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Abstract

In this paper we consider the relationship between monomial-size
and bit-complexity in Sums-of-Squares (SOS) in Polynomial Calculus
Resolution over rationals (PCR/Q). We show that there is a set of
polynomial constraints @,, over Boolean variables that has both SOS
and PCR/Q refutations of degree 2 and thus with only polynomially
many monomials, but for which any SOS or PCR/Q refutation must
have exponential bit-complexity, when the rational coefficients are rep-
resented with their reduced fractions written in binary.

1 Introduction

Polynomial Calculus (PC) is an algebraic proof system, introduced in [6],
that draws inspiration from Grobner basis computations in computational
algebraic geometry. Ultimately it is based on Hilbert’s Nullstellensatz, and
Polynomial Calculus can be seen as a dynamic version of Nullstellensatz that
is based on schematic inference rules. In the Boolean realm the original
definition of [6] was strengthened to a system called Polynomial Calculus
Resolution (PCR) in [I] by the introduction of the so called twin variables,
that allow for more compact representations of Boolean functions.

Sums-of-Squares (SOS) on the other hand is based on Putinar’s Posi-
tivstellensatz [16] in real algebraic geometry. As a refutation system it was
originally considered by Grigoriev and Vorobjov in [10]. On the other side
of things SOS has strong connections to approximation algorithms through
the hierarchies of semidefinite programming relaxations in combinatorial
optimization [12] 15, B]. We refer the reader to the survey [13] for further
discussion.

The most studied complexity measure for these systems has been the
degree of a refutation. We on the other hand concentrate here on other
possible complexity measures for the systems that are of interest especially
to proof complexity. The measures studied here are monomial-size, the
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number of monomials in a refutation, and bit-complexity, the number of
bits actually needed to write down the refutation.

We encounter here a somewhat surprising situation where there is an ex-
ponential separation between monomial-size and bit-complexity. We obtain
strong exponential bit-complexity lower bounds for a set of constraints that
appears easy for the proof systems by the standards of the other complexity
measures, degree and monomial-size. To the best of our knowledge this is
the first lower bound of this sort for the systems in question.

The question about bit-complexity of Sums-of-Squares proofs was raised
by O’Donnell in [I4] in connection with (degree)-automatability of Sums-
of-Squares (SOS) proofs. O’Donnell noted that the received wisdom, that a
degree d Sums-of-Squares proof can be found using the ellipsoid algorithm in
time n2@ if one exists, is not entirely true. Difficulties may arise if the only
proofs of degree d contain exceedingly large coefficients as then the initial
ellipsoid cannot be chosen small enough to guarantee polynomial runtime.

Building on O’Donnell’s example, Raghavendra and Weitz exhibited in
[17] (see also [I8]) an example of a set of polynomial constraints over O(n?)
Boolean variables and a polynomial that has SOS proofs of degree 2 from the
constraints, but for which any SOS proof of degree O(n) from the constraints
must contain a coefficient of magnitude doubly exponential in 7.

The example of Raghavendra and Weitz leaves open, however, the pos-
sibility that there are SOS proofs of degree higher than O(n), but with
only polynomially many monomials, and with coefficients of polynomial bit-
complexity. In other words the example leaves open the possibility that
there are SOS proofs from the constraints that can be written down using
only polynomially many bits.

Similarly for Polynomial Calculus it has been often stated that a degree
d Polynomial Calculus proof can be found in time n®@ if they exist. This
is certainly true for Polynomial Calculus over finite fields as is already clear
from the proof search algorithm given in [6]. However for Polynomial Cal-
culus over reals or rationals there is potential for significant coefficient bloat
in the proof search.

We give here an example of an unsatisfiable set of polynomial constraints
that has both SOS and PCR/Q refutations of degree 2, and thus with only
polynomially many monomials, but for which any SOS or PCR/Q refu-
tation must be of exponential bit-complexity. For SOS we prove this by
showing that any refutation with less than exponentially many monomials
must contain a coefficient of doubly exponential magnitude. For PCR/Q we
show that any proof with bounded coefficients using less than exponentially
many monomials must be exceedingly tall.

Raghavendra and Weitz proved the lower bound on the magnitude of
coefficients in proofs of degree O(n) using the linear degree lower bounds
for refutations of Knapsack obtained in [7], and the linear degree pseudoex-
pectations for Knapsack it provides. We on the other hand will use lower



bounds on the number of monomials in refutations of Knapsack, and a suit-
ably generalized notion of pseudoexpectation that can be used to argue for
bounds on number of monomials rather than degree.

2 Preliminaries

We denote by [n]| the set of positive integers up to and including n, i.e.
[n] :={1,...,n}, and by R, the set of non-negative real numbers. Given a
polynomial p in real or rational coefficients, we denote by ||p|| the maximum
coefficient of p in absolute value.

2.1 Polynomials and the Boolean ideal

We consider real polynomials over n pairs of Boolean variables x;, z;, i € [n].
The intended meaning here is that all variables take value 0 or 1 and the two
variables in a pair assume the opposite values. Accordingly, we denote by I,
the Boolean ideal over n Boolean variables, i.e. I, := (xf —x;, x;+T;—1:
i € [n]). We write p=¢ mod I,,, when p — q € I,,.

Given a set S of monomials in the variables z;,Z; we denote by R[S]
the set of all linear combinations of elements of S with real coefficients, i.e.
polynomials that use only monomials from the set S. We denote by S? the
set of products mims, where mq,mo € S.

2.2 Sums-of-Squares proofs

Let @ ={¢1 =0,...,¢m = 0 } be a set of polynomial equality constraints.
Let p be another polynomial. A Sums-of-Squares (SOS) proof of non-
negativity of p from (@ is a polynomial equality of the form

p—Zr —i—thq—i-Z wi(xf — ;) + vi(w; + T — 1)), (1)

i€[k] qeQ i€[n]

where 7;, t4, u; and v; are arbitrary polynomials. We call the polynomials
tq the lifts of the non-logical axioms, and the polynomials u; and v;
the lifts of the logical axioms. An SOS refutation of () is a proof of
non-negativity of —1 from Q.

The proof (1) has degree at most d if deg( 2)
deg(tyq) < d for any ¢ € Q and and deg(u;(z7 — z;))

—1)) <d for any i € [n].

The explicit monomials of the proof (Il) are all the monomials ap-
pearing in the polynomials r; for any ¢ € [k], in the polynomials ¢, and ¢
for any ¢ € @ and in the polynomials u;, v;, ﬂ:f —x; and x; + z; — 1 for any
i € [n]. In other words, the explicit monomials of the proof (1) are all the
monomials visible in the explicit representation of the proof.

d for any i € [k],

<
< d and deg(v;(x; +



We distinguish a particular subset of all the explicit monomials as par-
ticularly important, and call the monomials in the polynomials r; and ¢, the
significant monomials of the proof (II).

The monomial-size of the proof (IJ) is the number of explicit monomials
counted with multiplicity. In the case that the polynomials in the proof ()
have only rational coefficients, we define the bit-complexity of (1) as the
minimum length of a bit-string representing the proof when the rational
coefficients are represented with their reduced fractions written in binary.

Given a set S of monomials that includes the empty monomial 1, and all
the monomials appearing in @), we say that the proof () is a proof over
S, when all the significant monomials of () are among S.

We write Q Fg p > ¢ if there is a proof of non-negativity of p — ¢ from
Q over S.

2.3 Polynomial Calculus Resolution

Let again @ = {¢1 = 0,...,¢, = 0} be a set of polynomial equality con-
straints, and let p be another polynomial. A Polynomial Calculus Res-
olution proof over rationals (PCR/Q) of p = 0 from @ is a sequence

P1s---,De (2)

of polynomials such that p, = p and for any i € [{] one of the following
holds:

e p; € Q, i.e. p;is one of the non-logical axioms;
e p;, € B, i.e. p; is one of the logical axioms;

e there is j < 4 and a variable x such that p; = xp;, i.e. p; is obtained
from p; via lifting with a variable x;

e there are j,k < 7 and a,b € Q such that p; = ap; + bpg, i.e. p; is
obtained from p; and p; via linear combination.

A PCR/Q refutation of @ is a proof of 1 =0 from Q.

The proof (2)) is of degree at most d if deg(p;) < d for every i € [{],
and of monomial-size at most s if the number of monomials counted with
multiplicity in all the polynomials p; is at most s. The height of the proof
([2)) is the length of the longest path from a leaf to py, when the proof (2J) is
considered as a directed acyclic graph. The height of a polynomial p; in the
proof (2)) is similarly the length of the longest path from a leaf to p;. Hence
all elements of () and B,, are at height 0.

We define the bit-complexity of the proof ([2)) to be the minimum
length of a bit-string representing all the polynomials in the proof and all
the scalars used in the linear combination rule, when all the coefficients and
scalars are represented with their reduced fractions written in binary.



2.4 Size-degree trade-offs for Sums-of-Squares

Finally we recall the size-degree trade-offs for SOS obtained in [2], and
discuss a minor improvement that can be made for our purposes.

We showed in [2] how to transform an SOS refutation with few sig-
nificant monomials!l into an SOS refutation of relatively low degree. In
detail we showed that if a set ) of polynomial constraints in n pairs of
twin variables has an SOS refutation with s many significant monomials
counted with multiplicity, then it has an SOS refutation of degree at most
44/2(n + 1) log(s)+k+4, where k is the maximum degree of the constraints
in (). This implies a degree-criterion for monomial-size lower bounds in SOS.

The size-degree trade-off can however be slightly improved as we don’t
actually need to count the number of significant monomials with multiplicity
for the proof to work. Thus we have the following.

Theorem 1. For every set QQ of equality constraints of degree at most k in
n pairs of twin variables, if there is an SOS refutation of Q with s many
distinct significant monomials, then there is an SOS refutation of @ of

degree at most 41/2(n + 1)log(s) + k + 4.

The proof of this theorem is truly almost identical to the proof of the
main theorem of [2]: one simply needs to add the word distinct to few places
in the proof. We omit the details here.

An important consequence of Theorem []is the following degree-criterion
for the number of significant monomials in a refutation.

Corollary 1. For every set Q of equality constraints of degree at most k in
n pairs of twin variables, if dg is the minimum degree of an SOS refutation
of Q, sqg is the minimum number of distinct significant monomials needed
to refute Q in SOS, and dg > k + 4, then

sQ > exp <(dQ —k—4)2/(32(n+ 1))) .

3 S-pseudoexpectations

In this section we give a characterization for SOS refutations over a set of
monomials using the so called S-pseudoexpectations. We will prove that S-
pseudoexpectations give, in a sense, sound and complete semantics for SOS
refutations over S.

Pseudoexpectations have traditionally been used to argue against low-
degree refutations and to prove degree lower bounds in SOS. They are linear
functionals that fool degree bounded SOS to think that the set of constraints
is satisfiable by mapping anything provably non-negative in bounded degree

n the paper [2] we called the significant monomials of this paper by the name explicit
monomials.



to a non-negative value. Probably the first instance of this idea appears in
[8], however the term ‘pseudoexpectation’ appears for the first time in [3].
Actually, the existence of degree bounded pseudoexpectations is equivalent
to the non-existence of degree bounded refutations [4]. Thus from a logical
point of view pseudoexpectations can be considered as sound and complete
semantics for degree bounded SOS refutations.

S-pseudoexpectations generalize the notion of degree bounded pseudo-
expectations to work against refutations over fixed sets of monomials. The
idea here is simple: rather than defining the functionals on a vector space of
polynomials up to some degree, we define the functionals on a vector space
of polynomials over a given set of monomials. This allows us to use pseudo-
expectations to argue for upper and lower bounds on monomial size of SOS
refutations. Pseudoexpectations against refutations over a set of monomials
have previously appeared in [I1], however in a slightly different form.

Definition 1. A linear functional E: R[S?] — R is an S-pseudoexpectation
for () when

e E(1)=1;
e E(p) >0if QFgp>0for peR[S?.

For the soundness and completeness theorem we need the following
lemma.

Lemma 1. For any p € R[S?] there is r € Ry such that
Dbgr=p.

Proof. Let first m € S, and let @ € R. We want to show that there is some
b € R, such that § Fg b > am. If a < 0, then —am = —am?® mod I,, and
so ) s 0 > am. On the other hand if a > 0, then a — am = a(1 — m)?
mod I,,, and so ) Fg a > am.

Let then mq1,ms € S and a € R. We want to show that there is some
b € R, such that ) kg b > amyms. If a < 0, then —amy — 2amimo —amsy =
—a(my +m2)? mod I,,. On the other hand, by the above paragraph, there
are by, by € Ry such that § g b; > —am; for i = 1,2. Hence 0 Fg (b1 +
b2)/2 > amima. If a > 0, then amy — 2amims + ama = a(my — mo)?
mod I,,. Again there are by,by € Ry such that 0 Fg b; > am; for i = 1,2,
and so 0 Fg (b1 +b2)/2 > amima. O

Using the above lemma, we can prove the soundness and completeness
theorem easily. Below, and later in Lemma [ we need the hyperplane
separation theorem in the following form: in a finite-dimensional real vector
space V, given a convex cone C' and a convex set D disjoint from C, there



is a non-trivial, i.e. one that takes also non-zero values, linear functional
L:V — R such that L(c) > 0 for any ¢ € C' and L(d) < 0 for every d € D.
That is, there is always a hyperplane separating a convex cone and a convex
set that passes through the origin.

Theorem 2 (Soundness and Completeness). Let S be a finite set of mono-
mials. Then there is no SOS refutation of Q@ over S if and only if there is
an S-pseudoexpectation for Q.

Proof. 1t is clear that if there is a refutation of @) over S, then there cannot
exist an S-pseudoexpectation for @), since any S-pseudoexpectation maps
any proof over S to a non-negative value, and —1 to —1.

Suppose then that there is no refutation of () over S. Then —1 is not in
the convex cone of all polynomials in R[S?] provably non-negative from @
over S, and so, by the hyperplane separation theorem, there is a non-trivial
linear functional L: R[S?] — R such that L(p) > 0 if Q Fs p > 0 and
L(-1) <.

We argue first that L(1) > 0. So suppose towards a contradiction that
L(1) = 0. Now, by Lemma [ for any p € R[S?] there is non-negative r
such that @ Fg r > p > —r. Hence L(r) > L(p) > L(—r). But now, by
assumption, L(r) = L(—r) = 0, and so L(p) = 0, against the non-triviality
of L.

Now by defining E(p) = L(p)/L(1), we have an S-pseudoexpectation for

Q. 0

We remark that we can actually remove the assumption about the finite-
ness of S in Theorem 2l However we only need the theorem in the form
stated and thus omit the details of the more general statement.

4 The constraints

In this section we introduce the set of constraints that we use to prove our
claims about lower bounds on bit-complexity.
Recall first the knapsack constraint KNAPSACK(n, k):

1+ ... +x, =k

If k is not an integer, the constraint is unsatisfiable over the Boolean values.
However, for any ¢ strictly between 0 and 1, KNAPSACK(2n,n+¢) requires
degree at least 2n to refute in SOS [7].

Now, by Corollary [Il to refute KNAPSACK(2n,n+¢) in SOS one needs
at least s, many distinct significant monomials, where

7



A lower bound of the same order was also obtained earlier in [9] using more
ad hoc methods.

It follows that for any e strictly between 0 and 1 and for any set S of
monomials containing all the variables and the empty monomial 1 of size
less than s,,, there is no SOS refutation of KNAPSACK(2n,n+¢) over S, and
thus, by Theorem 2lthere is an S-pseudoexpectation for KNAPSACK(2n, n+
¢). This property will be key in the main result of this chapter.

Now we turn to the set of constraints we consider here. The set is slightly
modified from [I7] — we add the constraint (Il) below in order to obtain an
unsatisfiable set of constraints.

For each ¢ € [n], introduce 2n variables z;;, j € [2n]. Denote by ks;
the polynomial jen] Tij — N Note that the constraint ks; = ¢ is just the
constraint KNAPSACK(2n,n + ¢) in the variables x;;,j € [2n]. Denote by
@, the following set of constraints

I) kSl = 1/2;
IT) ks? = ks;,; for each i € [n — 1];
I11) ks? = 0.

Now, as noted above already, the constraint () is by itself unsatisfiable
over the Boolean values. However, both PCR/Q and SOS require linear
degree to refute (I) by itself. The role of (II) and (III) is two-fold: on
one hand they decrease the degree needed to refute the constraints, but the
repeated squaring inherent in the constraints also forces the coefficients to
blow-up.

5 Upper bounds

In this section we show that both PCR/Q and SOS have refutations of @,
of degree 2 and of monomial-size polynomial in n. Each of these refutations
however uses coefficients of exponential bit-complexity in n and thus the
refutations themselves have bit-complexities that are exponential in n.

Lemma 2. There is a PCR/Q refutation of Q,, of degree 2 and of monomial-
size poly(n).

Proof. We prove by induction that for any i € [n| there is a PCR/Q proof
of ks? = 1/2% from @, of degree 2 and monomial-size poly(n). For i = 1,
we obtain this as follows. First derive ks? = ks; /2 from ks; = 1/2. This can
be done in O(n) steps, in degree 2 and with polynomially many monomials.
Secondly derive ks; /2 = 1/4 from ks; = 1/2. This can be done in one step.
Finally combine the two derivations to obtain a derivation of ks? = 1/4.
Suppose then that we have a proof of ks? =1/ 221 from @Q,. We derive
ks?, | = 1/22%" as follows. First derive ks;y1 = 1/22" from ks? = 1/2%" and



ks? = ks;;1. Secondly derive both ks?,; = ksiy1/22 and ks;q /2% =1/22"

from ks;+1 = 1/22', and combine these to obtain a proof of ks?,; = 1/2271

In the end we have a proof of ks? = 1/22" from Q, of degree 2 and
of monomial-size poly(n). By combining this with the axiom ksi =0 we
reach a contradiction. Note that this last step involves a multiplication by
a coefficient of doubly exponential magnitude. O

Lemma 3. There is an SOS refutation of Q, of degree 2 and of monomial-
size poly(n).

Proof. The following is an SOS refutation of @Q:

-y (1 —2n2" "ks;)?

n
1€[n]

— Z (47”L2i_1 (ks? — ksi+1))

i€[n—1]

n 1
— 4n? ks, + 4 <k81 — 5)

O

6 Lower bound for Sums-of-Squares

In this section we prove our main claim about bit-complexity of SOS refu-
tations. The proof of the claim is very similar to the one in [I7] with the
use of S-pseudoexpectations instead of degree bounded pseudoexpectations
being the central novel idea in the proof.

For a monomial m in variables x;;,4 € [n], j € [2n], for each i € [n] denote
by m; the monomial in variables x;;, j € [2n] such that m = m; ---m,,. For
any I C [n] let m; = [[,c;mi. We call m; and m; the projections of m
to index ¢ and set I, respectively. For a set S of monomials in variables
xij,1 € [n],j € [2n], denote by S; and S the sets of projections of all
elements of S to index ¢ and set I, respectively.

Theorem 3. There is a constant ¢ > 0 such that for large enough n, any
refutation of @, has at least 2 distinct explicit monomials or contains a
coefficient of magnitude at least 22" /2°".

Proof. Let ¢ be such that s, > 2° for large enough n. Let n be large
enough, let II be an SOS refutation of @,, with less than 2" distinct explicit
monomials and let S be the set of explicit monomials appearing in the
refutation II. Now S; has size less than s,, for any i € [n], and so, by Section
@ and by Theorem [2] for any i € [n] there is an S;-pseudoexpectation E; for
{ks; =1/22 7"}



Now define a linear functional E: R[S?] — R as follows: for each m € S?
let
E(m) := Ei(m1) -+ En(my),

and extend linearly to the whole of R[S?].
We prove that F has the following properties:

Now applying E to the given refutation IT, we obtain that —1 > F(pks?),
and thus
1 < |B(pksy)| < |S|[pll/2*"-

By rearranging the inequality we obtain that
Ipll > 22" /|S| > 2% j2¢".

Finally we prove that F has the desired properties. (i) follows since
E;(1) =1 for any i € [n].
For (), we have that

E(m(a3; — xi7)) = Ei(mi(}; — xi3)) [ [ Bir(mar) =0,
i i
since Ez(ml(ac?] — xi;)) = 0 as E; is an S;-pseudoexpectation for {ks; =
1/ 22i71} and S; contains both mix?j and m;x;; by construction. The item

(i) is proved similarly.
For (Iv]), we have that

E(m(ksy — 1/2)) = Ey(ma(ksy — 1/2)) [ [ Bo(mir) =0,
i #1

since E1(mi(ks; —1/2)) = 0 as E; is an Si-pseudoexpectation for {ks; =

1/2}.
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For (@) and (i), note that for any ¢ € [n],

E(mks;) = E;(mks;)E H myr)
e
= F; ml/22l ' H mgr)
il i
= B(m)/2*",

where the second equality follows since E;(m;(ks; — 1/ 22i_1)) = 0 for any
m; € S; as B is an S;-pseudoexpectation for {ks; = 1/22' '}
Now for (W) we have that
E(m(ks? — ks; 1)) = E(mks?) — E(mks; 1)
= B(m)/(2*")? - BE(m)/2* =0

For (), write p = ) g amm. Then

|B(pks?)| = |E(p)/(2*" )|

<Y lanE(m)|/2*"

meS
< 18|l /2%,

where the last inequality follows from the fact that 0 < E(m) < 1 for any
m € S because m =m? mod I, and 1 —m = (1 —m)? mod I,.

Finally to see that (i) holds, define for each i € [n], a linear function T;
with T;(m) = E;(m;) [];,; me. Now clearly E(m) = Ti(T5(... Tn(m) . ..)).
We show that for any i € [n] and any p € R[Sy;], T;(p?) is a sum of squares
of polynomials in R[S};_y)], where S|;) is the projection of S to the initial
segment [¢]. To simplify notation, we prove the case when i = 2. The general
case is not conceptually any harder. So write p as

> aapafas,
a B
where x1 and xo are sequences of the variables in S; and S5, respectively.

Now )
Ty(p) = Zzaaﬁaa’ﬁ/xlxl E2($2 75 )-
a,a’ 8,5

Now the matrix (EQ(xg xgl)) 3,8 is positive semidefinite, and so there are

11



some vectors u such that Eg(xgmgl) =3, ugug. Now

TQ(pz) = Z Z aaﬁaa’ﬁ’x?x?/ Z ugup

a7a/ 67/3/ u

=3O aapua)(3 Y awpugatat’
a,al B u B u
= 22> aagusat)’
« B u

O

As a corollary to the above theorem, we obtain the following lower bound
for the bit-complexity of SOS refutations.

Corollary 2. Any SOS refutation of Q, has bit-complezity 22",

7 Lower bound for Polynomial Calculus

Finally in this section we prove an analogue of Theorem [ for Polynomial
Calculus Resolution over rationals. Already from the Corollary 2] alone we
obtain lower bounds on the bit-complexity of PCR/Q refutations of @,
using the simulation of [5]. It is however instructive to prove an analogue of
Theorem [ also for PCR/Q.

For SOS we were able to pinpoint exactly where the large coefficient
resides in an SOS refutation that uses too few monomials: it must reside in
the lift of the constraint ks? = 0. However for PCR/Q we will not be able
to be this precise. Moreover we need to bring height of the refutation also
into the picture. We show that any PCR/Q refutation that uses only few
monomials and coefficients of small magnitude must be very tall.

To prove the theorem for Polynomial Calculus we first prove a form of
simulation between SOS and PCR/Q that gives explicit bounds on coef-
ficients in the SOS simulation in terms of the height of a given PCR/Q
refutation. For the lemma we say that a PCR/Q proof is R-bounded for
R > 0, if every coefficient in every polynomial of the proof is bounded from
above by R in absolute value, and the scalars a and b used in each instance
of linear combination rule are also bounded from above by R in absolute
value.

In order to state the following lemma we need to define a set S of mono-
mials from a given set S. The motivation for this definition here is purely
technical. We need S to contain the whole of S2 and enough other mono-

mials so that for every m € S there are u;, v; € R[S] so that

m—m?2= Z (U,Z(.%'Zz — 1‘1) + vi(mi +Z; — 1)) .
i€[n]

12



It is clear that there is S satisfying the two requirements that is of size
polynomial in the size of S and in the maximum degree of a monomial in S.
We can assume without a loss of generality that the maximum degree of a
monomial in S is at most linear in n.

Lemma 4. Let QQ be a set of polynomial equality constraints, and let R > 2.
Suppose there is an R-bounded PCR/Q refutation of Q of height h that uses
only monomials from a set S. Then there are polynomials r; € R[S] and
scalars ag € R for every g € Q and polynomials u;, v; € R[S] fori € [n] such
that

—-1= ZTZQ + ZanQ + Z (ul(xlz —x;) + vz + T — 1))

7€Q icln]
with |aq| < RYMY) for every g € Q.

Proof. Suppose towards a contradiction that the above claim does not hold.
Then the following sets are disjoint:

A—{pGRSQ Zr —1—2 ui(x —|—v,(m,+xl—1))

1€[n]

where r; € R[S] and u;,v; € R[S] for every i € [n]}

and
B:={-1+ Z agq’ : |ag| < RYMHDY.
qeqQ

Now A is a convex cone and B is a convex set. By the hyperplane
separation theorem there is a non-trivial linear functional E: R[S?] — R
such that E(p) > 0 for every p € A and E(p’) <0 for every p' € B.

We argue first that F(1) > 0. Suppose towards a contradiction that
E(1) = 0. We show that then E(m) = 0 for any m € S? against the
non-triviality of L.

Let first m € S. Now, by construction there are u;,v; € R[S] so that

m—m? = Z (u@(xlz —x;) +vi(x; + T — 1)) )

1€[n]

and thus both m —m? and m? —m are in A. Hence E(m) = E(m?) for any
meS.

Now, since 1 —m = (1 —m)? 4+ (m — m?) we have that E(1) > E(m),
and thus 0 > F(m). On the other hand as E(m?) > 0 also E(m) > 0, and
thus E(m) = 0 for every m € S.

Let then mi,my € S. Now m? + 2mymg + m3 = (my £ m2)? and so
|E(2mims)| < E(m?2) + E(m3) = 0. Hence E(1) > 0, and we can assume
by scaling that F(1) =
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Let then py,...,py be an R-bounded PCR/Q refutation of @ of height
h using only monomials from a set S. We prove by induction on the struc-
ture of the refutation that for any p; at height h' we have that E(p?) <
1/ RAMh=W"+1) " The claim holds clearly for any Boolean axiom.

The claim holds for any ¢ € @, since any ¢ € @ is at height 0 and
we have that —1 + R*"*1¢2 ¢ B and thus E(—1 4+ R*"Dg?) < 0, ie.
E(qZ) < 1/R4(h+1).

Suppose that p; at height A’ + 1 is obtained from p; via a lift with a
variable z, i.e. p; = xp; for some x. Now E((zp;)?) < E(p?), since p? -
(zp;)?* = (pj—mpj)2—2p?(x2—m). Now pj is at height A/, and so by induction
assumption, E(p3) < 1/R*P="+1) Hence E((zp;)?) < 1/R=).

Suppose then that p; at height h'+1 is obtained from p; and pj, via linear
combination, i.e. that there are some a,b € Q such that p; = ap; +bp. Now
both p; and py are at most at height h’, and so, by induction assumption,
E(p?),E(pi) < 1/RYh=W+1) " Secondly, by assumption, |al,|b] < R, and so
a?,b?* < R?. Hence E(azp?), E(?p?) < R?/RYh=H+1) Thirdly

a’p3 — 2abp;py, + b°pi = (ap; — bpr)?,

and so F(2abp;pi) < E(azp?) + E(b%*p?). Now

E(p}) = E(a’p}) + E(2abp;py,) + E(b*p})
< 2(E(a’p3) + E(b*p}))
< 4R2/RAHHD)
< R4/RA-HHD)
= 1/R4(h—h’)’

where the fourth line follows, since R? > 4.
Now E(1) < 1/R against the assumption that E(1) = 1. O

Theorem 4. There are constants ¢ > 0 and d > 0 such that for large
enough n, every 22"% _bounded PCR/Q refutation of Q,, that uses at most
247 different monomials has height at least

on/2-2 cn + 2logn
S22

Proof. Let ¢ be as in Theorem Bl and let d be such that for any set S of
monomials of size at most 29", the size of S is less than 2¢" for large enough
n. Let n be large enough and let II be a 22" hounded PCR/Q refutation of
Q) of height h that uses at most 2% different monomials. Let S be the set
of all monomials in the refutation. Now by Lemma [ there are polynomials
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ri € R[S], scalars a, € R for every ¢ € @, and polynomials u;,v; € R[S]
such that

—-1= ZTZQ + Z aqq2 + Z (uz(ﬂ?? —x;) +vi(Ti + T — 1)) )
q€Qn i€[n]
where |aq| < 92"/24(h+1) for every q € Q.

The explicit monomials of the above SOS refutation are among S and
the size of S is less that 2. Thus, by the proof of Theorem B} the lift of
the constraint ks? = 0 contains a coefficient of magnitude at least 22" /2¢".
On the other hand, since |a4| < 92"/24(h+1) the coefficients in lift of the
constraint ks? = 0, i.e. in azks? are bounded from above by 92"/24(ht1) 2
in absolute value.

Putting everything together we obtain that

After solving for h we obtain the wanted lower bound for the height. O

We obtain a lower bound on bit-complexity for Polynomial Calculus as
a corollary to the above theorem.

Corollary 3. Any PCR/Q refutation of Q, has bit-complezity 282(n)

8 Conclusions and open questions

We have shown here that there is an example of a set of constraints that
has both SOS and PCR/Q refutations with polynomially many monomials,
but for which any refutation must have exponential bit-complexity.

The most important open question related to the ideas in this paper is
whether the phenomena observed here can occur when the set of constraints
comes from a translation of a CNF, or whether the two measures of bit-
complexity and monomial-size are polynomially equivalent, when SOS or
PCR/Q are considered as a refutation system for CNFs. The constraints in
this paper do not arise from any CNF.
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