqj“1,...,m.
Vertical composition is given pointwise by the ‚ operation,

and horizontal composition by explicit substitution:

pt1, . . . , tlq, pu1, . . . , umq ÞÑ pt1txi ÞÑ uiu, . . . , tltxi ÞÑ uiuq

pτ1, . . . , τlq, pσ1, . . . , σmq ÞÑ pτ1txi ÞÑ σiu, . . . , τltxi ÞÑ σiuq

The identity on ∆ “ pyj : Bjqj“1,...,m is given by the var

rule p∆ $ yj : Bjqj“1,...,m. The structural isomorphisms l, r

and a are given pointwise by ̺, ι´1 and assoc, respectively.

The first step in showing that T x
pspGq is an fp-bicategory

is constructing n-ary products of unary contexts. Much

of the work required is contained in the admissi-

ble rules of Figure 12. For example, there is an ad-

joint equivalence T x
pspGq

`

px : Xq, pp :
ś

npA1, . . . , Anq
˘

»
śn

i“1T
x
pspGq

`

px : Xq, pxi : Aiq
˘

defining products of unary

contexts in T x
pspGq with unit ς and counit ̟ “

p̟p1q, . . . , ̟pnqq.

Lemma VII.5. For any 2-multigraph G, the following holds

in T x
pspGq.

1) For any n P N the n-ary product
śn

i“1pxi : Aiq exists

and is given by pp :
śn

i“1Aiq.

2) For any context Γ “ px1 : A1, . . . , xn : Anq there exists

an adjoint equivalence Γ Ô
`

p :
ś

npA1, . . . , Anq
˘

.

Remark VII.6. The existence of the adjoint equivalence of

Lemma VII.5(2) in T x
pspGq is equivalent to the existence of a

pseudo-universal multimap rA1, . . . , Ans Ñ
ś

npA1, . . . , Anq
in the biclone associated to Λx

pspGq (c.f. [51]).

We define products of arbitrary contexts using Remark VI.6

and the preceding lemma. Define the product of

px
p1q
i : A

p1q
i qi“1,...,m1

ˆ ¨ ¨ ¨ ˆ px
pnq
i : A

pnq
i qi“1,...,mn

to be the product pp1 :
śm1

i“1A
p1q
i q ˆ ¨ ¨ ¨ ˆ ppn :

śmn

i“1A
pnq
i q

of unary contexts.

Corollary VII.7. For any 2-multigraph G, the syntactic model

T x
pspGq of Λx

pspGq is an fp-bicategory.

T x
pspGq contains redundancy in two ways: as well as the

equivalent objects given by bijectively renaming variables in

contexts, every context pxi : Aiqi“1,...,n is equivalent to the

context pp :
śn

i“1Aiq. To obtain a strict universal property

we cut out such multiplicities (c.f. Construction V.4).



pΓ $ idti : ti ñ ti : Aiqi“1,...,n

Γ $ tuppidt1 , . . . , idtnq ” idtuppt1,...,tnq : tuppt1, . . . , tnq ñ tuppt1, . . . , tnq :
ś

n
pA1, . . . , Anq

pΓ $ τ 1
i : t1

i ñ t2
i : Aiqi“1,...,n pΓ $ τi : ti ñ t1

i : Aiqi“1,...,n

Γ $ tuppτ 1
1, . . . , τ

1
nq ‚ tuppτ1, . . . , τnq ” tuppτ 1

1 ‚ τ1, . . . , τ
1
n ‚ τnq : tuppt1, . . . , tnq ñ tuppt2

1 , . . . , t
2
nq :

ś

npA1, . . . , Anq

Γ $ σ : u ñ u1 :
ś

n
pA1, . . . , Anq

ς-nat
Γ $ ςu1 ‚σ ” tuppπ1tσu, . . . , πntσuq ‚ ςu : u ñ tuppπ1tu1u, . . . , πntu1uq :

ś

n
pA1, . . . , Anq

pΓ $ τi : ti ñ t1
i : Aiqi“1,...,n

̟pkq-nat p1 ď k ď nq
Γ $ ̟

pkq

t1
1
,...,t1

n
‚ πkttuppτ1, . . . , τnqu ” τk ‚̟

pkq
t1,...,tn

: πkttuppt1, . . . , tnqu ñ tk : Ak

Γ $ tuppt1, . . . , tnq :
ś

n
pA1, . . . , Anq

triangle-law-1

Γ $ tupp̟
p1q
t‚

, . . . ,̟
pnq
t‚

q ‚ ςtuppt‚q ” idtuppt‚q : tuppt‚q ñ tuppt‚q :
ś

n
pA1, . . . , Anq

Γ $ πktuu : Ak
triangle-law-2 p1 ď k ď nq

Γ $ ̟
pkq
t1,...,tn

‚πktςuu ” idπktuu : πktuu ñ πktuu : Ak

Figure 12. Admissible rules for Λx
pspGq

hJXK :“ hpXq for X a base type

hJ
ś

npB1, . . . , BnqK :“
śn

i“1hJBiK

hJA“⊲BK :“ hJAK “⊲hJBK

hJx1 : A1, . . . , xn : AnK :“
śn

i“1hJAiK on n-ary contexts

hJx1 : A1, . . . , xn : An $ xk : AiK :“ π
A1,...,An

k

hJx1 : A1, . . . , xn : An $ cpx1, . . . , xnq : BK :“ hpcq for c P GpA‚;Bq

hJ∆ $ ttxAi

i ÞÑ uiu
n
i“1 : BK :“ hJx1 : A1, . . . , xn : An $ t : BK

˝ xhJ∆ $ ui : AiKyi“1,...,n

hJΓ $ tuppt1, . . . , tnq :
ś

npB1, . . . , BnqK :“ xhJΓ $ t1 : B1, K, . . . , hJΓ $ tn : BnKy

hJp :
ś

npB1, . . . , Bnq $ πkppq : BkK :“ π
B1,...,Bn

k

hJf : A“⊲B, a : A $ evalpf, aq : BK :“ evalA,B

hJΓ $ λx.t : A“⊲BK :“ λ
`

hJΓ, x : A $ t : BK˝ »
˘

hJΓ $ idt : t ñ t : BK :“ idhJΓ$t:BK

hJx1 : A1, . . . , xn : An $ σpx‚q : cpx‚q ñ c1px‚q : BK :“ hpσq for σ P GpA‚, Bqpc, c1q

hJΓ $ ̟
pkq
t1,...,tn

: πkttuppt1, . . . , tnqu ñ tk : BkK :“ ̟
pkq
hJt1K,...,hJtnK

hJΓ $ p:pα1, . . . , αnq : u ñ tuppt1, . . . , tnq :
ś

npB1, . . . , BnqK :“ p:phJΓ $ αi : πituu ñ ti : BiKqi“1,...,n

hJΓ, x : A $ ǫt : evaltpλx.tqtincxu, xu ñ t : BK :“ ǫphJΓ,x:A$t:BK˝»q

hJΓ $ e:px.αq : u ñ λx.t : A“⊲BK :“ e:phJΓ, x : A $ α : evaltutincxu, xu ñ t : BK˝ »q

hJΓ $ τ 1 ‚ τ : t ñ t2 : BK :“ hJΓ $ τ 1 : t1 ñ t2 : BK ‚hJΓ $ τ : t ñ t1 : BK

hJ∆ $ τtxAi

i ÞÑ σiu
n
i“1 : ttxAi

i ÞÑ uiu
n
i“1 ñ t1txAi

i ÞÑ u1
iu

n
i“1 : BK :“ hJx1 : A1, . . . , xn : An $ τ : t ñ t1 : BK

˝ xhJ∆ $ σi : ui ñ u1
i : AiKyi“1,...,n

Figure 13. Bicategorical semantics



Construction VII.8. Let Sx
pspGq denote the bicategory with

objects unary contexts px : Aq for x a fixed variable and

horizontal and vertical composition operations as in T x
pspGq.

The product structure of T x
pspGq restricts to Sx

pspGq and the

two bicategories are equivalent as fp-bicategories. To obtain

the freeness universal property for T x
pspGq with respect to 2-

multigraphs G, it suffices to show that Sx
pspGq is the free

fp-bicategory for 2-graphs G. Universal extensions are induced

by the semantics in Figure 13 restricted to Sx
pspGq.

Theorem VII.9. Let G be a 2-graph with G0 “ T0pSq
for a set of base types S. For every fp-bicategory B

and 2-graph homomorphism h : G Ñ B such that

h
`

ΠnpA1, . . . , Anq
˘

“ ΠnphA1, . . . , hAnq, there exists a

unique strict fp-pseudofunctor h# : Sx
pspGq Ñ B such that

h# ˝ ι “ h, where ι : G ãÑ Sx
pspGq denotes the inclusion.

VIII. CARTESIAN CLOSED BICATEGORIES

To give a cartesian closed structure on an fp-bicategory B

is to specify a biadjunction p´q ˆ A % pA“⊲ ´q for each

object A P B. Cartesian closed bicategories are the objects of

a tricategory CCBicat.

Definition VIII.1. A cartesian closed bicategory or

CC-bicategory is an fp-bicategory
`

B,Πnp´q
˘

equipped with

the following data for every A,B P B:

1) an exponential object pA“⊲Bq,

2) an evaluation 1-cell evalA,B : pA“⊲Bq ˆA Ñ B,

3) for every X P B an adjoint equivalence

BpX,A“⊲Bq BpX ˆA,Bq

evalA,B˝p´ˆAq

%

λ

(3)

Remark VIII.2. The uniqueness of exponentials up to equiv-

alence manifests itself in the same way as for products. For

instance, given an adjoint equivalence e : E » pA“⊲Bq : f ,

the object E inherits an exponential structure by composition

with e and f (c.f. Remark VI.6).

As for products, we choose to define the adjunction (3)

by characterising its counit ǫ as a universal arrow (c.f. the

discussion after Notation VI.4). Thus, for every 1-cell

t : X ˆA Ñ B we require a 1-cell λt : X Ñ pA“⊲Bq and

a 2-cell ǫt : evalA,B ˝ pλt ˆ Aq ñ t that is universal in

the sense that for any 2-cell α : evalA,B ˝ pu ˆ Aq ñ t

there exists a unique 2-cell e:pαq : u ñ λt such that

ǫt ‚
`

evalA,B ˝ pe:pαq ˆAq
˘

“ α.

Definition VIII.3. A cartesian closed pseudofunctor or

CC-pseudofunctor between CC-bicategories
`

B,Πnp´q,“⊲

˘

and
`

C,Πnp´q,“⊲

˘

is an fp-pseudofunctor pF, kxq equipped

with equivalences
`

F pA“⊲Bq, pFA“⊲FBq, sA,B, k
“⊲

A,B

˘

for every A,B P B, where sA,B : F pA“⊲Bq Ñ
pFA“⊲FBq is the transpose of

F pevalA,Bq ˝ kxA “⊲B,A : F pA“⊲Bq ˆ FA Ñ FB

A CC-pseudofunctor pF, kx, k“⊲q is strict if pF, kxq is strict

and satisfies

F pA“⊲Bq “ pFA“⊲FBq

F pevalFA,FBq “ evalFA,FB

F pλtq “ λpFtq

F pǫtq “ ǫFt

k“⊲

A,B “ IdFA “⊲FB

and the adjoint equivalences are canonically induced by the

2-cells e:pκq : IdFA “⊲FB
–
ùñ λpevalFA,FBq where κ is the

following composite of canonical 2-cells

evalFA,FB ˝ pId ˆ FAq – evalFA,FB ˝ Id – evalFA,FB

IX. A TYPE THEORY FOR CARTESIAN CLOSED

BICATEGORIES

We extend Λx
ps to the full language Λx,Ñ

ps by synthesising

the additional rules from the cases of Definition VIII.1; these

rules are Figures 14–16.

We extend the grammar for types with an arrow type

former p´q “⊲p“q. We henceforth fix a set of base types S,

let TpSq denote the set of all types over S, and consider

2-multigraphs G with set of nodes G0 “ TpSq.

We postulate a constant evalpf, xq for every context

pf : A“⊲B, x : Aq; the usual application operation becomes

a derived rule:

Γ $ t : A“⊲B Γ $ u : A

Γ $ evaltt, uu : B

The adjunction (3) requires the functor p´q ˆA on the syntac-

tic model. As for STLC, this corresponds to context extension

and an associated notion of weakening. The explicit nature of

substitution in our type theory gives rise to correspondingly

explicit structural operations on contexts.

Definition IX.1. A context renaming

r : pxi : Aiqi“1,...,n Ñ pyj : Bjqj“1,...,m

is a map r : tx1, . . . , xnu Ñ ty1, . . . , ymu such that Ai “ Bj

whenever rpxiq “ yj .

It is immediate that for every context renaming r : Γ Ñ ∆

the following rules are admissible in Λx,Ñ
ps pGq:

Γ $ t : A r : Γ Ñ ∆

∆ $ ttxi ÞÑ rpxiqu : A

Γ $ τ : t ñ t1 : A r : Γ Ñ ∆

∆ $ τtxi ÞÑ rpxiqu : ttxi ÞÑ rpxiqu ñ t1txi ÞÑ rpxiqu : A

Notation IX.2. For a context renaming r we write ttru and

τtru for the terms and rewrites formed using the preceding

admissible rules.

Weakening arises by taking the inclusion of contexts

incx : Γ ãÑ pΓ, x : Aq. For the counit of (3) we therefore

postulate a rewrite

ǫt : evaltpλx.tqtincxu, xu ñ t



Γ, x : A $ t : B
lam

Γ $ λx.t : A“⊲B
eval

f : A“⊲B,a : A $ evalpf, aq : B

Figure 14. Terms for cartesian closed structure

Γ, x : A $ t : B
ǫ-intro

Γ, x : A $ ǫt : evaltpλx.tqtincxu, xu ñ t : B

Γ, x : A $ t : B Γ $ u : A“⊲B

Γ, x : A $ α : evaltutincxu, xu ñ t : B
e:-intro

Γ $ e:px.αq : u ñ λx.t : A“⊲B

Figure 15. Rewrites for cartesian closed structure

Γ, x : A $ α : evaltutincxu, xu ñ t : B
U1

Γ, x : A $ α ” ǫt ‚ evalte:px.αqtincxu, xu : evaltutincxu, xu ñ t : B

Γ $ γ : u ñ λx.t : A“⊲B
U2

Γ $ γ ” e:px.ǫt ‚ evaltγtincxu, xuq : u ñ λx.t : A“⊲B

Γ, x : A $ α ” α1 : evaltutincxu, xu ñ t : B
cong

Γ $ e:px.αq ” e:px.α1q : u ñ λx.t : A“⊲B

Figure 16. Universal property of ǫ

Rules for Λx,Ñ
ps pGq.

Γ, x : A $ t : B

Γ $ λx.idt ” idλx.t : λx.t ñ λx.t : A“⊲B

Γ, x : A $ τ 1 : t1 ñ t2 : B Γ, x : A $ τ : t ñ t1 : B

Γ $ λx.pτ 1 ‚ τ q ” pλx.τ 1q ‚pλx.τ q : λx.t ñ λx.t2 : A“⊲B

Γ $ σ : u ñ u1 : A“⊲B
η-nat

Γ $ ηu1 ‚σ ” λx.evaltσtincxu, xu ‚ ηu : u ñ λx.evaltu1tincxu, xu : A“⊲B

Γ, x : A $ τ : t ñ t1 : B
ǫ-nat

Γ, x : A $ τ ‚ ǫt ” ǫt1 ‚ evaltpλx.τ qtincxu, xu : evaltpλx.tqtincxu, xu ñ t1 : B

Γ, x : A $ t : B
triangle-law-1

Γ $ pλx.ǫtq ‚ ηt ” idλx.t : λx.t ñ λx.t : A“⊲B

Γ $ u : A“⊲B
triangle-law-2

Γ, x : A $ ǫevaltutincxu,xu ‚ evaltηutincxu, xu ” idevaltutincxu,xu : evaltutincxu, xu ñ evaltutincxu, xu : B

Figure 17. Admissible rules for Λ
x,Ñ
ps pGq

for every term t typeable in a context extended by the

variable x.

The encoding of the universal property of ǫt in the type

theory yields a bijective correspondence of rewrites modulo

α”-equivalence as follows (c.f. (2)):

px : Aq α : evaltutincxu, xu ñ t : B

e:px.αq : u ñ λx.t : A“⊲B

where we write px : Aq to indicate that the variable

x of type A is in the context (c.f. [30]). Our approach

to achieving this matches that for products. For every

rewrite α : evaltutincxu, xu ñ t we introduce the rewrite

e:px.αq : u ñ λx.t and make it unique in inducing a fac-

torisation of α through ǫt; the variable x is bound by this

operation. The rules governing this construction are given

in Figures 15–16; these provide lax exponentials (c.f. [25]).

Finally, one requires explicit inverses for the unit and counit.

In this extended abstract they are omitted.

Remark IX.3. As for products (c.f. Remark VII.1), we obtain

a nesting of two universal transposition structures. In the

same vein, we conjecture that a calculus for cartesian closed

tricategories (cartesian closed 8-categories) would have three

(a countably infinite tower of) of such correspondences. In-

deed, this should extend to general type structures arising from

weak adjunctions.

We continue to work up to α-equivalence of terms and

rewrites. The well-formedness properties of Λb
ps and Λx

ps lift

to Λx,Ñ
ps .



A. Cartesian closed structure of Λx,Ñ
ps

The ǫ-introduction rule (Figure 15) only ‘evaluates’ lambda

abstractions at variables. The general form of explicit

β-reduction is derivable.

Definition IX.4. For derivable terms Γ, x : A $ t : B and

Γ $ u : A define βx.t,u : evaltλx.t, uu ñ ttidΓ, x ÞÑ uu to be

the rewrite ǫttidΓ, x ÞÑ uu ‚ τ in context Γ (recall Nota-

tion IX.2), where τ is a composite of structural isomorphisms.

As expected, the remaining exponential structure follows

from the universal property of ǫ (c.f. Lemma VII.2).

Lemma IX.5. For every rewrite pΓ, x : A $ α :
evaltutincxu, xu ñ t : Bq in Λx,Ñ

ps pGq, the rewrite e:px.αq
is the unique γ (modulo α”-equivalence) such that

Γ, x : A $ α ” ǫt ‚ evaltγtincxu, xu : evaltutincxu, xu ñ t : B

It follows that the lambda-abstraction operator extends to a

functor, and we obtain a unit for the adjunction (3).

Definition IX.6.

1) For any derivable rewrite pΓ, x : A $ τ : t ñ t1 : Bq de-

fine λx.τ : λx.t ñ λx.t1 to be the rewrite e:px.τ ‚ ǫtq
in context Γ.

2) For any derivable term pΓ $ u : A“⊲Bq define the

unit ηu : u ñ λx.evaltutincxu, xu to be the rewrite

e:px.idevaltutincxu,xuq in context Γ.

The unit η and counit ǫ satisfy naturality and triangle laws,

collected in Figure 17. Thus we recover the unit-counit presen-

tation of both products and exponentials (c.f. [24], [25], [29]).

B. The syntactic model for Λx,Ñ
ps

We finally turn to constructing the syntactic model for

Λx,Ñ
ps pGq and proving its freeness universal property. The con-

struction of the syntactic model follows the pattern established

by Λb
ps and Λx

ps.

Construction IX.7. Define a bicategory T x,Ñ
ps pGq as fol-

lows. The objects are contexts Γ,∆, . . . . The 1-cells

Γ Ñ pyj : Bjqj“1,...,m are m-tuples of α-equivalence classes

of terms pΓ $ tj : Bjqj“1,...,m derivable in Λx,Ñ
ps pGq;

2-cells are m-tuples of α”-equivalence classes of rewrites

pΓ $ τ : tj ñ t1j : Bjqj“1,...,m. Horizontal and vertical com-

position are as in Construction VII.4.

T x,Ñ
ps pGq inherits the product structure of T x

pspGq. To con-

struct cartesian closed structure it suffices to construct ex-

ponentials of unary contexts. Much of the work required is

contained in the admissible rules of Figure 17.

Lemma IX.8. For unary contexts px : Aq, py : Bq, the expo-

nential px : Aq “⊲ py : Bq in T x,Ñ
ps pGq exists and is given by

pf : A“⊲Bq.

Using Remark VIII.2 and the preceding lemma, we define

the exponential object pΓ“⊲∆q for Γ :“ pxi : Aiqi“1,...,n and

∆ :“ pyj : Bjqj“1,...,m using the equivalent unary contexts, as
`

p :
ś

npA1, . . . , Anq
˘

“⊲

`

q :
ś

mpB1, . . . , Bmq
˘

.

Corollary IX.9. The syntactic model T x,Ñ
ps pGq is a

CC-bicategory.

From Sections V-A and VII-B one might expect that restrict-

ing to a sub-bicategory with unary contexts and a fixed variable

name is sufficient to obtain the required freeness universal

property. This suggests the following definition.

Construction IX.10. Let Sx,Ñ
ps pGq denote the bicategory with

objects unary contexts px : Aq for x a fixed variable and

horizontal and vertical composition operations as in T x,Ñ
ps pGq.

The cartesian closed structure of T x,Ñ
ps pGq restricts to

Sx,Ñ
ps pGq and the two are equivalent as cartesian closed bicate-

gories. However, one does not obtain a strict freeness universal

property. We recover uniqueness by restricting to cartesian

closed bicategories in which the product structure is strict.

Theorem IX.11. Let G be a 2-graph with G0 “ TpSq
for a set of base types S. For every cartesian 2-category

(i.e. 2-category with 2-categorical products) with pseudo-

exponentials C and every 2-graph homomorphism h : G Ñ C

such that h
`

ΠnpA1, . . . , Anq
˘

“ ΠnphA1, . . . , hAnq and

hpA“⊲Bq “ phA“⊲hBq, there exists a unique strict

CC-pseudofunctor h# : Sx,Ñ
ps pGq Ñ C such that h# ˝ ι “ h,

for ι : G ãÑ Sx,Ñ
ps pGq the inclusion.

Thus, one obtains the same result as for Sections V-A

and VII-B, albeit with a restricted freeness universal property.

This, modulo the coherence result of Power [14] applied to

fp-bicategories, yields that

Λx,Ñ
ps is the internal language of

cartesian closed bicategories.

In fact, it is possible to adjust the definition of exponentials

to obtain another type theory for which the induced syntactic

models are equivalent as CC-bicategories to those above and

satisfy a strict freeness universal property with respect to arbi-

trary CC-bicategories. This type theory is however no longer

in the spirit of STLC, and so will be presented elsewhere.
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