
ar
X

iv
:1

81
2.

11
57

3v
3

 [
cs

.L
O

]
 5

 A
pr

 2
01

9

A Probabilistic and Non-Deterministic

Call-by-Push-Value Language∗

Jean Goubault-Larrecq†

April 8, 2019

Abstract

There is no known way of giving a domain-theoretic semantics to

higher-order probabilistic languages, in such a way that the involved do-

mains are continuous or quasi-continuous—the latter is required to do any

serious mathematics. We argue that the problem naturally disappears

for languages with two kinds of types, where one kind is interpreted in a

Cartesian-closed category of continuous dcpos, and the other is interpreted

in a category that is closed under the probabilistic powerdomain functor.

Such a setting is provided by Paul B. Levy’s call-by-push-value paradigm.

Following this insight, we define a call-by-push-value language, with prob-

abilistic choice sitting inside the value types, and where conversion from a

value type to a computation type involves demonic non-determinism. We

give both a domain-theoretic semantics and an operational semantics for

the resulting language, and we show that they are sound and adequate.

With the addition of statistical termination testers and parallel if, we

show that the language is even fully abstract—and those two primitives

are required for that.

Keywords: domain theory; PCF; call-by-push-value; probabilistic choice;

non-deterministic choice; full abstraction.

1 Introduction

A central problem of domain theory is the following: is there any full Cartesian-
closed subcategory of the category Cont of continuous dcpos that is closed
under the probabilistic powerdomain functor V≤1 [14]? Solving the question
in the positive would allow for a simple semantics of probabilistic higher-order
languages, where types are interpreted as certain continuous dcpos.

However, we have a conundrum here. The category Cont itself is closed
under V≤1 [13], but is not Cartesian-closed [2, Exercise 3.3.12(11)]. Among the

∗This research was partially supported by Labex DigiCosme (project ANR-11-LABEX-
0045-DIGICOSME) operated by ANR as part of the program “Investissement d’Avenir” Idex
Paris-Saclay (ANR-11-IDEX-0003-02).

†LSV, ENS Paris-Saclay, CNRS, Université Paris-Saclay. Address: ENS Paris-Saclay, 61
avenue du président Wilson, 94230 Cachan, France. Email: goubault@lsv.fr

1

http://arxiv.org/abs/1812.11573v3

Cartesian-closed categories of continuous domains, none is known to be closed
underV≤1, and most, such as the category of bc-domains or the categoryCLatt
of continuous complete lattices, definitely are not [14].

Instead of solving this problem, one may wonder whether there are other
kinds of domain-theoretic semantics that would be free of the issue. Typically,
can we imagine having two classes of types? One would be interpreted in a cate-
gory of continuous dcpos that is closed underV≤1—Cont for example, although
we will prefer the category PCCont of pointed coherent continuous dcpos (see
below). The other would be interpreted in a Cartesian-closed category of con-
tinuous dcpos, and we will use CLatt. Such a division in two classes of types
is already present in Paul B. Levy’s call-by-push-value [17] (a.k.a. CBPV), and
although the division is justified there as to be between value types and com-
putation types, the formal structure will be entirely similar.

Outline We briefly review some related work in Section 2, and give a few
basic working definitions in Section 3. We define our probabilistic call-by-push-
value languages in Section 4, explaining the design decisions we had to make
in the process—notably the extra need for demonic non-determinism. We give
domain-theoretic and operational semantics there, too. We establish soundness
in Section 5 and adequacy in Section 6, to the effect that for every ground term
M of the specific type FFFVVVunitunitunit, the probability Pr(M↓) that M must terminate,
as defined from the operational semantics, coincides with a similar notion of
probability defined from the denotational semantics. In Section 7, we review a
few useful consequences of adequacy, among which the coincidence between the
applicative preorder -app

τ and the contextual preorder -τ (both will be defined
there), a fact sometimes called Milner’s Context Lemma in the context of PCF
(see [20, Theorem 8.1]). We show that, among the languages we have defined,
CBPV(D, P) is not (inequationally) fully abstract in Section 8, and that adding
a parallel if operator pifzpifzpifz does not make it fully abstract, but that adding both
pifzpifzpifz and a statistical termination tester operator©>b (as in [11]) results in an
(inequationally) fully abstract language. The latter is proved in Section 9. We
conclude and list a few remaining open questions in Section 10.

Acknowledgments I wish to thank Zhenchao Lyu and Xiaodong Jia, who
participated in many discussions on the theme of this paper; Ohad Kammar,
who kindly pointed me to [23]; and the anonymous referees of the LICS’19
conference.

2 Related Work

Call-by-push-value (CBPV) is the creation of Paul B. Levy [17] (see also the
book [18]), and is a typed higher-order pure functional language. It was origi-
nally meant as a subsuming paradigm, embodying both call-by-value and call-
by-name disciplines.

2

The first probabilistic extension of CBPV was proposed recently by Ehrhard
and Tasson [4], and its denotational semantics rests on probabilistic coherence
spaces. Their typing discipline is inspired by linear logic, and they also include
a treatment of general recursive types, which we will not. In contrast, our
extension of CBPV will have first-class types of subprobability distributions
VVVσ, and will also include a type former for demonic non-determinism (a.k.a.,
must-non-determinism).

Statistical probabilistic programming has attracted quite some attention re-
cently, and quasi-Borel spaces and predomains have recently been used to give
adequate semantics to typed and untyped probabilistic programming languages,
see [23]. The latter describes another way of circumventing the problem we
stated in the introduction. One important point that Vákár, Kammar and Sta-
ton achieve is the commutativity of the probabilistic choice monad, at all, even
higher-order, types. In standard domain theory, the V≤1 monad is known to
be commutative in full subcategories of Cont only. That would be enough mo-
tivation to attempt to solve the problem stated in the introduction, of finding
a Cartesian-closed category, closed under V≤1 [14]. We also implement a com-
mutative V≤1 monad in a higher-order setting; our way of circumventing the
problem is merely different.

There is a large body of literature concerned with the question of full ab-
straction for PCF-like languages. The first paper on the subject is due to G.
Plotkin [19], who defined the language PCF, asked all the important questions
(soundness, adequacy, full abstraction, definability), and answered all of them,
except for the question of finding a fully abstract denotational model of PCF
without parallel if, a question that was solved later, through game semantics
notably [12, 1]. Th. Streicher’s book [20] is an excellent reference on the sub-
ject.

Probabilistic coherence spaces provide a fully abstract semantics for a version
of PCF with probabilistic choice, as shown by Ehrhard, Tasson, and Pagani [5].
The already cited paper of Ehrhard and Tasson [4] gives an analogous result for
their probabilistic version of CBPV. Our work is concerned with languages with
domain-theoretic semantics instead, and our former work [11] gives soundness,
adequacy and full abstraction results for PCF plus angelic non-determinism,
and for PCF plus probabilistic choice and angelic non-determinism plus so-
called statistical termination testers. We will see that CBPV naturally calls for
a form of demonic, rather than angelic, non-determinism.

3 Preliminaries

We refer to [8, 2, 10] for material on domain theory and topology. A dcpo is
pointed if and only if it has a least element ⊥. Dcpos are always equipped with
their Scott topology. R+ = R∪{∞} and [0, 1] are dcpos, with the usual ordering.
The way-below relation is written ≪: x ≪ y if and only if for every directed
family (xi)i∈I such that y ≤ supi∈I xi, there is an i ∈ I such that x ≤ xi. A
dcpo X is continuous if and only if every element is the supremum of a directed

3

family of elements way-below it. In that case, the sets ↑↑x = {y ∈ X | x ≪ y}
form a base of open sets of the Scott topology. We recall that a base of a
topology is a family B of open sets such that every open set is a union of sets
from B. A subbase is a family S such that the finite intersections of elements of
S form a base.

A basis B of a dcpo X (not to be confused with a base) is a set of elements
of X such that, for every x ∈ X , {b ∈ B | b ≪ x} is directed and has x as
supremum. A dcpo is continuous if and only if it has a basis. Then the sets ↑↑b,
b ∈ B, also form a base of the Scott topology.

We write ≤ for the specialization ordering of a T0 topological space. For
a dcpo X , that is the original ordering on X . A subset of a topological space
is saturated if and only if it is upwards-closed in ≤, if and only if it is the
intersection of its open neighborhoods. A topological space X is locally compact
if and only if for every x ∈ X , for every open neighborhood U of x, there is
a compact saturated set Q such that x ∈ int(Q) ⊆ Q ⊆ U . (int(Q) denotes
the interior of Q.) In that case, for every compact saturated subset Q and
every open neighborhood U of Q, there is a compact saturated set Q′ such
that Q ⊆ int(Q′) ⊆ Q′ ⊆ U . A topological space is coherent if and only if
the intersection of any two compact saturated subsets is compact. It is well-
filtered if and only if for every filtered family of compact saturated sets (Qi)i∈I

(filtered meaning directed for reverse inclusion), every open neighborhood U
of

⋂

i∈I Qi already contains some Qi. In a well-filtered space, the intersection
⋂

i∈I Qi of such a filtered family is compact saturated. A stably compact space
is a T0, well-filtered, locally compact, coherent and compact space X . Then
the complements of compact saturated sets form another topology on X , the
cocompact topology, and X with the cocompact topology is the de Groot dual
Xd of X . For every stably compact space, Xdd = X . Every pointed, coherent,
continuous dcpo is stably compact.

Given two dcpos X and Y , [X → Y] denotes the dcpo of all Scott-continuous
maps from X to Y , ordered pointwise. Directed suprema are also pointwise,
namely (supi∈I fi)(x) = supi∈I(fi(x)) for every directed family (fi)i∈I in [X →
Y].

4 The Languages CBPV(D, P) and CBPV(D, P) +
pifzpifzpifz+©

The first language we introduce is called CBPV(D, P): it is a call-by-push-value
language with Demonic non-determinism and Probabilistic choice. We will ex-
plain below why we do not consider just probabilistic choice, but also demonic
non-determinism.

4

4.1 Types and their Semantics

We consider the following grammar of types:

σ, τ, . . . ::= UUUτ | unitunitunit | intintint | σ × τ | VVVτ

σ, τ , . . . ::= FFFτ | σ → τ.

The types σ, τ , . . . , are the value types, and the types σ, τ , . . . , are the
computation types, following Levy [17]. Our types differ from Levy’s: we do
not have countable sums in value types or countable products in computation
types, we write unitunitunit instead of 1, and we have a primitive type intintint of integers;
the main difference is the VVVτ construction, denoting the type of subprobability
valuations on the space of elements of type τ .

We write σ, τ for types when it is not important whether they are value
types or computation types.

We have already said in the introduction that computation types will be
interpreted in the category CLatt of continuous complete lattices. Value types
τ will give rise to pointed, coherent, continuous dcpos JτK:

• for every computation type τ , we will define JUUUτK as JτK: being a continu-
ous complete lattice, it is in particular pointed, coherent, and a continuous
dcpo;

• JunitunitunitK will be Sierpiński space S = {⊥,⊤} with ⊥ < ⊤;

• JintintintK will be Z⊥ = Z∪ {⊥}, with the ordering that makes ⊥ least and all
integers be pairwise incomparable;

• JVVVτK will be V≤1(JτK), where V≤1X denotes the dcpo of all subprobability
valuations on the space X .

A subprobability valuation on X is a map ν from the lattice OX of open subsets
of X to [0, 1] which is strict (ν(∅) = 0), Scott-continuous, and modular (ν(U ∪
V)+ ν(U ∩V) = ν(U) + ν(V)). When X is a continuous dcpo, so is V≤1X [13,
Corollary 5.4]. It is pointed, since the zero valuation is least in V≤1X . If X is
also coherent, then V≤1X is stably compact, see below. Hence JVVVτK is indeed a
pointed, coherent continuous dcpo.

The fact that V≤1X is stably compact for every coherent continuous dcpo
X is folklore. We argue as follows. The lift X⊥ of X , obtained by adding
a fresh bottom element ⊥ to X , is stably compact. Then the space V1X⊥

of all probability valuations ν, i.e., such that ν(X⊥) = 1, is stably compact
in the weak upwards topology [3, Theorem 39]. The latter has a subbase of
open sets of the form [U > r] = {ν | ν(U) > r}, for every open subset U of
X and r ∈ R+ r {0}. The restriction map ν 7→ ν|OX is a homeomorphism
from V1X⊥ onto V≤1X , both with their weak upwards topology, with inverse
ν 7→ ν + (1 − ν(X))δ⊥. Hence V≤1X is stably compact in its weak upwards
topology. Since X is continuous, the latter coincides with the Scott topology,
as shown by [16, Satz 8.6], see also [22, Satz 4.10].

5

It might seem curious that probabilistic non-determinism arises, as VVVσ,
among the value types. I have no philosophical backing for that, but this is
somehow forced upon us by the mathematics.

Similarly, computation types τ will give rise to continuous complete lattices
JτK—notably Jσ → τK will be the continuous complete lattice [JσK→ JτK] of all
Scott-continuous maps [JσK→ JτK] from JσK to JτK—, but we have to decide on
an interpretation of types of the form FFFτ .

If we had decided to interpret computation types as bc-domains instead of
continuous complete lattices, then a natural choice would be to define JFFFτK as
Ershov’s bc-hull of JτK [7]. (Bc-domains are, roughly speaking, continuous com-
plete lattices that may lack a top element.) As Ershov notices, “the construction
of a bc-hull in the general case is highly nonconstructive (using a Zorn’s lemma)”
(ibid., page 13). Fortunately, the bc-hull of a space X is a natural subspace of
the Smyth powerdomain Q(X) of X , at least when X is a coherent algebraic
dcpo (ibid., Corollary B), and Q(X) is easier to work with. Explicitly, Q(X) is
the poset of all non-empty compact saturated subsets of X , ordered by reverse
inclusion, and is used to interpret demonic non-determinism in denotational se-
mantics. When X is well-filtered and locally compact, Q(X) is also a continuous
dcpo, and it is a bc-domain provided X is also compact and coherent. We shall
see below that Q⊤(X), the poset of all (possibly empty) compact saturated
subsets of X—alternatively, Q(X) plus an additional top element ⊤ = ∅—, is
a continuous complete lattice whenever X is a stably compact space, and that
would make Q⊤(JτK) a good candidate for JFFFτK.

For technical reasons related to adequacy, we will need a certain map f∗

below to be strict, i.e., to map ⊥ to ⊥. (Technically, this is needed so that the
denotational semantics of the construction M tototo xσ ininin N , to be introduced
below, be strict in that of M , in order to validate the fact that M tototo xσ ininin N
loops forever if M does.) This will be obtained by defining JFFFτK as Q⊤

⊥(JτK)
instead, where Q⊤

⊥(X) is the lift of Q⊤(X), obtained by adding a fresh element
⊥ below all others.

We recapitulate:

• Jσ → τK = [JσK→ JτK];

• JFFFσK = Q⊤
⊥(JσK).

Let us check that Q⊤
⊥(JσK) has the required property of being a continuous

complete lattice, and let us prove some additional properties that we will need
later. We start with the similar properties of Q⊤(JσK). We let ηQ : X → Q⊤(X)
map every x to ↑x.

Proposition 4.1 Let X be a stably compact space. Then:

1. Q⊤(X) is a continuous complete lattice, and Q is way-below Q′ if and only
if Q′ ⊆ int(Q);

2. For every continuous complete lattice L, for every continuous map f : X →
L, there is a Scott-continuous map f∗ : Q⊤(X)→ L such that f∗◦ηQ = f ,
and it is defined by f∗(Q) =

∧

x∈Q f(x).

6

3. f∗(∅) = ⊤, f∗(Q1 ∪Q2) = f∗(Q1) ∧ f∗(Q2).

Proof. 1. This is well-known, but here is a brief argument. The elements of
Q⊤(X) are exactly the closed subsets in the de Groot dual of X , and the closed
sets of any topological space always form a complete lattice. Note that the
supremum of an arbitrary family (Qi)i∈I in Q⊤(X) is

⋂

i∈I Qi.
Given any compact saturated subset Q′ of X , the family N(Q′) of compact

saturated neighborhoods Q′′ of Q′ is filtered, and has Q′ as intersection. Indeed,
since Q′ is saturated, it is the intersection of its open neighborhoods; for every
open neighborhood U of Q′, local compactness implies that there is a compact
saturated set Q′′ such that Q′ ⊆ int(Q′′) ⊆ Q′′ ⊆ U ; applying this to U = X
shows that N(Q′) is non-empty, and given Q1, Q2 ∈ N(Q′), applying it to
U = int(Q1) ∩ int(Q2), shows that N(Q′) contains an element included in both
Q1 and Q2.

It follows that, if Q ≪ Q′, then Q contains an element of N(Q′), hence in
particular an open neighborhood of Q′. Conversely, if Q ⊇ U ⊇ Q′ where U is
open, then for every directed family (Qi)i∈I in Q⊤(X) such that Q′ ⊇

⋂

i∈I Qi,
U contains some Qi by well-filteredness, hence Q ⊇ Qi. Therefore Q≪ Q′.

Finally, since every Q′ in Q⊤(X) is the filtered intersection of the elements
of N(Q′), it is the supremum of the directed family N(Q′), and we have just
argued that every element of N(Q′) is way-below Q′, showing that Q⊤(X) is
continuous.

2. We define f∗(Q) as
∧

x∈Q f(x). This satisfies f∗ ◦ ηQ = f , and is mono-
tonic. Note that this is defined even when Q is empty, in which case f∗(Q) is
the top element of L. In order to show that f∗ is Scott-continuous, let (Qi)i∈I

be a directed family in Q⊤(X), and Q =
⋂

i∈I Qi. We wish to show that
f∗(Q) ≤ supi∈I f

∗(Qi); the converse inclusion is by monotonicity. To this end,
we let y be an element of L way-below f∗(Q). Since y ≪ f(x) for every x ∈ Q,
every element of Q is in the open set f−1(↑↑y). Then Q =

⋂

i∈I Qi is included

in f−1(↑↑y), so by well-filteredness some Qi is also included in f−1(↑↑y). Then
y ≪ f(x) for every x ∈ Qi, so y ≤

∧

x∈Qi
f(x) = f∗(Qi). Since that holds for

every y ≪ f∗(Q), the desired inequality follows.
3. Easy check. ✷

Note that item 2 does not state that f∗ is unique; we have just chosen the
largest one. A similar construction is well-known for Q(X). Proposition 4.1
establishes the essential properties needed to show that Q⊤ defines a monad on
the category of stably compact spaces, and that is not only well-known, but we
will not require as much.

We turn to Q⊤
⊥(JτK). We again write ηQ for the function that maps x to ↑x,

this time from X to Q⊤
⊥(JXK). Below, we again write f∗ for the extension of f to

Q⊤
⊥(X). This should not cause any confusion with the map f∗ of Proposition 4.1,

since the two maps coincide on Q⊤(X). Note that f∗ is now strict.

Proposition 4.2 Let X be a stably compact space. Then:

1. Q⊤
⊥(X) is a continuous complete lattice, and Q is way-below Q′ if and only

if Q = ⊥, or Q,Q′ 6= ⊥ and Q′ ⊆ int(Q);

7

2. For every continuous complete lattice L, for every continuous map f : X →
L, there is a strict Scott-continuous map f∗ : Q⊤

⊥(X)→ L such that f∗ ◦
ηQ = f . This is defined by f∗(⊥) = ⊥, and for every Q 6= ⊥, f∗(Q) =
∧

x∈Q f(x).

3. f∗(∅) = ⊤, f∗(Q1 ∧Q2) = f∗(Q1) ∧ f∗(Q2).

4. For every stably compact space Y , for every Scott-continuous map f : X →
Q⊤

⊥(Y), and for every Scott-continuous map g from Y to a continuous
complete lattice L, g∗ ◦ f∗ = (g∗ ◦ f)∗.

Proof. 1. The lift of a continuous complete lattice is a continuous complete
lattice, and ⊥ is always way-below every element.

2. Easy.
3. We check the second inequality. That follows from Proposition 4.1, item 3

ifQ1, Q2 6= ⊥. IfQ1 = ⊥, then f∗(Q1∧Q2) = f∗(⊥) = ⊥ and f∗(Q1)∧f∗(Q2) =
⊥ ∧ f∗(Q2) = ⊥. Similarly if Q2 = ⊥.

4. Fix Q ∈ Q⊤
⊥(X). If Q = ⊥, then g∗(f∗(Q)) = ⊥ = (g∗ ◦ f)∗(Q) by

strictness. Henceforth, we assume that Q 6= ⊥.
If f(x) = ⊥ for some x ∈ Q, then f∗(Q) = ⊥, so g∗(f∗(Q)) = ⊥, and

(g∗ ◦ f)∗(Q) =
∧

x∈Q g∗(f(x)) ≤ g∗(⊥) = ⊥, since g∗ is strict. Henceforth, we
assume that f(x) 6= ⊥ for every x ∈ Q.

We claim that
⋃

x∈Q f(x) is compact. Let (Vi)i∈I be a directed family of open
subsets of Y whose union contains

⋃

x∈Q f(x). For every x ∈ Q, f(x) is compact

and included in
⋃

i∈I Vi, so f(x) ⊆ Vi for some i ∈ I. Hence Q ⊆
⋃

i∈I f
−1(Vi).

Since Q is compact, Q ⊆ f−1(Vi) for some i ∈ I, whence
⋃

x∈Q f(x) ⊆ Vi.
⋃

x∈Q f(x) is also saturated in Y , hence an element of Q⊤(Y), and there-

fore also of Q⊤
⊥(Y). It follows that this is the infimum of the elements f(x),

x ∈ Q, hence is equal to f∗(Q). Therefore g∗(f∗(Q)) =
∧

y∈f∗(Q) g(y) =
∧

x∈Q,y∈f(x) g(y) =
∧

x∈Q g∗(f(x)) = (g∗ ◦ f)∗(Q). ✷

Item 4 above is part of the properties needed to check that Q⊤
⊥ defines a monad

on CLatt. We will not expand on that.

4.2 Syntax

We define the syntax of our language CBPV(D, P) together with its typing disci-
pline, inductively, as in Figure 1, using the notation M : τ to say “M is a term
of type τ”. There are countably infinitely many variables xτ , yτ , . . . of each
value type τ .

We extend the notation M tototo xσ ininin N to the case where N has an arbitrary
computation type by: for every N : λ → τ , M tototo xσ ininin N = λyλ.M tototo xσ ininin

(Nyλ), where yλ is fresh. Similarly, we extend abortabortabortFFFτ to all computation types
by letting abortabortabortλ→τ = λxλ.abortabortabortτ .

The variable xσ is binding in λxσ .M , in N tototo xσ ininin M , and in recrecrecxσ.M ,
and its scope is M in all three cases. We omit the standard definition of α-
renaming and of capture-avoiding substitution.

8

xτ : τ ∗ : unitunitunit

(n ∈ Z)
n : intintint abortabortabortFFFτ : FFFτ

M : τ

λxσ.M : σ → τ

M : σ → τ N : σ

MN : τ

M : σ

recrecrecxσ .M : σ

M : intintint

succsuccsuccM : intintint

M : intintint

predpredpredM : intintint

M : τ

thunkthunkthunkM : UUUτ

M : UUUτ

forceforceforceM : τ

M : unitunitunit N : σ

M ;N : σ

M : intintint N : σ P : σ

ifzifzifz M N P : σ

M : σ × τ

π1M : σ

M : σ × τ

π2M : τ

M : σ N : τ

〈M,N〉 : σ × τ

M : VVVτ N : VVVτ

M ⊕N : VVVτ

M : τ

retretretM : VVVτ

M : VVVσ N : VVVτ

dododo xσ ←M ;N : VVVτ

M : FFFτ N : FFFτ

M ? N : FFFτ

M : σ

produceproduceproduceM : FFFσ

M : FFFσ N : FFFτ

M tototo xσ ininin N : FFFτ

Figure 1: The syntax of CBPV(D, P)

Using recursion at value types may seem strange, but this allows us to define
some interesting values. For example, we can define the uniform distribution on
{0, 1, 2} by the term recrecrecxVVVintintint.(retretret 0⊕ retretret 1)⊕ (retretret 2⊕ xVVVintintint), which operates
via a form of rejection sampling.

We will also consider an extension of CBPV(D, P) called CBPV(D, P)+pifzpifzpifz+
©, obtained by admitting the following additional clauses:

M : FFFVVVunitunitunit
(b ∈ Q ∩ (0, 1))

©>bM : unitunitunit

M : intintint N : FFFτ P : FFFτ

pifzpifzpifz M N P : FFFτ

©>b is the statistical termination tester, and pifzpifzpifz is parallel if. We extend the
notation pifzpifzpifz M N P to the case whereN and P have an arbitrary computation
type τ by letting pifzpifzpifz M N P denote λxσ .pifzpifzpifz M (Nxσ) (Pxσ) when N , P
have type σ → τ , where xσ is a fresh variable.

The language CBPV(D, P) + pifzpifzpifz is obtained by admitting only the second
one as extra clause, while CBPV(D, P) +© only admits the first one as extra
clause.

4.3 Denotational Semantics

Let Env, the dcpo of environments, be the product of the dcpos JσK over all
variables xσ. Its elements are maps ρ from variables xσ to values ρ(xσ). The
denotational semantics is given by a family of Scott-continuous maps JMK, one

9

JxσK ρ = ρ(xσ)

Jλxσ .MK ρ = V ∈ JσK 7→ JMK (ρ[xσ 7→ V]) JMNK ρ = JMK ρ(JNK ρ)
JproduceproduceproduceMK ρ = ηQ(JMK ρ)

JM tototo xσ ininin NK ρ = (V ∈ JσK 7→ JNK ρ[xσ 7→ V])∗(JMK ρ)
JthunkthunkthunkMK ρ = JMK ρ JforceforceforceMK ρ = JMK ρ

J∗K ρ = ⊤ JnK ρ = n

JsuccsuccsuccMK ρ =

{
n+ 1 if n = JMK ρ 6= ⊥
⊥ otherwise

JpredpredpredMK ρ =

{
n− 1 if n = JMK ρ 6= ⊥
⊥ otherwise

Jifzifzifz M N P K ρ =

JNK ρ if JMK ρ = 0
JP K ρ if JMK ρ 6= 0,⊥
⊥ if JMK ρ = ⊥

JM ;NK ρ =

{
JNK ρ if JMK ρ = ⊤
⊥ otherwise

Jπ1MK ρ = m, Jπ2MK ρ = n where JMKρ = (m,n)

J〈M,N〉K ρ = (JMK ρ, JNK ρ)
JretretretMK ρ = δJMKρ

Jdododoxσ ←M ;NK ρ = (V ∈ JσK 7→ JNK ρ[xσ 7→ V])
†
(JMK ρ)

JM ⊕NK ρ =
1

2
(JMK ρ+ JNK ρ)

JM ? NK ρ = JMK ρ ∧ JNK ρ JabortabortabortFFFτ K ρ = ∅

Jrecrecrecxσ.MK ρ = lfp(V ∈ JσK 7→ JMKρ[xσ 7→ V])

Jpifzpifzpifz M N P K ρ =

JNK ρ if JMKρ = 0
JP K ρ if JMKρ 6= 0,⊥
JNK ρ ∧ JP K ρ if JMKρ = ⊥

J©>bMK ρ =

⊤ if JMK ρ 6= ⊥ and
b≪ ν({⊤}) for every ν ∈ JMK ρ

⊥ otherwise

Figure 2: Denotational semantics

10

for each M : τ , from Env to JτK: see Figure 2, where the bottom two clauses
are specific to CBPV(D, P) + pifzpifzpifz, resp. to CBPV(D, P) +©, and the two of
them together are specific to CBPV(D, P) + pifzpifzpifz +©. We use the notation
V ∈ X 7→ f(V) to denote the function that maps each V ∈ X to f(V). For every
ρ ∈ Env, and every V ∈ JσK, we write ρ[xσ 7→ V] for the environment that maps
xσ to V and every variable y 6= xσ to ρ(y). The operator lfp : [X → X] → X
maps every Scott-continuous map f from a pointed dcpo to itself, to its least
fixed point lfp f = supn∈N fn(⊥). The Dirac mass δx at x is the probability
valuation such that δx(U) = 1 if x ∈ U , 0 otherwise. For every continuous map
f : X → V≤1Y , f † is the continuous map from V≤1X to V≤1Y defined by
f †(ν)(V) =

∫

x∈X
f(x)(V)dν for every open subset V of Y . For future reference,

we note that f †(δa) = f(a), and that, for every continuous map h : Y → R+,

∫

y∈Y

h(y)df †(ν) =

∫

x∈X

(∫

y∈Y

h(y)df(x)

)

dν. (1)

Implicit here is the fact that the map x ∈ X 7→
∫

y∈Y
h(y)df(x) is itself con-

tinuous. Also, integration is linear in both the integrated function h and the
continuous valuation ν, and Scott-continuous in each. These facts can be found
in Jones’ PhD thesis [13].

The fact that the semantics JMKρ is well-defined and continuous in ρ is
standard. Note the use of binary infimum (∧) in the semantics of ? and of
pifzpifzpifz, for which we use the following lemma.

Lemma 4.3 Let L be a continuous complete lattice.

1. The infimum map ∧ : L× L→ L is Scott-continuous.

2. For any two continuous maps f, g : X → L, where X is a any topological
space, the infimum f ∧ g is computed pointwise: (f ∧ g)(x) = f(x) ∧ g(x).

Proof. Item 1 is well-known. Explicitly, one must show that for every directed
family (xi)i∈I with supremum x inM , for every y ∈ L, y∧supi∈I xi ≤ supi∈I(y∧
xi): for every z ≪ y ∧ supi∈I xi, z is below y and below some xi, hence below
y ∧ xi for some i ∈ I.

As for item 2, the composition of ∧ with x 7→ (f(x), g(x)) is continuous by
item 1, is below f and g, and is clearly above any lower bound of f and g. ✷

4.4 Operational Semantics

We choose an operational semantics in the style of [11]. It operates on configu-
rations, which are pairs C ·M of an evaluation context C and a term M . The
deterministic part of the calculus will be defined by rewrite rules C ·M → C′ ·M ′

between configurations. For the probabilistic and non-deterministic part of the
calculus, we will rely on judgments C ·M ↓ a, which state, roughly, that the
probability that computation terminates, starting from C ·M , is larger than a.

The elementary contexts, together with their types σ ⊢ τ (where σ, τ are
value or computation types) are defined by:

11

• [N] : (σ → τ) ⊢ τ , for every N : σ and every computation type τ ;

• [tototo xσ ininin N] : FFFσ ⊢ FFFτ for every N : FFFτ ;

• [forceforceforce] : UUUτ ⊢ τ , for every computation type τ ;

• [succsuccsucc], [predpredpred] : intintint ⊢ intintint;

• [ifzifzifz N P] : intintint ⊢ σ for all N,P : σ;

• [;N] : unitunitunit ⊢ σ for every N : σ;

• [π1] : σ × τ ⊢ σ and [π2] : σ × τ ⊢ τ , for all value types σ and τ ;

• [dododoxσ ← ;N] : VVVσ ⊢ VVVτ , for every N : σ → VVVτ .

The initial contexts are [] : σ ⊢ σ, [produceproduceproduce] : σ ⊢ FFFσ and [produceproduceproduceretretret] : σ ⊢
FFFVVVσ. For every elementary or initial context E : σ ⊢ τ and every M : σ, we write
E[M] for the result of replacing the unique occurrence of the hole in E (after
removing the outer square brackets) by M . E.g, [succsuccsucc][3] = succsuccsucc 3.

A context (of type σ ⊢ τ) is a finite list E0E1E2 · · ·En (n ∈ N) where E0

is an initial context, E1, . . . , En are elementary contexts, and Ei : σi+1 ⊢ σi,
σn+1 = σ, and σ0 = τ . We then write C[M] for E0[E1[E2[· · ·En[M] · · ·]]].

Note that the contexts are defined in exactly the same way for CBPV(D, P)
and for CBPV(D, P) + pifzpifzpifz, CBPV(D, P) +©, and CBPV(D, P) + pifzpifzpifz+©.

The configurations of the operational semantics are pairs C ·M where C : σ ⊢
FFFVVVunitunitunit and M : σ. The rules of the operational semantics are given in Fig-
ure 3. The last row is specific to CBPV(D, P) + pifzpifzpifz, CBPV(D, P) + ©, or
to CBPV(D, P) + pifzpifzpifz + ©. The first rewrite rule—the redex discovery rule
C · E[M] → CE ·M—applies provided E is an elementary context. The nota-
tion N [xσ := M] denotes capture-avoiding substitution of M for xσ in N .

The judgments C ·M ↓ a are defined for all terms M : σ, contexts C : σ ⊢
FFFVVVunitunitunit, and a ∈ Q ∩ [0, 1), and mean that a is way-below the probability of
termination of C ·M (i.e., either a = 0 or a is strictly less than the probability
that C ·M terminates). Since ? induces non-deterministic choice, we really
mean the probability of must-termination, namely that, in whichever way the
non-determinism involved in the use of the ? operator is resolved (evaluating
left, or right), the final probability is larger than a.

We write Pr(C ·M↓) for sup{a ∈ Q ∈ [0, 1) | C ·M ↓ a is derivable}, where
sups are taken in [0, 1]. This leads to the following central notion, which we only
state for ground terms. A term is ground if and only if it has no free variable.
(We define ground contexts similarly.) The case of non-ground terms can be
dealt with using appropriate quantifications over substitutions, but will not be
needed.

Definition 4.4 The contextual preorder -σ between ground CBPV(D, P) terms
of type σ is defined by M -σ N if and only if for every ground evaluation context
C : σ ⊢ FFFVVVunitunitunit, Pr(C ·M↓) ≤ Pr(C ·N↓).

12

C ·E[M]→ CE ·M C[N] · λxσ .M → C ·M [xσ := N]

C[tototo xσ ininin N] · produceproduceproduceM → C ·N [xσ := M] C[forceforceforce] · thunkthunkthunkM → C ·M

[] · produceproduceproduceM → [produceproduceproduce] ·M

C[predpredpred] · n→ C · n− 1 C[succsuccsucc] · n→ C · n+ 1

C[ifzifzifz N P] · 0→ C ·N C[ifzifzifz N P] · n→ C · P (n 6= 0)

C[;N] · ∗ → C ·N

C[π1] · 〈M,N〉 → C ·M C[π2] · 〈M,N〉 → C ·N

C[dododoxσ ← ;N] · retretretM → C ·N [xσ := M] [produceproduceproduce] · retretretM → [produceproduceproduceretretret] ·M

C · recrecrecxσ .M → C ·M [xσ := recrecrecxσ .M]

(a ∈ Q ∩ [0, 1))
[produceproduceproduceretretret] · ∗ ↓ a C ·M ↓ 0

(a ∈ Q ∩ [0, 1))
C · abortabortabortFFFτ ↓a

C′ ·M ′ ↓ a
(if C ·M → C′ ·M ′)

C ·M ↓ a

C ·M ↓ a C ·N ↓ b

C ·M ⊕N ↓ (a+ b)/2

C ·M ↓ a C ·N ↓ a

C ·M ? N ↓ a

[] ·M ↓ b C · ∗ ↓ a

C · ©>bM ↓ a

C · ifzifzifz M N P ↓ a

C · pifzpifzpifz M N P ↓ a

C ·N ↓ a C · P ↓ a

C · pifzpifzpifz M N P ↓ a

Figure 3: Operational semantics

We will freely reuse the notations -σ, for the similarly defined notions on the re-
lated languages CBPV(D, P)+pifzpifzpifz, CBPV(D, P)+©, and CBPV(D, P)+pifzpifzpifz+
©. If there is any need to make the language precise, we will mention it explic-
itly.

We end this section with a few elementary lemmata, which will come in
handy later on, and which should help the reader train with the way the oper-
ational semantics works.

Lemma 4.5 If C · M ↓ a is derivable and b ∈ Q is such that 0 ≤ b ≤ a,
then C ·M ↓ b is also derivable, whether in CBPV(D, P), CBPV(D, P) + pifzpifzpifz,
CBPV(D, P) +©, or CBPV(D, P) + pifzpifzpifz+©.

Proof. Easy induction on the rules of Figure 3. In the case of a derivation of
the form C ·M ⊕N ↓ a, where a = (a1 + a2)/2, from C ·M ↓ a1 and C ·N ↓ a2,
we write b as (b1 + b2)/2 where b1 and b2 are rational and between 0 and a1,
resp. a2. (E.g., we let b1 = min(a1, 2b) and b2 = 2b− b1 = max(2b− a1, 0).) By
induction hypothesis we can derive C ·M ↓ b1 and C ·N ↓ b2, so we can derive
C ·M ⊕N ↓ (b1 + b2)/2 = b. ✷

Lemma 4.6 If C ·M → C′ ·M ′, then Pr(C ·M↓) ≥ Pr(C′ ·M ′↓).

Proof. Whenever we can derive C′ ·M ′ ↓ a, we can derive C ·M ↓ a by the
leftmost rule of the next-to-last row of Figure 3. ✷

13

Lemma 4.7 Let C′ = E1 · · ·En be a sequence of elementary contexts, of type
σ ⊢ τ . For every context C : τ ⊢ FFFVVVunitunitunit, for every term N : σ, Pr(C ·C′[N]↓) =
Pr(CC′ ·N↓).

Proof. By the redex discovery rule, C · C′[N]→∗ CC′ ·N , so Pr(C · C′[N]↓) ≥
Pr(CC′ ·N↓) by Lemma 4.6. Conversely, if C ·C′[N]↓a is derivable, then we show
that CC′ ·N ↓a is derivable by induction on n. If n = 0, this is clear. Otherwise,
there are only two rules that allow us to derive C ·C′[N] ↓ a. In the case of the
first of these rules (the middle rule of the first of the three rows of rules), a = 0,
and we can derive CC′ · N ↓ a by the same rule. In the case of the other rule,
C · C′[N] ↓ a was derived from a shorter derivation of CE1 · C′′[N] ↓ a, where
C′′ = E2 · · ·En, using the redex discovery rule C · C′[N] = C · E1[C

′′[N]] →
CE1 ·C′′[N]. By induction hypothesis, CE1C

′′ ·N is derivable, namely CC′ ·N
is derivable. ✷

Lemma 4.8 Let C′ = E1 · · ·En be a sequence of elementary contexts. If C ·
M →∗ CC′ ·N then Pr(C ·M↓) ≥ Pr(C · C′[N]↓).

Proof. Pr(C · M↓) ≥ Pr(CC′ · N↓) = Pr(C · C′[N]↓), by Lemma 4.6 and
Lemma 4.7. ✷

For short, let us write Pr(M↓) for Pr([] ·M↓).

Lemma 4.9 Let C be any context of type σ ⊢ FFFVVVunitunitunit. For every term M : σ,
Pr(C[M]↓) = Pr(C ·M↓).

Proof. Let us write C as E0C
′ where E0 is an initial context and C′ =

E1E2 · · ·En is a sequence of elementary contexts. We first show that Pr([] ·
C[M]↓) = Pr(E0 · C′[M]↓). Once this is done, Lemma 4.7 states that Pr(E0 ·
C′[M]↓) = Pr(E0C

′ ·M↓) = Pr(C ·M↓), and that will finish the proof.
We assume E0 6= [], otherwise the claim is trivial. Then [] · C[M] →∗

E0 · C′[M]. Indeed, [] · C[M] → [produceproduceproduce] · C′[M] if E0 = [produceproduceproduce],
and [] · C[M] → [produceproduceproduce] · retretretC′[M] → [produceproduceproduceretretret] · C′[M] if E0 =
[produceproduceproduceretretret]. By Lemma 4.6, Pr([] · C[M]↓) ≥ Pr(E0 · C′[M]↓).

In the converse direction, assume that [] · C[M] ↓ a is derivable. If a = 0,
then E0 · C′[M] ↓ a is also derivable. Otherwise, if E0 = [produceproduceproduce], then
the only remaining possible derivation is obtained from a smaller derivation
of [produceproduceproduce] · C′[M] ↓ a, so E0 · C′[M] ↓ a is again derivable. If a 6= 0 and
E0 = [produceproduceproduceretretret], then we can only have derived [] ·C[M]↓a from a smaller
derivation of [produceproduceproduce] · retretretC′[M] ↓ a, and then from another derivation of
[produceproduceproduceretretret] ·C′[M] ↓ a, namely E0 · C′[M] ↓ a. Since that holds for every a,
Pr([] · C[M]↓) ≤ Pr(E0 · C′[M]↓). ✷

5 Soundness

We let the rank of a type be 0 for a value type that is not of the form VVVσ, 1/2
for types of the form VVVσ, and 1 for computation types. This will play a key role

14

in our soundness proof, for the following reason: for every elementary or initial
context E : σ ⊢ τ , the rank of σ is less than or equal to the rank of τ . Hence if
C = E0E1E2 · · ·En is of type σ ⊢ τ , and Ei is of type σi+1 ⊢ σi, then every σi

has rank between those of σ and τ .
Beyond its role as a technical aide, the concept of rank is profitably inter-

preted from the point of view of the type and effect discipline [21]. While the
separation between value types and computation types exhibits two kinds of
effects, ranks refine this further by distinguishing between rank 0 value types,
where the only effect is recursion, from rank 1/2 value types, where probabilistic
choice is also allowed. Rank 1 types further allow for non-deterministic choice
effects. With that viewpoint, one might be puzzled by the fact that the rank 0
types UUUτ are able to encapsulate arbitrary rank 1 types. However, the typical
inhabitants of types UUUτ are thunks thunkthunkthunkM , which do not execute, hence do
not produce any side effect, unless being forced to, using the forceforceforce operation,
yielding again a value of the rank 1 type τ .

We will also need to define the semantics of contexts C : σ ⊢ FFFVVVunitunitunit so
that JC[M]K ρ = JCK ρ(JMK ρ) for every M : σ and for every environment ρ.
JE0E1E2 · · ·EnK ρ is the composition of JE0K ρ, JE1K ρ, JE2K ρ, . . . , JEnK ρ,
where:

• J[N]K ρ maps f to f(JNK ρ),

• J[tototo xσ ininin N]K ρ = (V ∈ JσK 7→ JNK ρ[xσ 7→ V])
∗
,

• J[forceforceforce]K ρ is the identity map,

• J[succsuccsucc]K ρ maps ⊥ to ⊥ and otherwise adds one,

• J[predpredpred]K ρ maps ⊥ to ⊥ and otherwise subtracts one,

• J[ifzifzifz N P]K ρ maps 0 to JNK ρ, every non-zero number to JP K ρ and ⊥
to ⊥,

• J[;N]K ρ maps ⊤ to JNK ρ, and ⊥ to ⊥,

• J[π1]K ρ is first projection,

• J[π2]K ρ is second projection,

• J[dododoxσ ← ;N]K ρ = (V ∈ JσK 7→ JNK ρ[xσ 7→ V])†,

• J[produceproduceproduce]K ρ = ηQ, and

• J[produceproduceproduceretretret]K ρ maps V to ηQ(δV).

Proposition 5.1 (Soundness) Let C : σ ⊢ FFFVVVunitunitunit, M : σ, where σ is a value
or computation type, and let ρ ∈ Env. In CBPV(D, P), in CBPV(D, P) + pifzpifzpifz,
in CBPV(D, P) +©, and in CBPV(D, P) + pifzpifzpifz+©:

1. For every a ∈ Q∩ [0, 1), if C ·M ↓a is derivable, then either JC[M]K ρ = ⊥
and a = 0, or JC[M]K ρ 6= ⊥ and for every ν ∈ JC[M]K ρ, a≪ ν({⊤}).

15

2. If JC[M]K ρ = ⊥ then Pr(C ·M↓) = 0, otherwise for every ν ∈ JC[M]K ρ,
ν({⊤}) ≥ Pr(C ·M↓).

Proof. Item 2 is an easy consequence of item 1, which we prove by induction
on the derivation.

In the case of the first rule ([produceproduceproduceretretret] · ∗ ↓ a), C[M] = produceproduceproduceretretret∗,
and JC[M]K 6= ⊥. For every ν ∈ JC[M]K ρ = ηQ(δ⊤), we have ν ≥ δ⊤, so
ν({⊤}) ≥ 1, and certainly a≪ 1 for every a ∈ Q ∩ [0, 1).

The case of the second rule C ·M ↓ 0 is obvious.
The case of the leftmost rule of the next row follows from the observation

that if C ·M → C′ ·M ′, then JC[M]K ρ = JC′[M ′]K ρ. We use the standard
substitution lemma JMK (ρ[xσ 7→ JNK ρ]) = JM [xσ := N]K ρ in the case of β-
reduction (C[N] · λxσ.M → C · M [xσ := N]): the value of the left-hand
side is JCK ρ(JMK (ρ[xσ 7→ JNK ρ])), and the value of the right-hand side is
JCK ρ(JM [xσ := N]K ρ)). In the case of C[tototo xσ ininin N] · produceproduceproduceM → C ·
N [xσ := M], we also use the fact that (V ∈ JσK 7→ JNK ρ[xσ := V])

∗
(ηQ(JMKρ)) =

JNK ρ[xσ 7→ JMK ρ] (Proposition 4.2, item 2). In the case of C[dododo xσ ← ;N] ·
retretretM → C ·N [xσ := M], we use the equality f †(δx) = f(x) and the substitu-
tion lemma.

By our observation on ranks, if C : FFFσ ⊢ FFFVVVunitunitunit, where C = E0E1E2 · · ·En

and Ei : σi+1 ⊢ σi for each i, then all the types σi are computation types (rank
1). In that case, Ei can only be of one of the two forms [N], [tototo xσ ininin N].
(Further inspection would reveal that the first case is impossible, but we will
not need that yet.) We now observe that in each case, JEiK ρ maps top to top:
in the case of [tototo xσ ininin N], this is by Proposition 4.2, item 3. It follows
that JCK ρ also maps top to top, whence JC[abortabortabortFFFσ]K ρ = JCK ρ(JabortabortabortFFFσK ρ) =
JCK ρ(∅) = ∅. As a consequence, JC[abortabortabortFFFσ]K ρ 6= ⊥, and the claim that for
every ν ∈ JC[abortabortabortFFFσ]K ρ, ν({⊤}) ≥ Pr(C · abortabortabort↓) is vacuously true: the rule
that derives C · abortabortabortFFFσ ↓a for every a ∈ Q ∩ [0, 1) is sound.

Similarly, and still assuming C : FFFσ ⊢ FFFVVVunitunitunit, for each i, JEiK ρ preserves
binary infima. When Ei = [tototo xσ ininin N], this is because the function
(V ∈ JσK 7→ JNK ρ[xσ 7→ V])

∗
maps binary infima to binary infima by Propo-

sition 4.2, item 3. When Ei = [N], J[N]K ρ maps every f to f(JNK ρ), and
therefore preserves binary infima by Lemma 4.3, item 2. It follows that JCK ρ
preserves binary infima. We apply this to the rightmost rule of the middle row
(if C ·M ↓ a and C · N ↓ a then C ·M ? N ↓ a). We have JC[M ? N]K ρ =
JCK ρ(JMK ρ ∧ JNK ρ) = JCK ρ(JMK ρ) ∧ JCK ρ(JNK ρ) = JC[M]K ρ ∧ JC[N]K ρ.

In particular, if JC[M ? N]K ρ = ⊥, and since a ∧ b = ⊥ implies a = ⊥ or
b = ⊥ in any space of the form Q⊤

⊥(X), then JC[M]K ρ or JC[N]K ρ is equal to
⊥. By symmetry, let us assume that JC[M]K ρ = ⊥. By induction hypothesis,
the only value of a such that C ·M ↓ a is derivable is a = 0. There are only two
rules that can end a derivation of C ·M ? N ↓ a, and they both require a = 0.

If JC[M ? N]K ρ 6= ⊥, then JC[M]K ρ 6= ⊥ and JC[N]K ρ 6= ⊥, so by in-
duction hypothesis, for every ν in JC[M]K ρ, and for every ν in JC[N]K ρ, a ≪
ν({⊤}). Hence this holds for every ν ∈ JC[M ? N]K ρ = JC[M]K ρ ∧ JC[N]K ρ =
JC[M]K ρ ∪ JC[N]K ρ.

16

Let us deal with the last of the CBPV(D, P) rules (middle rule, middle row
of Figure 3): we have deduced C · M ⊕ N ↓ (a + b)/2 from C · M ↓ a and
C · N ↓ b, hence by induction hypothesis: (a) either JC[M]K ρ = ⊥ and a = 0,
or for every ν ∈ JC[M]K ρ, a ≪ ν({⊤}); and (b) either JC[N]K ρ = ⊥ and
b = 0, or for every ν ∈ JC[N]K ρ, b≪ ν({⊤}). In that case C = E0E1E2 · · ·En

has type VVVσ ⊢ FFFVVVunitunitunit for some value type σ, and every intermediate type
σi must therefore have rank 1/2 or 1. The only eligible elementary contexts
Ei : σi+1 ⊢ σi (1 ≤ i ≤ n) are of the form [N], [tototo xσ ininin N], or [dododoxσ ← ;N].
In each case, the rank of σi is equal to that of σi+1. Since σn+1 = FFFVVVunitunitunit has
rank 1 and σ0 = VVVσ has rank 1/2, E0 cannot be [] : FFFVVVunitunitunit ⊢ FFFVVVunitunitunit. It cannot
be [produceproduceproduceretretret] : unitunitunit ⊢ FFFVVVunitunitunit either since unitunitunit has rank 0. Hence E0 is
equal to [produceproduceproduce] : VVVunitunitunit ⊢ FFFVVVunitunitunit, and every Ei (1 ≤ i ≤ n) is of the form

[dododoxσ ← ;N]. We note that J[dododo xσ ← ;N]K ρ = (V ∈ JσK 7→ JNK ρ[xσ 7→ V])
†

is a linear map, i.e., preserves sums and scalar multiplication. Indeed the formula
f †(ν)(V) =

∫

x∈X
f(x)(V)dν is linear in ν. It follows that JE1E2 · · ·EnK ρ is

also linear, so JE1E2 · · ·En[M ⊕N]K ρ = JE1E2 · · ·EnK ρ(12 (JMK ρ + JNK ρ)) =
1
2 (ν1 + ν2), where ν1 = JE1E2 · · ·En[M]K ρ and ν2 = JE1E2 · · ·En[N]K ρ. Note
that JC[M]K ρ = ηQ(ν1) = ↑ ν1, and similarly JC[N]K ρ = ↑ ν2, and that those
values are different from ⊥. Similarly, JC[M ⊕N]K ρ = ↑(12 (ν1+ν2)) is different
from ⊥. Since ν1 ∈ JC[M]K ρ, we obtain that a ≪ ν1({⊤}) by (a). Similarly,
b≪ ν2({⊤}). Using the fact that, for all s, t ∈ [0, 1], s ≪ t if and only if s = 0
or s < t, (a + b)/2 ≪ 1

2 (ν1({⊤}) + ν2({⊤})). For every ν ∈ JC[M ⊕N]K ρ =
↑(12 (ν1 + ν2)), and we therefore obtain that (a+ b)/2≪ ν({⊤}).

We turn to the rules of the bottom row, which are specific to the extensions of
CBPV(D, P) with pifzpifzpifz, or©, or both. For the first one, by induction hypothesis
either JMK ρ = ⊥ and then b = 0, or else b≪ µ({⊤}) for every µ ∈ JMK ρ. The
first case is impossible since it is a requirement of the syntax of ©>bM that b
be non-zero. This implies that J©>bMK ρ = ⊤. It follows that JC[©>bM]K ρ =
JCK ρ(J©>bMK ρ) = JCK ρ(⊤) = JC[∗]K ρ. By induction hypothesis again, either
JC[∗]K ρ = ⊥ and a = 0, or a ≪ ν({⊤}) for every ν in JC[∗]K ρ. Hence either
JC[©>bM]K ρ = ⊥ and a = 0, or a≪ ν({⊤}) for every ν in JC[©>bM]K ρ.

For the last two, we note that, in all three cases on JMK ρ (equal to ⊥, to
0, or other), JC[pifzpifzpifz M N P]K ρ is equal to one of the terms JC[ifzifzifz M N P]K ρ
or JC[N ? P]K ρ, and is larger than or equal to the other one. In other words,
JC[pifzpifzpifz M N P]K ρ = max(JC[ifzifzifz M N P]K ρ, JC[N ? P]K ρ). If that is equal
to ⊥, then both terms JC[ifzifzifz M N P]K ρ and JC[N ? P]K ρ are equal to ⊥, so by
induction hypothesis the only derivations of C ·ifzifzifz M N P ↓a and C ·N ?P ↓a
are such that a = 0. Hence the only derivations of C ·pifzpifzpifz M N P ↓ a are such
that a = 0, using any of the three possible rules. If JC[pifzpifzpifz M N P]K ρ 6= ⊥,
then let us assume that C ·pifzpifzpifz M N P ↓a by any of the last two rules. If a = 0,
then certainly a ≪ ν({⊤}) for every ν ∈ JC[pifzpifzpifz M N P]K ρ. Otherwise, by
induction hypothesis we have JC[ifzifzifz M N P]K ρ 6= ⊥ and a≪ ν({⊤}) for every
ν ∈ JC[ifzifzifz M N P]K ρ, or JC[N ? P]K ρ 6= ⊥ and a ≪ ν({⊤}) for every ν ∈
JC[N ? P]K ρ. Since JC[pifzpifzpifz M N P]K ρ = max(JC[ifzifzifz M N P]K ρ, JC[N ? P]K ρ),
and max means smallest with respect to inclusion (for non-bottom elements),

17

in particular a≪ ν({⊤}) for every ν ∈ JC[pifzpifzpifz M N P]K ρ. ✷

6 Adequacy

Adequacy is proved through the use of a suitable logical relation (Rσ)σ type,
where Rσ relates ground terms of type σ with elements of JσK. (A term is ground
if and only if it has no free variable. We define ground contexts similarly.) Again
we work in CBPV(D, P) or any of its extensions with pifzpifzpifz or© or both, without
further mention.

Defining Rσ necessitates that we also define auxiliary relations R⊥
σ between

ground contexts C : VVVσ ⊢ FFFVVVunitunitunit (resp., R∗
σ between ground contexts C : FFFσ ⊢

FFFVVVunitunitunit) and continuous maps h : JσK → [0, 1]. This pattern is similar to the
technique of ⊤⊤-lifting, and particularly to Katsumata’s ⊤⊤-logical predicates
[15]. We write “for all C R⊥

σ h” instead of “for every ground context C : VVVσ ⊢
FFFVVVunitunitunit and for every continuous map h : JσK → [0, 1] such that C R⊥

σ h”,
C R∗

σ h instead of “for every ground context C : FFFσ ⊢ FFFVVVunitunitunit and for every
continuous map h : JσK→ [0, 1] such that C R∗

σ h”, and M Rσ a instead of “for
every ground term M : σ and for every a ∈ JσK such that M Rσ a”. We define:

• M RUUUτ h iff forceforceforceM Rτ h;

• M Runitunitunit ⊤ if ∗ -unitunitunit M , and M Runitunitunit ⊥ always;

• M Rintintint n if n -intintint M , and M Rintintint ⊥ always;

• M Rσ×τ (V1, V2) if and only if π1M Rσ V1 and π2M Rτ V2;

• M RVVVσ ν if and only if Pr(C ·M↓) ≥
∫

x∈JσK h(x)dν for all C R⊥
σ h;

• C R⊥
σ h if and only if Pr(C · retretretM↓) ≥ h(V) for all M Rσ V ;

• M RFFFσ Q if and only if for all C R∗
σ h, Pr(C ·M↓) ≥ h∗(Q); here h is any

continuous map from JσK to the continuous complete lattice [0, 1], so h∗

makes sense: h∗(⊥) = 0, and if Q 6= ⊥, then h∗(Q) =
∧

a∈Q h(a)—which
is equal to 1 if Q = ∅;

• C R∗
σ h if and only if Pr(C · produceproduceproduceM↓) ≥ h(V) for all M Rσ V ;

• M Rσ→τ f if and only if MN Rτ f(V) for all N Rσ V .

Lemma 6.1 For all ground terms M,N : σ, if M -σ N and M Rσ V then
N Rσ V .

Proof. By induction on σ. If σ = UUUτ , then M Rσ V means that forceforceforceM Rτ V .
For every ground context C : τ ⊢ FFFVVVunitunitunit, Pr(C · forceforceforceM↓) = Pr(C[forceforceforce] ·
M↓) and Pr(C · forceforceforceN↓) = Pr(C[forceforceforce] ·N↓) by Lemma 4.7. Since M -UUUτ

N , Pr(C[forceforceforce] ·M↓) ≤ Pr(C[forceforceforce] · N↓), so Pr(C · forceforceforceM↓) ≤ Pr(C ·
forceforceforceN↓). It follows that forceforceforceM -τ forceforceforceN . By induction hypothesis,
forceforceforceN Rτ V , whence N RUUUτ V .

18

If σ = unitunitunit, then M Rσ V means that V = ⊥, or that V = ⊤ and V -unitunitunit

M . In the first case, N Rσ V holds vacuously. In the second case, V -unitunitunit

M -unitunitunit N , so N Rσ V again. The case σ = intintint is dealt with similarly—in the
second case, V = n ∈ N and ∗ has to be replaced by n.

If σ = σ × τ , then M Rσ V means that π1M Rσ V1 and π2M Rτ V2,
where V = (V1, V2). We note that for every ground context C : σ → FFFVVVunitunitunit,
Pr(C · π1M↓) = Pr(C[π1] ·M↓) by Lemma 4.7. In turn, Pr(C[π1] ·M↓) ≤
Pr(C[π1] · N↓) = Pr(C · π1N↓) since M -σ×τ and using Lemma 4.7 again.
Therefore π1M -σ π1N . By induction hypothesis, π1N Rσ V1. Similarly,
π2N Rτ V2, so N Rσ×τ (V1, V2) = V .

If σ = VVVσ, then M Rσ V means that V = ν for some ν ∈ V≤1(JσK), and that
Pr(C ·M↓) ≥

∫

x∈JσK h(x)dν for all C R⊥
σ h. For all such C and h, Pr(C · N↓)

is even larger, so N Rσ V .
If σ = FFFσ, then M Rσ V means that for all C R∗

σ h, Pr(C ·M↓) ≥ h∗(V).
Then Pr(C ·N↓) is even larger, so N Rσ V .

If σ = σ → τ , then M Rσ V means that V is some function f ∈ [JσK→ JτK],
and that for all P Rσ V ′, MP Rτ f(V ′). For every ground context C : τ ⊢
FFFVVVunitunitunit, Pr(C · NP↓) = Pr(C[P] · N↓) ≥ Pr(C[P] ·M↓) = Pr(C ·MP↓), by
Lemma 4.7, the assumption M -σ→τ N , and Lemma 4.7 again. Hence MP -τ

NP . By induction hypothesis, NP Rτ f(V ′). It follows that N Rσ→τ f = V .
✷

For each type σ, and every ground term M : σ, let us write M Rσ for the
set of values a ∈ JσK such that M Rσ a.

Lemma 6.2 For every type σ, for every ground term M : σ, M Rσ is Scott-
closed and contains ⊥.

Proof. This is an easy induction on types. Only the cases σ = VVVσ and σ = FFFσ
need some care. In the case σ = VVVσ, M RVVVσ is Scott-closed because integration is
Scott-continuous in the valuation. Explicitly, it is upwards-closed, and for every
directed family (νi)i∈I in M RVVVσ, with supremum ν, for all C R⊥

σ h, Pr(C ·
M↓) ≥

∫

x∈JσK
h(x)dνi for every i ∈ I, so Pr(C ·M↓) ≥ supi∈I

∫

x∈JσK
h(x)dνi =

∫

x∈JσK
h(x)dν. In order to show that M RVVVσ contains ⊥ (the zero valuation),

we must show that Pr(C ·M↓) ≥
∫

x∈JσK
h(x)d0 = 0 for all C R⊥

σ h, and that is

trivial.
In the case σ = FFFσ, let us fix C and h so that C R∗

σ h. Since h∗ is continuous

by Proposition 4.2, item 2, {Q ∈ Q⊤
⊥(JσK) | h∗(Q) > r} = (h∗)

−1
((r,∞]) is

open for every r ∈ R+. By taking complements, the set FC,h = {Q ∈ Q⊤
⊥(JσK) |

h∗(Q) ≤ Pr(C·M↓)} is closed. HenceM RFFFσ=
⋂

CR∗
σ
h FC,h is closed inQ⊤

⊥(JσK).
Finally, M RFFFσ contains ⊥ because h∗ is strict, hence h∗(⊥) = 0. ✷

Let us say that a term M has xσ as sole free variable if and only if the set
of free variables of M is included in {xσ}, namely if M is ground or if the only
free variable of M is xσ. In that case, for every ground term N , M [xσ := N] is
ground.

19

Corollary 6.3 Let M : σ have xσ as sole free variable, let f be a Scott-continuous
map from JσK to JσK, and assume that for all N Rσ V , M [xσ := N] Rσ f(V).
Then recrecrecxσ.M Rσ lfp f .

Proof. We show that recrecrecxσ .M Rσ fn(⊥) for every n ∈ N. Since recrecrecxσ.M Rσ

contains ⊥ by Lemma 6.2, this is true when n = 0. If recrecrecxσ .M Rσ fn(⊥), then
M [xσ := recrecrecxσ.M] Rσ fn+1(⊥) by assumption. We now use the fact that for
every ground context C : σ → FFFVVVunitunitunit, C ·recrecrecxσ.M → C ·M [xσ := recrecrecxσ.M],
hence Pr(C ·recrecrecxσ .M↓) ≥ Pr(C ·M [xσ := recrecrecxσ .M]↓), by Lemma 4.6. Using
Lemma 6.1, we obtain that recrecrecxσ.M Rσ fn+1(⊥).

Since recrecrecxσ.M Rσ fn(⊥) for every n ∈ N and since recrecrecxσ .M Rσ is Scott-
closed (Lemma 6.2), recrecrecxσ.M Rσ lfp f . ✷

Lemma 6.4 Let σ be a value type. For all M Rσ V , retretretM RVVVσ δV .

Proof. Let C be a ground context of type VVVσ ⊢ FFFVVVunitunitunit, h be a continuous map
from JσK to [0, 1], and assume that C R⊥

σ h. By definition of R⊥
σ , and since

M Rσ V , Pr(C · retretretM↓) ≥ h(V), and h(V) =
∫

x∈JσK
h(x)dδV . ✷

Lemma 6.5 Let σ and τ be two value types. Let N : VVVτ be a term with xσ

as sole free variable, f ∈ [JσK → JVVVτK], and assume that for all P Rσ V ,
N [xσ := P] RVVVτ f(V). For all M RVVVσ ν, dododoxσ ←M ;N RVVVτ f †(ν).

Proof. Let C : VVVτ → FFFVVVunitunitunit be a ground context, and h be a Scott-continuous
map from JτK to [0, 1] such that C R⊥

τ h. We wish to show that Pr(C ·
dododoxσ ←M ;N↓) ≥

∫

y∈JτK h(y)df
†(ν), namely that Pr(C · dododoxσ ←M ;N↓) ≥

∫

x∈JσK
(
∫

y∈JτK
h(y)df(x))dν, using (1).

We first show that C[dododoxσ ← ;N] R⊥
σ g, where g(x) =

∫

y∈JτK
h(y)df(x) for

every x ∈ JσK. That reduces to showing that Pr(C[dododo xσ ← ;N] · retretretP↓) ≥
g(x) for all P Rσ x. Now C[dododo xσ ← ;N] · retretretP → C · N [xσ := P], so
Pr(C[dododoxσ ← ;N] ·retretretP↓) ≥ Pr(C ·N [xσ := P]↓), by Lemma 4.6, and Pr(C ·
N [xσ := P]↓) ≥ g(x) =

∫

y∈JτK h(y)df(x) because C R⊥
τ h and N [xσ := P] RVVVσ

f(x) for all P Rσ x.
Using this together with the fact that M RVVVσ ν, Pr(C[dododoxσ ← ;N] ·M↓) ≥

∫

x∈JσK
g(x)dν. Since C · (dododoxσ ←M ;N)→ C[dododo xσ ← ;N] ·M , by Lemma 4.6,

Pr(C · dododoxσ ←M ;N↓) ≥
∫

x∈JσK g(x)dν. ✷

Lemma 6.6 Let σ be a value type. For all M Rσ V , produceproduceproduceM RFFFσ ηQ(V).

Proof. Let Q = ηQ(V). Let C be a ground context of type FFFσ ⊢ FFFVVVunitunitunit, h be
a continuous map from JσK to [0, 1], and assume that C R∗

σ h. By definition of
R∗

σ, Pr(C · produceproduceproduceM↓) ≥ h(V). Since V ∈ Q, h(V) ≥
∧

x∈Q h(x) = h∗(Q), so
produceproduceproduceM RFFFσ Q. ✷

Lemma 6.7 Let σ, τ be two value types. Let N : FFFτ be a term with xσ as sole
free variable, f ∈ [JσK → JFFFτK], and assume that for all P Rσ V , N [xσ :=
P] RFFFτ f(V). For all M RFFFσ Q, M tototo xσ ininin N RFFFτ f∗(Q).

20

Proof. Let C : FFFτ ⊢ FFFVVVunitunitunit be a ground context, and h be a Scott-continuous
map from JτK to [0, 1] such that C R∗

τ h. We wish to show that Pr(C ·M tototo

xσ ininin N↓) ≥ h∗(f∗(Q)). Using Proposition 4.2, we will show the equivalent
claim that Pr(C ·M tototo xσ ininin N↓) ≥ (h∗ ◦ f)∗(Q).

We first show that C[tototo xσ ininin N] R∗
σ h∗ ◦ f . For all P Rσ V , we aim

to show that Pr(C[tototo xσ ininin N] · produceproduceproduceP↓) ≥ h∗(f(V)). Since N [xσ :=
P] RFFFτ f(V) and C R∗

τ h, Pr(C · N [xσ := P]↓) ≥ h∗(f(V)). Since C[tototo

xσ ininin N] · produceproduceproduceP → C · N [xσ := P], by Lemma 4.6 Pr(C[tototo xσ ininin

N] · produceproduceproduceP↓) ≥ h∗(f(V)), as desired.
Knowing that C[tototo xσ ininin N] R∗

σ h∗ ◦ f , and using M RFFFσ Q, we obtain
that Pr(C[tototo xσ ininin N] ·M↓) ≥ (h∗ ◦ f)∗(Q). Since C ·M tototo xσ ininin N →
C[tototo xσ ininin N] ·M , by Lemma 4.6 Pr(C ·M tototo xσ ininin N↓) ≥ (h∗ ◦ f)∗(Q). ✷

We write χU : X → S for the characteristic map of an open subset U of a
space X .

Lemma 6.8 1. [produceproduceproduce] R⊥
unitunitunit χ{⊤};

2. [] R∗
VVVunitunitunit (ν ∈ V≤1S 7→ ν({⊤})).

Proof. 1. Let M Runitunitunit V . It suffices to show that Pr([produceproduceproduce] · retretretM↓) ≥
χ{⊤}(V). If V = ⊥, then the right-hand side is 0, and the inequality is clear.
Otherwise, we claim that the left-hand side is (greater than or) equal to 1. We
have [produceproduceproduce] · retretretM → [produceproduceproduceretretret] ·M , so Pr([produceproduceproduce] · retretretM↓) ≥
Pr([produceproduceproduceretretret] ·M↓) by Lemma 4.6. Since M Runitunitunit ⊤, Pr([produceproduceproduceretretret] ·
M↓) ≥ Pr([produceproduceproduceretretret] · ∗↓), and Pr([produceproduceproduceretretret] · ∗↓) = 1 since we can
deduce [produceproduceproduceretretret] · ∗ ↓ a for every a ∈ Q ∩ [0, 1).

2. Let M RVVVunitunitunit ν. It suffices to show that Pr([] · produceproduceproduceM↓) ≥ ν({⊤}).
Since [produceproduceproduce] R⊥

unitunitunit χ{⊤} by item 1, Pr([produceproduceproduce] ·M↓) ≥
∫

x∈JunitunitunitK χ{⊤}(x)

dν = ν({⊤}). We use Lemma 4.6 together with []·produceproduceproduceM → [produceproduceproduce]·M
and we obtain the desired inequality. ✷

A substitution θ = [x1 := N1, · · · , xn := Nn] is a map of finite domain
dom θ = {x1, · · · , xn} from pairwise distinct variables xi to ground terms Ni of
the same type as xi. We omit the definition of (parallel) substitution application
Mθ. The case M [xσ := N] is the special case n = 1. We note that M [x1 :=
N1, · · · , xn := Nn][x := N] = M [x1 := N1, · · · , xn := Nn, x := N] when x is
distinct from x1, . . . , xn, and not free in N1, . . . , Nn. Also, if dom θ contains
all the free variables of M , then Mθ is ground.

We define the relation R• between substitutions and environments by θ R• ρ
if and only if for every xσ ∈ dom θ, xσθ Rσ ρ(xσ).

Proposition 6.9 For every type σ, for every term M : σ of CBPV(D, P) or any
of its extensions with pifzpifzpifz or © or both, for every substitution θ whose domain
contains all the free variables of M , for every environment ρ, if θ R• ρ then
Mθ Rσ JMK ρ.

Proof. By induction on M . This is the assumption θ R• ρ when M is a variable.

21

In the case of λ-abstractions λxσ .M : σ → τ , let us write θ as [x1 :=
N1, · · · , xn := Nn], and assume by α-renaming that xσ is different from ev-
ery xi and free in no Ni. For all N Rσ V , we define θ′ as [x1 := N1, · · · , xn :=
Nn, xσ := N] and we observe that θ′ R• ρ[xσ 7→ V], so by induction hypoth-
esis Mθ′ Rτ JMK ρ[xσ 7→ V]. Hence Mθ[xσ := N] Rτ JMK ρ[xσ 7→ V]. By
Lemma 4.6 and Lemma 6.1, using the fact that C · (λxσ .Mθ)N → C[N] ·
λxσ.Mθ → C ·Mθ[xσ := N] for all ground contexts C : τ ⊢ FFFVVVunitunitunit, we ob-
tain that (λxσ .Mθ)N Rτ JMK ρ[xσ 7→ V]. Since that holds for all N Rσ V ,
(λxσ .M)θ = λxσ.Mθ Rσ→τ Jλxσ.MK ρ.

The case of applications is by definition of Rσ→τ .
For terms of the form produceproduceproduceM : FFFσ, by assumption Mθ Rσ JMK ρ. By

Lemma 6.6, produceproduceproduceMθ RFFFσ ηQ(JMK ρ) = JproduceproduceproduceMK ρ.
For terms of the form M tototo xσ ininin N where M : FFFσ and N : FFFτ , as for

λ-abstractions we write θ as [x1 := N1, · · · , xn := Nn], and we assume by
that xσ is different from every xi and free in no Ni. By induction hypothesis
Mθ RFFFσ JMK ρ, and for all P Rσ V , Nθ′ RFFFτ JNK ρ[xσ := V] where θ′ =
[x1 := N1, · · · , xn := Nn, xσ := P]. As for λ-abstractions, the latter means that
Nθ[xσ := P] RFFFτ JNK ρ[xσ := V]. Letting f be the map V ∈ JσK 7→ JNK ρ[xσ :=
V], therefore, Nθ[xσ := P] RFFFτ f(V) for all P Rσ V . By Lemma 6.7, (M tototo

xσ ininin N)θ = Mθ tototo xσ ininin Nθ RFFFτ f∗(JMK ρ) = JM tototo xσ ininin NK ρ.
For terms thunkthunkthunkM : UUUτ , by induction hypothesis Mθ Rτ JMK ρ. For every

ground context C : τ ⊢ FFFVVVunitunitunit, C ·forceforceforcethunkthunkthunkMθ → C[forceforceforce] ·thunkthunkthunkMθ →
C · Mθ, so by Lemma 4.6 and Lemma 6.1, forceforceforcethunkthunkthunkM Rτ JMKρ. By
definition of RUUUτ , thunkthunkthunkMθ RUUUτ JMK ρ = JthunkthunkthunkMK ρ.

The case of terms of the form forceforceforceM : τ is by definition of RUUUτ .
In the case of ∗, we have ∗ Runitunitunit ⊤ by definition. Similarly, n Rintintint n.
For terms succsuccsuccM with M : intintint, by induction hypothesis Mθ Rintintint JMK ρ. If

JMK ρ = ⊥, then succsuccsuccMθ Rintintint ⊥ = JsuccsuccsuccMK ρ. Otherwise, let n = JMK ρ ∈ Z.
By definition, Pr(C ·Mθ↓) ≥ Pr(C · n↓) for every ground context C : intintint ⊢
FFFVVVunitunitunit. Replacing C by C[succsuccsucc], Pr(C[succsuccsucc] ·Mθ↓) ≥ Pr(C[succsuccsucc] · n↓).
Since C · succsuccsuccMθ → C[succsuccsucc] ·M and since C[succsuccsucc] · n → C · n+ 1, using
Lemma 4.6 we obtain Pr(C · succsuccsuccMθ↓) ≥ Pr(C[succsuccsucc] ·M↓) ≥ Pr(C[succsuccsucc] ·
n↓) ≥ Pr(C · n+ 1↓). This shows that succsuccsuccMθ Rintintint n+ 1 = JsuccsuccsuccMK ρ. The
case of terms predpredpredM is similar.

For terms ifzifzifz M N P : σ, by induction hypothesis Mθ Rintintint JMK ρ, Nθ Rσ

JNK ρ, and Pθ Rσ JP K ρ. If JMK ρ = ⊥, then (ifzifzifz M N P)θ Rσ ⊥ =
Jifzifzifz M N P K ρ, by Lemma 6.2. Otherwise, let n = JMK ρ ∈ Z. Since Mθ Rintintint

JMK ρ, Pr(C ·Mθ↓) ≥ Pr(C · n↓) for every ground context C : intintint ⊢ FFFVVVunitunitunit.
In particular, for every ground context C : σ ⊢ FFFVVVunitunitunit, Pr(C[ifzifzifz Nθ Pθ] ·
Mθ↓) ≥ Pr(C[ifzifzifz Nθ Pθ] · n↓). Using Lemma 4.7, it follows that Pr(C ·
ifzifzifz Mθ Nθ Pθ↓) ≥ Pr(C[ifzifzifz Nθ Pθ] · n↓). Since C[ifzifzifz Nθ Pθ] · n reduces
to C ·Nθ if n = 0, and to C ·Pθ if n 6= 0, by Lemma 4.6, Pr(C ·ifzifzifz Mθ Nθ Pθ↓)
is larger than or equal to Pr(C ·Nθ↓) if n = 0, and to Pr(C ·Pθ↓) otherwise. By
Lemma 6.1, ifzifzifz Mθ Nθ Pθ Rσ JNK ρ if n = 0, and ifzifzifz Mθ Nθ Pθ Rσ JP K ρ if
n 6= 0. In any case, (ifzifzifz M N P)θ = ifzifzifz Mθ Nθ Pθ Rσ Jifzifzifz M N P K ρ.

The case of terms M ;N : σ is similar. By induction hypothesis, Mθ Runitunitunit

22

JMK ρ and Nθ Rσ JNK ρ. If JMKρ = ⊥, then JM ;NK ρ = ⊥, so (M ;N)θ Rσ

JM ;NK ρ by Lemma 6.2. Otherwise, JMK ρ = ⊤, so Mθ Runitunitunit ⊤, meaning
that Pr(C ·Mθ↓) ≥ Pr(C · ∗↓) for every ground context C : unitunitunit ⊢ FFFVVVunitunitunit.
In particular, for every ground context C : σ ⊢ FFFVVVunitunitunit, Pr(C[;Nθ] ·Mθ↓) ≥
Pr(C[;Nθ] · ∗↓). By Lemma 4.7, Pr(C ·Mθ;Nθ↓) = Pr(C[;Nθ] ·Mθ↓), and by
Lemma 4.6, Pr(C[;Nθ] ·∗↓) ≥ Pr(C ·Nθ↓), using the rule C[;Nθ] ·∗ → C ·Nθ.
Hence Pr(C ·Mθ;Nθ↓) ≥ Pr(C ·Nθ↓). By Lemma 6.1, (M ;N)θ = Mθ;Nθ Rσ

JNK ρ = JM ;NK ρ.
The case of terms π1M and π2M follows from the definition of Rσ×τ .
For terms 〈M,N〉 : σ× τ , by induction hypothesis Mθ Rσ JMKρ and Nθ Rτ

JNK ρ. For every ground context C : σ → FFFVVVunitunitunit, C · π1〈Mθ,Nθ〉 → C[π1] ·
〈Mθ,Nθ〉 → C ·Mθ, so by Lemma 4.6 and Lemma 6.1, π1〈M,N〉θ = π1〈Mθ,
Nθ〉 Rσ JMK ρ. Similarly, π2〈M,N〉θ Rτ JNK ρ. By definition ofRσ×τ , it follows
that 〈M,N〉θ Rσ×τ J〈M,N〉K ρ.

For terms retretretM : VVVτ , by induction hypothesisMθ Rτ JMK ρ, so retretretMθ RVVVτ

δJMKρ = JretretretMK ρ by Lemma 6.4.
For terms dododoxσ ←M ;N where M : VVVσ and N : VVVτ , as for λ-abstractions

we write θ as [x1 := N1, · · · , xn := Nn], and we assume that xσ is different
from every xi and free in no Ni. By induction hypothesis Mθ RVVVσ JMK ρ, and
for all P Rσ V , Nθ′ RVVVτ JNK ρ[xσ := V] where θ′ = [x1 := N1, · · · , xn :=
Nn, xσ := P]. As for λ-abstractions, the latter means that Nθ[xσ := P] RVVVτ

JNK ρ[xσ := V]. Letting f be the map V ∈ JσK 7→ JNK ρ[xσ := V], therefore,
Nθ[xσ := P] RVVVτ f(V) for all P Rσ V . By Lemma 6.5, (dododoxσ ←M ;N)θ =
dododoxσ ←Mθ; (Nθ) RVVVτ f †(JMK ρ) = Jdododoxσ ←M ;NK ρ.

For terms M ⊕ N : VVVτ , by induction hypothesis Mθ Rτ JMK ρ and Nθ Rτ

JNK ρ. For all C R⊥
τ h, Pr(C ·Mθ↓) ≥

∫

x∈JτK h(x)d JMK ρ, and Pr(C · Nθ↓) ≥
∫

x∈JτK h(x)d JNK ρ. For all a and b, if we can deduce C ·Mθ ↓ a and C ·Nθ ↓ b,

then we can deduce C · (M ⊕N)θ ↓ (a+ b)/2. Therefore Pr(C · (M ⊕N)θ↓) ≥
1
2 (Pr(C ·Mθ↓) + Pr(C · Nθ↓)) ≥ 1

2 (
∫

x∈JτK
h(x)d JMK ρ +

∫

x∈JτK
h(x)d JNK ρ) =

∫

x∈JτK
h(x)d JM ⊕NK ρ. Hence (M ⊕N)θ Rτ JM ⊕NK ρ.

The case of terms M ? N : FFFτ is similar, using the fact that Pr(C · (M ?
N)θ↓) ≥ min(Pr(C ·Mθ↓),Pr(C · Nθ↓)) instead. The latter follows from the
fact that if we can deduce both C ·Mθ ↓ a and C ·Nθ ↓ a, then we can deduce
C · (M ? N)θ ↓ a. By induction hypothesis, Mθ RFFFτ JMK ρ and Nθ RFFFτ JNK ρ.
For all C R∗

τ h, Pr(C ·Mθ↓) ≥ h∗(JMK ρ) and Pr(C · Nθ↓) ≥ h∗(JNK ρ), so
Pr(C · (M ? N)θ↓) ≥ min(h∗(JMK ρ), h∗(JNK ρ)) = h∗(JMK ρ) ∧ h∗(JNK ρ) =
h∗(JMK ρ ∧ JNK ρ) (because h∗ preserves binary infima, see Proposition 4.2,
item 3) = h∗(JM ? NK ρ). Hence (M ? N)θ RFFFτ JM ? NK ρ.

For abortabortabortFFFτ : FFFτ , we show that abortabortabortFFFτ RFFFτ JabortabortabortFFFτ K ρ = ∅ (6= ⊥) by
showing that for all C R∗

τ h, Pr(C · abortabortabortFFFτ ↓) ≥ h∗(∅). Indeed, by the rule
C · abortabortabortFFFτ ↓a (a ∈ Q ∩ [0, 1)), Pr(C · abortabortabortFFFτ ↓) = 1.

For recrecrecxσ.M where M : σ, as for λ-abstractions, let us write θ as [x1 :=
N1, · · · , xn := Nn], and assume by α-renaming that xσ is different from every
xi and free in no Ni. For all N Rσ V , we define θ′ as [x1 := N1, · · · , xn :=
Nn, xσ := N] and we observe that θ′ R• ρ[xσ 7→ V], so by induction hypothesis

23

Mθ′ Rσ JMK ρ[xσ 7→ V]. Let f(V) = JMK ρ[xσ 7→ V]. We have just shown
that Mθ[xσ := N] Rσ f(V) for all N Rσ V . By Corollary 6.3, (recrecrecxσ .M)θ =
recrecrecxσ.(Mθ) Rσ lfp(f) = Jrecrecrecxσ.MK ρ.

We finish with the constructions involving © or pifzpifzpifz. For ©>bM where
M : FFFVVVunitunitunit, by induction hypothesis Mθ RFFFVVVunitunitunit JMK ρ. Using Lemma 6.8,
item 2, we obtain that Pr([] · Mθ↓) ≥ (ν ∈ V≤1S 7→ ν({⊤}))∗(JMKρ). If
JMK ρ = ⊥, then J©>bMK ρ = ⊥, so ©>bMθ Runitunitunit J©>bMK ρ, trivially. Oth-
erwise, JMK ρ is a compact saturated subset of V≤1S. If b 6≪ ν({⊤}) for some
ν ∈ JMK ρ, then again J©>bMK ρ = ⊥, so ©>bMθ Runitunitunit J©>bMK ρ is again
trivial. Finally, if b ≪ ν({⊤}) for every ν ∈ JMK ρ, then we verify that b ≪
(ν ∈ V≤1S 7→ ν({⊤}))∗(JMK ρ): if JMK ρ 6= ∅, (ν ∈ V≤1S 7→ ν({⊤}))∗(JMK ρ) =
minν∈JMKρ ν({⊤}), so b is way-below that value; while if JMK ρ = ∅, then
(ν ∈ V≤1S 7→ ν({⊤}))∗(JMK ρ) = 1, and b ≪ 1 because the ©>b operator re-
quires b < 1. It follows that b≪ Pr([] ·Mθ↓), so there is a number a such that
b ≤ a and [] ·M ↓a is derivable. By Lemma 4.5, [] ·M ↓b is derivable. For every
ground context C : unitunitunit ⊢ FFFVVVunitunitunit, for every a such that C · ∗ ↓ a is derivable,
the leftmost rule of the bottom row of Figure 3 allows us to derive C ·©>bM ↓a,
so Pr(C · ©>bM↓) ≥ Pr(C · ∗↓). It follows that ©>bM Runitunitunit ⊤ = J©>bMK ρ.

Finally, for terms of the form pifzpifzpifz M N P , where M : intintint and N,P : FFFτ , we
wish to show that (pifzpifzpifz M N P)θ RFFFτ Jpifzpifzpifz M N P K ρ. This means showing
that, for all C R∗

τ h, Pr(C · pifzpifzpifz Mθ Nθ Pθ↓) ≥ h∗(Jpifzpifzpifz M N P K ρ).
If JMK ρ = ⊥, then Jpifzpifzpifz M N P K ρ = JNK ρ ∧ JP K ρ. In that case, we note

that Pr(C ·pifzpifzpifz Mθ Nθ Pθ↓) is larger than or equal to min(Pr(C ·Nθ↓),Pr(C ·
Pθ↓)): for every a ∈ Q ∩ [0, 1) way-below min(Pr(C · Nθ↓),Pr(C · Pθ↓)), we
can derive C · Nθ ↓ b for some b ≥ a, and C · Pθ ↓ c for some c ≥ a; then, by
Lemma 4.5, we can derive C ·Nθ↓a and C ·Pθ↓a, hence C ·pifzpifzpifz Mθ Nθ Pθ↓a.
By induction hypothesis, Nθ RFFFτ JNK ρ, so Pr(C · Nθ↓) ≥ h∗(JNK ρ), and
similarly Pr(C · Pθ↓) ≥ h∗(JP K ρ). Therefore Pr(C · pifzpifzpifz Mθ Nθ Pθ↓) ≥
min(h∗(JNK ρ), h∗(JP K ρ)) = h∗(JNK ρ ∧ JP K ρ) = h∗(Jpifzpifzpifz M N P K ρ), since h∗

preserves binary infima (Proposition 4.2, item 3).
If JMK ρ 6= ⊥, then Jpifzpifzpifz M N P K ρ = Jifzifzifz M N P K ρ. We have already

seen that ifzifzifz Mθ Nθ Pθ RFFFτ Jifzifzifz M N P K ρ, so Pr(C · ifzifzifz Mθ Nθ Pθ↓) ≥
h∗(Jifzifzifz M N P K ρ) = h∗(Jpifzpifzpifz M N P K ρ). For every a ∈ Q ∩ [0, 1), if we can
derive C · ifzifzifz Mθ Nθ Pθ ↓ a, then we can also derive C · pifzpifzpifz Mθ Nθ Pθ ↓ a,
so Pr(C ·pifzpifzpifz Mθ Nθ Pθ↓) ≥ Pr(C ·ifzifzifz Mθ Nθ Pθ↓), and that is larger than
or equal to h∗(Jpifzpifzpifz M N P K ρ). ✷

Given a ground term (or context) M , JMK ρ does not depend on ρ, and we
will simply write JMK in this case.

Proposition 6.10 (Adequacy) In any of the languages CBPV(D, P), CBPV(D,
P)+pifzpifzpifz, CBPV(D, P)+©, and CBPV(D, P)+pifzpifzpifz+©, for every ground term
M : FFFVVVunitunitunit,

Pr(M↓) = h∗(JMK),
where h is the map ν ∈ V≤1S 7→ ν({⊤}).

Explicitly: either JMK = ⊥ and Pr(M↓) = 0, or JMK = ∅ and Pr(M↓) = 1,
or JMK 6= ⊥, ∅ and Pr(M↓) = minν∈JMK ν({⊤}).

24

Proof. By Proposition 6.9 applied to θ = [], M RFFFVVVunitunitunit JMK. By Lemma 6.8,
item 2, [] R∗

VVVunitunitunit h, so Pr([] ·M↓) ≥ h∗(JMK). The converse inequality is by
soundness (Proposition 5.1, item 2). ✷

7 Consequences of Adequacy

Definition 7.1 The applicative preorder -app
τ between ground CBPV(D, P) terms

of value type τ is defined by M -app
τ N if and only if for every ground term

Q : τ → FFFVVVunitunitunit, Pr(QM↓) ≤ Pr(QN↓).

While the applicative preorder is only defined at value types, one can extend
it fairly trivially to computation types by letting M -app

τ N if and only if
thunkthunkthunkM -

app
UUUτ thunkthunkthunkN .

As for -σ (Definition 4.4), we will freely reuse the notations -app
τ for all the

variants of CBPV(D, P) considered in this paper, with or without © and pifzpifzpifz.
Any result that does not mention the language considered holds for all four:
this will notably be the case in the current section.

Lemma 7.2 For all ground terms M,N : σ → τ such that M -σ→τ N , for
every ground term P : σ, MP -τ NP .

Proof. We must show that for every ground evaluation context C : τ ⊢ FFFVVVunitunitunit,
Pr(C ·MP↓) ≤ Pr(C ·NP↓). By Lemma 4.7, Pr(C ·MP↓) = Pr(C[P] ·M↓).
Similarly, Pr(C ·NP↓) = Pr(C[P] ·N↓). Since M -σ→τ N , Pr(C[P] ·M↓) ≤
Pr(C[P] ·N↓), and we conclude. ✷

We reuse the logical relation of Section 6.
The following is sometimes called Milner’s Context Lemma in the setting of

PCF, and we will prove it by using a variant of an argument due to A. Jung
[20, Theorem 8.1].

Theorem 7.3 (Contextual=applicative) For every value type τ , the con-
textual preorder -τ and the applicative preorder -app

τ on ground CBPV(D, P)
terms of type τ are the same relation.

Proof. Let M , N be two ground terms of type τ . If M -app
τ N , then consider

a ground evaluation context C : τ ⊢ FFFVVVunitunitunit. By Lemma 4.9, Pr(C[M]↓), which
is equal to Pr([] · C[M]↓) by definition, is equal to Pr(C ·M↓). By adequacy
(Proposition 6.10), Pr(C[M]↓) = h∗(JC[M]K) where h is the map ν ∈ V≤1S 7→
ν({⊤}). Let Q = λxτ .C[xτ], where xτ is a fresh variable of type τ . Then
JC[M]K = JQMK. By adequacy again, Pr(QM↓) = h∗(JQMK), so Pr(C[M]↓) =
Pr(QM↓). Similarly, Pr(C[N]↓) = Pr(QN↓). Since M -app

τ N , the former is
less than or equal to the latter, so M -τ N .

Conversely, let us assumeM -τ N . Consider a ground termQ : τ → FFFVVVunitunitunit.
By Proposition 6.9 with θ = [], M Rτ JMK. By Lemma 6.1, since M -τ N ,
we also have N Rτ JMK. By Proposition 6.9 again, Q Rτ→FFFVVVunitunitunit JQK. Hence
QN RFFFVVVunitunitunit JQMK. By Lemma 6.8, [] R∗

VVVunitunitunit h, where h is as above. Using

25

the definition of RFFFVVVunitunitunit, Pr(QN↓) = Pr([] · QN↓) ≥ h∗(JQMK). The latter is
equal to Pr(QM↓) by adequacy (Proposition 6.10). We have shown Pr(QM↓) ≤
Pr(QN↓), where Q is arbitrary, hence M -app

τ N . ✷

Corollary 7.4 For every computation type τ , the contextual preorder -τ and
the applicative preorder -app

τ on ground CBPV(D, P) terms of type τ are the
same relation.

Proof. We claim that M -τ N if and only if thunkthunkthunkM -UUUτ thunkthunkthunkN . The result
will then follow from Theorem 7.3, since thunkthunkthunkM -UUUτ thunkthunkthunkN is equivalent to
thunkthunkthunkM -

app
UUUτ thunkthunkthunkN , hence to M -app

τ N , by definition.
If M -τ N , let C be any ground evaluation context of type UUUτ ⊢ FFFVVVunitunitunit.

Let us write C as E0E1E2 · · ·En, where Ei : σi+1 ⊢ σi, σn+1 = UUUτ and σ0 =
FFFVVVunitunitunit. Since UUUτ is not unitunitunit, VVVunitunitunit, or FFFVVVunitunitunit, n must be at least 1. The only
elementary context En of type UUUτ ⊢ σn is [forceforceforce]. Let C′ = E0E1E2 · · ·En−1.
Then Pr(C ·thunkthunkthunkM↓) = Pr(C′[forceforceforce]·thunkthunkthunkM↓) = Pr(C′[forceforceforcethunkthunkthunkM]↓)
(by Lemma 4.9) = h∗(JC′[forceforceforcethunkthunkthunkM]K) (by adequacy, where h is given in
Proposition 6.10) = h∗(JC′[M]K) (because forceforceforce and thunkthunkthunk are both interpreted
as identity maps) = Pr(C′[M]↓) = Pr(C′ ·M↓). Similarly, Pr(C · thunkthunkthunkN↓) =
Pr(C′ ·N↓). Since M -τ N , the former is less than or equal to the latter. This
allows us to conclude that thunkthunkthunkM -UUUτ thunkthunkthunkN .

Conversely, we assume that thunkthunkthunkM -UUUτ thunkthunkthunkN , and we consider an
arbitrary ground evaluation context C : τ ⊢ FFFVVVunitunitunit. Then C[forceforceforce] is a
ground evaluation context of type UUUτ ⊢ FFFVVVunitunitunit, so Pr(C[forceforceforce] ·thunkthunkthunkM↓) ≤
Pr(C[forceforceforce] · thunkthunkthunkN↓). As above, we have Pr(C[forceforceforce] · thunkthunkthunkM↓) =
h∗(JC[forceforceforcethunkthunkthunkM]K) = h∗(JC[M]K) = Pr(C · M↓), and Pr(C[forceforceforce] ·
thunkthunkthunkN↓) = Pr(C · N↓), and the former is less than or equal to the latter.
✷

The following proposition is a form of extensionality: two abstractions are
related by -σ→τ if and only if applying them to the same ground terms yield
related results.

Proposition 7.5 Let M,N : τ be two terms with xσ as sole free variable. Then
λxσ.M -σ→τ λxσ.N if and only if for every ground term P : σ, M [xσ := P] -τ

N [xσ := P].

Proof. If λxσ .M -σ→τ λxσ.N , then (λxσ .M)P -τ (λxσ .N)P for every ground
term P : σ, by Lemma 7.2. Hence for every ground evaluation context C : τ ⊢
FFFVVVunitunitunit, Pr(C · (λxσ .M)P↓) ≤ Pr(C · (λxσ .N)P↓). Using Lemma 4.9, we ob-
tain Pr(C[(λxσ .M)P]↓) ≤ Pr(C[(λxσ .N)P]↓). By adequacy (Proposition 6.10),
Pr(C[(λxσ .M)P]↓) = h∗(JC[(λxσ .M)P]K), where h(ν) = ν({⊤}). That is equal
to h∗(JC[M [xσ := P]]K), hence to Pr(C[M [xσ := P]]↓) = Pr(C ·M [xσ := P]↓).
Similarly, Pr(C[(λxσ .N)P]↓) = Pr(C ·N [xσ := P]↓), so Pr(C ·M [xσ := P]↓) ≤
Pr(C ·N [xσ := P]↓). Since C is arbitrary, M [xσ := P] -τ N [xσ := P].

Conversely, assume that M [xσ := P] -τ N [xσ := P] for every ground term
P : σ. We wish to show that for every ground evaluation context C : (σ → τ) ⊢
FFFVVVunitunitunit, Pr(C · λxσ.M↓) ≤ Pr(C · λxσ.N↓). Let us write C as E0E1E2 · · ·En,

26

where each Ei is of type σi+1 ⊢ σi, σ0 = FFFVVVunitunitunit and σn+1 = σ → τ . We cannot
have n = 0, since σ → τ is none of the types unitunitunit, VVVunitunitunit, FFFVVVunitunitunit. By inspection
of the possible shape of the elementary context En, we see that it must be of
the form [P] for some (ground) term P : σ. Let C′ = E0E1E2 · · ·En−1 : τ →
FFFVVVunitunitunit. Using Lemma 4.9 and adequacy as above, Pr(C · λxσ .M↓) = Pr(C′ ·
M [xσ := P]↓), and similarly with N instead of M . We have Pr(C′ ·M [xσ :=
P]↓) ≤ Pr(C′ · N [xσ := P]↓) since M [xσ := P] -τ N [xσ := P], so Pr(C ·
λxσ.M↓) ≤ Pr(C · λxσ .N↓). ✷

A final, expected, consequence of adequacy is the following.

Proposition 7.6 For every value type τ , for every two ground terms M,N : τ ,
if JMK ≤ JNK then M -τ N .

Proof. For every ground term Q : τ → FFFVVVunitunitunit, JQMK = JQK (JMK) ≤ JQK (JNK),
hence h∗(JQMK) ≤ h∗(JQNK) for every continuous map h : V≤1S → [0, 1].
By adequacy (Proposition 6.10), Pr(QM↓) = h∗(JQMK), and Pr(QN↓) =
h∗(JQNK) where h is the map ν 7→ ν({⊤}). Therefore Pr(QM↓) ≤ Pr(QN↓).
✷

The converse implication, if it holds, is full abstraction.

8 The Failure of Full Abstraction

We will show that CBPV(D, P) is not fully abstract, for two reasons. One is the
expected lack of a parallel if operator, just as in PCF [19]. The other is the lack
of a statistical termination tester, as in [11].

Our main tool is a variant on our previous logical relations (Sσ)σ type. This
time, Sσ will be an I-ary relation, for some non-empty set I, between semantical
values—namely, Sσ⊆ JσKI . The construction is parameterized by a finite family
J of subsets of I, and two I-ary relations ⊲, ⊲ ⊆ [0, 1]I . Again we will also
define auxiliary relations S⊥

σ , and S∗
σ, which are certain sets of I-tuples of Scott-

continuous maps from JσK to [0, 1]. We write ~a for (ai)i∈I , and similarly with

~ν, ~Q, etc. For every ~a ∈ [0, 1]I and every subset J of I, we write ~a|J for the
vector obtained from ~a by replacing every element ai, i ∈ J , by 0; namely, a|J i

is equal to 0 if i ∈ J , to ai otherwise. We require the following:

• I ∈ J , J is closed under binary unions, and is well-founded: every filtered
family (Jk)k∈K in J has a least element Jk1

, k1 ∈ K.

• ⊲ is non-empty, closed under directed suprema, convex (notably, if (ai)i∈I

and (bi)i∈I are in ⊲ then so is ((ai + bi)/2)i∈I), and is J -lower, meaning
that for every ~a ∈ ⊲, for every J ∈ J , ~a|J is in ⊲;

• ⊲ is closed under directed suprema, under pairwise minima (if (ai)i∈I and

(bi)i∈I are in ⊲ then so is (min(ai + bi))i∈I), contains the all one vector ~1,
and is J -lower.

We define the following.

27

• ~a ∈SUUUτ iff ~a ∈Sτ ;

• ~a ∈Sunitunitunit (resp., Sintintint) iff: the set J = {i ∈ I | ai = ⊥} is in J and the
components ai, i ∈ I r J , are all equal;

• ~a ∈Sσ×τ , where ai = (bi, ci) for every i ∈ I, iff ~b ∈Sσ and ~c ∈Sτ ;

• ~ν ∈SVVVσ iff for all ~h ∈S⊥
σ , (

∫

x∈JσK
hi(x)dνi)

i∈I
∈ ⊲;

• ~h ∈S⊥
σ iff for all ~a ∈Sσ, (hi(ai))i∈I ∈ ⊲;

• ~Q ∈SFFFσ iff for all ~h ∈S∗
σ, (hi

∗(Qi))i∈I ∈ ⊲;

• ~h ∈S∗
σ iff for all ~a ∈Sσ, (hi(ai))i∈I ∈ ⊲;

• ~f ∈Sσ→τ iff for all ~a ∈Sσ, (fi(ai))i∈I ∈Sτ .

For every I-indexed tuple ~ρ of environments, finally, ~ρ ∈S∗ if and only if for
every variable xσ, (ρi(xσ))i∈I ∈Sσ.

Lemma 8.1 1. For every ~ρ ∈S∗, for every CBPV(D, P) term M : τ , (JMK ρi)i∈I

is in Sτ .

2. The same remains true for all CBPV(D, P) + pifzpifzpifz terms if J ⊆ {∅, I}.

Proof. We first show: (a) Sσ is closed under directed suprema taken in JσKI ,
and contains ~⊥ = (⊥)i∈I . This is by induction on the type σ. Most cases are
trivial. We deal with the remaining ones:

• When σ = unitunitunit or σ = intintint, ~⊥ is in Sσ, because I ∈ J . We must show
that the supremum ~a of every directed family (~ak)k∈K in Sσ is in Sσ. Let
Jk = {i ∈ I | aki = ⊥} for each k ∈ K, and J = {i ∈ I | ai = ⊥}.
Define k ⊑ k′ if and only if ~ak ≤ ~ak′ . Then k ⊑ k′ implies Jk ⊇ Jk′ , so
(Jk)k∈K is a filtered family. Since J is well-founded, there is an index
k1 ∈ K such that Jk = Jk1

for every k ⊒ k1. Then, for every i ∈ I,
ai = supk⊒k1

aki is equal to ⊥ if i ∈ J , and is different from ⊥ otherwise.
In particular, J = Jk1

. Letting bk be the common value of the terms aki,
i ∈ I r Jk = I r J , for each k ⊒ k1, we have ai = supk⊒k1

bk for every
i ∈ I r J , and all these values are equal. Therefore ~a is in Sσ.

• When σ = VVVσ, ~⊥ is the tuple consisting of zero valuations only, and for ev-
ery ~h ∈S⊥

σ , (
∫

x∈JσK hi(x)d0)
i∈I

= ~0 is in ⊲ (since ⊲ is J -lower and I ∈ J),

so ~⊥ ∈Sσ. In order to show closure under directed suprema, let (~νj)j∈J

be a directed family in Sσ, with ~νj = (νji)i∈I . Its supremum is ~ν =

(νi)i∈I where νi = supj∈J νji. For every ~h ∈S⊥
σ , (

∫

x∈JσK
hi(x)dνi)

i∈I
=

(supj

∫

x∈JσK
hi(x)dνji)

i∈I
, since integration is Scott-continuous in the val-

uation. That is a directed supremum of values in ⊲, hence is in ⊲. It
follows that ~ν is in SVVVσ.

28

• When σ = FFFσ, ~⊥ is in SFFFσ because, for every ~h ∈S∗
σ, (hi

∗(⊥))i∈I is equal

to ~0 (since hi
∗ is strict), and that is in ⊲: ~0 = ~1|I , which is in ⊲ because

⊲ is J -lower and I ∈ J . As far as closure under directed suprema is
concerned, let (~Qj)j∈J be a directed family in Sσ, where ~Qj = (Qji)i∈I .

Let us write its supremum as ~Q = (Qi)i∈I . For every h ∈S∗
σ, (hi

∗(Qi))i∈I

is the supremum of the family of tuples (hi
∗(Qji))i∈I , j ∈ J , since hi

∗ is
Scott-continuous (Proposition 4.2, item 2), and all those tuples are in ⊲.
Since the latter is closed under directed suprema, (hi

∗(Qi))i∈I is in ⊲, so
~Q is in SFFFσ.

Next, we claim that: (b) for every ~ν ∈SVVVσ and for every ~f ∈Sσ→VVVτ , (f
†
i (νi))i∈I

is in SVVVτ . To this end, let ~h ∈S
⊥
τ . Our goal is to show that (

∫

y∈JτK hi(y)df
†
i (νi))i∈I

is in ⊲. Using (1), this boils down to showing that (
∫

x∈JσK
h′
i(x)dνi)i∈I

is in ⊲,

where h′
i is the map x 7→

∫

y∈JτK hi(y)dfi(x). We note that ~h′ = (h′
i)i∈I is in S⊥

σ :

for every ~a ∈Sσ, (fi(ai))i∈I is in SVVVτ (by definition of Sσ→VVVτ); by the definition

of SVVVτ , and using the fact that ~h ∈S⊥
τ , (

∫

y∈JτK hi(y)dfi(ai))
i∈I

is in ⊲, in other

words (h′
i(ai))i∈I is in ⊲. Since (~h′

i)i∈I ∈S
⊥
σ and ~ν ∈SVVVσ, the claim follows.

We also claim that: (c) for every ~Q ∈SFFFσ and for every ~f ∈Sσ→FFFτ , (fi
∗(Qi))i∈I

is in SFFFτ . Let ~h ∈S∗
τ . We wish to show that (hi

∗(fi
∗(Qi)))i∈I is in ⊲. Using

Proposition 4.2, item 4, this amounts to showing that ((hi
∗ ◦ fi)

∗
(Qi))i∈I is in

⊲. We note that (hi
∗ ◦ fi)i∈I is in S⊥

σ : for every ~a ∈Sσ, (fi(ai))i∈I is in SFFFτ , and
~h is in S∗

τ , so (hi
∗(fi(ai)))i∈I is in ⊲. Since ~Q ∈SFFFσ, and using the definition of

SFFFσ, ((hi
∗ ◦ fi)

∗
(Qi))i∈I is in ⊲.

Finally, for every vector ~a in JσKI , and for every subset J of I, we define ~a|J
as the vector obtained from ~a by replacing each component ai with i ∈ J by ⊥.
We claim that: (d) for every ~a ∈Sσ, for every J ∈ J , ~a|J is in Sσ. This is by
induction on σ. For types σ of the form σ × τ , UUUτ , and σ → τ , we simply call
the induction hypothesis. When σ is unitunitunit or intintint, let J ′ = {i ∈ I | ai = ⊥},
and J ′′ = {i ∈ I | a|J i = ⊥}. We have J ′′ = J ′ ∪ J , and J ′ ∈ J by induction
hypothesis. Since J is closed under binary unions, J ′′ is in J . Moreover,
all the components a|J i with i ∈ I r J ′′ are equal to ai, and they are all

equal. Therefore ~a|J is in Sσ. When σ = VVVσ, let ~ν ∈SVVVσ. For every ~h ∈S⊥
σ ,

~b = (
∫

x∈JσK hi(x)dνi)
i∈I

is in ⊲. The vector (
∫

x∈JσK hi(x)dν|J i)
i∈I

is equal to

~b|J , hence is in ⊲ as well, since ⊲ is J -lower. When σ = FFFσ, let ~Q ∈SFFFσ. For

every ~h ∈S∗
σ, (hi

∗(Qi))i∈I is in ⊲. Since each function hi
∗ is strict, for every

i ∈ J , hi
∗(Q|J i) = ⊥. For every i ∈ I r J , hi

∗(Q|J i) = hi
∗(Qi). Therefore

(hi
∗(Q|J i))i∈I

is equal to ~a|J where ~a = (hi
∗(Qi))i∈I , and that is in ⊲ by

assumption and the fact that ⊲ is J -lower. Hence ~Q|J is in SFFFσ.
1. We now prove the lemma by induction on M . For variables, this follows

from the assumption that ~ρ ∈S∗. The case of constants ∗ and n is clear. The
case of λ-abstractions and of applications is immediate from the definition of
Sσ→τ . Similarly, the case of terms π1M , π2M and 〈M,N〉 are immediate from

29

the definition of Sσ×τ . For terms of the form thunkthunkthunkM , with M : τ , or terms of
the form forceforceforceM , with M : UUUτ , the claim is trivial.

For terms of the form produceproduceproduceM , with M : σ, by induction hypothesis
(JMK ρi)i∈I is in Sσ. In order to show that (JproduceproduceproduceMK ρi)i∈I = (ηQ(JMK ρi))i∈I

is in SFFFσ, we fix ~h ∈S∗
σ, and we check that (hi

∗(ηQ(JMK ρi)))i∈I is in ⊲. Since
hi

∗(ηQ(JMK ρi)) = hi(JMK ρi) (Proposition 4.2, item 2), this follows from the
definition of S∗

σ.
For terms of the form M tototo xσ ininin N , with M : FFFσ and N : FFFτ , we must show

that (JM tototo xσ ininin NK ρi)i∈I is in JFFFτK. Since JM tototo xσ ininin NK ρi = fi
∗(JMK ρi),

where fi(V) = JNK ρi[xσ 7→ V], we will obtain this as a consequence of (c) if we
can show that (fi)i∈I is in Sσ→FFFτ . For every ~a ∈Sσ, (ρi[xσ 7→ ai])i∈I is in S∗,
so (fi(ai))i∈I = (JNK ρi[xσ 7→ ai])i∈I is indeed in Sσ→FFFτ .

For terms of the form retretretM , where M : τ , we must show that for every
~h ∈S⊥

τ , (
∫

x∈JτK
hi(x)d JretretretMK ρi)

i∈I
is in ⊲. Since

∫

x∈JτK
hi(x)d JretretretMK ρi =

∫

x∈JτK hi(x)dδJMKρi
= hi(JMK ρi), this follows from the fact that ~h ∈S⊥

τ and the

definition of S⊥
τ .

For terms of the form dododoxσ ←M ;N , with M : VVVσ and N : VVVτ , we wish to
show that (Jdododoxσ ←M ;NK ρi)i∈I is in SVVVτ , namely that (f †

i (JNK ρi))i∈I is in
SVVVτ , where fi(V) = JNK ρi[xσ 7→ V]. As in the case of tototo terms, (fi)i∈I is in
Sσ→VVVτ , and (JNK ρi)i∈I is in SVVVσ, so the claim is proved by applying (b).

For terms of the form succsuccsuccM , withM : intintint, by induction hypothesis (JMK ρi)i∈I

is in Sintintint. Let J = {i ∈ I | JMK ρi = ⊥}, and n ∈ Z be the common value of
JMK ρi, i ∈ I r J (or an arbitrary element of Z if I = J). Then J is also equal
to {i ∈ I | JsuccsuccsuccMK ρi = ⊥}, which is therefore in J . Moreover, n + 1 is the
common value of JsuccsuccsuccMK ρi, i ∈ I r J . We reason similarly for terms of the
form predpredpredM .

For terms of the form ifzifzifz M N P , where M : intintint and N,P : σ, by hy-
pothesis, in particular, (JMKρi)i∈I is in Sintintint. Let J = {i ∈ I | JMK ρi = ⊥},
and n be the common value of JMK ρi, i ∈ I r J (or any element of Z if
J = I). (Jifzifzifz M N P K ρi)i∈I is equal to ~a|J , where ~a = (JNK ρi)i∈I if n = 0
and ~a = (JP K ρi)i∈I if n 6= 0. The latter is in Sσ by induction hypothesis, so the
former is in Sσ, too, by (d).

For terms of the form M ;N , with M : unitunitunit and N : σ, (JMK ρi)i∈I is in Sunitunitunit

by induction hypothesis. Let J = {i ∈ I | JMK ρi = ⊥}. (JM ;NK)i∈I is equal
to ~a|J where ~a = (JNK ρi)i∈I , which is in Sσ by induction hypothesis and (d).

For terms of the form M ⊕ N , with M,N : VVVτ , we wish to show that the
tuple (JM ⊕NK ρi)i∈I is in SVVVτ . Let ~h ∈S⊥

τ . By induction hypothesis, the
tuples (

∫

x∈JτK
hi(x)d JMK ρi)

i∈I
and (

∫

x∈JτK
hi(x)d JNK ρi)

i∈I
are in ⊲. Since ⊲

is convex, (12 (
∫

x∈JτK
hi(x)d JMK ρi +

∫

x∈JτK
hi(x)d JNK ρi))

i∈I
is also in ⊲, and

that is just (
∫

x∈JτK hi(x)d JM ⊕NK ρi)
i∈I

.

For terms of the form M?N , with M,N : FFFτ , we wish to show that the tuple
(JM ? NK ρi)i∈I is in SFFFτ . Let ~h ∈S∗

τ . By induction hypothesis, (hi
∗(JMK ρi))i∈I

and (hi
∗(JNK ρi))i∈I are in ⊲. Since ⊲ is closed under pairwise minima, and hi

∗

commutes with pairwise infima (Proposition 4.2, item 3), (hi
∗(JM ? NK ρi))i∈I

30

is also in ⊲, showing the claim.
For abortabortabortFFFτ , we consider an arbitrary vector ~h ∈S∗

τ , and we must show that
(hi

∗(∅))i∈I is in ⊲. By Proposition 4.2, item 3, hi
∗(∅) is the top element, ~1, of

[0, 1], and the claim follows from the fact that ~1 ∈ ⊲.
For terms of the form recrecrecxσ .M , let fi be the map defined by fi(V) =

JMK ρi[xσ 7→ V]. For every ~a ∈Sσ, (ρi[xσ 7→ ai])i∈I is in S∗, hence by induction

hypothesis (fi(ai))i∈I is in Sσ. Let us write (fi(ai))i∈I as ~f(~a). By (a), ~⊥ =

(⊥)i∈I is in Sσ, and therefore ~f(~⊥), ~f(~f(~⊥)), . . . , are all in Sσ. By the other

part of (a), supn∈N (~f)
n
(~a) in in Sσ as well. That tuple is just (lfp(fi))i∈I ,

namely (Jrecrecrecxσ.MK ρi)i∈I .
2. In the case of terms of the form pifzpifzpifz M N P , of type σ, and assuming

J ⊆ {∅, I}, the induction hypothesis (JMK ρi)i∈I ∈Sintintint implies that all the
values JMK ρi are the same: letting J = {i ∈ I | JMKρi = ⊥}, either J = I
and they are all equal to ⊥, or J = ∅ and they are all equal by definition of
Sintintint. Hence (Jpifzpifzpifz M N P K ρi)i∈I is equal to (JNK ρi)i∈I , to (JP K ρi)i∈I , or to
(JM ? NK ρi)i∈I , and they are all in Sσ. ✷

8.1 The Need for Parallel If

In this section, we let I = {1, 2, 3}, J = {∅, {1, 3}, {2, 3}, {1, 2, 3}}, ⊲ be ar-
bitrary (e.g., the whole of [0, 1]3), and ⊲ = {(0, 0, 0), (0, 1, 0), (1, 0, 0), (1, 1, 1)}.
The latter is the smallest possible set that satisfies the constraints required of
⊲, and is the graph of the infimum function ∧ : {0, 1}2 → {0, 1}.

A triple (n1, n2, n3) in Z3
⊥ is in Sintintint if and only if {i | ni = ⊥} is empty,

equal to {1, 3} or {2, 3}, or to {1, 2, 3}, and all the non-bottom components are
equal. Those are the triples (n, n, n), (⊥, n,⊥), (n,⊥,⊥) and (⊥,⊥,⊥) (with
n 6= ⊥).

Lemma 8.2 The triples (h1, h2, h3) in S∗
intintint are the triples of characteristic

maps (χU1
, χU2

, χU3
) of open subsets U1, U2, U3 of Z⊥ of one of the follow-

ing forms:

1. U1 = U2 = U3 = Z⊥;

2. U1 = U2 = U3 = {n} for some n ∈ Z;

3. U1 = U3 = ∅, U2 arbitrary;

4. U2 = U3 = ∅, U1 arbitrary.

Proof. A triple of Scott-continuous maps (h1, h2, h3) is in S∗
intintint if and only if

for all (n1, n2, n3) ∈Sintintint, (h1(n1), h2(n2), h3(n3)) ∈ ⊲. We claim that this is
equivalent to: (∗) h1, h2, h3 take their values in {0, 1} and for all n1, n2, n3 ∈
Z⊥ such that n3 = n1 ∧ n2, h3(n3) = h2(n1) ∧ h2(n2). In one direction, if
(h1, h2, h3) ∈S∗

intintint, then since (n, n, n) ∈Sintintint for every n ∈ Z, (h1(n), h2(n), h3(n))
is in ⊲ for every n ∈ Z, in particular h1, h2, h3 take their values in {0, 1}. Also,

31

for all n1, n2, n3 ∈ Z⊥ such that n3 = n1 ∧ n2, h3(n3) = h2(n1) ∧ h2(n2). In-
deed, the triples (n1, n2, n3) such that n3 = n1 ∧ n2 are of the form (n, n, n),
or (⊥, n,⊥), or (n,⊥,⊥), or (⊥,⊥,⊥), with n ∈ Z, hence are exactly the
triples in Sintintint. Then (h1(n1), h2(n2), h3(n3)) is in ⊲, hence h3(n3) = h2(n1) ∧
h2(n2) since ⊲ is the graph of ∧ on {0, 1}. In the other direction, let us as-
sume (∗). For all (n1, n2, n3) ∈Sintintint, we have just seen that n3 = n1 ∧ n2, so
(h1(n1), h2(n2), h3(n3)) is in the graph of ∧ on {0, 1}. It follows that (h1, h2, h3)
is in S∗

intintint.
Equivalently, (∗) means that h1, h2, h3 are the characteristic maps χU1

, χU2
,

χU3
of open subsets U1, U2, U3 of Z⊥ such that: (∗∗) for all n1, n2, n3 ∈ Z⊥

such that n3 = n1 ∧ n2, n3 ∈ U3 if and only if n1 ∈ U1 and n2 ∈ U2. Clearly,
any of the cases 1–4 implies (∗∗).

Let us assume that (∗∗) holds. By taking n1 = n2 = n3, we obtain that
U3 = U1 ∩ U2. If U1 is empty, then U3 is empty and we are in case 3. If U2

is empty, then U3 is empty and we are in case 4. Henceforth, let us assume
that U1 and U2 are non-empty. If ⊥ ∈ U1, then pick any n2 ∈ U2: we can
then take n3 = ⊥, so ⊥ is in U3 by (∗∗); this implies that U3 = Z⊥, hence also
U1 = U2 = Z⊥, since U3 = U1 ∩U2; hence we are in case 1. We reason similarly
if ⊥ is in U2. It remains to examine the cases where U1 and U2 are non-empty
subsets of Z. If there are two distinct elements n1 ∈ U1 and n2 ∈ U2, then
n3 = n1 ∧ n2 is equal to ⊥ and must be in U3 by (∗∗), so U3 = Z⊥, and again
U1 = U2 = Z⊥, meaning that we are in case 1. Otherwise, U1 = U2 = {n} for
some n ∈ Z, then U3 = {n} as well, and we are in case 2. ✷

Lemma 8.3 For every ground CBPV(D, P) term P : intintint → intintint → FFFintintint such
that JP K (⊥)(0) = JP K (0)(⊥) = {0}, the equality JP K (⊥)(⊥) = {0} holds.

Proof. Let Q ∈ JFFFintintintK be such that ({0}, {0}, Q) is in SFFFintintint. Consider any
triple (χU1

, χU2
, χU3

) ∈S∗
intintint, as given in Lemma 8.2. By definition, and recalling

that ⊲ is the graph of the infimum map, χU3

∗(Q) = χU1

∗({0}) ∧ χU2

∗({0}) =
χU1

(0)∧χU2
(0). If Q were empty, then χU3

∗(Q) would be equal to 1, so χU1
(0)

and χU2
(0) would be equal to 1, and that is contradicted by the case 1 triple

U1 = U2 = U3 = Z⊥ for example. By considering the case 2 triple U1 = U2 =
U3 = {0}, we obtain that χ{0}

∗(Q) = 1, namely that Q ⊆ {0}. Therefore the
only Q ∈ JFFFintintintK such that ({0}, {0}, Q) ∈SFFFintintint is {0}. (One can also check that
({0}, {0}, {0}) is indeed in SFFFintintint, but that will not be needed.)

By Lemma 8.1, item 1, for all (m1,m2,m3) ∈Sintintint and (n1, n2, n3) ∈Sintintint,
the triple (JP K (m1)(n1), JP K (m2)(n2), JP K (m3)(n3)) is in SFFFintintint. The triples
(0,⊥,⊥) and (⊥, 0,⊥) are in Sintintint. Hence (JP K (0)(⊥), JP K (⊥)(0), JP K (⊥)(⊥))
is in SFFFintintint. Explicitly, ({0}, {0}, JP K (⊥)(⊥)) is in SFFFintintint. We have just seen that
this implies JP K (⊥)(⊥) = {0}. ✷

We introduce the following abbreviations.

• Ωσ denotes recrecrecxσ .xσ for every value type σ. We have JΩσK = ⊥.

• Ωτ denotes forceforceforceΩUUUτ , for every computation type τ . We have
q
Ωτ

y
= ⊥.

32

• For all M : FFFintintint and N : FFFunitunitunit, M == 0 & N abbreviates M tototo xintintint ininin

ifzifzifz xintintint N ΩFFFunitunitunit, where xintintint is not free in N . JM == 0 &NK ρ is equal
to JNK ρ if JMK ρ = {0}, to ∅ if JMK ρ = ∅, and to ⊥ in all other cases.

• Similarly, M==1&N abbreviatesM tototo xintintint ininin ifzifzifz (predpredpredxintintint) N ΩFFFunitunitunit,
so that JM == 1&NK ρ is equal to JNK ρ if JMK ρ = {1}, to ∅ if JMK ρ = ∅,
and to ⊥ in all other cases.

• Finally, for allM,N : FFFunitunitunit, let M&N abbreviateM tototo xintintint ininin N , where
xintintint is not free in N , so that JM &NK ρ is equal to JNK ρ if JMK ρ = {⊤}
or if JMKρ = S, to ∅ if JMK ρ = ∅ and to ⊥ if JMK ρ = ⊥.

We let & associate to the right, so A&B & C means A& (B & C).

Proposition 8.4 For every term P : UUU(intintint→ intintint→ FFFintintint), let:

M(P) = forceforceforceP (Ωintintint)(0) == 0 & forceforceforceP (0)(Ωintintint) == 0 & produceproduceproduce∗

N(P) = M(P) & forceforceforceP (Ωintintint)(Ωintintint) == 0 & produceproduceproduce∗,

We also define M as λg.M(g), and N as λg.N(g), where g has type UUU(intintint →
intintint→ FFFintintint).

In CBPV(D, P), M -UUU(intintint→intintint→FFFintintint)→FFFunitunitunit N , but JMK 6≤ JNK.

Proof. JMK applied to any Scott-continuous map G : Z⊥ → Z⊥ → Q⊤
⊥(Z⊥)

returns:

• {⊤} if G(⊥)(0) = G(0)(⊥) = {0};

• ∅ if G(⊥)(0) = ∅ or if G(⊥)(0) = {0} and G(0)(⊥) = ∅;

• and ⊥ in all other cases.

Then JNK applied to G returns:

• {⊤} if JMK (G) = {⊤} and G(⊥)(⊥) = {0};

• ∅ if JMK (G) = {⊤} and G(⊥)(⊥) = ∅;

• ∅ if JMK (G) = ∅;

• ⊥ in all other cases.

In particular, JMK 6≤ JNK: defining G to be the parallel or map (G(0)(n) =
G(n)(0) = {0} for every n ∈ Z⊥, G(1)(1) = {1}, G(m)(n) = ⊥ for all m,n ∈
Z⊥ r {0} such that (m,n) 6= (1, 1)), JMK (G) = {⊤}, but JNK (G) = ⊥. Note,
by the way, that the argument would also work with other choices of map G,
for example G(0)(n) = G(n)(0) = {0} for every n ∈ Z⊥, and G(m)(n) = ⊥ in
all other cases.

For every ground CBPV(D, P) term P : intintint → intintint → FFFintintint, JM(P)K =
{⊤} if and only if JP K (⊥)(0) = JP K (0)(⊥) = {0}, and if so, JP K (⊥)(⊥) =

33

{0} by Lemma 8.3. Taking G = JP K, it follows that the second case of the
definition of JNK (G) does not occur, so JN(P)K = JNK (G) is equal to {⊤} if
JM(P)K = {⊤} (and then G(⊥)(⊥) = {0} is automatic), to ∅ if JM(P)K = ∅,
and to ⊥ in all other cases. Hence JN(P)K = JM(P)K. Since in particular
JM(P)K ≤ JN(P)K, by Proposition 7.6, M(P) -FFFunitunitunit N(P). Since P is arbitrary,
M -UUU(intintint→intintint→FFFintintint)→FFFunitunitunit N by Proposition 7.5. ✷

8.2 The Need for Statistical Termination Testers

We turn to justify the need for a © operator, following similar ideas as in [11,
Proposition 8.5].

Here we let I = {1, 2}, J = {∅, I}, ⊲ = {(a1, a2) ∈ [0, 1]2 | a1 + 1 ≥ 2a2},
and ⊲ = {(a1, a2) ∈ [0, 1]2 | a1 ≥ a2}.

In that case, (h1, h2) ∈S⊥
unitunitunit if and only if for every b ∈ S, h1(b)+1 ≥ 2h2(b).

Letting αi = hi(⊥) and βi = hi(⊤), i ∈ {1, 2}, (h1, h2) ∈S⊥
unitunitunit if and only if:

α1 + 1 ≥ 2α2 (2)

β1 + 1 ≥ 2β2 (3)

1 ≥ β1 ≥ α1 ≥ 0 (4)

1 ≥ β2 ≥ α2 ≥ 0. (5)

This defines a (bounded) polytope of R4, and we claim that its vertices are:

α1 β1 α2 β2

0 0 0 0
0 0 0 1/2
0 0 1/2 1/2
0 1 0 0
0 1 0 1
0 1 1/2 1/2
0 1 1/2 1
1 1 0 0
1 1 0 1
1 1 1 1

(6)

We check that those points satisfy all the given inequalities. Conversely, let
(α1, β1, α2, β2) satisfy (2)–(5). Because it satisfies (4), (α1, β1) is a linear convex
combination a(0, 0)+b(0, 1)+c(1, 1), where a, b, c ≥ 0 and a+b+c = 1, and the
remaining inequalities become c + 1 ≥ 2α2, b + c + 1 ≥ 2β2, 1 ≥ β2 ≥ α2 ≥ 0,
whose solutions in (α2, β2) are the convex combinations of (0, 0), (0, (b+c+1)/2),
((c+1)/2, (c+1)/2), and ((c+1)/2, (b+ c+1)/2) (as a two-dimensional picture
will show), say a′(0, 0) + b′(0, (b + c+ 1)/2) + c′((c + 1)/2, (c+ 1)/2) + d′((c+
1)/2, (b + c + 1)/2), with a′, b′, c′, d′ ≥ 0 and a′ + b′ + c′ + d′ = 1. Since
the latter is affine in a, b and c, it follows that the solutions of (2)–(5) are
all of the form a times (0, 0).(a′(0, 0) + b′(0, 1/2) + c′(1/2, 1/2) + d′(1/2, 1/2)),
plus b times (0, 1).(a′(0, 0) + b′(0, 1) + c′(1/2, 1/2) + d′(1/2, 1)), plus c times

34

(1, 1).(a′(0, 0) + b′(0, 1) + c′(1, 1) + d′(1, 1)) (where . denotes concatenation of
tuples, i.e., (x, y).(z, t) = (x, y, z, t)), hence a a convex combination of the 10
tuples of the above table.

Lemma 8.5 For all a1, a2 ∈ [0, 1], (a1δ⊤, a2δ⊤) ∈SVVVunitunitunit if and only if a1 +1 ≥
2a2.

Proof. We have (a1δ⊤, a2δ⊤) SVVVunitunitunit if and only if for all (h1, h2) ∈S⊥
unitunitunit, a1h1(⊤)+

1 ≥ 2a2h2(⊤). Writing h1 and h2 as above, the domain of variation of (α1, β1, α2, β2)
is the convex hull of the 10 points in (6), and we must check that a1β1+1 ≥ 2a2β2

for all those 4-tuples. The domain of variation of the pairs (β1, β2) alone is the
convex hull of (0, 0), (0, 1/2), (1, 0), (1, 1) (and (1, 1/2), which is already a con-
vex combination of the others). By linearity, it is equivalent to check a1β1+1 ≥
2a2β2 for just those four values of (β1, β2). Therefore (a1δ⊤, a2δ⊤) SVVVunitunitunit if and
only if 1 ≥ 0, 1 ≥ a2, a1 + 1 ≥ 0, and a1 + 1 ≥ 2a2. Since the first three are
always true, only the last one remains. ✷

Lemma 8.6 Let ν1, ν2 ∈ JVVVunitunitunitK. If (ν1, ν2) ∈SVVVunitunitunit then ν1 + δ⊤ ≥ 2ν2.

Proof. For every (h1, h2) ∈S
⊥
unitunitunit,

∫

x∈S
h1(x)dν1+1 ≥

∫

x∈S
h2(x)dν2. Considering

the case where h1 : ⊥ 7→ α1,⊤ 7→ β1 and h2 : ⊥ 7→ α2,⊤ 7→ β2 are given by the
data of the 5th row of (6), we obtain ν1({⊤}) + 1 ≥ 2ν2({⊤}). Considering
the last row instead, we obtain ν1({⊥,⊤}) + 1 ≥ 2ν2({⊥,⊤}). The inequality
ν1(∅) + δ⊤(∅) ≥ 2ν2(∅) is obvious. ✷

Lemma 8.7 Let k be any Scott-continuous map from V≤1S to [0, 1]. Then
(k(12 + 1

2δ⊤), k) ∈S
∗
VVVunitunitunit.

Proof. It suffices to verify that for all (ν1, ν2) ∈SVVVunitunitunit, (k(
1
2ν1 +

1
2δ⊤), k(ν2)) is

in ⊲, namely that k(12ν1 +
1
2δ⊤) ≥ k(ν2). By Lemma 8.6, 1

2ν1 +
1
2δ⊤ ≥ ν2, and

we conclude since k, being Scott-continuous, is monotonic. ✷

Proposition 8.8 Let:

M = λg.forceforceforce g(ΩVVVunitunitunit ⊕ retretret∗),

N = λg.(forceforceforce g(ΩVVVunitunitunit)) tototo yVVVunitunitunit ininin produceproduceproduce(yVVVunitunitunit ⊕ retretret ∗).

where g has type UUU(VVVunitunitunit→ FFFVVVunitunitunit).
In CBPV(D, P) and also in CBPV(D, P)+pifzpifzpifz, M -UUU(VVVunitunitunit→FFFVVVunitunitunit)→FFFVVVunitunitunit N ,

but JMK 6≤ JNK.

Proof. Let P be any ground CBPV(D, P) or CBPV(D, P) + pifzpifzpifz term of type
UUU(VVVunitunitunit→ FFFVVVunitunitunit), and:

M(P) = forceforceforceP (ΩVVVunitunitunit ⊕ retretret∗)

N(P) = (forceforceforceP (ΩVVVunitunitunit)) tototo yVVVunitunitunit ininin produceproduceproduce(yVVVunitunitunit ⊕ retretret ∗).

35

We have:

JM(P)K = JP K (1
2
δ⊤)

JN(P)K = g∗(JP K (0)),

where g(ν) = ↑(12ν+
1
2δ⊤). By Lemma 8.5, (0, 1

2δ⊤) is in SVVVunitunitunit. By Lemma 8.1
(item 2), (JP K , JP K) is in SVVVunitunitunit→FFFVVVunitunitunit, so (JP K (0), JP K (12δ⊤)) is in SFFFVVVunitunitunit.
Using Lemma 8.7, for every Scott-continuous map k : JVVVunitunitunitK→ [0, 1], (k(12 +
1
2δ⊤), k) ∈S

∗
VVVunitunitunit, so ((k(12 + 1

2δ⊤))
∗
(JP K (0)), k∗(JP K (12δ⊤))) is in ⊲. In other

words, (k(12 + 1
2δ⊤))

∗
(JP K (0)) ≥ k∗(JP K (12δ⊤)).

Since g = ηQ ◦ (ν 7→ 1
2ν + 1

2δ⊤), and using Proposition 4.2, item 2, k∗ ◦ g =
(k(12 + 1

2δ⊤)). It follows that k
∗ ◦ g∗ = (k∗ ◦ g)∗ (using Proposition 4.2, item 4)

= (k(12 + 1
2δ⊤))

∗
. Hence our previous equality can be read, alternatively, as

k∗(g∗(JP K (0))) ≥ k∗(JP K (12δ⊤)). In other words,

k∗(JN(P)K) ≥ k∗(JM(P)K) (7)

for every Scott-continuous map k : JVVVunitunitunitK→ [0, 1].
We claim that M(P) -FFFVVVunitunitunit N(P). To this end, we let C be any ground

evaluation context of type FFFVVVunitunitunit ⊢ FFFVVVunitunitunit, and we aim to show that Pr(C ·
M(P)↓) ≤ Pr(C · N(P)↓). By adequacy (Proposition 6.10) and Lemma 4.9,
this means showing that h∗(JCK (JM(P)K)) ≤ h∗(JCK (JN(P)K)), where h(ν) =
ν({⊤}).

Let us write C as E0E1E2 · · ·En, where Ei : σi+1 ⊢ σi, σn+1 = σ0 = FFFVVVunitunitunit.
All the types σi have rank 1, namely, are computation types. It follows that
E0 = [], and that the elementary contexts Ei, 1 ≤ i ≤ n are of the form
[tototo xτ ininin N] or [N]. However, σn+1 is an FFF-type (i.e., of the form FFFτ for some
value type τ), and that implies that En must be of the form [tototo xτ ininin N] and
σn must be an FFF-type again. Then En−1 must again be of the form [tototo xτ ininin N]
and σn−1 must be an FFF-type, and so on: the elementary contexts Ei, 1 ≤ i ≤ n,
are all of the form [tototo xτ ininin N], and σi = FFFτi for some value type τi, with
τn+1 = τ1 = VVVunitunitunit. In particular, JEiK = fi

∗ for some Scott-continuous map
fi : JVVVτi+1K → JVVVτiK. It follows that JCK = f1

∗ ◦ f2
∗ ◦ · · · ◦ fn

∗. If n 6= 0,
then applying Proposition 4.2, item 4, repeatedly, we obtain that JCK = f∗ for
some Scott-continuous map f : JVVVunitunitunitK→ JFFFVVVunitunitunitK; applying it one more time,
h∗ ◦ JCK = (h∗ ◦ f)∗. If n = 0, then h∗ ◦ JCK = h∗. In both cases, h∗ ◦ JCK is
equal to k∗ for some Scott-continuous map k : JVVVunitunitunitK→ [0, 1].

By (7), h∗(JCK (JN(P)K)) ≥ h∗(JCK (JM(P)K)), and this is what we needed
to show to establish M(P) -FFFVVVunitunitunit N(P).

Since P is arbitrary, by Proposition 7.5, M -UUU(VVVunitunitunit→FFFVVVunitunitunit)→FFFVVVunitunitunit N .
For every b ∈ (0, 1), let [> b] be the map that sends every ν ∈ JVVVunitunitunitK to

↑{δ⊤} if ν({⊤}) > b, and to ⊥ otherwise. This is is easily seen to be Scott-
continuous. For b < 1/2 (e.g., b = 1/4),

JMK ([> b]) = [> b](
1

2
δ⊤) = ↑{δ⊤}

JNK ([> b]) = g∗([> b](0)) = g∗(⊥) = ⊥.

36

In particular, JMK ([> b]) 6≤ JNK ([> b]), so JMK 6≤ JNK. ✷

The function [> b] is, of course, the semantics of ©>b. As a consequence, it is
not definable in PCBV(D, P) and even CBPV(D, P)+pifzpifzpifz, at least for b < 1/2. A
similar argument would show that it is not definable for any b ∈ (0, 1), replacing
the definition of ⊲ by ⊲ = {(a1, a2) ∈ [0, 1]2 | aa1 + 1− a ≥ a2}, for any dyadic
number a ∈ (0, 1).

9 Full Abstraction

Full abstraction for CBPV(D, P)+pifzpifzpifz+© will follow from a series of auxiliary
results that show that the Scott topology on various dcpos coincides with some
other, simpler topologies. Before we make that precise, let us say that our goal
is that every type should be describable, in the following sense. For a Scott-open
subset U of JσK, where σ is a type, recall that χU ∈ [JσK→ S] is its characteristic
map. We write χ̃U for the map J[produceproduceproduceretretret]K◦χU , which maps every x ∈ JσK
to {δ⊤} if x ∈ U , to ⊥ otherwise.

Definition 9.1 An element of JσK, for a type σ, is definable if and only if it
is equal to JMK for some ground CBPV(D, P) + pifzpifzpifz+© term M : σ.

A Scott-open subset U of JτK, for a value type τ , is definable if and only if
χ̃U = JMK for some ground CBPV(D, P) + pifzpifzpifz+© term M : τ → FFFVVVunitunitunit.

For a computation type τ , a Scott-open subset U of JτK is definable if and
only if χ̃U = JMK for some ground CBPV(D, P) + pifzpifzpifz +© term M : Uτ →
FFFVVVunitunitunit.

A type σ is describable if and only if JσK has a basis of definable elements
and the Scott topology on JσK has a subbase of definable open subsets.

As a first, easy example of a describable type, we have:

Lemma 9.2 unitunitunit is describable.

Proof. All the elements of JunitunitunitK = S are definable, since JΩunitunitunitK = ⊥ and
J∗K = ⊤. The function P = λxunitunitunit.(xunitunitunit;produceproduceproduceretretret ∗) defines the open subset
{⊤}, which is by itself a subbase of the Scott topology. ✷

Lemma 9.3 intintint is describable.

Proof. All the elements of JintintintK = Z⊥ are definable: JΩintintintK = ⊥, JnK = n.
A subbase of the Scott topology consists of the sets {n}, n ∈ Z, and they are
definable by λxintintint.ifzifzifz predpredpred(predpredpred · · · (predpredpred

︸ ︷︷ ︸

n times

M)) (produceproduceproduceretretret∗) ΩFFFVVVunitunitunit if n ≥

0, and by λxintintint.ifzifzifz succsuccsucc(succsuccsucc · · · (succsuccsucc
︸ ︷︷ ︸

n times

M)) (produceproduceproduceretretret ∗) ΩFFFVVVunitunitunit otherwise.

✷

We now consider more complex types. It will be useful to realize that ev-
ery describable type has a base, not just a subbase, of definable open subsets.

37

Moreover this base, which is obtained as the collection of finite intersections of
subbasic open sets, is closed under finite intersections. We call strong base any
base that is closed under finite intersections.

Lemma 9.4 For every describable type σ, the Scott topology on JσK has a strong
base of definable open subsets.

Proof. For any two terms M,N : FFFVVVunitunitunit, let M ∧N be the term M tototo xVVVunitunitunit ininin

N , where xVVVunitunitunit is a fresh variable. For every environment ρ, JM ∧NK ρ =
h∗(JMK ρ) where h(ν) = JNK ρ[xVVVunitunitunit 7→ ν] = JNK ρ (since xVVVσ is not free in
N). Since h∗ is strict, if JMKρ = ⊥, then JM ∧NK ρ = ⊥. Otherwise, by
Proposition 4.2, item 2, h∗(JMK ρ) = ∧

ν∈JMKρ h(ν). If JMK ρ 6= ∅, in particular

if JMK = {δ⊤}, this is equal to JNK ρ.
We write M1 ∧ · · · ∧Mn for M1 ∧ (M2 ∧ · · · (Mn ∧produceproduceproduceretretret ∗) · · ·). This

implements logical and, in the sense that if JMiK ρ is either equal to {δ⊤} or to
⊥ for every i, its denotation in any environment ρ is {δ⊤} if JMiK ρ = {δ⊤} for
every i, and is ⊥ if JMiK ρ = ⊥ for some i.

Given finitely many open subsets U1, . . . , Un defined by terms M1, · · · ,
Mn : σ → FFFVVVunitunitunit respectively (where σ = σ if σ is a value type, σ = UUUσ if σ
is a computation type), the term λxσ.(M1xσ) ∧ · · · ∧ (Mnxσ) then defines the
intersection U1 ∩ · · · ∩ Un. ✷

9.1 Product types

Lemma 9.5 Let X, Y be two continuous dcpos. Let BX be a basis of X, BY

be a basis of Y , SX be a subbase of the Scott topology on X, SY be a subbase of
the Scott topology on Y . Then:

• The set BX×Y = BX ×BY is a basis of X × Y .

• The set SX×Y = {U × V | U ∈ SX , V ∈ SY } is a subbase of the Scott
topology on X × Y .

Proof. The second part follows from the fact that the Scott topology on a
product of continuous dcpos is the product topology, because it is generated by
sets of the form ↑↑(x, y) = ↑↑x × ↑↑y. (This is not true of non-continuous dcpos.)
✷

Proposition 9.6 For any two describable value types σ and τ , σ×τ is describ-
able.

Proof. We use Lemma 9.5 with X = JσK, Y = JτK. BX (resp., BY) is the basis
of definable elements of JσK (resp., JτK). BX is the base of definable open subsets
at type σ, obtained by Lemma 9.4, and similarly for BY . The elements of BX×Y

are definable as 〈M,N〉, where JMK ∈ BX , JNK ∈ BY , and the elements U × V
of BX×Y are definable as λzσ×τ .M(π1z) ∧ N(π2z), where U is defined by M
and V is defined by N , and where ∧ was defined in the course of the proof of
Lemma 9.4. ✷

38

9.2 Function types

Semantically, at function types, the key result will be the following Proposi-
tion 9.10, which in particular says that the Scott topology on [X → Y] coincides
with the topology of pointwise convergence, under certain assumptions.

A standard basis of [X → Y] is given by the step functions supmi=1 Ui ց bi,
where each Ui is open in X , each bi is in Y , and U ց b denotes the map that
maps every element of U to b, and all others to ⊥. We show that this can
be refined by requiring Ui to be taken from some given strong base BX of the
topology on X , and bi to be taken from some basis BY of Y . We note that
supmi=1 Ui ց bi maps each point x ∈ X to supi∈I bi, where I = {i | 1 ≤ i ≤
m,x ∈ Ui}. In general, supi∈I bi will not be in BY . To avoid this problem, we
require our step functions to be of a special form.

Definition 9.7 Let X be a topological space, BX be a strong base of the topology
of X, Y be a continuous dcpo, and BY be a basis of Y . A (BX , BY)-step function
is any step function of the form supI⊆{1,··· ,m} UI ց yI where:

1. each UI is in BX ;

2. each yI is in BY ;

3. U∅ = X and UI ∩ UJ = UI∪J for all I, J ⊆ {1, · · · ,m};

4. for all I ⊆ J , yI ≤ yJ .

We make a preliminary remark.

Lemma 9.8 Given a continuous dcpo Z, and a family B ⊆ Z, in order to show
that B is a basis of Z it is enough to show that for every z ∈ Z, every Scott-open
neighborhood W of z contains a d ∈ B such that d≪ z.

Proof. If so, then the family Bz = {d ∈ B | d≪ z} is non-empty (take W = Z)
and directed (for any two d1, d2 ∈ Bz , take W = ↑↑d1∩↑↑d2), and supBz = z (for
every open neighborhood W of z, some element of Bz is in W so supBz ≥ z,
and the converse inequality is obvious). ✷

A core-compact topological space X is one whose lattice of open subsets is a
continuous dcpo. We write ⋐ for the way-below relation on that lattice. Every
locally compact space is core-compact, with U ⋐ V if and only if U ⊆ Q ⊆ V
for some compact saturated set Q.

Lemma 9.9 Let X be a core-compact space, BX be a strong base of the topology
of X, Y be a a continuous complete lattice, and BY be a basis of Y . Then [X →
Y] is a continuous complete lattice, with a basis of (BX , BY)-step functions.

Note: one could replace “continuous complete lattice” by “bc-domain” here,
and the proof would only be slightly more complicated.

Proof. We apply Lemma 9.8 to Z = [X → Y]. By Proposition 2 of [6], Z
is a bounded complete continuous dcpo with a basis B0 of step functions, and
since it has a top, it is a continuous complete lattice. Let B1 be the family

39

of step functions of the form supmi=1 Vi ց yi where each Vi is in BX . For
every f ∈ [X → Y], and every Scott-open neighborhood W of f , there is an
element supmi=1 Ui ց yi of B0, way-below f , and in W . Let us write Ui as a
union

⋃

j∈Ji
Vij of elements of BX . The family of maps supmi=1(

⋃

j∈Fi
Vij) ց

yi, where Fi ranges over the finite subsets of Ji for each i, is directed (since
an upper bound of supmi=1(

⋃

j∈Fi
Vij) ց yi and of supmi=1(

⋃

j∈F ′
i

Vij) ց yi is

supmi=1(
⋃

j∈Fi∪F ′
i

Vij)ց yi), and has supmi=1 Ui ց yi as supremum (because for

every x ∈ X , letting I = {i | x ∈ Ui}, there are indices ji ∈ Ji for each i ∈ I
such that x ∈ Vij , hence x ∈ Fi where Fi = {ji}). Hence sup

m
i=1(

⋃

j∈Fi
Vij)ց yi

is in W for some finite subsets Fi of Ji, 1 ≤ i ≤ m. Now supmi=1(
⋃

j∈Fi
Vij) ց

yi is equal to supmi=1 supj∈Fi
Vij ց yi, showing that it is in B1. Moreover,

supmi=1(
⋃

j∈Fi
Vij) ց yi ≤ supmi=1 Ui ց yi ≪ f . We can therefore apply our

preliminary remark and conclude that B1 is a basis of [X → Y].
Given any element supmi=1 Ui ց yi ofB1, we can write it as supI⊆{1,··· ,m} UI ց

yI , where for each I ⊆ {1, · · · ,m}, UI =
⋂

i∈I Ui and yI = supi∈I yi. (In
case Y were a bc-domain, the same argument would apply provided we only
considered the subsets I such that UI is non-empty.) Note that: (a) for all
I, J ⊆ {1, · · · ,m}, I ⊆ J implies yI ≤ yJ . Also: (b) U∅ = X , for all
I, J ⊆ {1, · · · ,m}, UI ∩ UJ = UI∪J , and each UI is in BX (because BX is
a strong base).

Let B2 be the family of maps supI⊆{1,··· ,m} UI ց yI , where UI and yI
satisfy conditions (a) and (b) and, additionally, each yI is in BY . For every
f ∈ [X → Y], and every Scott-open neighborhood W of f , W contains an
element g = supI⊆{1,··· ,m} UI ց yI of B1 satisfying conditions (a) and (b) and
way-below f .

Here is the idea of the rest of the proof. Enumerating the subsets I of
{1, · · · ,m} so that the cardinality of I never goes down, starting from the
empty set, we replace yI by an element zI such that zI ≪ yI and zI ∈ BY ;
at each step, we also replace yJ by sup(zI , yJ) for all strict supersets J of I,
so that (a) still holds. Since BY is a basis, for zI large enough, the resulting
function will be in W . We can also require that zJ ≤ zI for all J (I, since all
those elements zJ have been chosen in previous steps so that zJ ≪ yJ . At the
end of the enumeration, we obtain a function h = supI⊆{1,··· ,m} UI ց zI of B1

satisfying conditions (a) and (b), in W , below g hence way-below f , and such
that zI ∈ BY and zI ≪ yI for every I ∈ {1, · · · ,m}. In particular, that element
h is in B2. Let us now prove that formally.

We claim that: (∗) for every downwards-closed family I of P({1, · · · ,m})
(downwards-closed with respect to inclusion), there is an element h of the form
supI⊆{1,··· ,m} UI ց zI in B1 satisfying conditions (a) and (b), lying in W , such
that zI ≤ yI for every I ⊆ {1, · · · ,m} (in particular, h ≤ g), and such that
zI ∈ BY and zI ≪ yI for every I ∈ I. This is proved by induction on the
cardinality of I. This is vacuous if I is empty. Hence consider a non-empty
downwards-closed family I of P({1, · · · ,m}), let I0 be a maximal element of I,
and let I ′ = I r {I0}. Notice that I ′ is again downwards-closed. Hence, by
induction hypothesis, there an element h = supI⊆{1,··· ,m} UI ց zI of B1 satis-

40

fying conditions (a) and (b), in W , such that zI ≤ yI for every I ⊆ {1, · · · ,m},
and such that zI ∈ BY and zI ≪ yI for every I ∈ I ′. Since BY is a basis, we
can write yI0 as the supremum of a directed family (y′j)j∈J

of elements of BI .

For each j ∈ J , let h[y′j] = sup(supI⊆{1,··· ,m},I 6=I0 UI ց zI , (UI0 ց y′j)). One
checks easily that (h[y′j])j∈J

is a directed family whose supremum is above h.

Hence h[y′j] is in W for some j ∈ J . For every I (I0, zI ≪ yI ≤ yI0 (using (a)),
so there is a jI ∈ J such that zI ≤ y′jI . By directedness, we can assume without
loss of generality that j and all the indices jI , I (I0, are equal. (Otherwise
replace them by some k ∈ J such that y′j ≤ y′k and y′jI ≤ y′k for every I (I0.)
For every I ⊆ {1, · · · ,m}, we define z′I as zI if I does not contain I0, as y′j if
I = I0, and as sup(zI , y

′
j) if I contains I0 strictly. We have:

• For all I ⊆ J ⊆ {1, · · · ,m}, z′I ≤ z′J . The key case is when J = I0, which
follows from the fact that y′j = z′I0 was chosen larger than or equal to
every zI , I (I0, and that z′I = zI in this case. When I = I0 instead,
z′I = y′j ≤ yI0 ≤ yJ (by (a)). The cases where I, J are both different from
I0 are easy verifications.

• Hence the function h′ = supI⊆{1,··· ,m} UI ց z′I satisfies (a), and trivially
(b) as well.

• For every I ⊆ {1, · · · ,m}, z′I ≤ yI . When I = I0, this is because z′I =
y′j ≤ yI0 . When I) I0, z

′
I = sup(zI , y

′
j) ≤ sup(yI , yI0) = yI , using (a).

• We have built h′ so that it is in W .

• For every I ∈ I, z′I is in BY : when I = I0, this is because z′I0 = y′j is in
BY ; otherwise, since I0 is maximal in I, I cannot contain I0, so z′I = zI ,
which is in BY because I ∈ I ′, using the induction hypothesis.

• For every I ∈ I, z′I ≪ yI : when I = I0, this is because z′I = y′j ≪ yI0 ;
otherwise, z′i = zI ≪ yI because I ∈ I ′, using the induction hypothesis.

This finishes to prove claim (∗). Applying this claim to the case where I is the
whole of P({1, · · · ,m}), we obtain an element h = supI⊆{1,··· ,m} UI ց zI of B1

satisfying conditions (a) and (b), in W , below g hence way-below f , and such
that zI ∈ BY and zI ≪ yI for every I ∈ {1, · · · ,m}. In particular, that element
h is in B2. By our preliminary remark, B2 is a basis of [X → Y]. ✷

Proposition 9.10 Let X be a continuous dcpo and Y be a bc-domain. Let BX

be a basis of X, BX be a base of the Scott topology on X. Let BY be a basis of
Y , and SY be a subbase of the Scott topology on Y . Then:

• The set B[X→Y] of all (BX , BY)-step functions is a basis of [X → Y].

• The set S[X→Y] of all opens [x 7→ V], x ∈ BX , V ∈ SY , is a subbase of
the Scott topology on [X → Y]. We write [x 7→ V] for the open subset
{f ∈ [X → Y] | f(x) ∈ V }.

41

Proof. The first part is Lemma 9.9. The second part is based on Lemma 5.16 of
[9], which states that the subsets [x 7→ V], x ∈ X , V open in Y , form a subbase
of the topology of [X → Y], as soon as X is a continuous poset and Y is a
bc-domain. ✷

We introduce the following abbreviations.

• For all M : intintint, N,P : τ , and for every n ∈ N, pifpifpif (M ==n) N P denotes
pifzpifzpifz predpredpred(predpredpred · · · (predpredpred

︸ ︷︷ ︸

n times

M)) N P .

• Given terms M : intintint and N1, . . . , Nn of type τ , pswitchpswitchpswitch M : 1 7→ N1 |
· · · | n 7→ Nn abbreviates:

pifpifpif (M == n) Nn (
pifpifpif (M == n− 1) Nn−1 (

· · ·
pifpifpif (M == 2) N2 (

pifpifpif (M == 1) N1

abortabortabortτ))).

In particular, if n = 0, this is equal to abortabortabortτ .

• Given terms M : unitunitunit and N : unitunitunit, M ∨N : unitunitunit is the term defined as
©>1/2(pifzpifzpifz (M ; 0) (produceproduceproduceretretret ∗) (produceproduceproduceretretretN)).

• Given a term M : unitunitunit, n ∈ N and i ∈ N such that 1 ≤ i ≤ n, [M : i] is
the term of type FFFintintint defined as pifzpifzpifz (M ; 0) abortabortabortFFFintintint (produceproduceproduce i).

• Given terms M1, . . . , Mn of type unitunitunit and N1, . . . , Nn of type τ ,
pcasepcasepcase M1 7→ N1 | · · · |Mn 7→ Nn abbreviates:

([M1 : 1] ? · · ·? [Mn : n]))
tototo yintintint ininin pswitchpswitchpswitch yintintint : 1 7→ N1 | · · · | n 7→ Nn.

Lemma 9.11 1. Jpifpifpif (M == n) N P K ρ is equal to JNK ρ if JMKρ = n, to
JP K ρ if JMKρ 6= n,⊥ and to JNK ρ ∧ JP K ρ if JMK ρ = ⊥;

2. JpswitchpswitchpswitchM : 1 7→ N1 | · · · | n 7→ NnK ρ is equal to JNmK ρ if JMK ρ is an
element m of {1, · · · , n}, to

∧

i∈{1,··· ,n} JNiK ρ if JMK ρ = ⊥, and to ⊤
otherwise.

3. JM ∨NK ρ = sup(JMK ρ, JNK ρ).

4. J[M : i]K ρ is equal to ∅ if JMK ρ = ⊤, to {i} if JMK ρ = ⊥.

Proof. 1, 3 and 4 are clear. We prove item 2 by induction on n. If n =
0, then JpswitchpswitchpswitchM : 1 7→ N1 | · · · | n 7→ NnK ρ =

q
abortabortabortτ

y
ρ, which is the top

element ⊤ of JτK, as an easy induction on τ shows. Note that, in case JMK ρ =
⊥, this is also equal to

∧

i∈{1,··· ,n} JNiK ρ since n = 0. If n ≥ 1, then by

42

item 1, JpswitchpswitchpswitchM : 1 7→ N1 | · · · | n 7→ NnK ρ is equal to JNnK ρ if JMK ρ = n,
to JpswitchpswitchpswitchM : 1 7→ N1 | · · · | n− 1 7→ Nn−1K ρ if JMK ρ ∈ Zr{n}, and to their
infimum if JMK ρ = ⊥. We then use the induction hypothesis to conclude. ✷

Lemma 9.12 LetM : FFFσ and N : τ . Assume that JMK ρ is of the form ↑{V1, · · · ,

Vk}. Then JM tototo xσ ininin NK ρ =
∧k

i=1 JNK ρ[xσ 7→ Vi].

Proof. By structural induction on τ . Let f be the map V ∈ JσK 7→ JNK ρ[xσ 7→
V]. If τ is of the form FFFτ , then:

JM tototo xσ ininin NK ρ = f∗(↑{V1, · · · , Vk})

=

k∧

i=1

f∗(ηQ(Vi)) by Proposition 4.2, item 3

=

k∧

i=1

f(Vi),

by Proposition 4.2, item 2.
If τ is of the form λ→ τ ′, then:

JM tototo xσ ininin NK ρ = Jλyλ.M tototo xσ ininin NyλK ρ

= (V ∈ JλK 7→
k∧

i=1

f(Vi)(V)) by induction hypothesis

=
k∧

i=1

f(Vi).

The last equality follows from the fact that finite infima of continuous functions
are computed pointwise, by Lemma 4.3, item 2. ✷

Lemma 9.13 Jpcasepcasepcase M1 7→ N1 | · · · |Mn 7→ NnK ρ is equal to
∧

i∈I JNiK ρ, where
I = {i ∈ {1, · · · , n} | JMiK ρ 6= ⊤}.

Proof. By Lemma 9.11, item 4, J[M1 : 1] ? · · ·? [Mn : n]K ρ =
∧n

i=1 J[Mi : i]K ρ =
⋃n

i=1 J[Mi : i]K ρ =
⋃

i∈I{i} = I = ↑ I. By Lemma 9.12, it then follows that
Jpcasepcasepcase M1 7→ N1 | · · · |Mn 7→ NnK ρ is equal to

∧

i∈I JP K ρ[yintintint 7→ i] where P =
pswitchpswitchpswitch yintintint : 1 7→ N1 | · · · | n 7→ Nn, and by Lemma 9.11, item 2, this is equal
to

∧

i∈I JNiK ρ. ✷

It follows:

Proposition 9.14 For every describable value type σ, for every describable
computation type τ , the type σ → τ is describable.

Proof. We use Proposition 9.10, with X = JσK, Y = JτK. BX (resp., BY) is
the basis of definable elements of JσK (resp., JτK). BX is the base of definable
open subsets at type σ, obtained thanks to Lemma 9.4, and SY is the subbase
of definable open subsets at type τ .

43

We first show that all the elements of B[X→Y] are definable. This will imply
that the definable elements at type σ → τ form a basis of Jσ → τK. We recall
that such an element is a (BX , BY)-step function f = supI⊆{1,··· ,m} UI ց yI .

Let UI be defined by ground terms MI : σ → FFFVVVunitunitunit, i.e., χ̃UI
= JMIK,

and let yI be defined by ground terms NI : τ . Let us pick a variable xσ. For
every subset I of {1, · · · ,m}, let M⊥

I (xσ) =
∨

J⊆{1,··· ,m},J 6⊆I©>1/2(MJxσ). (If

I = {1, · · · ,m}, the empty disjunction is Ωunitunitunit.) For every environment ρ, and
letting a = ρ(xσ), by Lemma 9.13,

q
pcasepcasepcase {M⊥

I (xσ) 7→ NI | I ⊆ {1, · · · ,m}}
y
ρ

is equal to the infimum of the values JNIK = yI over the subsets I of {1, · · · ,m}
such that

q
M⊥

I (xσ)
y
ρ 6= ⊤, i.e., such that a 6∈

⋃

J 6⊆I UJ .
Let I0 be the set of indices i between 1 and m such that a ∈ U{i}. For every

J ⊆ {1, · · · ,m}, a ∈ UJ if and only if for every i ∈ J , a is in U{i}, if and only if
J ⊆ I0. For every I ⊆ {1, · · · ,m}, a 6∈

⋃

J 6⊆I UJ if and only if for every J 6⊆ I,
a 6∈ UJ , if and only if for every J ⊆ {1, · · · ,m}, a ∈ UJ implies J ⊆ I (by con-
traposition), if and only if for every J ⊆ {1, · · · ,m}, J ⊆ I0 implies J ⊆ I, if and
only if I0 ⊆ I. Therefore

q
pcasepcasepcase {M⊥

I (xσ) 7→ NI | I ⊆ {1, · · · ,m}}
y
ρ is equal

to
∧

I⊇I0
yI = yI0 = f(a). It follows that f is definable as λxσ.pcasepcasepcase {M⊥

I (xσ) 7→
NI | I ⊆ {1, · · · ,m}}.

Second, we show that all the elements of S[X→Y] are definable as ground
terms of type UUU(σ → τ) → FFFVVVunitunitunit. Such an element is of the form [x 7→
V], where x = JMK for some ground term M : σ, and V = JP K for some
ground term P : UUUτ → FFFVVVunitunitunit. Then [x 7→ V] is definable as the ground term
λfUUU(σ→τ).P (thunkthunkthunk(forceforceforce fUUU(σ→τ)M)). ✷

9.3 Valuation Types

We have already mentioned in Section 4 that, for every continuous dcpo, V≤1X
is a pointed continuous dcpo, and that its Scott topology coincides with the
weak upwards topology [3]. The latter has a subbase of open sets of the form
[U > r], for every open subset U of X and r ∈ R+ r {0}, where [U > r] = {ν ∈
V≤1X | ν(U) > r}. We can restrict r further so that r < 1, since otherwise
[U > r] is empty. Call a number dyadic if and only if it is of the form a/2k,
with a, k ∈ N.

Proposition 9.15 Let X be a pointed continuous dcpo. Let BX be a basis of
X, BX be a base of the Scott topology on X. Then:

• The set BV≤1X of all simple probability valuations
∑n

i=1 aiδxi
, where each

ai is a dyadic number in [0, 1],
∑n

i=1 ai ≤ 1, and each xi is a point in BX ,
is a basis of V≤1X.

• The set SV≤1X of all opens [U > r], where U is an element of BX , and r
is a dyadic number in (0, 1), is a subbase of the Scott topology on V≤1X.

Proof. By a theorem of Jones [13, Theorem 5.2], the simple subprobability
valuations form a basis of V≤1X . For every simple subprobability valuation
ν =

∑n
i=1 aiδxi

, one easily checks that the collectionDν of simple subprobability

44

valuations
∑n

i=1 biδyi
with bi dyadic and way-below ai in [0, 1], and yi ∈ BX

way-below xi, is directed, and supDν = ν.
We check that every element of Dν , as written above, is way-below ν. For

convenience, we let µ =
∑n

i=1 biδyi
. Let (νk)k∈K be a directed family in V≤1X

with a supremum above ν. We wish to show that there is a k ∈ K such that for
every open subset U of X , µ(U) ≤ νk(U). In order to do so, we show that for
every subset J of {1, · · · , n}, there is an index k = kJ ∈ K such that for every
open subset U of X such that J = {i ∈ {1, · · · , n} | yi ∈ U}, µ(U) ≤ νk(U).
By directedness, there is a k ∈ K such that νkJ

≤ νk for every such J , and this
will show the claim.

Henceforth, let us fix J ⊆ {1, · · · , n}. We have
∑

i∈J bi ≪
∑

i∈J ai (be-
cause bi ≪ ai for each i, and recalling that bi ≪ ai iff bi = 0 or bi < ai)
≤ ν(

⋃

i∈J ↑↑yi) (because yi ≪ xi for each i), so there is a k ∈ K such that
∑

i∈J bi ≤ νk(
⋃

i∈J ↑
↑yi). For every open subset U with J = {i ∈ {1, · · · , n} |

yi ∈ U}, µ(U) =
∑

i∈J bi ≤ νk(
⋃

i∈J ↑
↑yi) ≤ νk(U), which finishes the proof.

It is standard domain theory that given a dcpo Z, a point z ∈ Z that is
the supremum of a directed family (zi)i∈I , where zi is itself the supremum of a
directed family Di of points way-below zi, then

⋃

i∈I Di is directed and has z as
supremum. In our case Dν is included in BV≤1X , showing that every continuous
probability valuation is the supremum of a directed family of elements ofBV≤1X .

In order to show the second part of the proposition, we consider an arbitrary
subbasic open set [U > r] of the weak upwards (=Scott) topology, U open in
X , r ∈ (0, 1). We write U as

⋃

i∈I Ui, where each Ui is in BX , and r as the
infimum of the numbers rn = ⌈2nr⌉/2n. Since 0 < r < 1, rn is in (0, 1) for n
large enough. For every ν ∈ V≤1X , ν(U) > r if and only if for some n large
enough ν(U) > rn, if and only if for some n large enough and some finite subset
A of I, ν(

⋃

i∈I Ui) > rn. Hence [U > r] =
⋃

A finite ⊆I,n/rn<1[
⋃

i∈A Ui > rn],

showing that SV≤1X is a subbase of the weak upwards (=Scott) topology. ✷

Corollary 9.16 For every describable value type σ, the type VVVσ is describable.

Proof. Let X = JσK, BX be the basis of definable elements of JσK, BX be a
strong base of definable open subsets at type σ guaranteed by Lemma 9.4, and
let us use Proposition 9.15.

Although ⊕ is not associative, we can make sense of sumsM1⊕M2⊕· · ·⊕M2n

of 2n terms of type VVVσ: when n = 0, this is just M1, otherwise this is (M1 ⊕
· · · ⊕M2n−1) ⊕ (M2n−1+1 ⊕ · · · ⊕M2n). This way, JM1 ⊕M2 ⊕ · · · ⊕M2nK ρ is

simply equal to 1
2n

∑2n

i=1 JMiK ρ.
For every element ν =

∑n
i=1 aiδxi

in BV≤1X , we can write each ai (1 ≤ i ≤
n) as ki/2

m, where ki ∈ N and with the same m for all values of i. Hence,

and letting k0 = 2m −
∑n

i=1 ki, ν can be written as a sum 1
2m

∑2m−k0

i=1 δvi +
1
2m

∑2m

i=2m−k0+1 0, where each vi is in BX . Since σ is describable, for each i
(1 ≤ i ≤ 2m − k0) vi is equal to JMiK for some ground term Mi : σ (⊥ is equal
to JΩσK). Also, 0 is equal to JΩVVVσK, so ν is definable as the sum of the 2m − k0
terms retretretMi, plus k0 terms ΩVVVσ.

45

Let [U > r] be an element of SV≤1X , where U =
⋃m

i=1 Ui, Ui ∈ BX , and
r is a dyadic number in (0, 1). Each Ui is definable, that is, χ̃Ui

= JMiK
for some ground term Mi : σ → FFFVVVunitunitunit. Let us fix a variable xσ. For each
i, let M ′(xσ) = ©>1/2(M1xσ) ∨ · · · ∨ ©>1/2(Mmxσ): JM ′(xσ)K ρ = ⊤ if
ρ(xσ) ∈ U , ⊥ otherwise. Then [U > r] is definable by the term λyVVVσ.©>r

(produceproduceproduce(dododoxσ ← yVVVσ;retretretM ′(xσ))). Indeed, letting ν = ρ(yVVVσ),

Jdododoxσ ← yVVVσ;retretretM ′(xσ)K ρ({⊤}) = (a ∈ JσK 7→ JretretretM ′(xσ)K ρ[xσ 7→ a])
†
(ν)({⊤})

=

∫

a∈JσK

JretretretM ′(xσ)K ρ[xσ 7→ a]({⊤})dν

=

∫

a∈JσK

δJM ′(xσ)Kρ[xσ 7→a]({⊤})dν

=

∫

a∈JσK

χU (a)dν = ν(U),

so J©>r(produceproduceproduce(dododoxσ ← yVVVσ;retretretM ′))K ρ is equal to ⊤ if r≪ ν(U), ⊥ other-
wise. ✷

9.4 FFF Types

The upper Vietoris topology on Q⊤(X) (resp., Q⊤
⊥(X)) has basic open sets

✷U = {Q ∈ Q⊤(X) | Q ⊆ U}, where U ranges over the open subsets of X .
The operator ✷ commutes with finite intersections and with directed suprema.
Moreover, ✷U is Scott-open if X is well-filtered.

Proposition 9.17 Let X be a pointed, coherent, continuous dcpo. Let BX be
a basis of X, SX be a subbase of the Scott topology on X. Then:

• The set BQ⊤
⊥
X consisting of ⊥ plus the compact saturated sets of the form

↑{x1, · · · , xn}, n ∈ N, where each xi is in BX , is a basis of Q⊤
⊥(X).

• The set SQ⊤
⊥
X of all opens ✷U , where U ranges over non-empty finite

unions of elements of SX , plus the whole space Q⊤
⊥X itself, is a base of

the Scott topology on Q⊤
⊥(X).

Proof. By Proposition 4.2, item 1, Q≪ Q′ if and only if Q = ⊥ or Q′ ⊆ int(Q).
Now int(Q) can be written as

⋃

x∈Q∩BX
↑↑x, and since Q′ is compact, if Q′ ⊆

int(Q) then there are finitely many elements x1, . . . , xn of Q ∩ BX such that
Q′ ⊆

⋃n
i=1 ↑
↑xi = int(↑{x1, · · · , xn}). By Lemma 9.8, this shows the first part.

Let U be a Scott-open subset of Q⊤
⊥(X). If ⊥ ∈ U , then U is the whole

space, which is in SQ⊤
⊥
X . Otherwise, U is a Scott-open subset of Q⊤(X). By

Proposition 4.1, item 1, Q⊤(X) is a continuous complete lattice, so U is a union
of sets of the form ↑↑Q, where Q ranges over the elements of U belonging to any
given basis, and ↑↑ is understood in Q⊤(X). Using the first part, we can take
those elements Q of the form ↑{x1, · · · , xn}, and then ↑↑Q = {Q ∈ Q⊤(X) |
Q′ ⊆ int(↑{x1, · · · , xn})} = ✷int(↑{x1, · · · , xn}).

46

We can therefore write U as a union of sets ✷U , U open in X , and then we
can write U as a union of finite intersections (taken in Q⊤(X)) of elements of
SX , hence as a directed union of finite unions of finite intersections of elements
of SX , hence (by distributivity) as a directed union of finite intersections of finite
unions of elements of SX . In Q⊤(X) (not Q⊤

⊥(X)), ✷ commutes with directed
unions and finite intersections (this would not hold for the empty intersection
in Q⊤

⊥(X)). The result follows. ✷

Corollary 9.18 For every describable value type σ, FFFσ is a describable compu-
tation type.

Proof. Let X = JσK, BX be the basis of definable elements of JσK, and SX be
the subbase of definable open subsets at type σ, and let us use Proposition 9.17.

For every element Q = ↑{x1, · · · , xn} of BQ⊤
⊥
X , where each xi is in BX ,

hence xi = JMiK for some ground term Mi : σ, the term M = produceproduceproduceM1 ?
· · ·?produceproduceproduceMn (abortabortabortFFFσ if n = 0) defines Q, in the sense that Q = JMK. The
term ΩFFFσ defines ⊥.

We deal with the second part. The whole space JFFFσK is definable as an
open set by the term λxFFFσ.produceproduceproduceretretret ∗. We consider the other elements
✷U of SQ⊤

⊥
X . Let us write U as a finite union U =

⋃m
i=1 Ui of elements

of SX , where Ui is defined by Mi : σ → FFFVVVunitunitunit in the sense that χ̃Ui
=

JMiK. Then ✷U is defined by λxFFFσ.xFFFσ tototo yσ ininin M(yσ), where M(yσ) =
(©>1/2(M1yσ) ∨ · · · ∨ ©>1/2(Mmyσ));produceproduceproduceretretret ∗. Indeed, for every envi-
ronment ρ, letting Q = ρ(xFFFσ), if Q = ⊥ then JλxFFFσ.xFFFσ tototo yσ ininin M(yσ)K (⊥) =
⊥, matching the fact that Q is not in ✷U . Otherwise, using the fact thatq
©>1/2(M1yσ) ∨ · · · ∨ ©>1/2(Mmyσ)

y
ρ′ is equal to ⊤ if ρ′(yσ) ∈ U and to ⊥

otherwise, for every environment ρ′, we obtain:

JxFFFσ tototo yσ ininin M(yσ)K ρ = (χ̃U)
∗(Q) =

∧

a∈Q

χ̃U (a),

by Proposition 4.2, item 2, and that is equal to {δ⊤} if Q ⊆ U , and to ⊥
otherwise. ✷

9.5 Full Abstraction

By induction on types, using Lemma 9.2 (unitunitunit), Lemma 9.3 (intintint), Proposi-
tion 9.6 (product types), Proposition 9.14 (function types), Corollary 9.16 (VVV
types), and Corollary 9.18 (FFF types), every type is describable (the case of UUU
types is trivial).

Theorem 9.19 (Full abstraction) CBPV(D, P) +pifzpifzpifz+© is inequationally
fully abstract. For every value type τ , for every two ground CBPV(D, P)+pifzpifzpifz+
© terms M,N : τ , the following are equivalent:

1. M -app
τ N ;

2. M -τ N ;

47

3. JMK ≤ JNK.

Proof. The equivalence between 1 and 2 is Theorem 7.3. Item 3 implies item 1
by Proposition 7.6. In the converse direction, we assume that JMK 6≤ JNK and
we claim that there is a ground term Q : τ → FFFVVVunitunitunit such that Pr(QM↓) 6≤
Pr(QN↓). Since ≤ is the specialization ordering of the Scott topology on JτK,
and the latter has a subbase of definable elements, there is a ground term
Q : τ → FFFVVVunitunitunit such that JMK ∈ U and JNK 6∈ U , where χ̃U = JQK. Hence
JQMK = χ̃U (JMK) = {δ⊤}, while JQNK = ⊥. By adequacy (Proposition 6.10),
and letting h(ν) = ν({⊤}), Pr(QM↓) = h∗(JQMK) = 1, while Pr(QN↓) = 0. ✷

10 Conclusion and Open Problems

We started from the question of using call-by-push-value as a way of getting
around our ignorance of the existence of a Cartesian-closed category of contin-
uous dcpos that would be closed under the probabilistic powerdomain functor.
This led us to define a pretty expressive call-by-push-value language with prob-
abilistic choice and demonic non-determinism. We have gone so far as to show
that it is inequationally fully abstract, once extended with parallel if pifzpifzpifz and
statistical termination testers ©—and those are required for that.

One should note that both are implementable: pifzpifzpifz by standard dovetailing
techniques, or more concretely by using threads, and ©>bM by guessing and
checking a derivation of [] · M ↓ b, or more concretely by simulating all the
execution traces of M and counting their probabilities. The latter can be done,
concretely, by running M under a hypervisor that forks the process it emulates
at each random binary choice ⊕: each subprocess that terminates after having
gone through n random binary choices contributes 1/2n to a global counter, and
the hypervisor itself terminates when that counter exceeds b.

A few questions remain:

1. Is pifzpifzpifz definable in CBPV(D, P) +©? Is CBPV(D, P) +© fully abstract?
The results of Section 8.1 fail to answer those questions.

2. We have defined languages with an abortabortabortFFFσ operator, and where compu-
tation types are interpreted as continuous lattices. Would bc-domains be
enough, namely, can we do without an abortabortabortFFFσ operator and still obtain a
full abstraction result? Note that©>b does not just estimate probabilities
of termination, but also catches the exception raised by abortabortabortFFFσ, hence
serves more than one purpose.

3. Since the type UUUFFFτ → UUUFFFτ → FFFτ is describable in CBPV(D, P)+©+pifzpifzpifz

for every value type τ , the binary supremum map on JFFFτK is obtainable as
a directed supremum of definable values. Whereas ? implements demonic
non-determinism, binary suprema implement angelic non-determinism. Is
binary supremum itself definable?

48

References

[1] Samson Abramsky, Radha Jagadeesan, and Pasquale Malacaria. Full ab-
straction for PCF. Information and Computation, 163(2):409–470, 2000.

[2] Samson Abramsky and Achim Jung. Domain theory. In S. Abramsky, D. M.
Gabbay, and T. S. E. Maibaum, editors, Handbook of Logic in Computer
Science, volume 3, pages 1–168. Oxford University Press, 1994.

[3] Mauricio Alvarez-Manilla, Achim Jung, and Klaus Keimel. The probabilis-
tic powerdomain for stably compact spaces. Theoretical Computer Science,
328(3):221–244, 2004.

[4] Thomas Ehrhard and Christine Tasson. Probabilistic call by push
value. Logical Methods in Computer Science, 15(1), 2019. Also
arXiv:1607.04690v4 [cs.LO], Aug. 2018.

[5] Thomas Ehrhard, Christine Tasson, and Michele Pagani. Probabilistic
coherence spaces are fully abstract for probabilistic PCF. In Suresh Ja-
gannathan and Peter Sewell, editors, Proc. 41st Ann. ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL
’14), pages 309–320, 2014.

[6] Thomas Erker, Mart́ın Hötzel Escardó, and Klaus Keimel. The way-below
relation of function spaces over semantic domains. Topology and Its Appli-
cations, 89(1–2):61–74, 1998.

[7] Yuri L. Ershov. The bounded-complete hull of an α-space. Theoretical
Computer Science, 175:3–13, 1997.

[8] Gerhard Gierz, Karl Heinrich Hofmann, Klaus Keimel, Jimmie D. Lawson,
Michael Mislove, and Dana S. Scott. Continuous Lattices and Domains,
volume 93 of Encyclopedia of Mathematics and its Applications. Cambridge
University Press, 2003.

[9] Jean Goubault-Larrecq. De Groot duality and models of choice: An-
gels, demons, and nature. Mathematical Structures in Computer Science,
20(2):169–237, April 2010.

[10] Jean Goubault-Larrecq. Non-Hausdorff Topology and Domain Theory—
Selected Topics in Point-Set Topology, volume 22 of New Mathematical
Monographs. Cambridge University Press, March 2013.

[11] Jean Goubault-Larrecq. Full abstraction for non-deterministic and proba-
bilistic extensions of PCF I: the angelic cases. Journal of Logic and Alge-
braic Methods in Programming, 84(1):155–184, January 2015.

[12] J. Martin E. Hyland and Luke Ong. On full abstraction for PCF: I, II and
III. Information and Computation, 163(2):285–408, 2000.

49

http://arxiv.org/abs/1607.04690

[13] Claire Jones. Probabilistic Non-Determinism. PhD thesis, University of
Edinburgh, 1990. Technical Report ECS-LFCS-90-105.

[14] Achim Jung and Regina Tix. The troublesome probabilistic powerdomain.
In A. Edalat, A. Jung, K. Keimel, and M. Kwiatkowska, editors, Proc. 3rd
Workshop on Computation and Approximation, volume 13, pages 70–91.
Elsevier, 1998. 23pp.

[15] Shin-Ya Katsumata. A semantic formulation of ⊤⊤-lifting and logical
predicates for computational metalanguage. In L. Ong, editor, Proc. 19th
Intl. Workshop CSL 2005, 14th Ann. Conf. of the EACSL, pages 87–102.
Springer Verlag LNCS 3634, 2005.

[16] Olaf Kirch. Bereiche und Bewertungen. Master’s thesis, Technische
Hochschule Darmstadt, June 1993.

[17] Paul Blain Levy. Call-by-Push-Value: A Subsuming Paradigm. In J.-
Y. Girard, editor, Typed Lambda Calculi and Applications, pages 228–243.
Springer Verlag LNCS 1581, 1999.

[18] Paul Blain Levy. Call-by-Push-Value. A Functional/Imperative Synthesis.
Semantic Structures in Computation. Springer Verlag, 2003.

[19] Gordon D. Plotkin. LCF considered as a programming language. Theoret-
ical Computer Science, 5(1):223–255, 1977.

[20] Thomas Streicher. Domain-Theoretic Foundations of Functional Program-
ming. World Scientific, 2006.

[21] Jean-Pierre Talpin and Pierre Jouvelot. The type and effect discipline.
Information and Computation, 111(2):245–296, 1994.

[22] Regina Tix. Stetige Bewertungen auf topologischen Räumen. Diplomarbeit,
TH Darmstadt, June 1995.

[23] Matthijs Vákár, Ohad Kammar, and Sam Staton. A domain theory for
statistical probabilistic programming. In Proc. 46th ACM Symp. Principles
of Programming Languages (POPL’19), 2019. arXiv:1811.04196 [cs.LO].

50

http://arxiv.org/abs/1811.04196

	1 Introduction
	2 Related Work
	3 Preliminaries
	4 The Languages CBPV(D,P) and CBPV(D,P)+pifz-.4+
	4.1 Types and their Semantics
	4.2 Syntax
	4.3 Denotational Semantics
	4.4 Operational Semantics

	5 Soundness
	6 Adequacy
	7 Consequences of Adequacy
	8 The Failure of Full Abstraction
	8.1 The Need for Parallel If
	8.2 The Need for Statistical Termination Testers

	9 Full Abstraction
	9.1 Product types
	9.2 Function types
	9.3 Valuation Types
	9.4 F-.4 Types
	9.5 Full Abstraction

	10 Conclusion and Open Problems

