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BISIMULATION EQUIVALENCE OF FIRST-ORDER

GRAMMARS IS ACKERMANN-COMPLETE

PETR JANČAR1 AND SYLVAIN SCHMITZ2,3

Abstract. Checking whether two pushdown automata with restricted silent
actions are weakly bisimilar was shown decidable by Sénizergues (1998, 2005).
We provide the first known complexity upper bound for this famous problem, in
the equivalent setting of first-order grammars. This ACKERMANN upper bound
is optimal, and we also show that strong bisimilarity is primitive-recursive
when the number of states of the automata is fixed.

1. Introduction

Bisimulation equivalence plays a central role among the many notions of se-
mantic equivalence studied in verification and concurrency theory [11]. Indeed, two
bisimilar processes always satisfy exactly the same specifications written in modal
logics [2] or in the modal µ-calculus [14], allowing one to replace for instance a na-
ive implementation with a highly optimised one without breaking the conformance.
As a toy example, the two recursive Erlang functions below implement the same
stateful message relaying service, that either receives {upd, M1} and updates its
internal message from M to M1, or receives {rel ,C} and sends the message M to
the client C.

1 serverA(M) → serverB(M) →

2 receive M2 = receive

3 {upd, M1} → serverA(M1); {upd, M1} → M1;

4 {rel , C } → C!M, {rel , C } → C!M, M;

5 serverA(M); end,

6 end. serverB(M2).

The two programs are weakly bisimilar if we only observe the input (receive) and
output (C!M) actions, but the one on the left is not tail-recursive and might perform
poorly compared to the one on the right.

In a landmark 1998 paper, Sénizergues [32, 34] proved the decidability of bisim-
ulation equivalence for rooted equational graphs of finite out-degree. The proof
extends his previous seminal result [31, 33], which is the decidability of language
equivalence for deterministic pushdown automata (DPDA), and entails that weak
bisimilarity of pushdown processes where silent actions are deterministic is decid-
able; a silent action (also called an ε-step) is deterministic if it has no alternative
when enabled. Because the control flow of a first-order recursive program is read-
ily modelled by a pushdown process, one can view this result as showing that the
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Table 1. The complexity of equivalence prob-
lems over pushdown processes.

Problem Lower bound Upper bound

DPDA lang. equ. P TOWER [37, 18]
strong bisim. TOWER [1] ACKERMANN [this paper]
weak bisim.a ACKERMANN [18] ACKERMANN [this paper]

a silent actions must be deterministic

equivalence of recursive programs (like the two Erlang functions above) is decidable
as far as their observable behaviours are concerned, provided silent moves are de-
terministic. Regarding decidability, Sénizergues’ result is optimal in the sense that
bisimilarity becomes undecidable if we consider either nondeterministic (popping)
ε-steps [21], or second-order pushdown processes with no ε-steps [4]. Note that the
decidability border was also refined in [39] by considering branching bisimilarity, a
stronger version of weak bisimilarity.

Computational Complexity. While this delineates the decidability border for equi-
valences of pushdown processes, the computational complexity of the bisimilarity
problem is open. Sénizergues’ algorithm consists in two semi-decision procedures,
with no clear means of bounding its complexity, and subsequent works like [17]
have so far not proven easier to analyse. We know however that this complexity
must be considerable, as the problem is TOWER-hard in the real-time case (i.e.,
without silent actions, hence for strong bisimilarity) [1] and ACKERMANN-hard in
the general case (with deterministic silent actions) [18]—we are employing here the
‘fast-growing’ complexity classes defined in [29], where TOWER = F3 is the lowest
non elementary class and ACKERMANN = Fω the lowest non primitive-recursive one.

In fact, the precise complexity of deciding equivalences for pushdown automata
and their restrictions is often not known—as is commonplace with infinite-state
processes [35]. For instance, language equivalence of deterministic pushdown auto-
mata is P-hard and was shown to be in TOWER by Stirling [37] (see [18] for an
explicit upper bound), and bisimilarity of BPAs (i.e., real-time pushdown processes
with a single state) is EXPTIME-hard [22] and in 2EXPTIME [5] (see [16] for an ex-
plicit proof). There are also a few known completeness results in restricted cases:
bisimilarity of normed BPAs is P-complete [13] (see [10] for the best known upper
bound), bisimilarity of real-time one-counter processes (i.e., of pushdown processes
with a singleton stack alphabet) is PSPACE-complete [3], and bisimilarity of visibly
pushdown processes is EXPTIME-complete [36].

Contributions. In this paper, we prove that the bisimilarity problem for pushdown
processes is in ACKERMANN, even the weak bisimilarity problem when silent actions
are deterministic. Combined with the already mentioned lower bound from [18],
this shows the problem to be ACKERMANN-complete. This is the first instance of a
complexity completeness result in the line of research originating from Sénizergues’
work [31–34]; see Tab. 1.
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Rather than working with rooted equational graphs of finite out-degree or with
pushdown processes with deterministic silent actions, our proof is cast in the form-
alism of first-order grammars (see Sec. 2), which are term rewriting systems with a
head rewriting semantics, and are known to generate the same class of graphs [7].

Our proof heavily relies on the main novelty from [17]: the bisimilarity of two
arbitrary terms according to a first-order grammar essentially hinges on a finite
basis of pairs of non-equivalent terms, which can be constructed from the grammar
independently of the terms provided as input. The basis provides a number that
allows us to compute a bound on the ‘equivalence-level’ of two non-equivalent terms;
this is the substance of the decision procedure (see Sec. 3). Both in [17] and in its
reworked version in [20], such a basis is obtained through a brute force argument,
which yields no complexity statement. In Sec. 4 we exhibit a concrete algorithm
computing the basis, and we analyse its complexity in the framework of [28–30] in
Sec. 5, yielding the ACKERMANN upper bound.

Finally, although our results do not match the TOWER lower bound of Benedikt
et al. [1] in the case of real-time pushdown processes, we nevertheless show in Sec. 6
that bisimilarity becomes primitive-recursive in that case if additionally the number
of control states of the pushdown processes is fixed.

2. First-Order Grammars

First-order grammars are labelled term rewriting systems with a head rewriting
semantics. They are a natural model of first-order functional programs with a
call-by-name semantics, and were shown to generate the class of rooted equational
graphs of finite out-degree by Caucal [6, 7], where they are called term context-free
grammars. Here we shall use the terminology and notations from [20].

2.1. Regular Terms. Let N be a finite ranked alphabet, i.e., where each symbol
A in N comes with an arity r(A) in N

def= {0, 1, 2, . . .}, and Var def= {x1, x2, . . . }
a countable set of variables, all with arity zero. We work with possibly infinite
regular terms over N and Var, i.e., terms with finitely many distinct subterms.
Let TermsN denote the set of all regular terms over N and Var. We further
use A,B,C,D for nonterminals, and E,F for terms, possibly primed and/or with
subscripts.

Representations. Such terms can be represented by finite directed graphs as shown
in Fig. 1, where each node has a label in N ∪Var and a number of ordered outgoing
arcs equal to its arity. The unfolding of the graph representation is the desired term,
and there is a bijection between the nodes of the least graph representation of a
term E and the set of subterms of E.

Size and Height. We define the size size(E) of a term E as its number of distinct
subterms. For instance, size(E1) = 6, size(E2) = 9, and size(E3) = 5 in Fig. 1.
For two terms E and F , we also denote by size(E,F ) the number of distinct
subterms of E and F ; note that size(E,F ) can be smaller than size(E) + size(F ),
as they might share some subterms. For instance, size(E1, E2) = 9 in Fig. 1. We
let ntsize(E) denote the number of distinct subterms of E with root labels in N ;
e.g., ntsize(E1) = 4 in Fig. 1. A term E is thus finite if and only if its graph
representation is acyclic, in which case it has a height height(E), which is the
maximal length of a path from the root to a leaf; for instance height(E1) = 3 in
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Figure 1. Graph representations of two finite terms E1 and E2,
and of an infinite regular term E3.

Fig. 1. Finally, we let var(E) denote the set of variables occurring in E, and let
var(E,F ) def= var(E) ∪ var(F ); e.g., var(E1, E2) = {x2, x5} in Fig. 1.

2.2. Substitutions. A substitution σ is a map Var → TermsN whose support
supp(σ) def= {x ∈ Var | σ(x) 6= x} is finite. This map is lifted to act over terms by

xσ def= σ(x) , A(E1, . . . , Er(A))σ
def= A(E1σ, . . . , Er(A)σ)

for all x in Var, A in N , and E1, . . . , Er(A) in TermsN . For instance, in Fig. 1,
E2 = E1σ if σ(x2) = E1 and σ(x5) = x5.

2.3. Grammars. A first-order grammar is a tuple G = (N ,Σ,R) where N is a
finite ranked alphabet of nonterminals, Σ a finite alphabet of actions, andR a finite

set of labelled term rewriting rules of the form A(x1, . . . , xr(A))
a
−→ E where A ∈ N ,

a ∈ Σ, and E is a finite term in TermsN with var(E) ⊆ {x1, . . . , xr(A)}.

Head Rewriting Semantics. A first-order grammar G = (N ,Σ,R) defines an infinite
labelled transition system

LG
def= (TermsN ,Σ, (

a
−→)a∈Σ)

over TermsN as set of states, Σ as set of actions, and with a transition relation
a
−→ ⊆ TermsN × TermsN for each a ∈ Σ, where each rule A(x1, . . . , xr(A))

a
−→ E

of R induces a transition

A(x1, . . . , xr(A))σ
a
−→ Eσ

for every substitution σ. This means that rewriting steps can only occur at the

root of a term, rather than inside a context. For instance, the rules A(x1, x2, x3)
a
−→

C(x2, D(x2, x1)) and A(x1, x2, x3)
b
−→ x2 give rise on the terms of Fig. 1 to the

transitions E1
a
−→ C(x5, D(x5, D(x5, C(x2, B)))) and E1

b
−→ x5. The transition

relations
a
−→ are extended to

w
−→ for words w ∈ Σ∗ in the standard way.

Note that variables x ∈ Var are ‘dead’, in that no transitions can be fired from a
variable. In fact, in Sec. 3.1 we discuss that for technical reasons we could formally

assume that each variable x has its unique action ax and a transition x
ax−→ x.
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Grammatical Constants. Let us fix a first-order grammar G = (N ,Σ,R). We define
its size as

|G| def=
∑

A(x1,...,xr(A))
a−→E ∈R

r(A) + 1 + size(E) . (1)

Let rhs be the set of terms appearing on the right-hand sides of R (which are finite
terms by definition). We let

m def= max
A∈N

r(A) , (2)

hinc def= max
E∈rhs

height(E)− 1 , (3)

sinc def= max
E∈rhs

ntsize(E) (4)

bound respectively the maximal arity of its nonterminals, its maximal height in-
crease in one transition step, and its maximal size increase in one transition step.

If A(x1, . . . , xr(A))
w
−→ xi in LG for some i in {1, . . . , r(A)} and w in Σ∗, then we

call w an (A, i)-sink word. Observe thatw 6= ε, hence w = aw′ with A(x1, . . . , xr(A))
a
−→

E in R and E
w′

−→ xi, where either w′ = ε and E = xi or E ‘sinks’ to xi when
applying w′. Thus, for each A ∈ N and i ∈ {1, . . . , r(A)} we can compute some
shortest (A, i)-sink word w[A,i] by dynamic programming; in the cases where no

(A, i)-sink word exist, we can formally put w[A,i]
def= ε. In turn, this entails that the

maximal length of shortest sink words satisfies

d0
def= 1 + max

A∈N ,1≤i≤r(A)
|w[A,i]| ≤ 1 + (2 + hinc)|N |m ; (5)

here and in later instances, we let max ∅ def= 0.
Finally, the following grammatical constant n from [20] is important for us:

n def= md0 ; (6)

note that n is at most doubly exponential in the size of G. This n was chosen in [20]
so that each E can be written as E′σ where height(E′) ≤ d0 and var(E′) ⊆

{x1, . . . , xn}, and it is guaranteed that each path E
w
−→ F where |w| ≤ d0 can be

presented as E′σ
w
−→ F ′σ where E′ w

−→ F ′. Put simply: n bounds the number of
depth-d0 subterms for each term E.

3. Bisimulation Equivalence

Bisimulation equivalence has been introduced independently in the study of
modal logics [2] and in that of concurrent processes [25, 26]. We recall here the ba-
sic notions surrounding bisimilarity before we introduce the key notion of candidate
bases as defined in [20].

3.1. Equivalence Levels. Consider a labelled transition system

L = (S,Σ, (
a
−→)a∈Σ)

like the one defined by a first-order grammar, with set of states S, set of actions Σ,
and a transition relation

a
−→ ⊆ S × S for each a in Σ. We work in this paper with

image-finite labelled transition systems, where {s′ ∈ S | s
a
−→ s′} is finite for every s
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in S and a in Σ. In this setting, the coarsest (strong) bisimulation ∼ can be defined
through a chain

∼0 ⊇ ∼1 ⊇ · · · ⊇ ∼

of equivalence relations over S×S: let ∼0
def= S×S and for each k in N, let s ∼k+1 t

if s ∼k t and

(zig): if s
a
−→ s′ for some a ∈ Σ, then there exists t′ such that t

a
−→ t′ and

s′ ∼k t′, and

(zag): if t
a
−→ t′ for some a ∈ Σ, then there exists s′ such that s

a
−→ s′ and

s′ ∼k t′.

We put ∼ω
def=

⋂

k∈N
∼k; hence ∼ = ∼ω.

For each pair s, t of states in S, we may then define its equivalence level el(s, t)
in ω + 1 = N ⊎ {ω} as

el(s, t) def= sup{k ∈ N | s ∼k t} . (7)

Here we should add that—to be consistent with [20]—we stipulate that el(x,E) = 0
when E 6= x; in particular el(xi, xj) = 0 when i 6= j. This would automatically

hold if we equipped each x ∈ Var with a special transition x
ax−→ x in LG , as we

already mentioned. This stipulation guarantees that el(E,F ) ≤ el(Eσ, Fσ).
Two states s, t are (strongly) bisimilar if s ∼ t, which is if and only if el(s, t) = ω.

We will later show an algorithm computing the equivalence level of two given terms
in the labelled transition system defined by a given first-order grammar. The main
decision problem in which we are interested is the following.

Problem (Bisimulation).
input: A first-order grammar G = (N ,Σ,R) and two terms E,F in TermsN .
question: Is el(E,F ) = ω in the labelled transition system LG?

3.2. Bisimulation Game. Observe that the following variant of the bisimulation
problem is decidable.

Problem (Bounded Equivalence Level).
input: A first-order grammar G = (N ,Σ,R), two terms E,F in TermsN ,

and e in N.
question: Is el(E,F ) ≤ e in the labelled transition system LG?

Indeed, as is well-known, the zig-zag condition can be recast as a bisimulation
game between two players called Spoiler and Duplicator. A position of the game is
a pair (s1, s2) ∈ S ×S. Spoiler wants to prove that the two states are not bisimilar,
while Duplicator wants to prove that they are bisimilar. The game proceeds in
rounds; in each round,

• Spoiler chooses i ∈ {1, 2} and a transition si
a
−→ s′i (if no such transition

exists, Spoiler loses), then

• Duplicator chooses a transition s3−i
a
−→ s′3−i with the same label a (if no

such transition exists, Duplicator loses);

the game then proceeds to the next round from position (s′1, s
′
2). Then el(s1, s2) ≤

k if and only if Spoiler has a strategy to win in the (k+1)th round at the latest when
starting the game from (s1, s2). Note that this game is determined and memoryless
strategies suffice.

Thus, the bounded equivalence level problem can be solved by an alternating
Turing machine that first writes the representation of E and F on its tape, and



BISIMULATION OF FIRST-ORDER GRAMMARS IS ACKERMANN-COMPLETE 7

then plays at most e rounds of the bisimulation game, where each round requires
at most a polynomial number of computational steps in the size of the grammar
(assuming a somewhat reasonable tape encoding of the terms).

Fact 1. The bounded equivalence level problem is in ATIME
(

size(E,F )+poly(|G|) ·

e
)

.

3.3. Candidate Bases. Consider some fixed first-order grammar G = (N ,Σ,R).
Given three numbers n, s, and g in N—which will depend on G—, an (n, s, g)-
candidate basis for non-equivalence is a set of pairs of terms B ⊆ TermsN ×
TermsN associated with two sequences of numbers (si)0≤i≤n and (ei)0≤i≤n such
that

(1) B ⊆ ≁,
(2) for each (E,F ) ∈ B there is i ∈ {0, . . . , n} such that var(E,F ) = {x1, . . . , xi}

and size(E,F ) ≤ si,
(3) sn

def= s, and the remaining numbers are defined inductively by

ei
def= max

(E,F )∈B|size(E,F )≤si
el(E,F ) , (8)

si−1
def= 2si + g + ei(sinc+ g) . (9)

Note that the numbers (si)0≤i≤n and (ei)0≤i≤n are entirely determined by B and
n, s, and g. An (n, s, g)-candidate basis B yields a bound EB defined by

EB
def= n+ 1 +

n
∑

i=0

ei . (10)

Full Bases. For 0 ≤ i ≤ n, let

Pairsi
def= {(E,F ) | ∃j ≤ i . var(E,F ) = {x1, . . . , xj} ∧ size(E,F ) ≤ si} . (11)

An (n, s, g)-candidate basis B is full below some equivalence level e ∈ ω + 1 if, for
all 0 ≤ i ≤ n and all (E,F ) ∈ Pairsi such that el(E,F ) < e we have (E,F ) ∈ B.
We say that B is full if it is full below ω. In other words and because B ⊆ ≁, B is
full if and only if, for all 0 ≤ i ≤ n, Pairsi \ B ⊆ ∼.

Proposition 2 ([20, Prop. 9]). For any n, s, g, there is a unique full (n, s, g)-
candidate basis, denoted by Bn,s,g.

Proof. The full candidate basis Bn,s,g is constructed by induction over n. Let sn
def= s

and consider the finite set Sn
def= {(E,F ) ∈ TermsN × TermsN | E ≁ F ∧ ∃j ≤

n . var(E,F ) = {x1, . . . , xj} ∧ size(E,F ) ≤ sn}; Sn has a maximal equivalence

level en
def= max(E,F )∈Sn

el(E,F ). If n = 0, we define B0,s,g
def= S0. Otherwise, we let

sn−1
def= 2sn+g+en(sinc+g) as in (9); by induction hypothesis there is a unique full

(n−1, sn−1, g)-candidate basis Bn−1,sn−1,g and we set Bn,s,g
def= Sn∪Bn−1,sn−1,g. �

The main result from [20] can now be stated.

Theorem 3 ([20, Thm. 7]). Let G = (N ,Σ,R) be a first-order grammar. Then one
can compute a grammatical constant g exponential in |G| and grammatical constants
n, s, and c doubly exponential in |G| such that, for all terms E,F in TermsN with
E ≁ F ,

el(E,F ) ≤ c ·
(

EBn,s,g
· size(E,F ) + size(E,F )2

)

.
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Theorem 3 therefore shows that the bisimulation problem can be reduced to
the bounded equivalence level problem, provided one can compute the full (n, s, g)-
candidate basis for suitable n, s, and g—see Tab. 2 in the appendix for details
on how the grammatical constants n, s, c, and g are defined in [20]. Our goal in
Sec. 4 will thus be to exhibit a concrete algorithm computing the full candidate
basis Bn,s,g, in order to derive an upper bound on EBn,s,g

.
The proof of [20, Thm. 7] relies on the following insight, which we will also need

in order to prove the correctness of our algorithm.

Lemma 4 ([20, Eq. 39]). Let G = (N ,Σ,R) be a first-order grammar, g, n, s, c be
defined as in Thm. 3, E,F be two terms in TermsN with E 6∼ F , and B be an
(n, s, g)-candidate basis full below el(E,F ). Then

el(E,F ) ≤ c ·
(

EB · size(E,F ) + size(E,F )2
)

.

4. Computing Candidate Bases

Theorem 3 shows that, in order to solve the bisimulation problem, it suffices to
compute c and EBn,s,g

and then solve the bounded equivalence problem, for which
Fact 1 provides a complexity upper bound. In this section, we show how to compute
EBn,s,g

for an input first-order grammar G = (N ,Σ,R). Note that this grammatical
constant was shown computable in [17, 20] through a brute-force argument, but
here we want a concrete algorithm, whose complexity will be analysed in Sec. 5.
We proceed in two steps, by first considering a non effective version in Sec. 4.1,
whose correctness is straightforward, and then the actual algorithm in Sec. 4.2.

4.1. Non Effective Version. Throughout this section, we consider n as a fixed
parameter. We first assume that we have an oracle EqLevel(G, EB, c, E, F ) at our
disposal, that returns the equivalence level el(E,F ) in LG ; the parameters EB, c will
be used in the effective version in Sec. 4.2. The following procedure then constructs
full (n, s, g)-candidate basis Bn,s,g and its associated bound EBn,s,g

, by progressively
adding pairs from the sets Pairsi until the candidate basis is full. In order not to
clutter the presentation too much, we assume implicitly that the equivalence level
e of each pair (E,F ) added to B on line 14 is implicitly stored, thus it does not
need to be recomputed on line 19.

1 procedure CandidateBoundn(G, s, g, c)
2 B ← ∅ ⊲ Initialisation
3 for i← 0, . . . , n do
4 ei ← 0

5 sn ← s

6 for i← n− 1, . . . , 0 do
7 si ← 2si+1 + g

8 EB ← n+ 1
9 for i← n, . . . , 0 do

10 Pi ← Pairsi \
⋃

i<j≤n Pj

11 while ∃i ∈ {0, 1, . . . , n} , ∃(E,F ) ∈ Pi : EqLevel(G, EB, c, E, F ) < ω do
12 e← EqLevel(G, EB, c, E, F ) ⊲ Main loop
13 Pi ← Pi \ {(E,F )}
14 B ← B ∪ {(E,F )}
15 if e > ei then ⊲ If so, then update
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16 ei ← e

17 for j ← i− 1, . . . , 0 do
18 sj ← 2sj+1 + g + ej+1(sinc+ g)
19 ej ← max(E,F )∈B|size(E,F )≤sj el(E,F )
20 Pj ← Pairsj \ (B ∪

⋃

i<k≤n Pk)

21 EB ← n+ 1 +
∑

0≤j≤n ej

22 return EB

Invariant. The procedure CandidateBoundn maintains as an invariant of its
main loop on lines 11–21 that B is an (n, s, g)-candidate basis associated with
the numbers (si)0≤i≤n and (ei)0≤i≤n, and that EB is its associated bound. This
holds indeed after the initialisation phase on lines 2–8, and is then enforced in the
main loop by the update instructions on lines 15–21.

Correctness. Let us check that, if it terminates, this non effective version does
indeed return the bound EBn,s,g

associated with the unique full (n, s, g)-candidate
basis Bn,s,g. By the previous invariant, it suffices to show that B is full when
the procedure terminates. Consider for this some index 0 ≤ i ≤ n and a pair
(E,F ) ∈ Pairsi with el(E,F ) = e for some e < ω. By definition of the sets
(Pi)0≤i≤n on lines 9–10 and their updates on lines 13 and 20 in the main loop, the
pair (E,F ) must have been added to some Pj for j ≥ i. Then the pair must have
been selected by the condition of the main loop on line 11, and added to B.

Termination. Although we are still considering a non effective version of the al-
gorithm, the proof that it always terminates is the same as the one for the effective
version in Sec. 4.2. We exhibit a ranking function on the main loop, thereby show-
ing that it must stop eventually. More precisely, each time we enter the main loop
on line 11, we associate to the current state of the procedure the ordinal rank below
ωn+1 defined by1

α def= ωn · |Pn|+ · · ·+ ω0 · |P0| . (12)

This defines a descending sequence of ordinals

α0 > α1 > · · · (13)

of ordinals, where αℓ is the rank after ℓ iterations of the main loop. Indeed, each
time we enter the loop, the cardinal |Pi| of the set under consideration strictly
decreases on line 13, and is not modified by the updates on line 20, which only
touch the sets Pj for j < i. Hence CandidateBoundn terminates.

4.2. Effective Version. In order to renderCandidateBoundn effective, we provide
an implementation of EqLevel that does not require an oracle for the bisimulation
problem, but relies instead on Lem. 4 and the bounded equivalence level problem,
which as we saw in Sec. 3.2 is decidable.

1 procedure EqLevel(G, EB, c, E, F )
2 if el(E,F ) ≤ c ·

(

EB · size(E,F ) + size(E,F )2
)

then
3 return el(E,F )
4 else
5 return ω

1 Note that this is equivalent to defining the rank as the tuple (|Pn|, . . . , |P0|) in N
n+1, ordered

lexicographically, but ordinal notations are more convenient for our analysis in Sec. 5.
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We establish the correctness of this effective variant in the following theorem,
which uses the same reasoning as the proof of [20, Thm. 7].

Theorem 5. The effective version of procedure CandidateBoundn(G, s, g, c) ter-
minates and, provided n, s, c, and g are defined as in Thm. 3, returns the bound EBn,s,g

.

Proof. Termination is guaranteed by the ranking function defined by (12). Regard-
ing correctness, assume the provided g, n, s, and c are defined as in Thm. 3, and
let us define a (reflexive and symmetric) relation ∼̇k on TermsN by E ∼̇k F if
and only if el(E,F ) > c ·

(

k · size(E,F ) + size(E,F )2
)

. Clearly, ∼ ⊆ ∼̇k for all
k in N. We say that an (n, s, g)-candidate basis is k-complete if, for all 0 ≤ i ≤ n,
Pairsi \B ⊆ ∼̇k. We call B complete if it is EB-complete. By the reasoning we used
for showing the correctness of the non effective version, when the effective version
of CandidateBoundn terminates, B is complete.

It remains to show that B is complete if and only if it is full. First observe that,
if B is full, then it is complete: indeed, B being full entails that, for all E ≁ F

in Pairsi, (E,F ) is in B ⊆ ≁, hence Pairsi \ B ⊆ ∼ ⊆ ∼̇EB
.

Conversely, assume that B is complete, and let us show that it is full; it suffices
to show that, in that case, ∼̇EB

⊆ ∼. By contradiction, consider a pair E ≁ F

with E ∼̇EB
F ; without loss of generality, el(E,F ) can be assumed minimal among

all such pairs. Then B is full below el(E,F ): indeed, if (E′, F ′) ∈ Pairsi and
el(E′, F ′) < el(E,F ), since el(E,F ) was taken minimal, E′

≁̇EB
F ′ and therefore

(E′, F ′) belongs to B since B is complete. Thus Lem. 4 applies and shows that
E ≁̇EB

F , a contradiction. �

5. Complexity Upper Bounds

In this section, we analyse the procedure CandidateBoundn to derive an upper
bound on the computed EB. In turn, by Fact 1 and Thm. 3, this bound will
allow us to bound the complexity of the bisimulation problem. The idea is to
analyse the ranking function defined by (12) in order to bound how many times the
main loop of CandidateBoundn can be executed. We rely for this on a so-called
‘length function theorem’ from [28] to bound the length of descending sequences of
ordinals like (13). Finally, we classify the final upper bound using the ‘fast-growing’
complexity classes defined in [29]. A general introduction to these techniques can
be found in [30]. Throughout this section, we assume that the values of g, n, s, and
c are the ones needed for Thm. 3 to hold.

5.1. Controlled Descending Sequences. Though all descending sequences of
ordinals are finite, we cannot bound their lengths in general; e.g., K+1 > K > K−
1 > · · · > 0 and ω > K > K−1 > · · · > 0 are descending sequences of length K+2
for all K in N. Nevertheless, the sequence (13) produced by CandidateBoundn

is not arbitrary, because the successive ranks are either determined by the input
and the initialisation phase, or the result of some computation, hence one cannot
use an arbitrary K as in these examples.

This intuition is captured by the notion of controlled sequences. For an ordinal
α < ωω (like the ranks defined by (12)), let us write α in Cantor normal form as

α = ωn · cn + · · ·+ ω0 · c0

with c0, . . . , cn and n in N, and define its size as

‖α‖ def= max{n, max
0≤i≤n

ci} . (14)
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Let N0 be a natural number in N and h:N → N a monotone inflationary function,
i.e., x ≤ y implies h(x) ≤ h(y), and x ≤ h(x). A sequence α0, α1, . . . of ordinals
below ωω is (N0, h)-controlled if, for all ℓ in N,

‖αℓ‖ ≤ hℓ(N0) , (15)

i.e., the size of the ℓth ordinal αℓ is bounded by the ℓth iterate of h applied to N0;
in particular, ‖α0‖ ≤ N0. Because for each N ∈ N, there are only finitely many
ordinals below ωω of size at most N , the length of controlled descending sequences
is bounded [see, e.g., 28]. One can actually give a precise bound on this length in
terms of subrecursive functions, whose definition we are about to recall.

5.2. Subrecursive Functions. Algorithms shown to terminate via an ordinal
ranking function can have a very high worst-case complexity. In order to express
such large bounds, a convenient tool is found in subrecursive hierarchies, which
employ recursion over ordinal indices to define faster and faster growing functions.
We define here two such hierarchies.

Fundamental Sequences. A fundamental sequence for a limit ordinal λ is a strictly
ascending sequence (λ(x))x<ω of ordinals λ(x) < λ with supremum λ. We use the
standard assignment of fundamental sequences to limit ordinals λ ≤ ωω, defined
inductively by

ωω(x) def= ωx+1 , (β + ωk+1)(x) def= β + ωk · (x+ 1) ,

where β+ωk+1 is in Cantor normal form. This particular assignment satisfies, e.g.,
0 < λ(x) < λ(y) for all x < y. For instance, ω(x) = x + 1 and (ω3 + ω3 + ω)(x) =
ω3 + ω3 + x+ 1.

Hardy and Cichoń Hierarchies. In the context of controlled sequences, the hierarch-
ies of Hardy and Cichoń turn out to be especially well-suited [8]. Let h:N→ N be
a function. For each such h, the Hardy hierarchy (hα)α≤ωω and the Cichoń hier-
archy (hα)α≤ωω relative to h are two families of functions hα, hα:N→ N defined by
induction over α by

h0(x) def= x , h0(x)
def= 0 ,

hα+1(x) def= hα(h(x)) , hα+1(x)
def= 1 + hα(h(x)) ,

hλ(x) def= hλ(x)(x) , hλ(x)
def= hλ(x)(x) .

The Hardy functions are well-suited for expressing a large number of iterations of
the provided function h. For instance, hk for some finite k is simply the kth iterate
of h. This intuition carries over: hα is a ‘transfinite’ iteration of the function h, using
a kind of diagonalisation in the fundamental sequences to handle limit ordinals. For
instance, if we use the successor function H(x) = x+1 as our function h, we see that
a first diagonalisation yields Hω(x) = Hx+1(x) = 2x+1. The next diagonalisation
occurs at Hω·2(x) = Hω+x+1(x) = Hω(2x+1) = 4x+3. Fast-forwarding a bit, we

get for instance a function of exponential growth Hω2

(x) = 2x+1(x + 1) − 1, and

later a non-elementary function Hω3

akin to a tower of exponentials, and a non
primitive-recursive function Hωω

of Ackermannian growth.
In the following, we will use the following property of Hardy functions [38, 8],

which can be checked by induction provided α + β is in Cantor normal form (and
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justifies the use of superscripts):

hα ◦ hβ(x) = hα+β(x) , (16)

and if h is monotone inflationary, then so is hα:

if x ≤ y, then x ≤ hα(x) ≤ hα(y) . (17)

Regarding the Cichoń functions, an easy induction on α shows that Hα(x) =
Hα(x) + x for the hierarchy relative to H(x) def= x + 1. But the main interest of
Cichoń functions is that they capture how many iterations are performed by Hardy
functions [8]:

hhα(x)(x) = hα(x) . (18)

Length Function Theorem. We can now state a ‘length function theorem’ for con-
trolled descending sequences of ordinals.

Theorem 6 ([28, Thm. 3.3]). Let N0 ≥ n + 1. The maximal length of (N0, h)-
controlled descending sequences of ordinals in ωn+1 is hωn+1(N0).

5.3. Controlling the Candidate Computation.

General Approach. Consider an execution ofCandidateBoundn entering the main
loop at line 11 and let us define

N def= max{n+ 1, EB, max
0≤i≤n

si, max
0≤i≤n

|Pi|} . (19)

We are going to exhibit h:N → N monotone and inflationary such that, along
any execution of CandidateBoundn, the sequence of successive values N0, N1, . . .

defined by (19) each time the execution enters the main loop on line 11 satisfies

Nℓ ≤ hℓ(N0) (20)

for all ℓ in N. By definition of the ordinal size in (14) of the ranks from (12),
‖αℓ‖ ≤ Nℓ. Hence, this will show that the corresponding sequence of ranks α0 >

α1 > · · · is (N0, h)-controlled. Therefore, Thm. 6 can be applied since furthermore
N0 ≥ n+ 1, showing that the number of loop iterations is bounded by

L def= hωn+1(N0) . (21)

By (18), this will entail an upper bound on the returned EB whenCandidateBoundn

terminates:

EB ≤ NL ≤ hL(N0) = hωn+1

(N0) . (22)

Controlling one Loop Execution. As a preliminary, let us observe that, for all 0 ≤
i ≤ n, the number of elements of Pairsi (defined in (11)) can be bounded by

|Pairsi| ≤
(

(|N |+ i) · smi
)si · s2i ≤ 23si|G| logn log si . (23)

Indeed, the graph representation of some pair (E,F ) in Pairsi has at most si ver-
tices, each labelled by a nonterminal symbol from N or a variable from {x1, . . . , xi}
and with at most m outgoing edges; finally the two roots must be distinguished.

Let us turn our attention to the contents of the main loop.

Lemma 7. For all ℓ in N we have Nℓ+1 ≤ GG(Nℓ) where

GG(x)
def= 22

2n+6c2g2|G|3x4

.
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Proof. Assume we enter the main loop for the ℓth time with Nℓ as defined in (19).
On line 12, a new equivalence level e is introduced, with e ≤ 2cN2

ℓ since EB ≤
Nℓ and size(E,F ) ≤ Nℓ, thus in case of an update on line 16, we have ei ≤
2cN2

ℓ . Consider now the for loop on lines 17–20. Regarding line 19, observe that
max(E,F )∈B el(E,F ) ≤ max{e, EB} ≤ 2cN2

ℓ , thus

ej ≤ 2cN2
ℓ (24)

for all j in {i, . . . , 0} and si ≤ Nℓ by assumption. Thus, regarding line 18, for all j
in {i− 1, . . . , 0},

sj ≤ 2i−jNℓ + (2i−j − 1)(g + 2cN2
ℓ (sinc+ g))

≤ 2n+2cg|G|N2
ℓ . (25)

Regarding line 20, by (23), (25) entails that for all j in {i− 1, . . . , 0},

|Pj | ≤ 22
2n+6c2g2|G|3N4

ℓ . (26)

Finally, regarding line 21, by (24), EB ≤ 2(n+ 1)cN2
ℓ . �

Final Bound. Let us finally express (22) in terms of n and |G|. First observe that,
at the end of the initialisation phase of lines 2–8, ei = 0, si ≤ 2n+1g, |Pi| ≤

22
2n+5s2g2 log |G|, and EB = n+ 1, thus

N0 ≤ 22
2n+5s2g2 log |G| . (27)

Then, because the bounds in Lem. 7 and eq. (27) are in terms of |G| (recall that
the grammatical constant g is exponential and n, s, and c are doubly exponential
in terms of |G|), there exists a constant d independent from G such that |G| ≤ N0 ≤

Hω2·d(|G|) and GG(x) ≤ Hω2·d(max{x, |G|}) for all G and x, where according to (16)

Hω2·d is the dth iterate ofHω2

(x) = 2x+1(x+1)−1. Then by (17), h(x) def= Hω2·d(x)
is a suitable control function that satisfies (20) and therefore (22).

Finally, because n ≤ N0 ≤ h(|G|) and by (17), hωn+1

(N0) ≤ hωω

(h(|G|)). We
have just shown the following upper bound.

Lemma 8. Let G be a first-order grammar and n, s, and g be defined as in Thm. 3.

Then EBn,s,g
≤ hωω

(h(|G|)) where h(x) def= Hω2·d(x) for some constant d.

5.4. Fast-Growing Complexity. It remains to combine Fact 1 with Lem. 8 in
order to provide an upper bound for the bisimilarity problem. We will employ
for this the fast-growing complexity classes defined in [29]. This is an ordinal-
indexed hierarchy of complexity classes (Fα)α<ε0 , that uses the Hardy functions
(Hα)α relative to H(x) def= x + 1 as a standard against which we can measure high
complexities.

Fast-Growing Complexity Classes. Let us first define

F<α
def=

⋃

β<ωα

FDTIME
(

Hβ(n)
)

(28)
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ELEMENTARY

F3 =TOWER

⋃
kFk=PRIMITIVE-RECURSIVE

Fω
Fω2

Fω3

⋃
kFωk = MULTIPLY-RECURSIVE

Figure 2. Pinpointing Fω = ACKERMANN among the complexity
classes beyond ELEMENTARY [29].

as the class of functions computed by deterministic Turing machines in time O(Hβ(n))
for some β < ωα. This captures for instance the class of Kalmar elementary func-
tions as F<3 and the class of primitive-recursive functions as F<ω [23, 38]. Then
we let

Fα
def=

⋃

p∈F<α

DTIME
(

Hωα

(p(n))
)

(29)

denote the class of decision problems solved by deterministic Turing machines in
time O

(

Hωα

(p(n))
)

for some function p ∈ F<α. The intuition behind this quantific-

ation over p is that, just like e.g. EXPTIME =
⋃

p∈poly DTIME
(

2p(n)
)

quantifies over
polynomial functions to provide enough ‘wiggle room’ to account for polynomial
reductions, Fα is closed under F<α reductions [29, Thms. 4.7 and 4.8].

For instance, TOWER
def= F3 defines the class of problems that can be solved

using computational resources bounded by a tower of exponentials of elementary
height in the size of the input,

⋃

k∈N
Fk is the class of primitive-recursive decision

problems, and ACKERMANN
def= Fω is the class of problems that can be solved us-

ing computational resources bounded by the Ackermann function applied to some
primitive-recursive function of the input size—here it does not matter for α > 2
whether we are considering deterministic, nondeterministic, alternating, time, or
space bounds [29, Sec. 4.2.1]. See Fig. 2 for a depiction.

Theorem 9. The bisimulation problem for first-order grammars is in ACKERMANN,
and in Fn+4 if n is fixed.

Proof. This is a consequence of Fact 1 combined with Thm. 3 and Lem. 8; the
various overheads on top of the bound on EBn,s,g

are of course negligible for such
high complexities [29, Lem. 4.6]. We rely here on [29, Thm. 4.2] to translate from

hωn+1

with h = Hω2·d ∈ F<3 into a bound in terms of Hωn+4

. �

6. Pushdown Processes

The complexity upper bounds obtained in Sec. 5 are stated in terms of first-order
grammars. In this section, we revisit the known reduction from pushdown systems
to first-order grammars (as given in [15, 19]), and we also give a direct reduction
from first-order grammars to pushdown systems (instead of giving just a general
reference to [9, 7]). We do this first to make clear that the reductions are primitive



BISIMULATION OF FIRST-ORDER GRAMMARS IS ACKERMANN-COMPLETE 15

Ap

C

B

pA

q1C q2C q3C

q1B q2B q3B

q1 q2 q3

Ap a
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a
−→ qC

q1A q2A q3A
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Figure 3. The PDS configuration pACB encoded as a term (left),

and the translation of the PDS rule pA
a
−→ qCA into a first-order

rule (right).

recursive (in fact, they are polynomial-time reductions), and second to show that,
in the real-time case, Thm. 9 provides primitive-recursive bounds for pushdown
systems with a fixed number of states.

Pushdown Systems. Let us first recall that a pushdown system (PDS ) is a tuple
M = (Q,Σ,Γ,∆) of finite sets where the elements of Q,Σ,Γ are called control
states, actions (or terminal letters), and stack symbols, respectively; ∆ contains

transition rules of the form pY
a
−→ qγ where p, q ∈ Q, Y ∈ Γ, a ∈ Σ ⊎ {ε}, and

γ ∈ Γ∗. A pushdown system is called real-time if a is restricted to be in Σ, i.e., if
no ε transition rules appear in ∆.

A PDS M = (Q,Σ,Γ,∆) generates the labelled transition system

LM
def= (Q× Γ∗,Σ ⊎ {ε}, (

a
−→)a∈Σ∪{ε})

where each rule pY
a
−→ qγ induces transitions pY γ′ a

−→ qγγ′ for all γ′ ∈ Γ∗. Note

that LM might feature ε-transitions (also called ε-steps) pY γ′ ε
−→ qγγ′ if the PDS

is not real-time.

6.1. From PDS to First-Order Grammars. We recall a construction already
presented in the appendix of the extended version of [19]. The idea is that, although
first-order grammars lack the notion of control state, the behaviour of a pushdown
system can nevertheless be captured by a first-order grammar that usesm-ary terms
where m is the number of control states.

Figure 3 (left) presents a configuration of a PDS—i.e., a state in LM—as a term;
here we assume that Q = {q1, q2, q3}. The string pACB, depicted on the left in a
convenient vertical form, is translated into a term presented by an acyclic graph in
the figure. On the right in Fig. 3 we can see the translation of the PDS transition

rule pA
a
−→ qCA into a rule of a first-order grammar.

6.1.1. Real-Time Case. Let us first assume that M is a real-time PDS, i.e., that

each PDS transition rule pY
a
−→ qγ is such that a is in Σ. We are interested in the

following decision problem.

Problem (Strong Bisimulation).
input: A real-time pushdown system M = (Q,Σ,Γ,∆) and two configura-

tions pY, qZ in Q× Γ.
question: Is pY ∼ qZ in the labelled transition system LM?
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Formally, for a real-time PDS M = (Q,Σ,Γ,∆), where Q = {q1, q2, . . . , qm}, we
can define the first-order grammar

GM
def= (N ,Σ,R)

where N def= Q ∪ (Q × Γ), with r(q) def= 0 and r((q,X)) def= m for all q in Q and X

in Γ; the set R is defined below. We write [q] and [qY ] for nonterminals q and
(q, Y ), respectively, and we map each configuration pγ to a (finite) term T (pγ) in
TermsN defined by structural induction:

T (pε) def= [p] , (30)

T (pY γ) def= [pY ](T (q1γ), T (q2γ), . . . , T (qmγ)) . (31)

For a smooth translation of rules, we introduce a special ‘stack variable’ x, and we
set

T (qix)
def= xi (32)

for all i ∈ {1, . . . ,m}.

A PDS transition rule pY
a
−→ qγ in ∆ with a in Σ is then translated into the

first-order grammar rule

T (pY x)
a
−→ T (qγx) (33)

in R. Hence pY
a
−→ qi is translated into

[pY ](x1, . . . , xm)
a
−→ xi

and pY
a
−→ qZγ is translated into

[pY ](x1, . . . , xm)
a
−→ [qZ](T (q1γx), . . . , T (qmγx)) .

It should be obvious that the labelled transition system LM is isomorphic with
the restriction of the labelled transition system LGM

to the states T (pγ) where pγ

are configurations of M ; moreover, the set {T (pγ) | p ∈ Q, γ ∈ Γ∗} is closed w.r.t.

reachability in LGM
: if T (pγ)

a
−→ F in LGM

, then F = T (qγ′) where pγ
a
−→ qγ′ in

LM .

Corollary 10. The strong bisimulation problem for real-time pushdown systems is
in ACKERMANN, and in F|Q|+4 if the number |Q| of states is fixed.

Proof. What we have sketched above is a polynomial-time (in fact, logspace) re-
duction from the strong bisimulation problem in (real-time) pushdown systems to
the bisimulation problem in first-order grammars, for which we can apply Thm. 9.
Observe that, in this translation and according to the discussion after (6), we may
bound n by the number |Q| of states of the given pushdown system, which justi-
fies the primitive-recursive F|Q|+4 upper bound when the number of states is fixed.
(Figure 3 makes clear that all branches in T (pγ) have the same lengths, and there
are precisely |Q| depth-d subterms of T (pγ), for each d ≤ height(T (pγ)).) �

6.1.2. General Case. In the case of labelled transition systems L = (S,Σ, (
a
−→)a∈Σ⊎{ε})

with a silent action ε, by s
w
=⇒ t, for w ∈ Σ∗, we denote that there are s0, s1, . . . , sℓ ∈

S and a1, . . . , aℓ ∈ Σ⊎{ε} such that s0 = s, sℓ = t, si−1
ai−→ si for all i ∈ {1, . . . , ℓ},

and w = a1 · · · aℓ. Thus s
ε
=⇒ t denotes an arbitrary sequence of silent steps, and

s
a
=⇒ t for a ∈ Σ denotes that there are s′, t′ such that s

ε
=⇒ s′

a
−→ t′

ε
=⇒ t.

A relation R ⊆ S ×S is a weak bisimulation if the following two conditions hold:
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(zig): if s R t and s
a
−→ s′ for some a ∈ Σ ⊎ {ε}, then there exists t′ such that

t
a
=⇒ t′ and s′ R t′;

(zag): if s R t and t
a
−→ t′ for some a ∈ Σ⊎ {ε}, then there exists s′ such that

s
a
=⇒ s′ and s′ R t′.

By ≈ we denote weak bisimilarity, i.e., the largest weak bisimulation (the union of
all weak bisimulations), which is an equivalence relation.

We are now interested in the following problem.

Problem (Weak Bisimulation).
input: A pushdown system M = (Q,Σ,Γ,∆) and two configurations pY, qZ

in Q× Γ∗.
question: Is pY ≈ qZ in the labelled transition system LM?

Unfortunately, in general the weak bisimulation problem for PDS is undecidable,
already for one-counter systems [24]; we can also refer, e.g., to [21] for further
discussion. As already mentioned in the introduction, we thus consider PDS with

(very) restricted silent actions : each rule pY
ε
−→ qγ in ∆ is deterministic (i.e.,

alternative-free), which means that there is no other rule with the left-hand side
pY . From now on, by restricted PDS we mean PDS whose ε-rules are deterministic.

We aim to show that the weak bisimulation problem for restricted PDS reduces
to the (strong) bisimulation problem for first-order grammars (where silent actions
are not allowed by our definition). For this it is convenient to make a standard
transformation [see, e.g., 12, Sec. 5.6] of our restricted PDS that removes non-

popping ε-rules; an ε-rule pY
ε
−→ qγ is called popping if γ = ε. This is captured

by the next proposition. (When comparing two states from different LTSs, we
implicitly refer to the disjoint union of these LTSs.)

Proposition 11. There is a polynomial-time transformation of a restricted PDS
M = (Q,Σ,Γ,∆) to M ′ = (Q,Σ,Γ,∆′) in which each ε-rule is deterministic and
popping, and pY in LM is weakly bisimilar with pY in LM ′ .

Proof. Given a restricted PDS M = (Q,Σ,Γ,∆), we proceed as follows. First we
find all pY such that

pY
ε
−→ · · ·

ε
=⇒ pY γ (34)

for some γ ∈ Γ∗, and remove the respective rules pY
ε
−→ · · · . Then for each pY such

that

pY
ε
−→ · · ·

ε
−→ · · ·

ε
=⇒ q , (35)

we add the popping rule pY
ε
−→ q, and for each pY where

pY
ε
−→ · · ·

ε
=⇒ qBγ (36)

and each rule qB
a
−→ q′γ′ with a ∈ Σ we add the rule pY

a
−→ q′γ′γ. Finally we

remove all the non-popping ε-rules. Thus M ′ = (Q,Σ,Γ,∆′) arises. Identifying
the configurations that satisfy conditions (34–36) can be performed in polynomial
time through a saturation algorithm. The claim on the relation of LM and LM ′ is
straightforward. �

A stable configuration is either a configuration pε, or a configuration pY γ where

there is no ε-rule of the form pY
ε
−→ qγ′. In a restricted PDS with only popping

ε-rules, any unstable configuration pγ only allows to perform a finite sequence of
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Figure 4. Deterministic popping silent steps are ‘preprocessed.’

silent popping steps until it reaches a stable configuration. It is natural to restrict

our attention to the transitions pγ
a
−→ qγ′ with a ∈ Σ between stable configurations;

such transitions might encompass sequences of popping ε-steps.
When defining the grammar GM , we can avoid the explicit use of deterministic

popping silent steps, by ‘preprocessing’ them: we apply the inductive definition
of the translation operator T from (30–32) to stable configurations, while if pY is

unstable, then there is exactly one applicable rule, pY
ε
−→ q, and in this case we let

T (pY γ) def= T (qγ) . (37)

Figure 4 (right) shows the grammar-rule

T (pAx)
a
−→ T (qCAx)

(arising from the PDS-rule pA
a
−→ qCA), when Q = {q1, q2, q3} and there is a

PDS-rule q2A
ε
−→ q3, while q1A, q3A are stable.

Corollary 12. The weak bisimulation problem for restricted pushdown systems
(i.e., where ε-rules are deterministic) is in ACKERMANN.

Proof. By Proposition 11 it suffices to consider a PDS M = (Q,Σ,Γ,∆) where
each ε-rule is deterministic and popping. Since it is clear that pY ≈ qZ in LM iff
T (pY ) ∼ T (qZ) in LGM

, the claim follows from Thm. 9. �

Note that, due to our preprocessing, the terms T (pγ) may have branches of
varying lengths, which is why n as defined in (6) might not be bounded by the
number of states as in Cor. 10.

6.2. From First-Order Grammars to PDS. We have shown the ACKERMANN-
membership for bisimilarity of first-order grammars (Thm. 9), and thus also for
weak bisimilarity of pushdown processes with deterministic ε-steps (Cor. 12). By
adding the lower bound from [18], we get the ACKERMANN-completeness for both
problems.

In fact, the ACKERMANN-hardness in [18] was shown in the framework of first-
order grammars. The case of pushdown processes was handled by a general reference
to the equivalences that are known, e.g., from [9] and the works referred there;
another relevant reference for such equivalences is [7]. Nevertheless, in our context it
seems more appropriate to show a direct transformation from first-order grammars
to pushdown processes (with deterministic ε-steps), which can be argued to be
primitive-recursive; in fact, it is a logspace reduction.

Let G = (N ,Σ,R) be a first-order grammar. For a term F ∈ TermsN such that
F 6∈ Var (hence the root of F is a nonterminal A) we define its root-substitution
to be the substitution σ where F = A(x1, . . . , xr(A))σ and xσ = x for all x 6∈
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A

x1 x2 x3

a
−→ C

D

x2 x1

 

Aq1 a
−→ Cq1

σ

σq1 ε
−→ q2

σq2 ε
−→ Dq1

σ′

Figure 5. The transformation from first-order grammars to push-
down processes with deterministic ε-steps. In this example, x1σ =
x2, x2σ = D(x2, x1), and x1σ

′ = x2, x2σ
′ = x1.

{x1, . . . , xr(A)}. A substitution σ is an rhs-substitution for G if it is the root-

substitution of a subterm F of the right-hand side E of a rule A(x1, . . . , xr(A))
a
−→ E

in R (where F 6∈ Var); we let RSubsG denote the set of rhs-substitutions for G.
We define the PDS MG

def= (Q,Σ,Γ,∆) where

Q def= {q1, . . . , qm}

for m as defined in (2)—or Q def= {q1} if m = 0—,

Γ def= N ⊎RSubsG ,

∆ def= {q1A
a
−→ qi | (A(x1, . . . , xr(A))

a
−→ xi) ∈ R}

∪ {q1A
a
−→ q1Bσ | σ ∈ RSubsG ∧ (A(x1, . . . , xr(A))

a
−→ B(x1, . . . , xr(B))σ) ∈ R}

∪ {qiσ
ε
−→ qj | 1 ≤ i ≤ m ∧ σ ∈ RSubsG ∧ σ(xi) = xj}

∪ {qiσ
ε
−→ q1Cσ′ | 1 ≤ i ≤ m ∧ σ, σ′ ∈ RSubsG ∧ σ(xi) = C(x1, . . . , xr(C))σ

′} .

See Fig. 5 for an example. Note that the ε-rules are indeed deterministic; moreover,

any non-popping ε-step, hence of the form qiσγ
ε
−→ q1Cσ′γ, cannot be followed by

another ε-step.
It should be obvious that a state A(x1, . . . , xr(A)) in LG is weakly bisimilar with

the state q1A in LMG
. In particular we note that q1A

w
=⇒ qiγ in LMG

(where also ε-
steps might be comprised) entails that γ = σ0σ1 . . . σℓ (in which case qiγ represents
the term xiσ0σ1, . . . σℓ), or γ = Bσ1 . . . σℓ when i = 1 (in which case q1γ represents
the term B(x1, . . . , xr(B))σ1, . . . σℓ).

We could add a technical discussion about how to represent all the terms fromTermsN
(including the infinite regular terms) in an enhanced version of LMG

, but this is not
necessary since the lower bound construction in [18] uses only the states of LG that
are reachable from ‘initial’ terms of the form A(x1, . . . , xr(A)) (more precisely, of
the form A(⊥, . . . ,⊥) for a nullary nonterminal ⊥).

Corollary 13. The weak bisimulation problem for pushdown systems whose ε-rules
are deterministic and popping is ACKERMANN-hard.

Proof. In [18], the ACKERMANN-hardness of the control-state reachability prob-
lem for reset counter machines is recalled [27], and its polynomial-time (in fact,
logspace) reduction to the bisimulation problem for first-order grammars is shown.
The reduction guarantees that a given control state is reachable from the initial
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Table 2. Grammatical constants defined in [20].

Constant Ref. in [20] Ref. here Growth in |G|

m = maxA∈N r(A) (7) (2) linear
hinc = maxE∈rhs height(E)− 1 (4) (3) linear
sinc = maxE∈rhs ntsize(E) (5) (4) linear
d0 = 1 +maxA∈N ,1≤i≤r(A) |w[A,i]| (6) (5) exponential

d1 = 2|N |(max{d0, |R|d0})m+2 (13) doubly exponential
d2 = d0 + (1 + d0hinc)(d0 − 1) (19) exponential
d3 = (max{d0, |R|d0})2 (21) doubly exponential
n = md0 (24) (6) doubly exponential
s = md0+1 + (m + 2)d0sinc+ (d2 + d0 − 1)sinc (25) doubly exponential
g = (d2 + d0 − 1)sinc (26) exponential

d4 = d1(1 +
∑

E∈rhs ntsize(E))d2+d0−1 (23) doubly exponential
d5 = (d2 + d0 − 1)(1 + (d0 − 1)hinc) (31) doubly exponential
c = max{d3, 2d4d5} (38) doubly exponential

configuration of a given reset counter machine R iff A(⊥, . . . ,⊥) 6∼ B(⊥, . . . ,⊥)
in LGR

for the constructed grammar GR. As shown above, the question whether
A(⊥, . . . ,⊥) ∼ B(⊥, . . . ,⊥) in LGR

can be further reduced to an instance of the
weak bisimulation problem for the pushdown system MGR

. �

7. Concluding Remarks

Theorem 9 and Cor. 12 provide the first known worst-case upper bounds, in
ACKERMANN, for the strong bisimulation equivalence of first-order grammars and
the weak bisimulation equivalence of pushdown processes restricted to deterministic
silent steps. By the lower bound shown in [18] and Cor. 13, this is moreover optimal.
An obvious remaining problem is to close the complexity gap in the case of strong
bisimulation for real-time pushdown processes, which is only known to be TOWER-
hard [1], and for which we do not expect Cor. 10 to provide tight upper bounds.

Appendix A. Grammatical Constants

The proof of Thm. 3 in [20, Thm. 7] relies on the definition of several grammatical
constants, which depend solely on the given first-order grammar G = (N ,Σ,R). In
Tab. 2 we summarise their definitions as a reference for the reader.
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