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Abstract. We study Boolean classification problems over relational background structures
in the logical framework introduced by Grohe and Turán (TOCS 2004). It is known (Grohe
and Ritzert, LICS 2017) that classifiers definable in first-order logic over structures of
polylogarithmic degree can be learned in sublinear time, where the degree of the structure
and the running time are measured in terms of the size of the structure. We generalise
the results to the first-order logic with counting FOCN, which was introduced by Kuske
and Schweikardt (LICS 2017) as an expressive logic generalising various other counting
logics. Specifically, we prove that classifiers definable in FOCN over classes of structures of
polylogarithmic degree can be consistently learned in sublinear time. This can be seen as a
first step towards extending the learning framework to include numerical aspects of machine
learning. We extend the result to agnostic probably approximately correct (PAC) learning
for classes of structures of degree at most (log logn)c for some constant c. Moreover, we
show that bounding the degree is crucial to obtain sublinear-time learning algorithms. That
is, we prove that, for structures of unbounded degree, learning is not possible in sublinear
time, even for classifiers definable in plain first-order logic.

1. Introduction

In this paper, we study Boolean classification problems, where the input elements for the
task come from a set X, the instance space. A classifier on X is a function c : X → {0, 1}.
Given a training sequence T of labelled examples (x, λ) ∈ X × {0, 1}, we want to find a
classifier, called a hypothesis, that explains the labels given in T , and that can also be used
to predict the labels of elements from X not given as examples.

Regarding the requirements we impose on the hypotheses, we consider the following
classical scenarios from computational learning theory. In consistent learning, the examples
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Figure 1: (Left) The database of an online encyclopedia viewed as a directed graph. Vertices
represent pages, category pages are black, and edges represent hyperlinks. (Centre)
Training examples. Positive examples, i.e., tuples that should be contained in the
relation, are shown as solid purple edges while negative examples are shown as
dashed orange edges. (Right) The learned relation from Example 1.1.

are assumed to be generated using an unknown classifier, the target concept, from a known
concept class. The task is to find a hypothesis that is consistent with the training sequence
T , i.e. a function h : X → {0, 1} such that h(x) = λ for all (x, λ) ∈ T . In Haussler’s model of
agnostic probably approximately correct (PAC) learning [Hau92], a generalisation of Valiant’s
PAC-learning model [Val84], an (unknown) probability distribution D on X × {0, 1} is
assumed, and training examples are drawn independently from this distribution. The goal
is to find a hypothesis that generalises well. That is, algorithms should return with high
probability a hypothesis with a small expected error on new instances drawn from the same
distribution. We discuss both models in more detail in Section 3.

We study learning problems in the framework that was introduced by Grohe and
Turán [GT04] and further studied in [GR19, GLR17, GR17, vB19, vBS21, vBGR22, vB23].
There, the instance spaceX is a set of tuples from a relational structure, called the background
structure, and classifiers are described using parametric models based on logics. Formally,
we fix a number k ∈ N and, for a background structure A, let the instance space be the set

X =
(
U(A)

)k
of k-tuples of elements of A.

Intuitively, in consistent learning, our goal is to learn a definition of a k-ary relation on
the elements of A that is consistent with a given sequence of examples. That is, the relation
shall contain all positive (i.e., λ = 1) and none of the negative (i.e., λ = 0) examples.

Example 1.1. Let A be the following relational structure representing a database of data
from an online encyclopedia. The universe of the structure consists of all pages of the
encyclopedia. There is a binary relation representing hyperlinks between pages and a unary
relation representing category pages. Pages that are not category pages are article pages.

Let k = 2. That is, our task is to learn a definition of a binary relation containing tuples
of pages. Suppose we want that the first element of the tuple is a category page, and the
second element is a page that belongs to the category. The input for our task is a training
sequence T of classified tuples, e.g., tuples that have been classified by experts beforehand.
That is, the training sequence T consists of pairs

(
(c, p), λ

)
, where λ ∈ {0, 1}, and λ = 1 if

and only if p is a page that belongs to the category c.
Now suppose the database and the training examples are as depicted in Figure 1. Note

that a definition of a consistent relation would be the following. The relation contains all
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SELECT C . ’ page ’ , CatLink . ’ to ’

FROM Categories C , Links CatLink

WHERE CatLink . ’ from ’ = C . ’ page ’

UNION

SELECT C . ’ page ’ , L1 . ’ from ’

FROM Categories C , Links CatLink ,

Links L1 , Links L2

WHERE CatLink . ’ from ’ = C . ’ page ’

AND CatLink . ’ to ’ = L2 . ’ from ’

AND L1 . ’ to ’ = L2 . ’ to ’

GROUP BY C . ’ page ’ , L1 . ’ from ’

HAVING count (∗ ) >= 2 ;

Figure 2: An SQL query that defines the relation learned in Example 1.1.

tuples, where the first element is a category page c, and the second element is a page p that
fulfils at least one of the following two conditions.

(1) The page p is linked from the category page c.
(2) There is another page p′ linked from the category page c, and both pages p, p′ have at

least two common linked pages.

The corresponding relation can also be seen in Figure 1. For example, the tuple (1, 8) is
contained in the relation since Page 1 is a category, Page 2 is linked from the category, and
there are at least two pages (Pages 3 and 4) that both Page 2 and Page 8 link to.

Since the data are contained in a relational database, it would be convenient to learn an
SQL query that defines the relation. Figure 2 shows an SQL query for the learned relation.

In [GR17], Grohe and Ritzert considered learning tasks where the hypotheses can be
described using first-order logic. We are interested in learning hypotheses that can be
expressed in SQL. While first-order logic can be seen as the “logical core” of SQL, there are
aggregating operators in SQL, namely COUNT, AVG, SUM, MIN, and MAX, that do not
have corresponding expressions in first-order logic. Motivated by this, we study the first-order
logic with counting FOCN, which Kuske and Schweikardt introduced in [KS17] and which
extends first-order logic by cardinality conditions similar to the COUNT operator in SQL.
The logic depends on a collection P of numerical predicates, i.e., functions P : Zm → {0, 1},
that can be used in formulas to express restrictions on the results of counting terms.

Let A = (U(A), L(A), C(A)) be the background structure from Example 1.1, where the
universe U(A) is the set of all pages, L(A) is the binary relation of links between pages,
and C(A) is the unary relation of category pages. The SQL query from Figure 2 can be
expressed as the FOCN formula

φ(c, p) := C(c) ∧
(
L(c, p) ∨ ∃x

(
L(c, x) ∧#(z).

(
L(x, z) ∧ L(p, z)

)
≥ 2

))
,

where we assume that the numerical predicate ≥ is contained in P. The counting term
#(z).

(
L(x, z)∧L(p, z)

)
counts the number of pages z such that both x and p link to z. The

formula #(z).
(
L(x, z) ∧ L(p, z)

)
≥ 2 checks whether this number is at least 2. In a more
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Figure 3: (Left) A friendship graph based on data from a social network2. An edge between
two members indicates that they are friends. (Right) The training sequence from
Example 1.2. Positive examples are shown as solid purple edges while negative
examples are shown as dashed orange edges.

general approach, we may use the formula

φ′(c, p;κ) := C(c) ∧
(
L(c, p) ∨ ∃x

(
L(c, x) ∧#(z).

(
L(x, z) ∧ L(p, z)

)
≥ κ

))
with the free number variable κ. When viewed as a parameter, for every assignment of κ,
we obtain a new hypothesis.

In this paper, we specify hypotheses by triples (φ(x̄; ȳ, κ̄), w̄, n̄). Here, φ(x̄; ȳ, κ̄) is an
FOCN formula with free variables x̄ = (x1, . . . , xk), ȳ = (y1, . . . , yℓ), and κ̄ = (κ1, . . . , κm).

Moreover, w̄ = (w1, . . . , wℓ) ∈
(
U(A)

)ℓ
and n̄ = (n1, . . . , nm) ∈ {0, . . . , |U(A)|}m are tuples

of elements of U(A) and numbers, respectively, called parameter tuples. The corresponding

hypothesis is the mapping hAφ,w̄,n̄ :
(
U(A)

)k → {0, 1} which maps a tuple v̄ = (v1, . . . , vk) ∈(
U(A)

)k
to 1 if and only if φ is satisfied in A when interpreting the variables x1, . . . , xk

with v1, . . . , vk, interpreting y1, . . . , yℓ with w1, . . . , wℓ, and κ1, . . . , κm with n1, . . . , nm.
Otherwise, v̄ is mapped to 0. For the training sequence T given in Example 1.1, the
hypothesis hAφ′,w̄,n̄ is consistent with T , where φ′ is as specified above, w̄ = () is the empty

tuple, and n̄ = (2). Here, we have k = 2, ℓ = 0, and m = 1.

Example 1.2. Let G =
(
V (G), E(G)

)
be the friendship graph shown in Figure 3 based

on data from a social network. We consider the instance space X =
(
V (G)

)2
. Let the

training sequence T contain (Alice,Emma), (Bob,Dan), and (Carol,Emma) as positive
examples, and (Alice,Dan) and (Bob,Emma) as negative examples. The examples are also
depicted in Figure 3. One hypothesis that is consistent with the labelled examples is the
function h : X → {0, 1} with h(v1, v2) = 1 if and only if v1 and v2 have a common friend
who is not Carol. This hypothesis can be defined as h = hφ,w̄,n̄ with φ(x1, x2; y, κ) :=(
#(z).

(
E(x1, z)∧E(x2, z)∧¬(z=y)

)
≥ κ

)
, w̄ := (Carol), and n̄ := (1). In this example, we

have k = 2, ℓ = 1, and m = 1. The formula φ with parameters w̄ and n̄ counts the number
of common friends of the vertices interpreted by x1 and x2 who are not Carol, and it checks
that this number is at least 1.

2Avatars designed by pikisuperstar on Freepik
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1.1. Our Contributions. We study learning problems for hypotheses that can be described
using the first-order logic with counting FOCN. We analyse our algorithms under the
logarithmic-cost measure and the uniform-cost measure. Under the logarithmic-cost measure,
storing and accessing an element of the background structure takes time and space logarithmic
in the size of the structure, whereas under the uniform-cost measure, both operations take
constant time and space.

In Section 3, we show that bounding the degree of the structures is crucial to obtain
sublinear-time learning algorithms, even for hypotheses that can be defined by pure first-order
logic. More specifically, for classes of structures without a degree restriction, we show that
there are no consistent-learning and no PAC-learning algorithms for first-order definable
hypotheses that run in sublinear time.

For background structures that come from a class of bounded degree, we show that,
under the logarithmic cost-measure, the consistent-learning problem can be solved in time
polylogarithmic in the size of the background structure and polynomial in the number of
training examples. Under the uniform-cost measure, we solve the problem in time polynomial
in the number of training examples and independent of the size of the background structure.
The hypotheses the algorithm returns can be evaluated in time polylogarithmic in the size
of the background structure under the logarithmic-cost measure and in constant time under
the uniform-cost measure. In addition, we extend this result to PAC-learning problems. We
show all of these results in Section 6.

In Section 7, we consider classes of background structures where the degree is not
uniformly bounded. For classes of structures where the degree of the structure is at most
polylogarithmic in the size of the structure, our results imply that the consistent-learning
problem can be solved in time sublinear in the size of the structure. For the PAC-learning
problem, we obtain an analogous result on classes of structures where the degree of a
structure A is bounded by

(
log(log |U(A)|)

)c
for some constant c.

1.2. Related Work. The learning framework that we consider in this paper was introduced
in [GT04]. There, the authors proved information-theoretic learnability results for concepts
that can be described using first-order and monadic second-order logic on restricted classes
of background structures, such as the class of planar graphs and classes of graphs of bounded
degree. Algorithmic aspects of the framework were first studied in [GR17]. The authors
showed that first-order definable concepts are both consistent- and PAC-learnable in sublinear
time over structures of at most polylogarithmic degree. In [GLR17], the authors examined
the learnability of concepts definable in first-order and monadic second-order logic over
simple structures of unbounded degree, namely ordered strings. Even in the unary case,
i.e. for X = U(A), they were able to show that there is no consistent-learning algorithm
for first-order definable concepts running in sublinear time. However, by introducing a
linear-time preprocessing phase to build an index for the background structure, concepts
definable in monadic second-order logic can be learned in sublinear learning time. In [GR19],
the results were extended from strings to trees.

Our consistent-learning result in Section 7 is a direct generalisation of the corresponding
result for first-order logic [GR17], albeit with a running time that is quasipolynomial in the
degree, while the running time in [GR17] is polynomial in the degree. This generalisation
is motivated by the fact that typical machine-learning models have numerical parameters;
our results may be seen as a first step towards including numerical aspects in the learning
framework. At least for background structures of small (say, logarithmic) but unbounded
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degree, it is not obvious that an extension of the first-order result to FOCN holds at all.
The reason is that FOCN loses its strong locality properties on structures of unbounded
degree. For example, by comparing the degree sequences of the neighbours of nodes, one
can establish quite complex relations that may range over long distances. Indeed, as shown
in [GS18], various algorithmic meta theorems (with proofs based on locality properties) fail
when extended from first-order logic to first-order logic with counting.

Thus, it is not surprising that, even though our result looks similar to the corresponding
result for first-order logic, there are significant differences in the proofs. The proof of the
first-order result in [GR17] is based on Gaifman’s theorem, but there is no analogue of
Gaifman’s theorem for the counting logic FOCN. Instead, our proof is based on a variant of
Hanf’s theorem for FOCN [KS17]. This raises the technical difficulty that we have to deal
with isomorphism types of local neighbourhoods in our structures. To be able to do this
within the desired time bounds, we apply a recent graph isomorphism test running in time
npolylog(d) for n-vertex graphs of maximum degree d [GNS23].

Our negative results for learning on structures of unbounded degree are similar to the
ones given in [GLR17] for strings. There, however, the authors consider a more restrictive
access model on the background structures.

The first-order logic with counting FOCN that we consider in this paper was introduced
in [KS17]. The logic generalises logics such as FO(Cnt) from [Lib04] and FO+C from [Gro17].
In [vBS21], the authors introduced the new logic first-order logic with weight aggregation
(FOWA) that operates on weighted structures and enables the aggregation of weights in terms
similar to the counting terms of FOCN. The authors show that hypotheses definable in a
fragment of FOWA can be learned in sublinear time on structures of at most polylogarithmic
degree after a pseudolinear-time preprocessing step. The logic FOWA extends the fragment
FOC of FOCN, but it is incomparable with FOCN.

Closely related to our learning framework is the framework of inductive logic programming
(ILP) [Mug91, MR94, KD94, CJ95, CDEM22]. In both frameworks, we are in a passive
supervised learning setting, where the learning algorithms are given labelled examples.
These examples are labelled according to some target concept, and the algorithms should
return a hypothesis that approximately matches this target concept. One of the main
differences between both frameworks is that we encode the background knowledge in a
relational structure, whereas in ILP, it is represented in a background theory, i.e., a set of
formulas. PAC-learning results for ILP have often been obtained by syntactically restricting
the hypothesis classes (see, e.g., [CJ95, KD94]), while we use restricted classes of background
structures such as classes of small degree.

In the database literature, various approaches to learning queries from examples have
been studied, both in passive (such as ours) and active learning settings. In passive learning
settings, results often focus on conjunctive queries [Hau89, Hir00, BR17, KR18, BBDK21]
or consider queries outside the relational database model [SW12, BCL15], while we focus
on (extensions of) full first-order logic. In the active learning setting, as introduced by
Angluin in [Ang87], learning algorithms are allowed to actively query an oracle. This includes
membership queries that enable the learning algorithm to actively choose examples and
obtain their corresponding labels. Results in this setting [AHHP98, SST10, AAP+13, BCL15]
again consider different types of queries, including conjunctive queries [tCD22]. Another
related subject in the database literature is the problem of learning schema mappings from
examples [BCCT19, GS10, AtCKT11, tCDK13, tCKQT18]. In formal verification, related
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logical learning frameworks have been studied as well [GLMN14, LMN16, END+18, ZMJ18,
CCKS20].

2. Preliminaries

We let Z, N, and N≥1 denote the sets of integers, non-negative integers, and positive integers,
respectively. For m,n ∈ Z, we let [m,n] := {ℓ ∈ Z | m ≤ ℓ ≤ n} and [n] := [1, n]. For a
k-tuple v̄ = (v1, . . . , vk), we write |v̄| to denote its length k.

2.1. Relational Structures. A (relational) signature is a finite set of relation symbols.
Every relation symbol R has an arity ar(R) ∈ N. Let σ be a signature. A (relational)
structure A over σ, also called a σ-structure, is a tuple consisting of a finite set U(A), called
the universe of A, and a relation R(A) ⊆ (U(A))ar(R) for every R ∈ σ. The size of A is
|A| := |U(A)|.

Let σ′ ⊇ σ be a signature. A σ′-structure A′ is a σ′-expansion of a σ-structure A if
U(A′) = U(A) and R(A′) = R(A) for all R ∈ σ. A σ-structure B is a substructure of a
σ-structure A if U(B) ⊆ U(A) and R(B) ⊆ R(A) for every R ∈ σ. For a set X ⊆ U(A), the
induced substructure of A on X is the σ-structure A[X] with universe U(A[X]) = X and

R(A[X]) = R(A) ∩Xar(R) for every relation symbol R ∈ σ. The union of two σ-structures
A and B is the σ-structure A ∪ B with universe U(A ∪ B) = U(A) ∪ U(B) and relations
R(A ∪ B) = R(A) ∪R(B) for all R ∈ σ.

A graph is a relational structure with signature {E} where E is a binary relation symbol.
The universe of a graph G is called the vertex set of G and is often denoted by V (G); the
relation E(G) is called the edge set of G. The elements of the vertex set are called vertices
and the elements of the edge set are called edges. All graphs in this paper are undirected
and do not contain self-loops, i.e. E is symmetric and irreflexive. A unary relation symbol
is called a colour. A (σ-)coloured graph is a σ-expansion of a graph where σ is a signature
with E ∈ σ and all other relation symbols in σ are colours.

Let G be a (coloured) graph. If (v, w) ∈ E(G), then we say that v and w are neighbours.
The degree deg(v) of a vertex v ∈ V (G) is the number of neighbours of v and the degree
deg(G) of G is the maximum degree of its vertices.

For n ∈ N, a path of length n in G is a sequence v0, . . . , vn of distinct vertices in V (G)
such that (vi, vi+1) ∈ E(G) for all i ∈ [0, n− 1]. We say that v0, . . . , vn is a path from v0 to
vn in G. The distance distG(v, w) between two vertices v, w ∈ V (G) is the minimal length
of a path from v to w in G; if no such path exists, we set distG(v, w) := ∞. For a tuple
v̄ = (v1, . . . , vk) ∈ (V (G))k and a vertex w ∈ V (G), we let distG(v̄, w) := mini∈[k] dist

G(vi, w).

For a tuple w̄ = (w1, . . . , wℓ) ∈ (V (G))ℓ, we set distG(v̄, w̄) := minj∈[ℓ] dist
G(v̄, wj). We omit

the superscript G when it is clear from the context.
For r ∈ N and a tuple v̄ ∈ (V (G))k for some k ∈ N, the ball of radius r (or r-ball) of v̄

in G is the set NG
r (v̄) := {w ∈ V (G) | distG(v̄, w) ≤ r}. The neighbourhood of radius r (or

r-neighbourhood) of v̄ in G is the induced substructure NG
r (v̄) := G[NG

r (v̄)]. Let C1, . . . , Ck

be new colours not used in G. The sphere of radius r (or r-sphere) of v̄ in G is the structure
SGr (v̄) that is the expansion of NG

r (v̄) by the colours C1, . . . , Ck with Ci(SGr (v̄)) = {vi} for
all i ∈ [k].

The Gaifman graph GA of a σ-structure A is the graph with vertex set V (GA) = U(A)
and edge set E(GA) that contains exactly those pairs of distinct vertices a, b ∈ U(A) that



8 S. VAN BERGEREM

appear in the same tuple of some relation of A, i.e. where a, b ∈ v̄ for some v̄ ∈ R(A) and
R ∈ σ.

We can generalise the graph-theoretic notions such as degree, paths, connectivity, distance,
and balls from (coloured) graphs to general relational structures by applying the definitions
to the corresponding Gaifman graphs. Using the generalised notion of balls, the notions
of neighbourhoods and spheres also naturally generalise from (coloured) graphs to general
relational structures.

2.2. Logics. In this section, we recapitulate the syntax and semantics of first-order logic as
well as its extensions by counting and numerical predicates that we study in this paper.

Throughout this section, let σ be a relational signature. Let vars and nvars be fixed,
disjoint, and countably infinite sets of structure variables and number variables, respectively.
In the logics described in this section, structure variables from vars denote elements from
the structure, and number variables from nvars denote integers.

A σ-interpretation I = (A, β) consists of a σ-structure A and an assignment β : vars ∪
nvars → U(A) ∪ Z with β(x) ∈ U(A) for every x ∈ vars and β(κ) ∈ Z for every κ ∈
nvars. For k, ℓ ∈ N, k distinct structure variables x1, . . . , xk ∈ vars, elements v1, . . . , vk ∈
U(A), ℓ distinct number variables κ1, . . . , κℓ ∈ nvars, and integers n1, . . . , nℓ ∈ Z, we
write I v1,...,vk

x1,...,xk

n1,...,nℓ
κ1,...,κℓ

for the interpretation (A, β v1,...,vk
x1,...,xk

n1,...,nℓ
κ1,...,κℓ

), where β v1,...,vk
x1,...,xk

n1,...,nℓ
κ1,...,κℓ

is

the assignment β′ with β′(xi) = vi for every i ∈ [k], β′(κj) = nj for every j ∈ [ℓ], and
β′(z) = β(z) for all z ∈ (vars ∪ nvars) \ {x1, . . . , xk, κ1, . . . , κℓ}.
Definition 2.1 (FO[σ]). The set of formulas for FO[σ] is built according to the following
rules.

(1) x1=x2 and R(x1, . . . , xk) are formulas for x1, x2, . . . , xk ∈ vars and R ∈ σ with ar(R) = k.
(2) If φ and ψ are formulas, then ¬φ and (φ ∨ ψ) are also formulas.
(3) If φ is a formula and x ∈ vars, then ∃xφ is a formula.

Let I = (A, β) be a σ-interpretation. For a formula φ from FO[σ], the semantics

JφKI ∈ {0, 1} is defined as follows.

(1) Jx1=x2KI = 1 if β(x1) = β(x2), and Jx1=x2KI = 0 otherwise; JR(x1, . . . , xk)KI = 1 if(
β(x1), . . . , β(xk)

)
∈ R(A), and JR(x1, . . . , xk)KI = 0 otherwise.

(2) J¬φKI = 1− JφKI and J(φ ∨ ψ)K = max{JφKI , JψKI}.
(3) J∃xφKI = max{JφKI

v
x | v ∈ U(A)}.

The quantifier rank qr(φ) of an FO[σ] formula φ is the maximum nesting depth of
constructs using rule (3) in order to construct φ. We write (φ ∧ ψ) and ∀xφ as shorthands
for ¬(¬φ ∨ ¬ψ) and ¬∃x¬φ.

Next, we consider the logic FOCN that Kuske and Schweikardt introduced in [KS17].
This logic allows building numerical statements based on counting terms as well as numerical
predicates, and it includes number variables as well as quantification over numbers.

A numerical predicate collection is a triple (P, ar, J.K) where P is a countable set of
predicate names, and, to each P ∈ P, ar assigns an arity ar(P) ∈ N≥1 and J.K assigns a

semantics JPK ⊆ Zar(P). For the remainder of this paper, fix a numerical predicate collection
(P, ar, J.K). When analysing the running time of algorithms, we will assume that machines
have access to oracles for evaluating the numerical predicates in constant time. That is, given
a predicate P ∈ P and a tuple (i1, . . . , iar(P)) of integers, the oracle call “(i1, . . . , iar(P)) ∈ JPK?”
takes time O(1).
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Definition 2.2 (FOCN[σ]). The set of formulas and counting terms for FOCN[σ] is built
according to the rules (1)–(3) and the following rules.

(4) If φ is a formula and x̄ = (x1, . . . , xk) is a tuple of k pairwise distinct variables, then
#x̄.φ is a counting term.

(5) Every integer i ∈ Z is a counting term.
(6) If t1 and t2 are counting terms, then (t1 + t2) and (t1 · t2) are also counting terms.
(7) If P ∈ P, m = ar(P) and t1, . . . , tm are counting terms, then P(t1, . . . , tm) is a formula.
(8) Every number variable κ ∈ nvars is a counting term.
(9) If φ is a formula and κ ∈ nvars is a number variable, then ∃κφ is a formula.

Let I = (A, β) be a σ-interpretation. For a formula or counting term ξ from FOCN[σ],

the semantics JξKI is defined by the rules (1)–(3) and the following rules.

(4) J#x̄.φKI =
∣∣∣{(v1, . . . , vk) ∈ (

U(A)
)k ∣∣ JφKI

v1,...,vk
x1,...,xk = 1

}∣∣∣, where x̄ = (x1, . . . , xk).

(5) JiKI = i for i ∈ Z.
(6) J(t1 + t2)KI = Jt1KI + Jt2KI and J(t1 · t2)KI = Jt1KI · Jt2KI .
(7) JP(t1, . . . , tm)KI = 1 if (Jt1KI , . . . , JtmKI) ∈ JPK, and JP(t1, . . . , tm)KI = 0 otherwise.

(8) JκKI = β(κ) for κ ∈ nvars.

(9) J∃κφKI = max
{
JφKI

n
κ
∣∣ n ∈ [0, |A|]

}
.

For counting terms t1 and t2, we write (t1 − t2) as a shorthand for
(
t1 + ((−1) · t2)

)
.

An expression is a formula or a counting term. Let ξ be an expression. The free variables
free(ξ) of ξ are inductively defined as follows.

(1) free(x1=x2) = {x1, x2} and free
(
R(x1, . . . , xk)

)
= {x1, . . . , xk}.

(2) free(¬φ) = free(φ) and free(φ ∨ ψ) = free(φ) ∪ free(ψ).
(3) free(∃xφ) = free(φ) \ {x} for x ∈ vars.
(4) free

(
#(x1, . . . , xk).φ

)
= freeφ \ {x1, . . . , xk}.

(5) free(i) = ∅ for i ∈ Z.
(6) free

(
(t1 + t2)

)
= free

(
(t1 · t2)

)
= free(t1) ∪ free(t2).

(7) free
(
P(t1, . . . , tm)

)
=

⋃m
i=1 free(ti).

(8) free(κ) = {κ} for κ ∈ nvars.
(9) free(∃κφ) = free(φ) \ {κ} for κ ∈ nvars.

We write ξ(z1, . . . , zk) to indicate that free(ξ) ⊆ {z1, . . . , zk}. A sentence is a formula
without free variables, and a ground term is a counting term without free variables. The
binding rank br(ξ) of ξ is the maximal nesting depth of constructs using rules (3) and (4),
i.e. constructs of the form ∃x or #x̄, to construct ξ. The binding width bw(ξ) of ξ is the
maximal arity of an x̄ of a term #x̄.ψ in ξ. If ξ contains no such term, then bw(ξ) = 1 if ξ
contains a quantifier ∃x with x ∈ vars, and bw(ξ) = 0 otherwise.

For a formula φ and a σ-interpretation I, we write I |= φ to indicate that JφKI = 1.

Likewise, I ̸|= φ indicates that JφKI = 0. For a formula φ(x1, . . . , xk, κ1, . . . , κm), a σ-

structure A, and tuples v̄ = (v1, . . . , vk) ∈
(
U(A)

)k
and n̄ = (n1, . . . , nm) ∈ Zm, we write

A |= φ[v̄, n̄] or (A, v̄, n̄) |= φ to indicate that (A, β) |= φ for all assignments β with

β(xi) = vi for all i ∈ [k] and β(κj) = nj for all j ∈ [m]. Furthermore, we set Jφ(v̄, n̄)KA := 1

if A |= φ[v̄, n̄], and Jφ(v̄, n̄)KA := 0 otherwise. Two expressions ξ, ξ′ are equivalent if

JξKI = Jξ′KI for all σ-interpretations I. For d ∈ N, the expressions are called d-equivalent

if JξKI = Jξ′KI for all σ-interpretations I = (A, β) for all structures A of degree at most d.
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The length |ξ| of an expression ξ is the length of its encoding. By FOCN, we denote the
union of all FOCN[σ] for arbitrary signatures σ. This applies analogously to FO.

Example 2.3. Let G be a graph, let σ = {E}, and let P contain the numerical predicate
P= with JP=K = {(k, k) | k ∈ Z}. We consider the FOCN[σ] sentence

φ = ∃κ∀xP=

(
#(y).E(x, y), κ

)
.

The sentence has binding rank 2 and binding width 1. The sentence holds in G (i.e. G |= φ
holds) if and only if G is a regular graph, i.e., if there is some k ∈ N such that every vertex
in G has degree k.

Let r ∈ N. An FOCN[σ] formula φ(x̄) with free variables x̄ = (x1, . . . , xk) is r-local

(around x̄) if for every σ-structure A and every tuple v̄ = (v1, . . . , vk) ∈
(
U(A)

)k
, we have

A |= φ[v̄] ⇐⇒ NA
r (v̄) |= φ[v̄]. A formula is local if it is r-local for some r ∈ N. Intuitively,

the evaluation of a local formula only depends on the neighbourhood around the free variables
up to a certain radius.

Let distσ≤r(x, y) be an FO[σ] formula such that for every σ-structure A and all v, w ∈
U(A), we have A |= distσ≤r[v, w] if and only if distA(v, w) ≤ r. Such a formula can be
constructed recursively with quantifier rank at most ⌈log r⌉. To improve readability, we write
distσ(x, y)≤ r instead of distσ≤r(x, y), and distσ(x, y)>r instead of ¬distσ≤r(x, y). We omit
the superscript σ when it is clear from the context. For a tuple x̄ = (x1, . . . , xk) of variables,

dist(x̄; y)>r is a shorthand for
∧k

i=1 dist(xi, y)>r, and dist(x̄; y)≤ r is a shorthand for∨k
i=1 dist(xi, y)≤ r. For a tuple ȳ = (y1, . . . , yℓ), we use dist(x̄; ȳ)>r as a shorthand for∧ℓ
j=1 dist(x̄; yj)>r, and dist(x̄; ȳ)≤ r as a shorthand for

∨ℓ
j=1 dist(x̄; yj)≤ r.

2.3. Local Access and Complexity Measures. Whenever we analyse the complexity of
learning problems in this paper, we usually think of the background structures as being very
large relational databases or huge graphs such as the web graph.

Hence, in case of relational databases, we would like to learn concepts from examples
even if the database is too large to fit into the main memory. In case of the web graph,
ideally our algorithms should also be able to explore only the regions of the web needed for
learning, without having to rely on a previously gathered snapshot of the whole web graph
saved to a hard disk.

Thus, the learning algorithms we consider do not obtain the full representation of a
background structure as input. Instead, we provide algorithms local access to the background
structures, i.e., instead of having random access, algorithms may only retrieve the neighbours
of vertices they already hold in memory, initially starting with the vertices given in the
training examples. Formally, we give algorithms access to an oracle answering queries of the
form “Is v̄ ∈ R(A)?” and “Return the ith neighbour of v in A” in constant time. Often,
instead of explicitly asking for neighbours of a vertex one after another, it will be convenient
to use an oracle answering queries of the form “Return a list of all neighbours of v in A” in
time linear in the number of neighbours of v. In the context of learning, this local-access
model has been introduced in [GR17]. Similar access models have also been studied in
property testing for structures of bounded degree [GR02, AH18, AF23] and, more broadly, in
the subject of local algorithms [RTVX11, EMR14, LRY17, LRR20]. In addition to granting
only local access, we want to learn concepts even without looking at the entire structure.
Hence, we are mainly interested in learning problems that can be solved in sublinear time.
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As our machine model, we use a random-access machine (RAM) model. Usually, we
consider running times under the uniform-cost measure. This allows us to store an element of
the background structure in a single memory cell and access it in a single computation step.
The uniform-cost RAM model is commonly used in the database theory literature as well as
in the analysis of algorithmic meta-theorems [Gro01, FFG02, AGM13, DSS22, CZB+22]. For
further details on this model, we refer to [FG06]. Additionally, we consider the logarithmic-
cost measure, where storing an element of a structure A requires space O(log |A|), so
accessing and storing takes O(log |A|) many steps.

In contrast to the large background structures, we usually consider formulas as being
human-written and hence, rather short. This justifies that in our complexity analyses,
we focus on the data complexity of a problem, that is, we consider formulas as fixed and
measure running times in terms of the size of the background structure, i.e. the number of its
elements. This approach is also common in database theory when analysing the complexity
of the query-evaluation problem [Var82].

3. Learning First-Order Logic

In this section, we formally introduce the different types of learning problems that we
consider in this paper. To exemplify this, we briefly describe the learnability results that
Grohe and Ritzert obtained in [GR17] for concepts that can be described using first-order
logic on structures of small degree within both learning scenarios considered in this paper.
In Theorems 3.3 and 3.6, our main results of this section, we complement the results from
[GR17] with lower bounds for learning on structures without a degree bound.

3.1. Consistent Learning. We start with the consistent-learning scenario. That is, as
described in Section 1, we are given a sequence of training examples, and we assume that
the examples have been generated using an unknown target concept from a known concept
class. Our task is to find a hypothesis that is consistent with the training sequence.

To make this problem feasible at all, we only consider concept classes of limited
complexity. Concepts should be definable, like the hypotheses that we learn, via formulas
and tuples of parameters. We limit the complexity of the formulas, and we also bound the
numbers of parameters. For the learning problem on a background structure A with k-tuples
of elements given as examples, we require that the concept class can be defined as

HΦ∗,k,ℓ(A) :=
{
hAφ,w̄

∣∣ φ ∈ Φ∗, w̄ ∈
(
U(A)

)ℓ}
for a set Φ∗ of formulas φ(x̄, ȳ) with |x̄| = k and |ȳ| = ℓ. To limit the complexity of the
formulas in Φ∗, in case of first-order logic, the set will only contain formulas up to a certain
quantifier rank.

Since we would like to use the learned hypothesis to predict the label of tuples we
have not seen yet, we also limit our choice of hypotheses and require that the hypothesis
comes from a hypothesis class of limited complexity. We do this mainly for two reasons.
First, we want to make sure that we are able to evaluate the hypothesis on new tuples
efficiently. Second, we want to avoid overfitting, where the hypothesis perfectly fits the
training examples, but it does so by simply memorising the examples instead of learning an
underlying rule. As we will see in Section 3.2, limiting the complexity of a hypothesis class
is a key ingredient to finding hypotheses that generalise well. In the results of this paper,
just as in the results of [GR17], we allow algorithms to return hypotheses that are more



12 S. VAN BERGEREM

complex than the concepts contained in the concept class. Hence, we use a hypothesis class
HΦ,k,ℓ(A) with a set Φ of formulas that can be more complex than Φ∗.

Now, we consider the learning problem for first-order logic introduced in [GR17]. There,
for fixed k, ℓ, q∗ ∈ N and a fixed signature σ, the authors considered concept classes based
on first-order formulas of quantifier rank at most q∗ with k + ℓ free variables, so

Φ∗ =
{
φ(x̄, ȳ) ∈ FO[σ]

∣∣ qr(φ) ≤ q∗, |x̄| = k, |ȳ| = ℓ
}
.

Note that, up to equivalence, there are only finitely many formulas in Φ∗. By Gaifman’s
Locality Theorem [Gai82], every single of those formulas is equivalent to a formula in
Gaifman normal form. This shows that there is some q ∈ N such that every formula
in Φ∗ is equivalent to a formula in Gaifman normal form of quantifier rank at most q.
Grohe and Ritzert use this q as the bound on the quantifier rank for Φ, i.e. they use
Φ =

{
φ(x̄, ȳ) ∈ FO[σ]

∣∣ qr(φ) ≤ q, |x̄| = k, |ȳ| = ℓ
}
. This allows them in their algorithms to

only look for formulas in Gaifman normal form. Let f : N2 → N be a function such that
all FO[σ] formulas of quantifier rank at most q∗ with k + ℓ free variables are equivalent
to an FO[σ] formula of quantifier rank at most f(k + ℓ, q∗) in Gaifman normal form. The
consistent-learning problem for first-order logic is defined as follows.

FO-Learn-Consistent(σ, k, ℓ, q∗)

Input: structure A, training sequence T ∈
((
U(A)

)k × {0, 1})m
for some m ∈ N

Task: Return a formula φ(x̄, ȳ) ∈ FO[σ] of quantifier rank at most f(k + ℓ, q∗) with

k + ℓ free variables and a tuple w̄ ∈
(
U(A)

)ℓ
such that the hypothesis hAφ,w̄ is

consistent with T . The algorithm may reject if there is no formula φ∗(x̄, ȳ) ∈ FO[σ]

of quantifier rank at most q∗ and tuple w̄∗ ∈
(
U(A)

)ℓ
such that the hypothesis

hAφ∗,w̄∗ is consistent with T .

Grohe and Ritzert [GR17] showed that the problem is solvable in time polynomial in the
degree of the background structure and the number of examples in the training sequence.

Theorem 3.1 [GR17]. Let σ be a relational signature and let k, ℓ, q∗ ∈ N. There is an

algorithm that solves FO-Learn-Consistent(σ, k, ℓ, q∗) in time (log n+ d+m)O(1) under

the logarithmic-cost measure and in time (d+m)O(1) under the uniform-cost measure, where
n is the size and d is the degree of the background structure, and m is the length of the
training sequence.

On classes of structures of polylogarithmic degree, that is, classes C for which there is
some c ∈ N such that deg(A) ∈ O

(
(log |A|)c

)
for all structures A in C, Theorem 3.1 implies

that consistent learning is possible in sublinear time.

Corollary 3.2. Let σ be a relational signature, let k, ℓ, q∗ ∈ N, and let C be a class
of structures of polylogarithmic degree. There is an algorithm that solves the problem
FO-Learn-Consistent(σ, k, ℓ, q∗) on C in time sublinear in the size of the background
structure and polynomial in the length of the training sequence, under the logarithmic-cost
as well as the uniform-cost measure.

In the proof of Theorem 3.1, Grohe and Ritzert [GR17] provide a brute-force algorithm
that tests all combinations of certain formulas and parameters. Since the assumed target
concept uses a formula of quantifier rank at most q∗, by Gaifman’s Locality Theorem [Gai82],
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there is an r∗ = r(q∗) ∈ N such that the used formula is r∗-local. Furthermore, there is
an equivalent formula in Gaifman normal form of quantifier rank at most q. Hence, the
algorithm in [GR17] tests all formulas from the (up to equivalence) finite set of r∗-local
formulas in Gaifman normal form of quantifier rank at most q. Due to the locality of
the considered formulas, it then suffices to limit the search for suitable parameters to a
neighbourhood of a certain radius around the examples given in the training sequence.
The size of the neighbourhood, and thus also the number of parameter tuples to test, is
polynomial in the degree of the structure and the number of training examples. Finally, again
due to the locality of the considered formulas, a single test of a hypothesis can be performed
in time polynomial in the degree of the structure. All in all, this yields an algorithm with
the desired running time bounds.

In this paper, we prove similar results for the extension FOCN of first-order logic with
counting quantifiers in Sections 6 and 7. There, instead of using Gaifman locality and
Gaifman normal forms, we use so-called Hanf locality and Hanf normal forms.

Prior to this, we provide a lower bound on the running time needed to learn first-order
definable concepts on general structures. This shows that the degree bound imposed on the
class of background structures is crucial to be able to learn first-order definable concepts in
sublinear time.

Theorem 3.3. Let σ be a signature that contains at least one relation symbol of arity at
least 2. For all k, ℓ ∈ N≥1 and q∗ ≥ 2, there is no algorithm with only local access to the
background structure that solves FO-Learn-Consistent(σ, k, ℓ, q∗) in time sublinear in the
size of the background structure.

Proof. First, we prove the statement for k = ℓ = 1, q∗ = 2, and σ = {E} for a binary
relation symbol E. Afterwards, we generalise this result.

We prove the statement by contradiction. Assume that there is an algorithm solving
FO-Learn-Consistent(σ, k, ℓ, q∗) in sublinear time. Choose n ∈ N such that for all n′ ≥ n,
the algorithm uses at most n′

16 many steps on background structures of size n′. Now, we
construct two background structures A1 and A2 and corresponding training sequences T1
and T2 such that the algorithm is unable to distinguish the two inputs in sublinear time.
Hence, the algorithm has to return the same formula and the same parameter on both inputs.
As we will see, the resulting hypothesis has to be inconsistent with at least one of the two
inputs, which then contradicts our assumption that the algorithm solves the problem.

The background structure A1 is depicted in Figure 4. It is formally defined as the
{E}-structure with

Ui,j = {zi,j,p | p ∈ [n]} for i ∈ [2] and j ∈ [4],

U(A1) = {x1, x2, x3, x4, y1, y2} ∪
⋃

i∈[2], j∈[4]

Ui,j ,

R =
{
{yi, zi,j,p}

∣∣ i ∈ [2], j ∈ [4], p ∈ [n]
}
, (rows)

C =
{
{xj , zi,j,p}

∣∣ i ∈ [2], j ∈ [4], p ∈ [n]
}
, (columns)

E1 =
{
{z1,1,n−1, z1,1,n}, {z1,3,n−1, z1,3,n},
{z2,1,n−1, z2,1,n}, {z2,4,n−1, z2,4,n}

}
, and

E(A1) = R ∪ C ∪ E1,
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y1

x1 x2 x3 x4

y2

Figure 4: Background structure A1 from the proof of Theorem 3.3. Eight sets of vertices are
placed in a table with two rows and four columns. The yi vertices are connected
to all vertices in the sets in the ith row and the xj vertices are connected to all
vertices in the sets in the jth column. The vertices on the grey background are
those parts of the background structure that the algorithm is unable to explore in
sublinear time.

where {u, v} ∈ E(A1) means that both (u, v) and (v, u) are contained in E(A1). Intuitively,
we can view the structure as eight sets of vertices Ui,j being arranged in a table with two
rows and four columns, and six additional vertices. The vertices y1 and y2 are used to
indicate the first and second row. All vertices in a set in the ith row are connected to yi via
an R-edge. The vertices x1 to x4 are used to indicate the columns, and the vertices in the
jth column are connected to xj via a C-edge. Finally, there are four additional edges within
the table. In the first row, there is one edge connecting two vertices in the first column and
one edge connecting two vertices in the third column. In the second row, there is an edge in
the first and fourth column.
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The structure A2 is almost identical to A1; only the additional edges differ. There, we
have

E2 =
{
{z1,1,n−1, z1,1,n}, {z1,4,n−1, z1,4,n},
{z2,1,n−1, z2,1,n}, {z2,3,n−1, z2,3,n}

}
and

E(A2) = R ∪ C ∪ E2,

i.e., the second edge in the first row is now in the fourth instead of the third column and in
the second row the edge is in the third instead of the fourth column.

For the target concept in both background structures, we use

φ∗(x, y) = ∃z1∃z2
(
E(x, z1) ∧ E(x, z2) ∧ E(y, z1) ∧ E(y, z2) ∧ E(z1, z2)

)
.

For both training sequences, we use the labelled vertices x1 to x4 and we use y1 or y2 as a
parameter. Hence, for the examples, the formula φ∗ is satisfied if and only if there is an
edge in the column indicated by x and the row indicated by y. For the first structure, we
use y1 as a parameter, so we select the first row. There, the first and third column contain
an edge, so the resulting training sequence is

T1 =
(
(x1, 1), (x2, 0), (x3, 1), (x4, 0)

)
.

For the second structure, we select y2 as a parameter and hence the second row of A2. There,
again the first and third column contain an edge, so T2 = T1.

Because of our choice of n, we can make sure that, for a suitable ordering of the vertices
in the background structures, the algorithm is unable to find any edge from E1 or E2. Hence,
the algorithm is unable to distinguish the two inputs, and it will return the same formula φ
and the same parameter w. Because the first and third column as well as the second and
fourth column are indistinguishable for the algorithm, again, by choosing a suitable order
on the vertices of the background structures, we can assume that the algorithm returns x1,
x2, y1, y2, or some vertex from the first or second column as the parameter w.

We consider the isomorphism between A1 and A2 that keeps y1, y2 as well as the first
and second column identical but swaps the third and fourth column (including x3 and x4).
Note that the isomorphism also maps the parameter w to itself. The existence of such
an isomorphism implies that the returned formula φ behaves in A1 on x3 like it does in
A2 on x4, so Jφ(x3, w)KA1 = Jφ(x4, w)KA2 . However, in the training sequence T1 = T2, the
vertices x3 and x4 have different labels. Hence, the algorithm cannot return on both A1 and
A2 a consistent hypothesis, so it has to fail on at least one of them. This contradicts our
assumption, so there is no algorithm solving FO-Learn-Consistent(σ, k, ℓ, q∗) in sublinear
time for σ = {E}, k = ℓ = 1 and q∗ = 2.

Now, we generalise this result. Note that we did not use any bounds on the quantifier
rank for the returned formula φ. Hence, our proof also works for larger values of q∗. If E is
a relation symbol of higher arity, we can set the first two entries of the tuples like described
above and then repeat the second entry to fill the rest of the tuple. Additional relation
symbols have no influence on the argumentation presented above. Similarly, for k > 1, we
can provide the same vertices as examples, but instead of using single vertices, we use tuples
filled with the same vertex.

For ℓ > 1, we use the disjoint union of ℓ copies of A1 as the first background structure
and proceed analogously for the second background structure. The training sequence consists
of the vertices x1 to x4 with their corresponding labels from every single of those ℓ copies.
Then, the algorithm either puts exactly one parameter in each of the copies, or there is at
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least one copy without any parameters. Thus, in both cases, there is at least one copy with
at most one parameter. Hence, the argumentation from above still applies for this copy,
showing that the algorithm is unable to provide a consistent hypothesis for at least one of
the inputs.

3.2. PAC Learning. Next, we introduce Haussler’s model of agnostic probably approximately
correct (PAC) learning [Hau92], a generalisation of Valiant’s PAC-learning model [Val84].
Moreover, to get familiar with this model within our logic learning framework, we discuss the
agnostic PAC-learning results from [GR17] and describe techniques to prove these results
based on the consistent-learning results.

Intuitively, in (agnostic) PAC learning, we are interested in hypotheses that generalise
well, i.e. hypotheses that not only work well on the examples from the training sequence
but also on tuples not given as examples.

In PAC learning, we assume an (unknown) probability distribution D on the instance
space X and, as in consistent learning, a consistent target concept c : X → {0, 1}. The
learner’s goal is to find a hypothesis h : X → {0, 1}, based on a sequence of training examples
randomly drawn from D, such that h minimises the generalisation error

errD,c(h) := Pr
x∼D

(
h(x) ̸= c(x)

)
,

i.e. the probability of being wrong on a random instance. In practice, we want to find a
hypothesis with a generalisation error below a certain threshold ε.

In agnostic PAC learning, we drop the assumption of having a consistent target concept.
Instead, we assume an (unknown) probability distribution D on X×{0, 1}. Again, a learning
algorithm should find a hypothesis h that minimises the generalisation error, which is now
defined as

errD(h) := Pr
(x,λ)∼D

(
h(x) ̸= λ

)
.

Here, since a generalisation error of 0 might not be possible, we want to find a hypothesis
with a generalisation error close to the best possible one.

A hypothesis class H of hypotheses h : X → {0, 1} is called agnostically PAC-learnable if
there is a function mH : (0, 1)2 → N and a learning algorithm L with the following property:
For all ε, δ ∈ (0, 1) and for every distribution D over X × {0, 1}, when running L on a
sequence T of m examples drawn i.i.d. from D with m ≥ mH(ε, δ), it outputs a hypothesis
h ∈ H such that, with probability of at least 1− δ over the choice of training examples, it
holds that

errD(h) ≤ inf
h′∈H

errD(h
′) + ε.

We call such an algorithm L an (agnostic) PAC-learning algorithm.
In this definition, we find two parameters, ε and δ. The first parameter ε, also called the

accuracy parameter (“approximately correct”), describes how far the hypothesis returned
by the algorithm is allowed to be from an optimal hypothesis. This allows the returned
hypothesis to make a few mistakes, e.g. in case of outliers that are manually handled by
an optimal solution but that we do not see in the limited number of training examples.
The second parameter δ, also called the confidence parameter (“probably”), describes
how confident we are to return a good hypothesis on a randomly chosen sequence of
training examples. This refers to cases where the randomly chosen training sequence is
not representative for D, e.g. it consists only of positive examples or the same example is
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repeated over and over again. The function mH determines, given the parameters ε and
δ, the sample complexity of the problem, i.e. the number of examples needed to probably
find an approximately correct hypothesis. For a more detailed discussion of (agnostic) PAC
learning, we refer to [SSBD14].

Analogously to the results in the consistent-learning case, in [GR17], Grohe and Ritzert
analysed a relaxed version of agnostic PAC learning. There, we want to approximately learn
concepts from a concept class, but we allow the algorithms to return hypotheses from a
slightly more complex hypothesis class.

In addition to the previously defined membership and neighbourhood oracles for the
background structure A, we allow algorithms to query the size |A| of the structure. This
information is needed to compute the sufficient length mH(ε, δ) of the training sequence.

Furthermore, we give algorithms oracle access to the probability distribution D on
(
U(A)

)k×
{0, 1}. That is, whenever an algorithm queries the oracle, it receives a labelled example

from
(
U(A)

)k × {0, 1} drawn from D. The labelled examples are drawn independently of
each other.

As in Section 3.1, let f : N2 → N be a function such that all FO[σ] formulas of quantifier
rank at most q∗ with k + ℓ free variables are equivalent to an FO[σ] formula of quantifier
rank at most f(k + ℓ, q∗) in Gaifman normal form.

The k-ary agnostic PAC-learning problem for first-order logic is defined as follows.

FO-Learn-PAC(σ, k, ℓ, q∗)

Input: structure A, rational numbers ε, δ > 0, probability distribution D on
(
U(A)

)k×
{0, 1}

Task: Return a formula φ(x̄, ȳ) ∈ FO[σ] with qr(φ) ≤ f(k + ℓ, q∗) and a tuple w̄ ∈(
U(A)

)ℓ
such that, with probability of at least 1− δ over the choice of examples

drawn i.i.d. from D, it holds that
errD

(
hAφ,w̄

)
≤ ε∗ + ε,

where
ε∗ := min

φ∗(x̄,ȳ)∈FO[σ]
with qr(φ∗)≤q∗,
w̄∗∈(U(A))ℓ

errD
(
hAφ∗,w̄∗

)
.

To solve the problem algorithmically, we can follow the Empirical Risk Minimisation
(ERM) rule [Vap91, SSBD14], that is, our algorithm should return a hypothesis h that
minimises the training error (or empirical risk)

errT (h) :=
1

|T |
·
∣∣{(v̄, λ) ∈ T ∣∣ h(v̄) ̸= λ

}∣∣
on the training sequence T of queried examples. Thus, in order to solve the PAC-learning
problem FO-Learn-PAC(σ, k, ℓ, q∗), we first consider the following problem.
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FO-Learn-ERM(σ, k, ℓ, q∗)

Input: structure A, training sequence T ∈
((
U(A)

)k × {0, 1})m
for some m ∈ N

Task: Return a formula φ(x̄, ȳ) ∈ FO[σ] with qr(φ) ≤ f(k + ℓ, q∗) and a tuple w̄ ∈(
U(A)

)ℓ
such that

errT
(
hAφ,w̄

)
≤ min

φ∗∈FO[σ]
with qr(φ∗)≤q∗,
w̄∗∈(U(A))ℓ

errT (h
A
φ∗,w̄∗).

This problem is very similar to the consistent-learning problem. The only difference is
that, instead of asking for a consistent hypothesis, we want to find a hypothesis that is at
least as consistent as the best one from the concept class.

To solve FO-Learn-ERM, Grohe and Ritzert [GR17] use a brute-force algorithm
similar to the one they present for the problem FO-Learn-Consistent. However, instead
of checking whether a hypothesis is consistent, they count the number of errors the hypotheses
make on the training sequence and return the hypothesis that minimises this number. They
then show that this also yields an algorithm solving the PAC-learning problem.

Theorem 3.4 [GR17]. Let σ be a relational signature and let k, ℓ, q∗ ∈ N. There is an

algorithm that solves FO-Learn-PAC(σ, k, ℓ, q∗) in time (log n+ d+ 1/ε+ 1/δ)O(1) under
the logarithmic-cost and the uniform-cost measure, where n is the size and d is the degree of
the background structure.

Analogously to the consistent-learning problem, on classes of structures of polylogarith-
mic degree, Theorem 3.4 implies that probably approximately correct learning is possible in
sublinear time.

Corollary 3.5. Let σ be a relational signature, let k, ℓ, q∗ ∈ N, and let C be a class of struc-
tures of polylogarithmic degree. There is an algorithm that solves FO-Learn-PAC(σ, k, ℓ, q∗)
on C in time sublinear in the size of the background structure, under the logarithmic-cost as
well as the uniform-cost measure.

We prove similar PAC-learning results for FOCN in Sections 6 and 7. Theorem 3.4
and Corollary 3.5 show a strong connection between consistent and PAC learning. Only
slight modifications are needed to turn the consistent-learning algorithm into an algorithm
performing Empirical Risk Minimisation that can then be used within a PAC-learning
algorithm. To conclude this section, we show that the strong connection also holds in the
other direction. That is, analogously to a proof by Grohe, Löding, and Ritzert in [GLR17],
we transform Theorem 3.3, our negative result for the consistent-learning problem, into a
negative result for the PAC-learning problem.

Theorem 3.6. Let σ be a signature that contains at least one relation symbol of arity at
least 2. For all k, ℓ ∈ N≥1 and q∗ ≥ 2, there is no algorithm with only local access to the
background structure that solves FO-Learn-PAC(σ, k, ℓ, q∗) in time sublinear in the size of
the background structure.

Proof. This proof is based on the proof of Theorem 3.3. We only consider the case k = ℓ = 1,
q∗ = 2 and σ = {E} for a binary relation symbol E. The generalisation can be done
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analogously to the original proof. Let A1 and A2 be the background structures and
T := T1 = T2 be the training sequences from the proof. Let D be the uniform distribution
over the examples from T , that is, (x1, 1), (x2, 0), (x3, 1), and (x4, 0) have probability 1

4 ; all
other (v, λ) ∈ U(A1)× {0, 1} = U(A2)× {0, 1} have probability 0. By the choice of D, if a
hypothesis misclassifies at least one of the xi, it has a generalisation error of at least 1

4 .
Assume that L is an algorithm that solves FO-Learn-PAC(σ, k, ℓ, q∗) in sublinear time.

As we argued in the proof of Theorem 3.3, L is unable to distinguish A1 and A2 from each
other (by choosing a suitable ordering on the vertices). Furthermore, we argued that such
an algorithm would also be unable to distinguish the first and third column as well as the
second and fourth column of the background structures. In the proof of Theorem 3.3, we
chose an ordering on the vertices such that the parameter returned by the algorithm is x1,
x2, y1, y2, or some vertex from the first or second column. Here, the vertex returned by
L may depend on the training sequence drawn from D. However, by choosing a sufficient
ordering on the vertices, we can still make sure that the returned parameter is among the
mentioned ones (i.e. among x1, x2, y1, y2, or some vertex from the first or second column)
with probability at least 1

2 over the choice of examples drawn from D.
Now, we only consider those cases where the parameter is among the mentioned ones.

For every fixed choice of examples, analogously to the proof of the consistent-learning case,
the algorithm L has to return the same hypothesis on both background structures. Thus,
the hypothesis returned by the algorithm has to misclassify at least one of the xi on at least
one of the two background structures. Hence, on one of the two background structures,
it makes at least one error in at least half of the cases where the parameter is among the
mentioned ones, so with (conditional) probability at least 1

2 .
Overall, including the probability that the chosen parameter is among the mentioned

vertices, on at least one of the two background structures, L has to make at least one error
on the xi with probability at least 1

2 ·
1
2 = 1

4 . Combined with our observation above, this
means that, on one of two background structures, the algorithm has a generalisation error of
at least 1

4 with probability at least 1
4 over the choice of examples drawn from D. We choose

ε = δ = 1
8 . Then L does not meet the requirements of FO-Learn-PAC, which contradicts

our assumption. All in all, this shows that there is no algorithm that solves the problem
FO-Learn-PAC(σ, k, ℓ, q∗) in sublinear time.

4. Locality of First-Order Logic with Counting

For the learnability results for first-order logic with counting that we prove in Sections 6
and 7, we rely on normal forms based on Hanf’s locality theorem for first-order logic [Han65].
This theorem implies that, to determine whether a finite structure satisfies a first-order
sentence of quantifier rank at most q, it suffices to determine the number of realisations of
neighbourhoods up to a certain radius within the structure. The version of the theorem
provided by Fagin, Stockmeyer, and Vardi [FSV95] implies that on structures of degree
at most d, it even suffices to determine the number of these realisations up to a certain
threshold. Since, in structures of degree at most d, there are only finitely many types of
neighbourhoods of radius at most r, this condition can be expressed as a first-order sentence
in so-called Hanf normal form.
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In this paper, we use the Hanf normal form for the first-order logic with counting
FOCN provided by Kuske and Schweikardt [KS17]. Before stating the exact result, we first
introduce the basic building blocks.

Let r ∈ N, k ∈ N≥1, let A be a relational structure, and let v̄ = (v1, . . . , vk) ∈
(
U(A)

)k
.

A sphere formula with k centres of locality radius r is a first-order formula sphAr, v̄(x1, . . . , xk)

such that for every structure A′ and every tuple v̄′ = (v′1, . . . , v
′
k) ∈

(
U(A′)

)k
, it holds that

A′ |= sphAr, v̄[v̄
′] if and only if there is an isomorphism between the two r-neighbourhoods of

v̄ and v̄′ that maps the centres upon each other, i.e., there is an isomorphism π between
NA

r (v̄) and NA′
r (v̄′) with π(vi) = v′i for all i ∈ [k], or, equivalently, there is an isomorphism

between SAr (v̄) and SA′
r (v̄′). For a fixed signature σ, given a tuple v̄, a radius r, and local

access to a σ-structure A, the time needed to construct the sphere formula sphAr, v̄(x1, . . . , xk)
is polynomial in the size of the r-neighbourhood of v̄ [KS17]. Note that sphere formulas of
locality radius at most r are r-local.

A basic counting term is a counting term of the form #(x).φ(x) in FOCN, where x is a
structure variable in vars and φ is a sphere formula with a single centre. The locality radius
of the basic counting term is the locality radius of the sphere formula.

A numerical condition on occurrences of types with one centre (or numerical oc-type
condition) is an FOCN formula that is built from basic counting terms and rules (2) and
(5)–(9) from Definitions 2.1 and 2.2, i.e., using number variables and integers, and combining
them by addition, multiplication, numerical predicates from P ∪ {P∃} (with ar(P∃) = 1 and
JP∃K = N≥1), Boolean combinations, and quantification of number variables. Its locality
radius is the maximal locality radius of the involved basic counting terms. Note that
numerical oc-type conditions do not have any free structure variables.

A formula is in Hanf normal form for FOCN or an hnf formula for FOCN if it is a
Boolean combination of numerical oc-type conditions and sphere formulas. The locality
radius of an hnf formula is the maximal locality radius of the involved conditions and
formulas.

The following result is due to Kuske and Schweikardt [KS17].

Theorem 4.1 [KS17]. For any relational signature σ, any degree bound d ∈ N, and any
FOCN[σ] formula φ, there exists a d-equivalent hnf formula ψ for FOCN[σ] of locality radius

smaller than
(
2 · bw(φ) + 1

)br(φ)
with free(ψ) = free(φ).

Next, analogously to the local types used in [GR17], we introduce local Hanf types, and
we also provide similar locality results for them. Let A be a relational structure, k ∈ N≥1,

r ∈ N, and v̄ ∈
(
U(A)

)k
. The local Hanf type (for FOCN) of v̄ with locality radius at most r

in A is

lhtpAr (v̄) :=
{
φ(x̄) hnf formula | A |= φ[v̄],

locality radius of φ is at most r
}
.

We use Kuske’s and Schweikardt’s result to show that FOCN formulas are unable to
distinguish tuples that have the same local Hanf type (of a certain locality radius).

Lemma 4.2. Let A be a relational structure, let x̄ = (x1, . . . , xk) be a tuple of structure
variables, let κ̄ = (κ1, . . . , κℓ) be a tuple of number variables, and let φ(x̄, κ̄) be an FOCN
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formula. For all v̄, v̄′ ∈
(
U(A)

)k
and n̄ = (n1, . . . , nℓ) ∈ [0, |A|]ℓ, if

lhtpAr (v̄) = lhtpAr (v̄
′) for r = (2 · bw(φ) + 1)br(φ),

then

A |= φ[v̄, n̄] ⇐⇒ A |= φ[v̄′, n̄].

Proof. Let φ′(x̄) := φ(x̄, n̄), i.e. we replace every occurrence of the number variable κi in
φ with the integer ni for all i. Note that br(φ) = br(φ′) and bw(φ) = bw(φ′). Using
Theorem 4.1, we obtain an hnf formula ψ(x̄) of locality radius smaller than r =

(
2 ·

bw(φ) + 1
)br(φ)

that is deg(A)-equivalent to φ′. Let v̄ and v̄′ be k-tuples from A with

lhtpAr (v̄) = lhtpAr (v̄
′). We show A |= φ[v̄, n̄] =⇒ A |= φ[v̄′, n̄], then the other direction

follows by symmetry.
Assume that A |= φ[v̄, n̄] holds. This implies that A |= φ′[v̄], and A |= ψ[v̄] hold as well.

Thus, since ψ is an hnf formula of locality radius smaller than r, we have ψ ∈ lhtpAr (v̄) =
lhtpAr (v̄

′), which implies that A |= ψ[v̄′]. By the deg(A)-equivalence between ψ and φ′, this
shows that A |= φ′[v̄′], which finally implies that A |= φ[v̄′, n̄].

The following results help us to reduce the formula and parameter spaces we have to
consider to find consistent hypotheses. The first lemma states that two tuples have the same
local Hanf type if and only if their spheres are isomorphic.

Lemma 4.3. Let A be a relational structure, k ∈ N≥1, r ∈ N, and v̄, v̄′ ∈
(
U(A)

)k
. It holds

that lhtpAr (v̄) = lhtpAr (v̄
′) if and only if SAr (v̄) ∼= SAr (v̄′).

Proof. For the forward direction, assume lhtpAr (v̄) = lhtpAr (v̄
′). We have sphAr, v̄ ∈ lhtpAr (v̄)

and hence, sphAr, v̄ ∈ lhtpAr (v̄
′). Thus, A |= sphAr, v̄[v̄

′], which is equivalent to SAr (v̄) and

SAr (v̄′) being isomorphic.
For the backward direction, assume the spheres SAr (v̄) and SAr (v̄′) are isomorphic. Let

x̄ = (x1, . . . , xk) and let φ(x̄) be an hnf formula of locality radius at most r. Then, φ is
a Boolean combination of numerical oc-type conditions and sphere formulas with locality
radius at most r. We show that A |= φ[v̄] if and only if A |= φ[v̄′].

The numerical oc-type conditions in φ do not have any free structure variables. Hence,
their evaluation only depends on the structure and is independent of the assignment.

The free variables of the sphere formulas used in φ are a subset of free(φ). Let

sphA
′

r′, w̄(xi1 , . . . , xiℓ) be such a sphere formula used in φ for some relational structure A′, an

ℓ-tuple w̄ from A′, and some locality radius r′ ≤ r. It follows from our assumption that
SAr′ (vii , . . . , viℓ) ∼= SAr′ (v′ii , . . . , v

′
iℓ
). Thus,

A |= sphAr′, w̄[vi1 , . . . , viℓ ]

⇐⇒ SAr′ (vii , . . . , viℓ) ∼= S
A′
r′ (w1, . . . , wℓ)

⇐⇒ SAr′ (v′ii , . . . , v
′
iℓ
) ∼= SA

′
r′ (w1, . . . , wℓ)

⇐⇒ A |= sphAr′, w̄[v
′
i1 , . . . , v

′
iℓ
].

This holds for all sphere formulas in φ. Thus, we have A |= φ[v̄] if and only if A |= φ[v̄′].

The following result is a variant of the Local Composition Lemma for first-order logic
from [GR17], translated to first-order logic with counting and local Hanf types. It allows
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us to analyse the parameters we choose by splitting them into two parts with disjoint
neighbourhoods.

Lemma 4.4 (Local Composition Lemma for FOCN). Let A be a relational structure,

k, ℓ ∈ N≥1, r ∈ N, v̄, v̄′ ∈
(
U(A)

)k
, and w̄, w̄′ ∈

(
U(A)

)ℓ
, such that dist(v̄, w̄) > 2r + 1,

dist(v̄′, w̄′) > 2r + 1, lhtpAr (v̄) = lhtpAr (v̄
′), and lhtpAr (w̄) = lhtpAr (w̄

′). Then, lhtpAr (v̄w̄) =
lhtpAr (v̄

′w̄′).

Proof. From lhtpAr (v̄) = lhtpAr (v̄
′), using Lemma 4.3, it follows that SAr (v̄) and SAr (v̄′) are

isomorphic. Similarly, we obtain that SAr (w̄) and SAr (w̄′) are isomorphic from lhtpAr (w̄) =
lhtpAr (w̄

′). Because of the lower bounds for the distances, we have NA
r (v̄) ∪ NA

r (w̄) =
NA

r (v̄w̄) and NA
r (v̄′) ∪ NA

r (w̄′) = NA
r (v̄′w̄′). Hence, by combining the above-mentioned

isomorphisms, we can deduce that SAr (v̄w̄) ∼= SAr (v̄′w̄′). With Lemma 4.3, it follows that
lhtpAr (v̄w̄) = lhtpAr (v̄

′w̄′).

5. Learning Problems for FOCN

With the definition of the Hanf normal form at hand, we can now formalise the learning
problems for the first-order logic with counting FOCN that we consider in this paper.

Recall the problem FO-Learn-Consistent(σ, k, ℓ, q∗), where target concepts only use
formulas of quantifier rank at most q∗, and algorithms are only allowed to return hypotheses
of quantifier rank at most f(k+ℓ, q∗) for some function f . In the remainder of this paper, for
the logic FOCN, we bound the binding rank and the binding width of the formulas instead by
constants cbr and cbw. For cbr, cbw ∈ N, let FOCN[σ, cbr, cbw] denote the set of all formulas
in FOCN[σ] of binding rank at most cbr and binding width at most cbw. Since formulas
from FOCN may have free number variables, we allow concepts to use number parameters in
addition to the parameters from the structure.

Let k, ℓ, cbr, cbw ∈ N and fix a signature σ. We consider concepts that can be defined
using a formula from

Φ∗ =
{
φ(x̄, ȳ, κ̄) ∈ FOCN[σ, cbr, cbw] | |x̄| = k, |ȳ| = ℓ

}
,

combined with parameters that are elements from the structure as well as number parameters.

For a σ-structure A, a formula φ(x̄, ȳ, κ̄) ∈ Φ∗, and tuples w̄ ∈
(
U(A)

)ℓ
and n̄ ∈ [0, |A|]|κ̄|,

the resulting hypothesis is the mapping hAφ,w̄,n̄(x̄) :
(
U(A)

)k → {0, 1} which maps a tuple

v̄ ∈
(
U(A)

)k
to Jφ(v̄, w̄, n̄)KA.

As it turns out, to describe these concepts on a fixed structure, it actually suffices to
use a Boolean combination of sphere formulas up to a certain locality radius without any
number variables or number parameters. Hence, the formulas that our algorithms return
come from the set

Φ =
{
φ(x̄, ȳ) ∈ FO[σ] | |x̄| = k, |ȳ| = ℓ,

φ is a Boolean combination of sphere formulas

of locality radius at most (2 · cbw + 1)cbr
}
.

As we will see, with different techniques in Sections 6 and 7, the restriction of the locality
radius of the returned formula still allows us to evaluate the hypothesis on new tuples
efficiently. The consistent-learning problem for FOCN is formally defined as follows.
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FOCN-Learn-Consistent(σ, k, ℓ, cbr, cbw)

Input: σ-structure A, training sequence T ∈
((
U(A)

)k × {0, 1})m

Task: Return a first-order formula φ and a tuple w̄ ∈
(
U(A)

)ℓ
, where φ is a Boolean

combination of sphere formulas of locality radius at most (2 · cbw +1)cbr , such that
the hypothesis hAφ,w̄ is consistent with T .

The algorithm may reject if there is no combination of a formula φ∗(x̄, ȳ, κ̄) ∈
FOCN[σ, cbr, cbw] and tuples w̄∗ ∈

(
U(A)

)ℓ
, n̄∗ ∈ [0, |A|]|κ̄| such that the hypothesis

hAφ∗,w̄∗,n̄∗ is consistent with T .

In Section 6, we show that this problem is solvable in sublinear time on classes of
structures of bounded degree. In Section 7, with a different approach, we extend this result
to classes of structures of polylogarithmic degree.

The ERM- and PAC-learning problems for FOCN that we study in this paper are defined
as follows.

FOCN-Learn-ERM(σ, k, ℓ, cbr, cbw)

Input: structure A, training sequence T ∈
((
U(A)

)k × {0, 1})m

Task: Return a first-order formula φ and a tuple w̄ ∈
(
U(A)

)ℓ
, where φ is a Boolean

combination of sphere formulas of locality radius at most (2 · cbw +1)cbr , such that

errT
(
hAφ,w̄

)
≤ min

{
errT (h

A
φ∗,w̄∗,n̄∗)

∣∣ φ∗(x̄, ȳ, κ̄) ∈ FOCN[σ, cbr, cbw],

w̄∗ ∈ (U(A))ℓ, n̄∗ ∈ [0, |A|]|κ̄|
}
.

FOCN-Learn-PAC(σ, k, ℓ, cbr, cbw)

Input: structure A, rational numbers ε, δ > 0, probability distribution D on
(
U(A)

)k×
{0, 1}

Task: Return a first-order formula φ and a tuple w̄ ∈
(
U(A)

)ℓ
, where φ is a Boolean

combination of sphere formulas of locality radius at most (2 · cbw +1)cbr , such that,
with probability of at least 1− δ over the choice of examples drawn i.i.d. from D,
it holds that

errD
(
hAφ,w̄

)
≤ ε∗ + ε,

where

ε∗ := min
{
errD(h

A
φ∗,w̄∗,n̄∗)

∣∣ φ∗(x̄, ȳ, κ̄) ∈ FOCN[σ, cbr, cbw],

w̄∗ ∈ (U(A))ℓ, n̄∗ ∈ [0, |A|]|κ̄|
}
.

In Section 6, we modify the algorithm we give for the consistent-learning problem to
show that FOCN-Learn-ERM is solvable in sublinear time on classes of structures of
bounded degree. Afterwards, we use this result to show that also PAC learning is possible in
sublinear time on these classes of structures. In Section 7, we extend the consistent-learning
result on classes of structures of polylogarithmic degree to ERM learning. Furthermore, we
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provide a PAC-learning algorithm that runs in sublinear time on classes of structures with a
stricter (but still not constant) degree bound.

6. Learning on Structures of Bounded Degree

In this section, we present learning results for FOCN on classes of structures of bounded
degree. We start with the consistent-learning problem.

Theorem 6.1. Let σ be a relational signature, let k, ℓ, cbr, cbw ∈ N, and let C be a
class of structures of degree at most d for some d ∈ N. There is an algorithm that
solves FOCN-Learn-Consistent(σ, k, ℓ, cbr, cbw) on C in time (log n+m)O(1) under the

logarithmic-cost measure and in time mO(1) under the uniform-cost measure, where n is the
size of the background structure and m is the length of the training sequence.

Furthermore, the hypotheses returned by the algorithm can be evaluated in time (log n)O(1)

under the logarithmic-cost measure and in constant time under the uniform-cost measure.

The high-level proof idea is similar to the one Grohe and Ritzert [GR17] presented for
the consistent-learning problem for first-order logic. We use a brute-force algorithm that
checks all combinations of certain choices of formulas and certain choices of parameters.

As we show in Lemma 6.4, for fixed σ, d, k, ℓ, cbr, and cbw, the number of formulas we
need to check is constant.

To bound the number of parameters to check, we show that it suffices to consider only
parameters in a certain neighbourhood around the training examples. As shown in Figure 5,
intuitively, this holds because parameters that are far away from the training examples
do not help to distinguish positive from negative examples. The formal result is given in
Lemma 6.2.

For the rest of this section, let σ be a fixed relational signature, d, k, ℓ, cbr, cbw ∈ N,
let r := (2 · cbw + 1)cbr , let C be a class of structures of degree at most d, and let A be a
structure from C. Let Φ∗, i.e. the set of formulas that our target concepts are based upon,
be defined as in the last section, that is,

Φ∗ =
{
φ(x̄, ȳ, κ̄) ∈ FOCN[σ, cbr, cbw] | |x̄| = k, |ȳ| = ℓ

}
.

For Φ, that is, the set of formulas our algorithms are allowed to return in a hypothesis, we
can even use a restriction of the set from the last section and set

Φd :=
{
φ(x̄, ȳ) ∈ FO[σ] | |x̄| = k, |ȳ| = ℓ,

φ is a Boolean combination of sphere formulas

of locality radius at most r

based on spheres of degree at most d
}
.

For a training sequence T =
(
(v̄1, λ1), . . . , (v̄m, λm)

)
and a radius r′ ∈ N, let NA

r′ (T ) :=⋃
i∈[m]N

A
r′ (v̄i).

Lemma 6.2. Let T ∈
(
(U(A))k × {0, 1}

)m
be a training sequence and let φ∗ ∈ Φ∗, w̄∗ ∈(

U(A)
)ℓ
, and n̄∗ ∈ [0, |A|]|κ̄| be such that the hypothesis hAφ∗,w̄∗,n̄∗ is consistent with T .

There is a formula φ ∈ Φd and a tuple w̄ ∈
(
NA

(2r+1)ℓ(T )
)ℓ

such that the hypothesis hAφ,w̄ is

consistent with T .
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v1

v2 v3

v4

NA
r (v1)

NA
r (v2) NA

r (v3)

NA
r (v4)

w

NA
r (w)

positive
example

negative
examples parameter

Figure 5: One positive and three negative examples from a training sequence as well as a
parameter with their local neighbourhoods. The vertices v1 and v2 can easily
be distinguished by a formula since they have different local types. The vertices
v1 and v3 have the same local types, and even if we take the parameter w into
consideration, the local types of the tuples (v1, w) and (v3, w) are still the same
since the parameter is too far away from both vertices v1 and v3. Thus, there is
no way to distinguish v1 and v3 using w and a formula with locality radius at
most r. The only way to distinguish vertices of the same local type is to have a
parameter close to one of the vertices, as shown for v4. This argumentation is
formalised in the proof of Lemma 6.2.

Proof. Let T =
(
(v̄1, λ1), . . . , (v̄m, λm)

)
, φ∗, w̄∗ = (w∗

1, . . . , w
∗
ℓ ), and n̄

∗ be as given in the

lemma. We iteratively select vertices w(i) from the parameters w∗
1, . . . , w

∗
ℓ that have distance

at most 2r + 1 from the examples or the already selected vertices. This process is repeated
for s steps until all remaining parameters are too far away (or all parameters have already
been selected). For the tuple w̄ that we are looking for in this proof, we use these selected
parameters and omit the others.

Formally, to select the parameters, we start with the neighbourhood N (0) := NA
2r+1(T ) of

radius 2r+1 around the examples and select a vertex w ∈ {w∗
1, . . . , w

∗
ℓ}∩N (0). If there is no

such vertex, we set s := 0 and stop this process. Otherwise, we set w(1) := w, N (1) := N (0) ∪
NA

2r+1(w), and continue. For i ≥ 2, we select a vertex w ∈ {w∗
1, . . . , w

∗
ℓ} \ {w(1), . . . , w(i−1)}

that is contained in the neighbourhood N (i−1). If there is no such vertex, we set s := i− 1
and stop. Otherwise, we set w(i) := w, N (i) := N (i−1) ∪NA

2r+1(w), and continue. W.l.o.g.

let w(i) = w∗
i for i ∈ [s]. Let w̄in := (w∗

1, . . . , w
∗
s) and w̄out := (w∗

s+1, . . . , w
∗
ℓ ). We let

ȳin := (y1, . . . , ys) and choose

φ(x̄, ȳ) :=
∨

i∈[m], λi=1

sphAr, v̄iw̄in(x̄, ȳ
in).
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The formula φ is a Boolean combination of sphere formulas of locality radius at most r
based on spheres of degree at most d and thus, φ ∈ Φd. We turn w̄in = (w̄∗

1, . . . , w̄
∗
s) into a

tuple w̄ ∈
(
NA

(2r+1)ℓ(T )
)ℓ

by choosing an arbitrary w ∈ NA
(2r+1)ℓ(T ) and filling the missing

(ℓ− s) positions with the vertex w.
It remains to show that the hypothesis hAφ,w̄ is consistent with T . If λi = 1, then by the

construction of hAφ,w̄ (especially the construction of φ), it holds that hAφ,w̄(v̄i) = 1. For the
other direction, we use the following claim.

Claim 6.3. Let i, j ∈ [m] such that A |= sphAr, v̄iw̄in [v̄jw̄
in]. Then λi = λj .

Proof. First, from A |= sphAr, v̄iw̄in(v̄jw̄
in), it follows that SAr (v̄iw̄

in) ∼= SAr (v̄jw̄
in). Using

Lemma 4.3, we obtain lhtpAr (v̄iw̄
in) = lhtpAr (v̄jw̄

in).

Second, from the construction of w(i) and N (i), it follows that NA
2r+1(v̄p) ⊆ N (0) ⊆ N (s)

for all p ∈ [m], NA
2r+1(w̄

∗
p) ⊆ N (p) ⊆ N (s) for all p ∈ [s], and w̄∗

p ̸∈ N (s) for all p ∈ [s+ 1, ℓ].

Thus, distA(v̄pw̄
in, w̄out) > 2r + 1 for every p ∈ [m].

Using Lemma 4.4 and w̄∗ = w̄inw̄out, we obtain lhtpAr (v̄iw̄
∗) = lhtpAr (v̄jw̄

∗). With
Lemma 4.2 and our choice of the radius r, it then follows that

A |= φ∗[v̄i, w̄
∗, n̄∗] ⇐⇒ A |= φ∗[v̄j , w̄

∗, n̄∗].

Since hAφ∗,w̄∗,n̄∗ is assumed to be consistent with T , this implies λi = λj . ⌟

If hAφ,w̄(v̄i) = 1, then there is some p ∈ [m] such that λp = 1 and A |= sphAr, v̄pw̄in [v̄iw̄
in].

Using the claim, we obtain λi = λp = 1. Thus, all in all, hAφ,w̄ is consistent with T .

This result shows that we only have to look for parameters in a local neighbourhood
around the examples. In structures of bounded degree, this drastically reduces the number of
parameters we have to check. Next, we bound the number of formulas we have to consider.

Lemma 6.4. For fixed σ, d, k, ℓ, cbr, and cbw, up to equivalence, the number of formulas in
Φd is constant.

Proof. In σ-structures of degree at most d, for r = (2 · cbw +1)cbr , the number of elements in
an r-sphere with (k+ ℓ) centres can be bounded by (k+ ℓ) ·µd(r) with µ0(r) := 1, µ1(r) := 2,
and µd(r) := 1 + d ·

∑r
i=0(d − 1)i for d ≥ 2. We have µ2(r) = 2r + 1 and, for d > 2, one

can show that µd(r) ≤ (d − 1)r+1. Hence, since σ is fixed, there is a constant number of
non-isomorphic spheres of radius at most r in such σ-structures. Thus, the number of sphere
formulas based on those spheres, up to equivalence, is also constant. Since Φd consists of all
Boolean combinations of these sphere formulas, the number of non-equivalent formulas in
Φd is constant as well.

With a bound on the number of parameters and a constant number of formulas, it
remains to show that we can check every single hypothesis efficiently. For this, we use the
following result due to Seese [See96].

Theorem 6.5 [See96]. Let d ∈ N and let σ be a relational signature. There is a function
f : N → N and an algorithm AMC that, on input (A, φ) for a σ-structure A of degree at
most d and an FO[σ]-sentence φ, decides whether A |= φ holds in time f(|φ|) · |A| under the
uniform-cost measure and in time f(|φ|) · |A| log |A| under the logarithmic-cost measure.

We can now prove the consistent-learning result.
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Require: local access to background structure A,
training sequence T =

(
(v̄1, λ1), . . . , (v̄m, λm)

)
1: N ← NA

(2r+1)ℓ(T )

2: for all w̄ ∈ N ℓ do
3: for all φ ∈ Φd do
4: consistent← true
5: for all i ∈ [m] do

6: if Jφ(v̄i, w̄)KN
A
r (v̄iw̄) ̸= λi then

7: consistent← false
8: break
9: if consistent then

10: return (φ, w̄)
11: reject

Figure 6: Learning algorithm Ad
con for Theorem 6.1

Proof of Theorem 6.1. We show that the algorithm given in Figure 6 fulfils the requirements

of the theorem. The algorithm goes through all tuples w̄ ∈
(
NA

(2r+1)ℓ(T )
)ℓ

and all non-

equivalent formulas φ ∈ Φd. A hypothesis hAφ,w̄ is consistent with the training sequence T if

and only if Jφ(v̄i, w̄)KA = λi for all i ∈ [m]. Since Φd only contains Boolean combinations
of sphere formulas of locality radius at most r, all formulas in Φd are r-local. Thus,

hAφ,w̄ is consistent with T if and only if Jφ(v̄i, w̄)KN
A
r (v̄iw̄) = λi for every i ∈ [m]. Hence,

if the algorithm returns a hypothesis, then it is consistent. Furthermore, if there is a

consistent hypothesis hAφ∗,w̄∗,n̄∗ using a formula φ∗(x̄, ȳ, κ̄) ∈ Φ∗ and tuples w̄∗ ∈
(
U(A)

)ℓ
,

and n̄∗ ∈ [0, |A|]|κ̄|, then, by Lemma 6.2, there is a consistent hypothesis among the ones we
check, so the algorithm returns a hypothesis.

It remains to show that the algorithm satisfies the running-time requirements while only

using local access to the structure A. For all v̄ ∈
(
U(A)

)k
and w̄ ∈

(
U(A)

)ℓ
, as discussed

in the proof of Lemma 6.4, the size of the neighbourhood NA
r (v̄w̄) can be bounded by

(k+ ℓ) · µd(r), so it is constant for fixed d, k, ℓ, r. Hence, under the logarithmic-cost measure,
the neighbourhood can be computed in time O(log n) using only local access. Under the
uniform-cost measure, it takes constant time to compute the neighbourhood. By Theorem 6.5,
on an already computed constant-size neighbourhood, the evaluation of the hypothesis in line

6 runs in constant time. The algorithm checks up to |N |ℓ · |Φd| ∈ O
(
(m ·k ·d(2r+1)ℓ+1)ℓ · |Φd|

)
hypotheses on m examples with N = NA

(2r+1)ℓ(T ) and where |Φd| only considers non-

equivalent formulas. All in all, since d, k, ℓ, r are considered constant, the running time of
the algorithm is in (m+ log n)O(1) under the logarithmic-cost measure, in mO(1) under the
uniform-cost measure, and it only uses local access to the structure A.

To evaluate the hypothesis returned by the algorithm on a tuple v̄, we only have to
evaluate it within the neighbourhood NA

r (v̄w̄), using only local access to A. Analogously

to the consistency check, the hypothesis can be evaluated in time (log n)O(1) under the
logarithmic-cost measure and in constant time under the uniform-cost measure.

In the proof, we rely on Φd being a constant-sized set of formulas which is expressive
enough to describe every concept that can be described using a formula from Φ∗. We obtain
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the expressiveness via formulas in Hanf normal form. However, to bound the number of
these formulas, we need to bound the degree of the structures we consider in Lemma 6.4.
Without this bound on the degree, even in structures of only logarithmic degree, the bound
on the number of formulas in Φd would be superlinear in the size of the structure, so this
would not yield a sublinear-time learning algorithm any more. Thus, in Section 7, we use a
different technique to prove consistent learnability on structures of polylogarithmic degree.

Next, we extend Theorem 6.1 to the ERM problem.

Theorem 6.6. Let σ be a relational signature, let k, ℓ, cbr, cbw ∈ N, and let C be a class
of structures of degree at most d for some d ∈ N. There is an algorithm that solves
FOCN-Learn-ERM(σ, k, ℓ, cbr, cbw) on C in time (log n +m)O(1) under the logarithmic-

cost measure and in time mO(1) under the uniform-cost measure, where n is the size of the
background structure and m is the length of the training sequence.

Furthermore, the hypotheses returned by the algorithm can be evaluated in time (log n)O(1)

under the logarithmic-cost measure and in constant time under the uniform-cost measure.

To prove this result, we use the following corollary of Lemma 6.2.

Corollary 6.7. Let T ∈
(
(U(A))k × {0, 1}

)m
be a training sequence and let φ∗ ∈ Φ∗,

w̄∗ ∈
(
U(A)

)ℓ
, and n̄∗ ∈ [0, |A|]|κ̄|. There is a formula φ ∈ Φd and a tuple w̄ ∈

(
NA

(2r+1)ℓ(T )
)ℓ

such that errT
(
hAφ,w̄

)
≤ errT

(
hAφ∗,w̄∗,n̄∗

)
.

Proof. Let ε := errT
(
hAφ∗,w̄∗,n̄∗

)
. There is a sequence S that is a subsequence of T of length

(1− ε) · |T | such that hAφ∗,w̄∗,n̄∗ is consistent with S. By Lemma 6.2, there is also a formula

φ ∈ Φd and a tuple w̄ ∈
(
NA

(2r+1)ℓ(T )
)ℓ

such that hAφ,w̄ is consistent with S. Thus, we have

errT
(
hAφ,w̄

)
≤ ε = errT

(
hAφ∗,w̄∗,n̄∗

)
.

Using this corollary, we can now prove Theorem 6.6.

Proof of Theorem 6.6. We show that the algorithm given in Figure 7 fulfils the requirements

of the theorem. The algorithm goes through all tuples w̄ ∈
(
NA

(2r+1)ℓ(T )
)ℓ

and all non-

equivalent formulas φ ∈ Φd and counts the number of errors that hAφ,w̄ = Jφ(x̄, ȳ)KA(x̄, w̄)
makes on T . Then, it returns a hypothesis with minimal training error. By Corol-
lary 6.7, the hypothesis returned by the algorithm fulfils the requirements of the problem
FOCN-Learn-ERM. The running-time analysis is analogous to the one presented in the
proof of Theorem 6.1.

To solve FOCN-Learn-PAC, the remaining missing ingredient is the following result
that gives us a bound on the needed queried examples as well as a bound on the difference
between the training and the generalisation error.

Lemma 6.8 (Uniform Convergence [SSBD14]). Let H be a finite hypothesis class over the
instance space X and let

mUC
H (ε, δ) :=

⌈
log(2 |H| /δ)

2ε2

⌉
.

For all ε, δ > 0 and for every distribution D over X × {0, 1}, if a training sequence T of
length at least mUC

H (ε, δ) is drawn i.i.d. from D, then, with probability at least 1 − δ, the
training sequence is ε-representative, that is, for all h ∈ H,∣∣ errT (h)− errD(h)

∣∣ ≤ ε.
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Require: local access to background structure A,
training sequence T =

(
(v̄1, λ1), . . . , (v̄m, λm)

)
1: N ← NA

(2r+1)ℓ(T )

2: errormin ← |T |+ 1
3: for all w̄ ∈ N ℓ do
4: for all φ ∈ Φd do
5: error ← 0
6: for all i ∈ [m] do

7: if Jφ(v̄i, w̄)KN
A
r (v̄iw̄) ̸= λi then

8: error ← error + 1
9: if error < errormin then

10: errormin ← error
11: (φmin, w̄min)← (φ, w̄)
12: return (φmin, w̄min)

Figure 7: Learning algorithm Ad
ERM for Theorem 6.6

Finally, we obtain agnostic PAC learnability of FOCN via the ERM algorithm.

Theorem 6.9. Let σ be a relational signature, let k, ℓ, cbr, cbw ∈ N, and let C be a
class of structures of degree at most d for some d ∈ N. There is an algorithm that

solves FOCN-Learn-PAC(σ, k, ℓ, cbr, cbw) on C in time
(
log |A|+ log 1

δ +
1
ε

)O(1)
, under

the logarithmic-cost as well as the uniform-cost measure, where n is the size of the back-
ground structure.

Furthermore, the hypotheses returned by the algorithm can be evaluated in time (log n)O(1)

under the logarithmic-cost measure and in constant time under the uniform-cost measure.

Proof. Let A ∈ C be a background structure of degree at most d. We consider the concept
class

H∗ =
{
hAφ,w̄,n̄

∣∣ φ(x̄, ȳ, κ̄) ∈ Φ∗, w̄ ∈
(
U(A)

)ℓ
, n̄ ∈ [0, |A|]|κ|

}
and the hypothesis class

H =
{
hAφ,w̄

∣∣ φ(x̄, ȳ) ∈ Φd, w̄ ∈
(
U(A)

)ℓ}
.

Since, by Lemma 6.4, Φd contains (up to equivalence) only finitely many formulas, the

number of hypotheses in H is bounded by s · |A|ℓ for some constant s.

Claim 6.10. It holds that H∗ ⊆ H.

Proof. Let h∗ := hAφ∗,w̄∗,n̄∗ ∈ H∗. We consider the training sequence T that contains an

example
(
v̄, h∗(v̄)

)
for every k-tuple v̄ from A. By Lemma 6.2, there is a formula φ ∈ Φd

and a tuple w̄ ∈
(
U(A)

)ℓ
such that the hypothesis hAφ,w̄ ∈ H is consistent with T . By the

definition of T , we have h∗ = hAφ,w̄, and thus h∗ ∈ H. ⌟

By using the claim, we can also bound the number of hypotheses in H∗ by s · |A|ℓ. Our
algorithm that solves FOCN-Learn-PAC works as follows.

Given local access to a background structure A, oracle access to the size |A| of the
structure, oracle access to a probability distribution D on

(
U(A)

)k × {0, 1}, and given



30 S. VAN BERGEREM

rational numbers ε, δ > 0, our algorithm queries

m(|A| , ε, δ) :=

⌈
2 log(2s · |A|ℓ /δ)

ε2

⌉
many examples from D. Then, it runs Ad

ERM on the resulting training sequence.
Next, we show that this algorithm indeed solves the problem FOCN-Learn-PAC. Let

D be a distribution over
(
U(A)

)k×{0, 1} and let h∗ ∈ H∗ be a hypothesis that minimises the
generalisation error, that is, errD(h

∗) = minh′∈H∗ errD(h
′). Let T be the training sequence

of length m(|A| , ε, δ) drawn i.i.d. from D by our algorithm, and let h ∈ H be the hypothesis
returned by Ad

ERM on input T . By Theorem 6.6, the hypothesis h fulfils errT (h) ≤ errT (h
∗).

Furthermore, by the Uniform Convergence Lemma (Lemma 6.8), with probability at
least 1− δ, it holds that

∣∣ errT (h′)− errD(h
′)
∣∣ ≤ ε

2 for all h′ ∈ H. This especially holds for h
as well as for h∗. Hence,

errD(h) ≤ errT (h) +
ε

2
≤ errT (h

∗) +
ε

2
≤ errD(h

∗) +
ε

2
+
ε

2

with probability at least 1 − δ. This is exactly the requirement we have in the problem
FOCN-Learn-PAC for the returned hypothesis.

The number m(|A| , ε, δ) of queried examples can be bounded by O
(
log(|A|/δ)

ε2

)
. Thus,

by Theorem 6.6, we can bound the running time of our algorithm by
(
log |A|+ log 1

δ +
1
ε

)O(1)

under the logarithmic-cost as well as the uniform-cost measure. The evaluation time of the
hypothesis given in the theorem follows directly from Theorem 6.6.

7. Learning on Structures of Small Degree

In this section, we extend the sublinear-time results for consistent learning and the ERM
problem of the previous section to classes of structures of at most polylogarithmic degree.
At the end of this section, we give a bound on the degree of a structure in terms of its size
such that PAC learning is still possible in sublinear time. We start with the extension of the
consistent-learning result.

Theorem 7.1. Let σ be a relational signature and let k, ℓ, cbr, cbw ∈ N. There is an algorithm
that solves FOCN-Learn-Consistent(σ, k, ℓ, cbr, cbw) in time (log n + m)O(1) · dpolylog d
under the logarithmic-cost measure and in time mO(1) · dpolylog d under the uniform-cost
measure, where n is the size of the background structure, d is the degree of the background
structure, and m is the length of the training sequence. Furthermore, the hypotheses returned
by the algorithm can be evaluated with the same time bound.

On classes of structures of polylogarithmic degree, Theorem 7.1 implies that consistent
learning is possible in sublinear time.

Corollary 7.2. Let σ be a relational signature, let k, ℓ, cbr, cbw ∈ N, and let C be a class
of structures of polylogarithmic degree. There is an algorithm that solves the problem
FOCN-Learn-Consistent(σ, k, ℓ, cbr, cbw) on C in time sublinear in the size of the back-
ground structure and polynomial in the length of the training sequence, under the logarithmic-
cost as well as the uniform-cost measure. The hypotheses returned by the algorithm can be
evaluated with the same bound on the running time.
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Require: local access to background structure A,
training sequence T =

(
(v̄1, λ1), . . . , (v̄m, λm)

)
1: N ← NA

(2r+1)ℓ(T )

2: for all w̄ = (w1, . . . , wℓ) ∈ N ℓ do
3: for all s ∈ [0, ℓ] do
4: consistent← true
5: w̄in ← (w1, . . . , ws)
6: for all i ∈ [m] do
7: Si ← SAr (v̄iw̄

in)
8: for all i, j ∈ [m] with λi = 0 and λj = 1 do
9: if Si ∼= Sj then

10: consistent← false
11: break
12: if consistent then
13: φ(x̄, ȳ)←

∨
i∈[m], λi=1

sphAr, v̄iw̄in(x̄, y1, . . . , ys)

14: return (φ, w̄)
15: reject

Figure 8: Learning algorithm Acon for Theorem 7.1

In the proof of Theorem 7.1, to check the consistency of a hypothesis and to evaluate it
on new tuples, we use the following result on isomorphism testing due to Grohe, Neuen, and
Schweitzer [GNS23].

Theorem 7.3 [GNS23]. There is a constant c such that for all σ-structures A1 and A2,

it can be decided in time nO(a·(log d)c) whether A1 and A2 are isomorphic, where n :=
max{|A1| , |A2|}, d := max{deg(A1), deg(A2)}, and a := maxR∈σ ar(R).

Whenever we evaluate a hypothesis on a given tuple, we assume that we are not only
given the formula for the hypothesis, but also a description of the spheres, i.e. the relational
structures, that are the basis for the sphere formulas used in the hypothesis. Then, to
evaluate the hypothesis, for every sphere formula used in the hypothesis, we determine
whether the sphere of the sphere formula is isomorphic to the sphere around the elements
given to the sphere formula. The label defined by the hypothesis is then simply a Boolean
combination of the determined truth values. We analyse the running time of this procedure
in the following proof of the consistent-learning result.

Proof of Theorem 7.1. The pseudocode for our algorithm is shown in Figure 8. As in the
last section, let r := (2 · cbw + 1)cbr . The algorithm is based on the proof of Lemma 6.2.

It goes through all tuples w̄ ∈
(
NA

(2r+1)ℓ(T )
)ℓ
, and, for all s ∈ [0, ℓ], it considers the tuple

consisting of the first s entries of w̄. For these values, it checks whether the hypothesis (φ, w̄)
is consistent with the training sequence, where φ is the formula given in Lemma 6.2, that
is, the disjunction of sphere formulas around the positive examples and the s-tuple derived
from w̄.

First, we show that every hypothesis returned by the algorithm is consistent with the
training sequence. Let (v̄i, λi) ∈ T . By the construction of φ, we have A |= φ[v̄i, w̄] (and
thus hAφ,w̄(v̄i) = 1) if and only if there is some j with λj = 1 such that A |= sphAr, v̄jw̄in [v̄i, w̄

in],
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or, equivalently, SAr (v̄iw̄
in) ∼= SAr (v̄jw̄

in). If λi = 1, then this is trivially the case, so the
hypothesis correctly classifies the tuple v̄i as positive. If λi = 0, then the checks in lines 8–11
of the algorithm guarantee that there is no positive example with an isomorphic sphere, and
hence the hypothesis correctly classifies the tuple v̄i as negative. All in all, this shows that
every hypothesis returned by the algorithm is consistent.

For the other direction, we assume that there is a formula φ∗ ∈ Φ∗ and tuples w̄∗ ∈(
U(A)

)ℓ
and n̄∗ ∈ [0, |A|]|κ̄| such that the hypothesis hAφ∗,w̄∗,n̄∗ is consistent with T . Then it

follows from the proof of Lemma 6.2 that there is a tuple w̄ among the ones we check such
that the resulting hypothesis is consistent with the training sequence. Thus, our algorithm
returns a hypothesis in these cases.

It remains to show that the algorithm satisfies the running-time requirements while
only using local access to the structure A. Analogously to the proof of Theorem 6.5, for
fixed k, ℓ, cbr, and cbw, the size of the set N computed in line 1 is polynomial in m and d.
It can be computed in time (log n+m+ d)O(1) under the logarithmic-cost measure and in

time (m+ d)O(1) under the uniform-cost measure, using only local access to the background
structure. For every single choice of w̄ and s, the size of a single sphere Si is polynomial
in d, and it can be computed in time polynomial in d and log n under the logarithmic-cost
measure and polynomial in d under the uniform-cost measure. By Theorem 7.3, every single
isomorphism test between the spheres runs in time dpolylog d. All in all, the algorithm runs in
time (log n+m)O(1)dpolylog d under the logarithmic-cost measure and in time mO(1)dpolylog d

under the uniform-cost measure, while only using local access.
To evaluate the hypothesis returned by the algorithm on a new tuple v̄, we compute

the r-sphere around v̄w̄in and check whether it is isomorphic to one of the spheres used in
the returned formula φ. Thus, we obtain the same running-time bounds as for the learning
algorithm.

Next, we extend this result to the ERM problem.

Theorem 7.4. Let σ be a relational signature and let k, ℓ, cbr, cbw ∈ N. There is an algorithm
that solves FOCN-Learn-ERM(σ, k, ℓ, cbr, cbw) in time (log n+m)O(1) · dpolylog d under the

logarithmic-cost measure and in time mO(1) ·dpolylog d under the uniform-cost measure, where
n is the size of the background structure, d is the degree of the background structure, and m
is the length of the training sequence. Furthermore, the hypotheses returned by the algorithm
can be evaluated with the same time bound.

Proof. The pseudocode for our algorithm AERM is shown in Figure 9. Let r := (2 ·cbw+1)cbr .

The algorithm goes through all tuples w̄ ∈
(
NA

(2r+1)ℓ(T )
)ℓ
. For all s ∈ [0, ℓ], it considers

the tuple w̄in consisting of the first s entries of w̄. For every sphere Si = SAr (v̄iw̄
in), the

algorithm counts the number error+i of errors the hypothesis would make on the training
sequence if we would include the sphere formula for Si in the hypothesis. Additionally, it
also counts the number error−i of errors the hypothesis would make on the training sequence
if we would leave out the sphere formula for Si. The sphere formula is included in the
hypothesis if error+i ≤ error−i . For every combination of a tuple w̄ and a number s, the
algorithm sums up the number of errors the hypothesis would make on the training sequence.
In the end, it returns the hypothesis with the minimum number of errors.

Claim 7.5. Let (φmin, w̄min) be the hypothesis returned by the algorithm. For all φ∗(x̄, ȳ, κ̄) ∈
FOCN[σ, cbr, cbw], w̄

∗ ∈ (U(A))ℓ, and n̄∗ ∈ [0, |A|]|κ̄|, it holds that errT
(
hAφmin,w̄min

)
≤

errT
(
hAφ∗,w̄∗,n̄∗

)
.
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Require: local access to background structure A,
training sequence T =

(
(v̄1, λ1), . . . , (v̄m, λm)

)
1: N ← NA

(2r+1)ℓ(T )

2: errormin ← |T |+ 1
3: for all w̄ = (w1, . . . , wℓ) ∈ N ℓ do
4: for all s ∈ [0, ℓ] do
5: error ← 0
6: w̄in ← (w1, . . . , ws)
7: for all i ∈ [m] do
8: Si ← SAr (v̄iw̄

in)
9: for all i ∈ [m] do

10: error+i ← |{j ∈ [m] | Si ∼= Sj and λj = 0}|
11: error−i ← |{j ∈ [m] | Si ∼= Sj and λj = 1}|
12: error ← error +min {error+i , error

−
i }

13: if error < errormin then
14: errormin ← error
15: w̄min ← w̄
16: φmin(x̄, ȳ)←

∨
i∈[m],

error+i ≤error−i

sphAr, v̄iw̄in(x̄, y1, . . . , ys)

17: return (φmin, w̄min)

Figure 9: Learning algorithm AERM for Theorem 7.4

Proof. Choose φ∗(x̄, ȳ, κ̄) ∈ FOCN[σ, cbr, cbw], w̄
∗ ∈ (U(A))ℓ, and n̄∗ ∈ [0, |A|]|κ̄| such that

errT
(
hAφ∗,w̄∗,n̄∗

)
is minimal. Let T ∗ be the subsequence of T that contains exactly those

examples that are correctly classified by h∗ := hAφ∗,w̄∗,n̄∗ . It suffices to show that, for all

examples (v̄i, λi) in T ∗, we have that error+i ≤ error−i if λi = 1 and error+i ≥ error−i if

λi = 0. If we had error+i > error−i and λi = 1, then using φ := φ∗ ∧ ¬sphAr, v̄iw̄in would

yield a hypothesis that is consistent with more examples than h∗, which contradicts the
optimality of h∗. On the other hand, if we had error+i < error−i and λi = 0, then we could

use φ := φ∗ ∨ sphAr, v̄iw̄in . ⌟

The analysis of the running time of the algorithm AERM is analogous to the analysis of
the algorithm Acon in the proof of Theorem 7.1, and it yields the same result.

Analogously to the consistent-learning case, on classes of structures of polylogarithmic
degree, Theorem 7.4 implies that the ERM problem is solvable in sublinear time.

Corollary 7.6. Let σ be a relational signature, let k, ℓ, cbr, cbw ∈ N, and let C be a class
of structures of polylogarithmic degree. There is an algorithm that solves the problem
FOCN-Learn-ERM(σ, k, ℓ, cbr, cbw) on C in time sublinear in the size of the background
structure and polynomial in the length of the training sequence, under the logarithmic-cost as
well as the uniform-cost measure. The hypotheses returned by the algorithm can be evaluated
with the same bound on the running time.

To turn the algorithm AERM into a sublinear-time PAC-learning algorithm, we want to
find a sublinear bound on the number of examples needed to fulfil the probability bounds.
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In contrast to the approach in the last section, the formulas we use in the hypotheses do not
come from a constant-sized set of formulas any more. Instead, the number of non-equivalent
disjunctions of sphere formulas is exponential in the number of non-isomorphic spheres,
which is again exponential in their size. This leads to the following result.

Theorem 7.7. Let σ be a relational signature, let k, ℓ, cbr, cbw ∈ N, let a := maxR∈σ ar(R),

r := (2 · cbw+1)cbr , and let C be a class of structures A of degree at most
(
log(log |A|)

) 1
(r+1)·a .

There is an algorithm that solves FOCN-Learn-PAC(σ, k, ℓ, cbr, cbw) on C in time sublinear
in the size of the background structure and polynomial in log 1

δ and 1
ε under the logarithmic-

cost as well as the uniform-cost measure.
Furthermore, the hypotheses returned by the algorithm can be evaluated with the same

bound on the running time.

Proof. Let A ∈ C be a background structure of degree d with d ≤
(
log(log |A|)

) 1
(r+1)·a . We

consider the concept class

H∗ =
{
hAφ,w̄,n̄

∣∣ φ(x̄, ȳ, κ̄) ∈ Φ∗, w̄ ∈
(
U(A)

)ℓ
, n̄ ∈ [0, |A|]|κ|

}
.

Running on A, the algorithm AERM only returns formulas from the set

Φd :=
{
φ(x̄, ȳ) ∈ FO[σ] | |x̄| = k, |ȳ| = ℓ,

φ is a disjunction of sphere formulas

of locality radius at most r

based on spheres of degree at most d
}
.

Thus, we consider the hypothesis class

H =
{
hAφ,w̄

∣∣ φ(x̄, ȳ) ∈ Φd, w̄ ∈
(
U(A)

)ℓ}
.

As in the proof of Theorem 6.9, it holds that H∗ ⊆ H.
Next, we bound number of non-equivalent hypotheses in H and thus also in H∗. As

discussed in Lemma 6.4, in a structure of degree at most d, a sphere of radius at most r

with (k + ℓ) centres has size at most s := (k + ℓ) · µd(r) ∈ O
(
dr+1

)
⊆ O

(
(log(log(|A|)))

1
a

)
.

Thus, over a signature σ, the number of non-isomorphic spheres of radius at most r with

(k + ℓ) centres can be bounded by
∏

R∈σ 2
sar(R)

= 2

(∑
R∈σ sar(R)

)
≤ 2|σ|·s

a
. The number of

non-equivalent disjunctions of sphere formulas based on such spheres is at most exponential

in the number of non-isomorphic spheres. Hence, the set Φd contains at most O
(
|A||σ|

)
non-equivalent formulas, and the number of non-equivalent hypotheses in H and H∗ is

bounded by c · |A|ℓ+|σ| for some constant c.
The remainder of this proof is analogous to the proof of Theorem 6.9. We use Lemma 6.8

to bound the number of examples needed for a PAC-learning algorithm by

m(|A| , ε, δ) :=

⌈
2 log(2c · |A|ℓ+|σ| /δ)

ε2

⌉
.

Then, it suffices to query m(|A| , ε, δ) examples from the distribution D and run AERM

on the resulting training sequence. With the bound on the number of training examples,
Theorem 7.4 yields the desired running time.
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8. Conclusion

In this paper, we have studied Boolean classification problems in the logical framework
introduced by Grohe and Turán [GT04] over relational background structures. We have
proved that, on the one hand, in general, hypotheses definable in first-order logic are
not learnable in sublinear time. On the other hand, over classes of structures of at most
polylogarithmic degree, we have given a sublinear-time consistent-learning algorithm, even
for hypotheses definable in the extension FOCN of first-order logic with counting.

The extended abstract [vB19] of this paper gives an agnostic PAC-learning result for
classes of structures with a fixed degree bound. The present paper proves that this result can
be generalised to classes of structures where the degree is not bounded by any fixed constant
but rather depends on the size of the structure. More precisely, for classes of structures of
degree at most (log logn)c for some constant c, we have extended the consistent-learning
result to agnostic PAC-learning problems.

Another question raised in [vB19] is whether similar learning results can be proved for
logics that also include other means of aggregation. We have confirmed this in [vBS21],
which introduces the first-order logic with weight aggregation FOWA. This logic is defined
over weighted structures, which extend ordinary relational structures by assigning weights
to tuples in the structure. In FOWA formulas, with concepts similar to counting terms in
FOCN, these weights can be aggregated. For the fragment FOWA1 of FOWA, [vBS21] proved
sublinear-time learnability based on Gaifman-style locality results. However, for the full
logic FOWA, which extends the fragment FOC of FOCN, there is no analogue of Gaifman’s
theorem. It remains open whether Hanf normal forms exist for FOWA and whether they can
be used to obtain learnability results similar to the ones we have presented in this paper for
FOCN.
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[GLR17] Martin Grohe, Christof Löding, and Martin Ritzert. Learning MSO-definable hypotheses on
strings. In International Conference on Algorithmic Learning Theory, ALT 2017, 15-17 October

https://doi.org/10.1016/j.jcss.2021.01.003
https://doi.org/10.1016/j.jcss.2021.01.003
https://doi.org/10.1145/3321485
https://doi.org/10.1145/3321485
https://doi.org/10.5441/002/edbt.2015.11
https://doi.org/10.4230/LIPIcs.ICDT.2017.7
https://doi.org/10.1007/s10817-020-09571-y
https://doi.org/10.1007/s10994-021-06089-1
https://doi.org/10.1007/s10994-021-06089-1
https://doi.org/10.1007/BF03037231
https://doi.org/10.1007/BF03037231
https://doi.org/10.1145/3531055
https://doi.org/10.46298/LMCS-18(2:7)2022
https://doi.org/10.46298/LMCS-18(2:7)2022
https://doi.org/10.1007/978-3-662-44777-2_33
https://doi.org/10.1145/3276501
https://doi.org/10.1145/602220.602222
https://doi.org/10.1007/3-540-29953-X
https://doi.org/10.1006/inco.1995.1100
https://doi.org/10.1016/S0049-237X(08)71879-2
https://doi.org/10.1007/978-3-319-08867-9_5


LEARNING CONCEPTS DEFINABLE IN FIRST-ORDER LOGIC WITH COUNTING 37

2017, Kyoto University, Kyoto, Japan, pages 434–451, 2017. URL: http://proceedings.mlr.
press/v76/grohe17a.html.

[GNS23] Martin Grohe, Daniel Neuen, and Pascal Schweitzer. A faster isomorphism test for graphs of
small degree. SIAM J. Comput., 52(6):S18–1, 2023. doi:10.1137/19M1245293.

[GR02] Oded Goldreich and Dana Ron. Property testing in bounded degree graphs. Algorithmica,
32(2):302–343, 2002. doi:10.1007/s00453-001-0078-7.

[GR17] Martin Grohe and Martin Ritzert. Learning first-order definable concepts over structures of small
degree. In 32nd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2017,
Reykjavik, Iceland, June 20-23, 2017, pages 1–12, 2017. doi:10.1109/LICS.2017.8005080.

[GR19] Emilie Grienenberger and Martin Ritzert. Learning definable hypotheses on trees. In 22nd
International Conference on Database Theory, ICDT 2019, March 26-28, 2019, Lisbon, Portugal,
pages 24:1–24:18, 2019. doi:10.4230/LIPIcs.ICDT.2019.24.

[Gro01] Martin Grohe. Generalized model-checking problems for first-order logic. In Afonso Ferreira and
Horst Reichel, editors, STACS 2001, 18th Annual Symposium on Theoretical Aspects of Computer
Science, Dresden, Germany, February 15-17, 2001, Proceedings, volume 2010 of Lecture Notes in
Computer Science, pages 12–26. Springer, 2001. doi:10.1007/3-540-44693-1_2.

[Gro17] Martin Grohe. Descriptive Complexity, Canonisation, and Definable Graph Structure The-
ory, volume 47 of Lecture Notes in Logic. Cambridge University Press, 2017. doi:10.1017/
9781139028868.

[GS10] Georg Gottlob and Pierre Senellart. Schema mapping discovery from data instances. J. ACM,
57(2):6:1–6:37, 2010. doi:10.1145/1667053.1667055.

[GS18] Martin Grohe and Nicole Schweikardt. First-order query evaluation with cardinality conditions.
In Proceedings of the 37th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database
Systems, Houston, TX, USA, June 10-15, 2018, pages 253–266, 2018. doi:10.1145/3196959.
3196970.

[GT04] Martin Grohe and György Turán. Learnability and definability in trees and similar structures.
Theory Comput. Syst., 37(1):193–220, 2004. doi:10.1007/s00224-003-1112-8.

[Han65] William Hanf. Model-theoretic methods in the study of elementary logic. In J.W. Addison, Leon
Henkin, and Alfred Tarski, editors, The Theory of Models. Proceedings of the 1963 International
Symposium at Berkeley, Studies in logic and the foundations of mathematics, pages 132–145,
Amsterdam, 1965. North-Holland Publishing Company.

[Hau89] David Haussler. Learning conjunctive concepts in structural domains. Mach. Learn., 4:7–40,
1989. doi:10.1007/BF00114802.

[Hau92] David Haussler. Decision theoretic generalizations of the PAC model for neural net and other
learning applications. Inf. Comput., 100(1):78–150, 1992. doi:10.1016/0890-5401(92)90010-D.

[Hir00] Kouichi Hirata. On the hardness of learning acyclic conjunctive queries. In Hiroki Arimura, Sanjay
Jain, and Arun Sharma, editors, Algorithmic Learning Theory, 11th International Conference,
ALT 2000, Sydney, Australia, December 11-13, 2000, Proceedings, volume 1968 of Lecture Notes
in Computer Science, pages 238–251. Springer, 2000. doi:10.1007/3-540-40992-0_18.

[KD94] Jörg-Uwe Kietz and Saso Dzeroski. Inductive logic programming and learnability. SIGART Bull.,
5(1):22–32, 1994. doi:10.1145/181668.181674.
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