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Abstract—We study the topological µ-calculus, based on both
Cantor derivative and closure modalities, proving completeness,
decidability and FMP over general topological spaces, as well as
over T0 and TD spaces. We also investigate relational µ-calculus,
providing general completeness results for all natural fragments
of µ-calculus over many different classes of relational frames.
Unlike most other such proofs for µ-calculus, ours is model-
theoretic, making an innovative use of a known Modal Logic
method (–the ’final’ submodel of the canonical model), that has
the twin advantages of great generality and essential simplicity.

I. INTRODUCTION

The modal µ-calculus is one of the most powerful exten-

sions of modal logic, of great use in computer science appli-

cations. It is decidable, but very expressive, embedding many

modal/temporal logics, such as PDL, CTL and CTL
∗, that are

widely applied in program specification and verification.

The completeness of the modal µ-calculus was a difficult

problem and remained open for many years. Even today, there

are very few completeness results for axiomatic systems for

µ-calculus with respect to standard classes of Kripke models

(e.g., [1], [2], [3], see also a more recent proof theoretic

approach [4]). Prior to our work, there seemed to be no general

model-theoretic method to establish completeness for various

natural fragments of µ-calculus over various classes of models.

An alternative interpretation of modal logic is based not on

Kripke frames, but on topological spaces. This semantics is in

fact older and can be traced back to McKinsey and Tarski [5].

When the modal ♦ is interpreted as topological closure and

the modal � as topological interior, one obtains a semantics

for the modal logic S4 and its extensions, generalizing Kripke

semantics over transitive, reflexive frames. The logic of all

topological spaces in this semantics is S4. We refer to [6] for

an overview of the rich landscape of results on topological

completeness of modal logics above S4.

McKinsey and Tarski also suggested a second topological

semantics, obtained by interpreting the modal ♦ as Cantor

derivative.1 Esakia [7], [8] showed that the derivative logic

of all topological spaces is the modal logic wK4 = K +
(♦♦p → ♦p ∨ p). This is also the modal logic of all weakly

transitive frames, i.e. those for which the reflexive closure of

the accessibility relation is transitive. It is well-known that

1Recall that the derivative d(A) of a set A consists of all limit points of
A.

the modal logic of transitive frames is K4 [9], [10], which

moreover corresponds to a natural class of topological spaces

denoted TD. Another natural class are T0 spaces, whose modal

logic is also finitely axiomatizable; we discuss T0 spaces and

TD spaces in the context of modal logic in Section III. Modal

logics axiomatizing well-known classes of spaces also include

the Gödel-Löb logic GL, which is complete with respect to

the class of scattered spaces [11], [12].

Topological structures are of great interest to Computer

Science. As noticed by Vickers [13] and Abramsky [14], the

notion of observability and its logic require a topological set-

ting. Abstract notions of computability also involve topological

structures, and a famous example is Scott topology. More

recently, developments in Formal Learning Theory [15], [16],

Distributed Computing [17] and Epistemic Logic in Multi-

Agent Systems [18], [19], [20], have taken a topological turn.

In particular, recent epistemic work [20], [19] on modelling

and reasoning about evidence and knowability uses topological

structures. Research on spatial reasoning, in both topological

and metric incarnations, is also of significant interest for AI.

The addition of fixed point operators allows us to reason about

non-trivial properties of topological spaces: for example, the

well-known Cantor-Bendixon theorem states that any topolog-

ical space has a perfect core, i.e. a maximal subset equal to its

own derivative. The perfect core is not modally definable (in

terms of derivative or closure modalities), but it is definable

in the µ-calculus with the derivational semantics. Parikh [21]

showed the relevance of Cantor derivative and the perfect core

for multi-agent epistemic puzzles and applications.2

Our main aim in this paper is to investigate the topological

µ-calculus based on the Cantor derivative modality, as well as

its weaker version based on the closure modality. As a sec-

ondary aim, we explore (various fragments of) the relational

µ-calculus, on (various classes of) weakly transitive frames.

As such, our contribution in this paper is two-fold. First, we

develop a new model-theoretic method of proving complete-

ness for systems of µ-calculus over weakly transitive frames.

This method applies to a wide range of logics, including many

well-known ones. Concretely, we show that if a modal logic Λ
is a canonical cofinal subframe logic, then its modal µ-variant,

2In on-going work, we show that the perfect core and its logic have deep
connections with the topic of learnability from observations, as well as with
epistemic paradoxes, such as the Surprise Examination.978-1-6654-4895-6/21/$31.00 ©2021 IEEE
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obtained by adding the fixed-point axiom and induction rule,

is Kripke complete and enjoys the finite model property. This

implies that the modal µ-variants of the well known modal

logics wK4,wKT0,K4,K4D,K4.1,K4.2,K4.3, S4, S4.1, S4.2,

and S4.3 have the FMP3 and are decidable. Second, we show

that the derivational µ-calculus is completely axiomatized on

all topological spaces, all T0 spaces, and all TD spaces, by

the µ-variants of the logics wK4, wK4T0, and K4, respec-

tively. We also give a new proof of the known fact that the

weaker µ-calculus based on topological closure is completely

axiomatized by the µ-variant of the modal logic S4.

Our model-theoretic proof is based on restricting the canon-

ical model to the set of final theories, i.e. theories which satisfy

a natural maximality condition. A similar construction has

been employed by Fine [22] to prove FMP for subframe logics

over K4 (without fixed point operators). Zakharyaschev [23]

generalized this to show FMP for cofinal subframe logics over

K4, and [24] extended this result to cofinal subframe logics

over wK4. Our Kripke-completeness results apply to the µ-

variants of the same class of logics. The crucial new insight

is that the truth lemma extends to the full µ-calculus over the

set of final theories, despite not doing so for the full canonical

model. Topological completeness follows then from more or

less standard constructions and the observation that the logics

of the classes of all topological spaces, all T0 spaces, and all

TD spaces are all subframe logics.

These results are new, with one proviso concerning TD
spaces. First, note that the transitive closure of a binary

relation is definable in standard relational µ-calculus (on

arbitrary frames). Thus, FMP for µ-calculus over transitive

frames follows immediately from Kozen’s proof of FMP for

general µ-calculus [25]. Second, Goldblatt and Hodkinson

[26] have completely axiomatized a modal logic (with the so-

called tangled derivative modality), that is co-expressive with

derivational µ-calculus over TD spaces, by a result of Dawar

and Otto [27]. But, as explained in Section IX, even in the

TD case, our work has the added benefit of providing a direct

proof of completeness/decidability of full µ-calculus over

these spaces, without relying on the corresponding results for

standard µ-calculus. Moreover, dropping the TD assumptions

drastically changes the behavior of the µ-calculus in at least

two important ways. Weakly transitive closure does not seem

to be definable in µ-calculus, and so decidability over arbitrary

(as well as T0) spaces does not follow from any known results.

Finally, as shown in Section IV, the above-mentioned co-

expressivity result fails on arbitrary (or T0) spaces: µ-calculus

on such spaces does not collapse to its tangled fragment. For

this reason, we work here with the full language of µ-calculus.

The structure of this paper In Section II we introduce

derivative spaces, a general notion subsuming both topological

spaces and weakly-transitive frames. Section III defines µ-

calculus over such spaces and states our main completeness

3In fact, there are continuum-many such logics [10], so our results apply
to uncountably many classes of frames.

result. In Section IV, we show that the tangled fragment is

not expressively complete in this setting. Section V investi-

gates truth-preserving maps and relations between derivative

spaces. Section VI presents the stepping stones of the main

completeness proof. Section VII generalizes this to an infinite

class of fixed-point logics, while Section VIII extends it to T0
and TD spaces. We end in Section IX with some concluding

remarks and a comparison with related work. All the proof

details are in the Appendix.

II. DERIVATIVE SPACES

Although our primary focus in this paper is the derivational

µ-calculus on topological spaces, for technical reasons it is

useful to consider a slightly more general class of structures.

Definition II.1. A derivative space is a pair (X , d), where X
is a set of ‘points’, and d : P(X ) → P(X ) is an operator

on subsets of X , satisfying the following properties, for all

X,Y ⊆ X :

• d(∅) = ∅;

• d(X ∪ Y ) = d(X) ∪ d(Y );
• d(d(X)) ⊆ X ∪ d(X).

The conjunction of the first two conditions above is known

as normality, while the third condition is known as weak

idempotence.

The notion of derivative space is the concrete set-theoretic

instantiation of the more abstract concept of derivative alge-

bra, introduced by Esakia [8] (as a generalization of a notion

with the same name introduced by McKinsey and Tarski [5]).

Example II.2 (topological closure spaces). A special case of

derivative spaces is given by closure spaces: these are deriva-

tive spaces (X , c) that additionally satisfy X ⊆ c(X) (and,

a fortiori, c(c(X)) ⊆ c(X)). These strengthened conditions

are known as the Kuratowski axioms, that define topological

spaces in terms of their closure operator.4 When considered

as a special case of derivative spaces, with d(X) := c(X)
given by topological closure, topological spaces will be called

topological closure spaces.

Example II.3 (topological derivative spaces). Our main ex-

ample of derivative spaces in this paper are structures (X , d),
based on an underlying topological (closure) space (X , c)
(satisfying the Kuratowski axioms), but with the derivative

operator given by the so-called Cantor derivative, i.e. by taking

d(X) to be the set of limit points of X:

d(X) := {y ∈ X : y ∈ c(X − {y})}

= {y ∈ X : ∀U ∈ N (y)X ∩ (U − {y}) 6= ∅},

where N (y) is the family of (open) neighborhoods of y in

the space (X , c). It is easy to see that (X , d) is a derivative

space, which we’ll refer to as a topological derivative space.

The closure operator can be recovered as c(X) = X ∪ d(X).

4Given a closure space, let X ⊆ X be closed whenever X = c(X), and
open whenever its complement is closed. This gives us the more common
definition of topology as a family of open or closed sets. So closure spaces
are exactly the same notion as topological spaces.



So, every topological space gives rise to a derivative space

in at least two different ways (as a closure space, and as a

topological derivative space), though we are mostly interested

in the second one. The converse is also true:

Closure and interior in derivative spaces Given a derivative

space (X, d), we define the closure and interior operators c, i :
P(X )→ P(X ), by putting

c(X) := X ∪ d(X), i(X) := X − c(X −X).

It is easy to see that these satisfy all the Kuratowski axioms.

This means that every derivative space induces a topological

space. Moreover, in a topological derivative space (with Cantor

derivative over some topological space), the induced closure

operator (as defined above) coincides with the underlying

topological closure. But in general, this matching does not

work the other way around: given an arbitrary derivative space,

its derivative does not necessarily coincide with the Cantor

derivative in the induced topology (given by the above-defined

closure operator). It follows that not every derivative space is

a topological derivative space. A counterexample is given by

the next special case.

Example II.4 (weakly transitive Kripke frames). A weakly

transitive frame (or wK4 frame) is a Kripke structure (W,−→)
(also known as a ‘transition system’), consisting of a set

of ‘states’ (or ‘possible worlds’) W , together with a binary

relation −→ ⊆ W × W (known as an ‘accessibility’ or

‘transition’ relation), assumed to be weakly transitive: i.e.,

for all states w, s, t ∈W , if w −→ s −→ t then either w = t

or w −→ t. We denote by −→∗ the reflexive closure Id∪−→
of −→, which (due to weak transitivity) coincides with its

transitive-reflexive closure Id ∪
⋃
n≥1
−→n.

We also denote by −→6←− the strict part of −→, i.e. w −→6←− v
if w −→ v 6−→ w; and write w←→ v if w −→ v −→ w and

w ←→∗ v if w ←→ v or w = v. For any state w ∈ W , we

put w↑ := {s ∈ W : w −→ s} for the set of its successors,

and also put w↑∗ := {s ∈ S : w −→∗ s} = {w} ∪ w↑;
more generally, for any set X ⊆ W , we put X↑ := {s ∈
W : x −→ s for some x ∈ X} =

⋃
x∈X x↑, and similarly

put X↑∗ := {s ∈ W : x −→∗ s for some x ∈ X} = X ∪
X↑. By applying the same definitions to the converse←−, we

obtain the corresponding notions of down-closure w↓, w↓∗,

X↓, X↓∗.

It is easy to see that every weakly transitive frame gives rise

to a derivative space (X , d−→), obtained by taking X :=W ,

and taking the derivative d−→ to be usual modal ‘Diamond’

operator:

d−→(X) := X↓ = {w ∈ W : X ∩w↑ 6= ∅}

= {w ∈W : ∃sw −→ s ∈ X}.

Moreover, the induced closure c−→(X) (as defined above in

arbitrary derivative spaces) is given by c−→(X) = X↓∗.

In general, weakly transitive frames are not topological

derivative spaces. But the intersection of the two classes is

of independent interest, as shown by the next two examples:

Example II.5 (Alexandroff closure spaces as S4 Kripke

frames). A topological space (X , c) is Alexandroff if its

closure operator distributes over arbitrary unions: c(
⋃
iXi) =⋃

i c(Xi). Given x, y ∈ X , define x −→ y if x ∈ c{y}.
Then, it is not hard to check that if X is Alexandroff, then

−→ is a reflexive-transitive relation, i.e. (X ,−→) is an S4
Kripke frame, and moreover the relational derivative coincides

in this case with the topological closure: d−→ = c. As

it is well-known, the converse also holds: every S4 frame

(X ,−→) gives rise to an Alexandroff closure space, by putting

c−→(X) := X ↓= X ↓∗ for the closure/derivative operator.

This time, the equivalence is complete: starting from either

side, and applying successively these two transformations,

we obtain the original structure. So Alexandroff topological

closure spaces are essentially the same as S4 Kripke frames.

Example II.6 (Alexandroff derivative spaces as irreflexive

wK4 frames). Another way to convert an Alexandroff space

(X , c) into a relational structure is to define x −→ y if

x ∈ d{y} = c{y} − {y}, for all x, y ∈ X . Then −→ is

weakly transitive and irreflexive, and the relational derivative

d−→ coincides in this case with the Cantor derivative induced

by c. Conversely, every irreflexive wK4 frame (X ,−→) gives

rise to an Alexandroff derivative space (X , d), by putting

c−→(X) := X ↓∗ for the topological closure, and taking

d to be induced Cantor derivative in the resulting topology

(for which one can check that d(X) = X↓). Once again,

the equivalence is complete: by applying successively these

transformations, we obtain the original structure. So Alexan-

droff topological derivative spaces are essentially the same as

irreflexive wK4 frames.

D-neighborhoods For every point x ∈ X in a derivative space

(X , d), we can define the family of d-neighborhoods of x:

Nd(x) := {X ⊆ X : x 6∈ d(X −X)}

Note that, in general, d-neighborhoods are not neighborhoods

of x in the topology given by the closure c(X) induced by

d. In fact, in a topological derivative space (where derivative

means Cantor derivative), a d-neighborhoodX ∈ Nd(x) is just

a ‘punctured neighborhood’ of x, i.e. a set with the property

that U − {x} ⊆ X for some open neighborhood U ∋ x.

On the other hand, in a topological closure space (where the

‘derivative’ is just the topological closure), d-neighborhoods

coincide with standard topological neighborhoods. Finally, in

a weakly transitive frame (W,−→), a set X ⊆ W is a d-

neighborhood of a state x ∈W iff x↑ ⊆ X .

We can now characterize the derivative in terms of d-

neighborhoods, in a way that generalizes the definition of

Cantor derivative in topological spaces:

Lemma II.7. For every set X ⊆ X in a derivative space

(X , d), we have

d(X) = {y ∈ X : ∀U ∈ Nd(y) U ∩X 6= ∅}.

This leads to an equivalent presentation of derivative spaces

as a special case of monotonic neighborhood structures [28]: a



neighborhood derivative space is a pair (X ,N ), where X is a

set of points, and N : X → P(P(X )) is a map that assigns to

each point x ∈ X a family N (x) ⊆ P(X ) of ‘neighborhoods’

of x, satisfying the following conditions

1) X ∈ N (x);
2) if X ∈ N (x) and X ⊆ Y , then Y ∈ N (x);
3) if X,Y ∈ N (x), then X ∩ Y ∈ N (x);
4) if x ∈ X ∈ N (x), then {y ∈ X : X ∈ N (y)} ∈ N (x).

Each derivative space (X , d) gives rise to a neighborhood

derivative space by taking

N (x) := Nd(x) = {X ⊆ X : x 6∈ d(X −X)}

to be the set of all d-neighborhoods. Conversely, every neigh-

borhood derivative space (X ,N ) gives rise to a derivative

space, via the following generalization of Cantor derivative:

d(X) := {y ∈ X : ∀U ∈ N (y)U ∩X 6= ∅}.

This is a full equivalence between derivative spaces and

neighborhood derivative spaces: starting from either side, and

applying the above two transformations, we obtain the original

structure.

III. MU CALCULUS ON DERIVATIVE SPACES: MAIN

RESULTS

For reasons having to do with our intended applications, as

well as to simplify some proof details, in this paper we take

the greatest fixed point operator νx.ϕ as primitive, and define

the least fixed point µx.ϕ as an abbreviation.5

Syntax: Let P be a set of propositional variables. We re-

cursively define the set Lµ of formulas, together with a map

Free : Lµ → P(P), associating to each formula ϕ ∈ Lµ
its set of free variables Free(ϕ) ⊆ P. The definition is by

simultaneous recursion, with formulas ϕ ∈ Lµ given by

ϕ ::= ⊤ | x | ¬ϕ | ϕ ∧ ϕ | ♦ϕ | νx.ϕ

where: x ∈ P; in the construct ϕ∧ϕ′, no variables occur free

in ϕ and bound in ϕ′, or vice versa; and in the construct νx.ϕ,

formula ϕ is positive in x (i.e. whenever x occurs in ϕ, we

have that x ∈ Free(ϕ) and x occurs only in the scope of an

even number of negations). The set Free(ϕ) of free variables

of a formula ϕ is simultaneously defined by recursion:

Free(⊤) := ∅, Free(x) := {x},

Free(ϕ ∧ ϕ′) := Free(ϕ) ∪ Free(ϕ′),

Free(¬ϕ) = Free(♦ϕ) := Free(ϕ),

Free(νx.ϕ) := Free(ϕ)− {x}.

A variable is bound in ϕ if it occurs in ϕ but is not in

Free(ϕ). For any set of variables P ⊆ P, we denote by LPµ
the set of all formulas ϕ ∈ Lµ having Free(ϕ) ⊆ P . Note in

particular that Lµ = LPµ.

We use the notation x = (x1, . . . , xn) to denote finite strings

of variables x1, . . . , xn ∈ P, and denote by λ the empty string.

5This setting is of course equivalent to the more standard presentation, that
takes µx.ϕ as primitive.

When we want to make explicit some of the free variables, we

write ϕ(x) for a formula in which all variables in the string

x are free (if occurring at all).

Subformulas The subformula relation ⊏ is the smallest tran-

sitive relation on formulas satisfying the following properties:

ϕ ⊏ (¬ϕ), (♦ϕ), (νx.ϕ), and ϕ ⊏ (ϕ ∧ ϕ′), (ϕ′ ∧ ϕ). The

set Sub(ϕ) of all (improper) subformulas of ϕ is defined as

Sub(ϕ) := {ϕ′ : ϕ′ ⊏ ϕ} ∪ {ϕ}.

Semantics. An atomic valuation on a derivative space (X , d)
is a map ‖ · ‖ : P → P(X ) associating to each propositional

atom x ∈ P some set of states ‖x‖ ⊆ X . For each atomic

valuation ‖ · ‖ : P → P(X ), tuple x = (x1, . . . , xn) of

variables and corresponding tuple X = (X1, . . .Xn) of sets

of points Xi ⊆ X , we denote by ‖ · ‖x:=X the valuation that

assigns to each variable xi the set Xi and agrees with the

original valuation ‖ · ‖ on all the other atoms.

A derivative model M = (X , d, ‖ · ‖) consists of a

derivative space (X , d), together with an atomic valuation

‖ · ‖ : P → P(X ). The semantics is given by extending the

atomic valuation to a map ‖ · ‖ : Lµ → P(X ), which we call

extended valuation (and for which we use the same notation

‖ ·‖ as for the corresponding atomic valuation). The definition

of the extended valuation is by recursion on subformulas: for

propositional variables this is already given by the atomic

valuation map of the model M, while in the rest we put

‖⊤‖ = X , ‖¬ϕ‖ = X − ‖ϕ‖, ‖ϕ ∧ ϕ′‖ = ‖ϕ‖ ∩ ‖ϕ′‖,

‖♦ϕ‖ = d(‖ϕ‖), ‖νx.ϕ‖ =
⋃
{X ⊆ X : X ⊆ ‖ϕ‖x:=X}.

For formulas ϕ = ϕ(x) and corresponding tuples of sets X ,

we will sometimes write ‖ϕ(X)‖ instead of ‖ϕ‖x:=X , in order

to avoid subscript overload. With this notation, e.g., the clause

for νx becomes: ‖νx.ϕ‖ =
⋃
{X ⊆ X : X ⊆ ‖ϕ(X)‖}.

Whenever x ∈ ‖ϕ‖ for some point x ∈ X , we also write

x |=M ϕ, and say that ϕ is true (or satisfied) at point x in the

model M. As usual, when the model is understood, we skip

the subscript, writing x |= ϕ. Conversely, we may write ‖·‖M
instead of ‖ · ‖ when we wish to specify the relevant model.

We say that ϕ is valid on the model M if ‖ϕ‖M = X , i.e.

ϕ is true at all points of M; similarly, ϕ is satisfied on the

modelM if ‖ϕ‖M 6= ∅. By abstracting away from the specific

valuation, we say that ϕ is valid on the space (X , d) if for

every valuation ‖·‖ on X , ϕ is valid on the model (X , d, ‖·‖);
and ϕ is satisfied on the space (X , d) if there exists a valuation

‖ ·‖ on X , s.t. ϕ is satisfied on the model (X , d, ‖ ·‖). Finally,

ϕ is valid (on a class C of derivative models, or of derivative

spaces) if it is valid on all models/spaces (in the class C).

Note that in the special case of wK4 relational models

(W,−→), the above semantics of ♦ coincides with the stan-

dard Kripke semantics. As a consequence, on relational frames

our semantics for µ-calculus coincides with the standard one.

Abbreviations: We have the usual abbreviations ⊥, ϕ ∨ ψ,

ϕ⇒ ψ, ϕ⇔ ψ, �ϕ. The least fixed-point formula µx.ϕ(x, y)
can be defined as ¬νx¬ϕ(¬x, y). Finally, we define closure



and interior modalities, as well as tangled derivative ♦∞Γ and

tangled closure 〈∗〉∞Γ (for finite sets of formulas Γ), with the

perfect core modality ♦∞ϕ as a special case:

〈∗〉ϕ := ϕ ∨ ♦ϕ, [∗]ϕ := ϕ ∧�ϕ,

♦∞Γ := νx.
∧

γ∈Γ

♦(x ∧ γ), 〈∗〉∞Γ := νx.
∧

γ∈Γ

〈∗〉(x ∧ γ),

♦∞ϕ := ♦∞{ϕ}.

Note that the definitions of 〈∗〉ϕ and [∗]ϕ do not use any

fixed points. But, to justify these notations, one can easily

check that, in the special case of weakly transitive frames, [∗]
and 〈∗〉 are the standard Kripke modalities for the reflexive-

transitive closure −→∗ of the accessibility relation (which,

as already mentioned, coincides on these frames with its

reflexive closure). More generally, in derivative spaces, [∗]ϕ is

equivalent to νx.(ϕ∧�x), while 〈∗〉ϕ is equivalent to ¬[∗]¬ϕ
and thus to µx.(ϕ∨♦x). In fact, ‖[∗]ϕ‖ and ‖〈∗〉ϕ‖ coincide

with the interior i(‖ϕ‖) and respectively the closure c(‖ϕ‖),
as defined in derivative spaces. In particular, in the case of

topological derivative spaces (where d is Cantor derivative),

these coincide with the underlying topological interior and clo-

sure operators. As for ♦∞Γ and 〈∗〉∞Γ, they are variants of the

tangle modality introduced in a relational setting by Dawar and

Otto [27], who showed that µ-calculus over transitive frames

collapses to tangle logic based on ♦∞Γ. Their topological

interpretations were developed by Fernandez-Duque [29], who

distinguished between the tangled derivative ♦∞Γ and tangled

closure 〈∗〉∞Γ, and axiomatized the logic of tangled closure.

More recently, Goldblatt and Hodkinson [26] axiomatized the

logic of tangled derivative ♦∞Γ over transitive frames, and

showed that it is equivalent to the logic over TD spaces.

Finally, the perfect core modality ♦∞ϕ is a special case of

tangle, that captures Cantor’s perfect core: the largest subset

of the state space that is equal to its own Cantor derivative.

Substitution and natural sublanguages Given a formula ϕ =
ϕ(x) and a tuple of formulas θ = (θ1, . . . , θn), we denote

by ϕ(θ) the result of substituting every variable in x by the

corresponding formula in θ. Note that we have

‖ϕ(θ)‖ = ‖ϕ(‖θ‖)‖

(where on the right hand we used an instance of the above-

mentioned simplified notation ‖ϕ(X)‖ for ‖ϕ‖x:=X ). A nat-

ural sublanguage of Lµ is any set L ⊆ Lµ which contains

⊤, is closed under substitution, and such that if ϕ, ψ ∈ Lµ
then also ¬ϕ, ϕ ∧ ψ,♦ψ ∈ L. The basic modal language is a

natural sublanguage and will be denoted L♦.

The following characterization of ‖νy.ϕ‖ is also well-

known in the literature:

Proposition III.1. Let (X , d, ‖ · ‖) be any derivative model

and ϕ = ϕ(y, x) be a formula that is positive in y. Then we

have the following:

1) the unary operator Y 7→ ‖ϕ(Y,X)‖ is monotonic: if

Y ⊆ Y ′ then ‖ϕ(Y,X)‖ ⊆ ‖ϕ(Y ′, X)‖;

2) ‖νy.ϕ(y,X)‖ is the greatest fixed point of the operator

Y 7→ ‖ϕ(Y,X)‖, i.e. the largest set Y ⊆ X s.t. Y =
‖ϕ(Y,X)‖;

3) ‖νy.ϕ(y,X)‖ =
⋂
α∈On

ϕαy (X), where On is the

class of ordinals and the transfinite sequence of sets

ϕαy (X) ⊆ X is defined by ordinal recursion: ϕαy (X) =⋂
β<α ‖ϕ(ϕ

β
y (X), X)‖ (and so in particular ϕ0

y(X) =
X ).

Proof. Well known (and easy to check).

Definition III.2 (µ-wK4). We define the logic µ-wK4 to be the

least set of formulas of Lµ containing the following axioms

and closed under the following rules (for all formulas ϕ, ψ,

and formulas θ = θ(x) that are positive in x):

• All the instances of the Axioms and Rules of Proposi-

tional Logic.

• Necessitation Rule: From ϕ, infer �ϕ.

• Distribution Axiom (=Kripke’s Axiom K):

�(ϕ⇒ ψ)⇒ (�ϕ⇒ �ψ).
• Weak Transitivity: ♦♦ϕ ⇒ (ϕ ∨ ♦ϕ).
• Fixed Point Axiom: νx.θ ⇒ θ(νx.θ).
• Induction Rule: From ϕ ⇒ θ(ϕ), infer ϕ ⇒ νx.θ.

We will also be interested in variants of µ-wK4. If Λ is any

normal modal logic over L♦ (in the sense of [9]) that extends

wK4, then µ-Λ is the extension of µ-wK4 with all axioms of

Λ, closed under uniform substitution with arbitrary formulas

in Lµ. If L is a natural sublanguage of Lµ, then µ-ΛL is the

restriction of µ-Λ to L, in the sense that all axioms and rules

may only be applied when all formulas belong to L.

Proposition III.3 (Soundness). The logic µ-wK4 is sound for

the class of derivative spaces, and so in particular for the class

of weakly transitive frames. If Λ is any extension of wK4, then

µ-Λ is sound for the class of Λ-spaces, i.e. the class of spaces

validating all theorems of Λ.

Proof. The Necessitation Rule and the Distribution Axiom are

sound because of the normality conditions imposed on the

derivative operator d, while Weak Transitivity is sound due to

the weak idempotence of d. The soundness of the Fixed Point

Axiom and of the Induction Rule follows in the usual way

from our (standard) semantics for fixed-point formulas. The

same argument applies to any extension of wK4 and its class

of derivative spaces.

Our goal is to show that this system is also (weakly)

complete, and that the logic is decidable. But for this, we need

first look at some theorems of the above axiomatic system.

Proposition III.4. The following schemas are provable in the

logic µ-wK4 (for all formulas ϕ, ψ, and formulas θ = θ(x)
that are positive in x):

1) νx.θ ⇔ θ(νx.θ)
2) ([∗]ϕ ∧ θ(ψ)) ⇒ θ([∗]ϕ ∧ ψ)
3) [∗](ϕ⇒ ψ) ⇒ (θ(ϕ)⇒ θ(ψ))
4) [∗](ϕ⇒ θ(ϕ)) ⇒ (ϕ⇒ νx.θ)



Proof. Claim 1) is an well-known, easy consequence of the

Fixed Point Axiom and the Induction Rule.

For claim 2), it is useful to check first the following special

cases:

2a ([∗]ϕ ∧ ♦ψ) ⇒ ♦([∗]ϕ ∧ ψ)
2b ([∗]ϕ ∧�ψ) ⇒ �([∗]ϕ ∧ ψ)
2c ([∗]ϕ ∧ νx.θ) ⇒ νx.([∗]ϕ ∧ θ)
2d ([∗]ϕ ∧ µx.θ) ⇒ µx.([∗]ϕ ∧ θ)

Checking that these special instances of 2) follow from the

axioms is an easy verification. Given them, one can prove 2) by

induction on the complexity of θ(x), written in positive form

(i.e. with negations only in front of propositional variables,

other than x, and using in rest only conjunctions, disjunctions,

♦, � and the fixed-point operators νx and µx). The atomic

cases are immediate, and the inductive steps for conjunction

and disjunction follow trivially by propositional logic, while

the other inductive steps are taken care by the instance 2)a-2)d

above.

To prove claim 3), first note that ([∗](ϕ ⇒ ψ) ∧ ϕ) ⇒ ψ

is a theorem in our axiom system. By using the monotonicity

of the positive formula θ(x) (itself provable in the system),

we can derive the theorem θ([∗](ϕ ⇒ ψ) ∧ ϕ)) ⇒ θ(ψ).
Putting this together with ([∗](ϕ⇒ ψ) ∧ θ(ϕ))⇒ θ([∗](ϕ⇒
ψ) ∧ ϕ)) (which is just a special instance of claim 2)), we

obtain ([∗](ϕ ⇒ ψ) ∧ θ(ϕ)) ⇒ θ(ψ), from which the desired

conclusion follows by propositional reasoning.

Finally, to prove claim 4), we start with the obvious

theorem [∗](ϕ ⇒ θ(ϕ)) ⇒ (ϕ ⇒ θ(ϕ), from which we

get ([∗](ϕ ⇒ θ(ϕ)) ∧ ϕ) ⇒ θ(ϕ), and thus also ([∗](ϕ ⇒
θ(ϕ)) ∧ ϕ) ⇒ ([∗](ϕ ⇒ θ(ϕ)) ∧ θ(ϕ)). Putting this together

with [∗](ϕ ⇒ θ(ϕ)) ∧ θ(ϕ)) ⇒ θ([∗](ϕ ⇒ θ(ϕ)) ∧ ϕ) (itself

an instance of claim 2)), we obtain ([∗](ϕ ⇒ θ(ϕ)) ∧ ϕ) ⇒
θ([∗](ϕ⇒ θ(ϕ)) ∧ ϕ). Applying then the Induction Rule, we

derive ([∗](ϕ ⇒ θ(ϕ)) ∧ ϕ) ⇒ νx.θ, from which the desired

conclusion follows by propositional reasoning.

We are now ready to state the first of our main results.

Below, recall that Λ has the finite model property if for any

formula ϕ, ϕ is a theorem of Λ iff ϕ is valid over the class

of finite Λ-models. The logic Λ has the strong finite model

property if the size of a finite countermodel for ϕ can be

bounded by a function computable from the length of ϕ.

Theorem III.5 (Completeness, FMP and Decidability). Let L
be a natural sublanguage of Lµ. The logic µ-wK4L is (weakly)

complete for the class of all weakly transitive frames, as

well as for the class of Alexandroff spaces (irreflexive weakly

transitive frames). Hence, µ-wK4L is complete for the class

of all topological spaces, and thus also for the larger class

of all derivative spaces. The logic has the strong finite model

property (wrt all the above classes), and so its satisfiability

problem is decidable.

This will be proven in Section VI, while in Section VII

we generalize this result to many other classes of relational

structures and the corresponding logics.

We conclude this section by discussing two extensions of

wK4 that are of interest in the context of topological semantics.

Recall that a topological space (X , c) is T0 if given x, y ∈ X
with x 6= y, either x 6∈ c{y} or y 6∈ c{x} (i.e., the two do not

have the same set of neighborhoods). It is known (see [30])

that the derivational modal logic of T0 spaces is the system

wK4T0 := wK4+ p ∧ ♦(q ∧ ♦p)→ ♦p ∨ ♦(q ∧ ♦q).

Moreover, wK4T0 corresponds to the class of wK4 frames

(W,−→) so that w −→ v −→ w implies that w −→ w or

v −→ v. Frames satisfying this property are weakly reflexive

frames. If we define the cluster of w ∈ W to be the set of

points v so that v −→∗ w −→∗ v (equivalently: s.t. either

w ←→ v or w = v), then a weakly transitive frame (W,−→)
is weakly reflexive iff every cluster has at most one irreflexive

point.

The second extension we are interested in is K4, given by

wK4+♦♦p→ ♦p. It is well known (see, e.g., [10], [8], [30])

that this is the logic of all transitive frames, and that it is

also the logic of all TD spaces. These are topological spaces

(X , c) such that every point is isolated in its own closure; i.e.,

if x ∈ X , there is an open set U with {x} = U ∩ c{x}. These

results readily extend to the derivative µ-calculus.

Theorem III.6. 1) The logic µ-wK4T0, obtained by adding

to wK4T0 the above Fixed Point Axiom and Induction

Rule, is sound and (weakly) complete for the class of all

T0 topological spaces.

2) The logic µ-K4, obtained by adding to K4 the above Fixed

Point Axiom and Induction Rule, is sound and (weakly)

complete for the class of all TD topological spaces.

We will prove this result in Section VIII. A related com-

pleteness result for the TD case has already been proven in

[26]. But that result concerns only the (semantically equiva-

lent) tangled modal logic, while ours is about the full language

of µ-calculus.

Before proving Theorem III.5, we will make a detour to

discuss the tangled derivative in the context of wK4T0 models.

The results in the following section are not needed to establish

our main theorems, but they motivate our choice to work over

the full µ-calculus rather than focusing on tangled fragments.

IV. EXPRESSIVE INCOMPLETENESS OF TANGLE LOGIC

A natural question is whether topological µ-calculus col-

lapses to a simpler modal fragment; if so, then a complete

axiomatization of the simpler fragment would in principle suf-

fice, and might be easier to prove than for the full calculus. As

mentioned in the Introduction, this is exactly what happened

on TD spaces. Dawar and Otto [27] showed that the full µ-

calculus is expressively equivalent to the so-called tangled

derivative logic L♦∞ over the class of (finite) K4 frames, and



thus also over TD spaces; while Goldblatt and Hodkinson [26]

completely axiomatized L♦∞ over these classes.6

In this section, we show that the Dawar-Otto result does not

hold for general spaces, and in fact not even for T0 spaces: the

tangled derivative logic is no longer expressively equivalent to

the µ-calculus over the class of wK4T0 frames, and hence over

the class of all T0 spaces.

For each finite set of formulas Γ, consider the tangled

derivative ♦∞Γ and tangled closure 〈∗〉∞Γ of Γ, as defined in

Section III. Let L♦∞ and L〈∗〉∞ be the natural sublanguages

of the µ-calculus whose only fixed points are of the respective

forms above. To prove that L♦∞ is not expressively complete

for µ-calculus over wK4T0 frames, we will show that 〈∗〉∞ is

not definable in L♦∞ .

For this, we define a ‘spine’ model S based on the ordinal

ω+3. We briefly recall that ω denotes the first infinite ordinal,

and follow the set-theoretic convention that each ordinal is

identified with its set of predecessors. We moreover use

interval notation on the ordinals: (α, β) is the set of ordinals

ξ with α < ξ < β.

With this in mind, we set S = (ω + 3,−→, ‖ · ‖), where

1) α −→ β if one of the following occurs:

a) α > β;

b) α = β and α is odd (including ω + 1), or

c) α = ω + 1 and β = ω + 2.

2) α ∈ ‖p‖ iff α is odd, ‖q‖ = ∅ for all q 6= p.

Lemma IV.1. S is a wK4T0 model.

Proof. Weak transitivity is easily checked using a case distinc-

tion. The T0 condition is checked by noting that all clusters

are singletons, except for {ω + 1, ω + 2}. But only ω + 2 is

irreflexive, as needed.

The goal is to show that over S, no L♦∞ formula is

equivalent to 〈∗〉∞{p,¬p}. First, we evaluate the latter.

Lemma IV.2. Over S, ‖〈∗〉∞{p,¬p}‖ = {ω + 1, ω + 2}.

Proof. We have that α ∈ ‖〈∗〉∞{p,¬p}‖ if and only if there

is an infinite chain

α −→∗ β0 −→
∗ β1 −→

∗ β2 −→
∗ . . .

such that βi 6∈ V (p) when i is even, βi ∈ V (p) when i is odd.

From the latter it follows that βi 6= βi+1. Since ω+3 with the

usual ordering is well-founded, such a chain can only occur

in the “ill-founded” part of our model, namely {ω+1, ω+2}.
However, the infinite chain

ω + 2 −→∗ ω + 1 −→∗ ω + 2 −→∗ . . .

witnesses that {ω + 1, ω + 2} ⊆ ‖〈∗〉∞{p,¬p}‖.

6On the other hand, Goldblatt and Hodkinson [26] showed that ♦∞ is not
definable in L〈∗〉∞ over the class of K4 frames, and hence over the class
of TD spaces. It follows that L〈∗〉∞ is not expressively complete, even over
the class of K4 frames.

Lemma IV.3. If ϕ is any formula of L♦∞ then there exists

nϕ < ω such that for every α, β ∈ (nϕ, ω + 3) which are

either both even or both odd, α ∈ ‖ϕ‖ iff β ∈ ‖ϕ‖.

Proof. By induction on the complexity of ϕ. The base case

follows from the definition of ‖ · ‖ and the cases for Booleans

are straightforward. Consider the case where ϕ = ♦ψ. By the

induction hypothesis, nψ is well-defined and finite, and we

can take nϕ = nψ + 2. Then, if α, β > nϕ and α ∈ ‖♦ψ‖,
there is α′ such that α −→ α′ and α′ ∈ ‖ψ‖. If α′ < nψ, set

β′ = α′; otherwise, take β′ ∈ {nψ + 1, nψ + 2} of the same

parity as α′. We then see that β −→ β′, so that β ∈ ‖♦ψ‖.
Finally, consider ϕ = ♦∞Γ. We may assume that Γ 6= ∅,

since ♦∞∅ is tautologically true. Let nϕ = maxγ∈Γ nγ + 2.

Suppose that α, β > nϕ, and that α ∈ ‖♦∞Γ‖. Let α∗ be

the least element of ‖♦∞Γ‖ with respect to the usual ordinal

ordering. First assume that α∗ < ω + 1. Then, for all γ ∈ Γ,

there is ξγ ∈ ‖γ ∧ ♦∞Γ‖ such that α∗ −→ ξγ . But then, by

the definition of −→ and the minimality of α∗ we must have

that ξγ = α∗, and thus α∗ satisfies every element of Γ. Note

also that α∗ is reflexive, so α∗ must be odd.

It follows that α∗ ≤ nϕ, since otherwise the odd element

of {nϕ − 1, nϕ} satisfies all formulas of Γ and hence ♦∞Γ,

contradicting the minimality of α∗. But then, from β > nϕ
we see that β −→ α∗, so β ∈ ‖♦∞Γ‖.

Finally, we consider the case where α∗ ≥ ω + 1. In fact,

we will show that this case is impossible. Note that in this

case ω + 2 ∈ ‖♦∞Γ‖. As before, for all γ ∈ Γ, there is

ξγ ∈ ‖γ ∧ ♦∞Γ‖ such that ω + 2 −→ ξγ . But by minimality

of α∗, the only option is to have ξγ = ω+1, so in fact ω+1
satisfies all elements of Γ. Reasoning as above, letting α′ ∈
{nϕ − 1, nϕ} be odd, we see that α′ satisfies all formulas of

Γ. But then α′ ∈ ‖♦∞Γ‖, contradicting the choice of α∗.

Remark IV.4. From the proof it can be estimated that it

suffices to take nϕ = 2|ϕ|.

Since n < ω, ω+2 for all n < ω and the two are even, we

obtain the following special case.

Corollary IV.5. In S, ω and ω+2 satisfy the same formulas

of L♦∞ .

However, we have seen that ω + 2 ∈ ‖〈∗〉∞{p,¬p}‖, but

ω 6∈ ‖〈∗〉∞{p,¬p}‖. We may thus conclude that 〈∗〉∞{p,¬p}
is not definable.

Theorem IV.6. The formula ϕ = 〈∗〉∞{p,¬p} is not definable

in L♦∞ , even by an infinite set of formulas.

Given that 〈∗〉∞{p,¬p} is definable in the µ-calculus but

not in L♦∞ , we obtain the following result.

Corollary IV.7. Not every formula of the µ-calculus is defin-

able in L♦∞ over the class of wK4T0 frames.

For this reason, in this paper we will work over the full

µ-calculus, rather than the tangled derivative fragment.



V. TRUTH-PRESERVING MAPS

In this section, we focus on the relational semantics, and re-

view and generalize some well-known properties of µ-calculus

[31]: locality and invariance under bounded morphisms.

Definition V.1 (D-morphisms and P -morphisms). A d-

morphism between derivative spaces (X , d) and (X ′, d′) is

a function π : X → X ′ such that π−1d′(X ′) = dπ−1(X ′) for

all sets X ′ ⊆ X ′.

If π is surjective, we say that the space X ′ is a d-morphic

image of the space X .

For any set P ⊆ P, a P -morphism between derivative

models M = (X , d, ‖ · ‖) and M′ = (X ′, d′, ‖ · ‖′) is a

d-morphism π : X → X ′ s.t. π−1‖x‖′ = ‖x‖ for all atoms

x ∈ P .

If π is surjective, we say that the modelM′ is a P -morphic

image of the model M.

Remark V.2. The notion of P -morphism is a generalization

to derivative spaces of the well-known concept of p-morphism

[9], albeit relativized to a set of variables P . The restriction

to such a set of variables (particularly, when P is finite) will

be essential in many of our proofs.

Lemma V.3. If π : X → X ′ is a P -morphism between

derivative modelsM = (X , d, ‖ · ‖) andM′ = (X ′, d′, ‖ · ‖′),
then for all µ-calculus formulas ϕ = ϕ(x) ∈ LPµ and tuples

of sets X,X ′ s.t. Xi = π−1X ′
i for all i, we have:

‖ϕ(X)‖ = π−1‖ϕ(X ′)‖′.

Proof. Induction on the complexity of the formula ϕ = ϕ(x).
The atomic case ϕ = xi follows immediately from the

assumption that Xi = π−1X ′
i , while the atomic case ϕ = y for

y ∈ P not occurring in x follows from atomic requirement on

P -morphisms. The Boolean cases follow from two well-known

properties of the inverse map: π−1(X ′ −X ′) = X − π−1X ′

and π−1(X ′∩Y ′) = π−1X ′∩π−1Y ′. The derivative case ♦ϕ

is an immediate consequence of the definition of d-morphism.

The case νy.ϕ(y, x). We assume the induction hypothesis

for ϕ, and we first prove the following

Claim: If ϕαy (X) is the transfinite sequence of sets in

Proposition III.1(3), then for all ordinals α we have

π−1ϕαy (X
′) = ϕαy (X).

We prove this Claim by subinduction on α:

π−1ϕαy (X
′) = π−1(

⋂
β<α ‖ϕ(ϕ

β
y (X

′), X ′)‖′) =⋂
β<α π

−1‖ϕ(ϕβy (X
′), X ′)‖′ =

⋂
β<α ‖ϕ(ϕ

β
y (X), X)‖ =

ϕαy (X) (where at the third step we used both the induction

hypothesis for ϕ and the subinduction hypothesis for β, as

well as the background assumption about X,X ′).
Given the Claim, we can now prove the inductive case for

νy.ϕ(y, x):
π−1‖νy.ϕ(y,X ′)‖′ = π−1(

⋂
α ϕ

α
y (X

′)) =
⋂
α π

−1ϕαy (X) =

‖νy.ϕ(y,X)‖.

It is useful to keep in mind the special case where the tuple

of substitution variables is empty.

Corollary V.4 (Invariance under P -morphisms). If π : X →
X ′ is a P -morphism between derivative modelsM = (X , d, ‖·
‖) and M′ = (X ′, d′, ‖ · ‖′), then for all ϕ ∈ LPµ we have:

‖ϕ‖ = π−1‖ϕ‖′.

Proof. Apply Lemma V.3 to the empty tuple of variables, and

corresponding empty tuples of sets. (Alternatively: let x =
(x1, . . . , xn) be a tuple enumerating all the free variables in

ϕ. Then apply Lemma V.3 to this tuple, and to tuples of sets

X := (‖x1‖, . . . , ‖xn‖) and X ′ := (‖x1‖′, . . . , ‖xn‖′).)

In practice, P -morphisms are most useful when they are

surjective, as they then preserve validity of formulas.

Corollary V.5.

1) If a derivative modelM′ = (X ′, d′, ‖·‖′) is a P -morphic

image of a modelM = (X , d, ‖ · ‖), then the two models

validate (satisfy) the same formulas of LPµ .

2) If a derivative space (X ′, d′) is a d-morphic image of

space (X , d), then every formula that is satisfiable on

(X ′, d′) is also satisfiable on (X , d); equivalently: every

formula that is valid on (X , d) is also valid on (X ′, d′).

Proof. To check part 1, we prove the satisfiability version.

Let ϕ ∈ LPµ and let π : X → X ′ be a surjective P -morphism.

By Corollary V.4, we have ‖ϕ‖ = π−1‖ϕ‖′. Combining this

with the functionality and surjectivity of π, we obtain the

equivalence: ‖ϕ‖ 6= ∅ iff ‖ϕ‖′ 6= ∅.

For part 2: we again check the satisfiability version. Let π :
X → X ′ be a surjective d-morphism, and let ϕ be satisfiable

on (X ′, d′), i.e. there exists some valuation ‖ · ‖′ satisfying ϕ

at some point of X ′. Take the map ‖ · ‖ := π−1‖ · ‖′ defined

on X . Then ‖ ·‖ is a valuation on X that makes π a surjective

P-morphism, hence by part 1, ‖ · ‖ satisfies ϕ at some point

of X .

It is useful to have a more ‘bisimulation-like’ charac-

terization of d-morphisms. Using the equivalence between

derivative spaces and neighborhood derivative spaces, we can

characterize d-morphisms in terms of d-neighborhoods:

Lemma V.6. Let π : X → X ′ be a map between derivative

spaces (X , d) and (X ′, d′). Then the following are equivalent:

1) π is a d-morphism;

2) the conjunction of the following back-and-forth condi-

tions holds for all points x ∈ X and all sets X ⊆ X and

X ′ ⊆ X ′:

• (back) X ′ ∈ Nd′(π(x)) implies π−1(X ′) ∈ Nd(x),
and

• (forth) X ∈ Nd(x) implies π(X) ∈ Nd′(π(x));

3) π−1(X ′) ∈ Nd(x) iff X ′ ∈ Nd′(π(x)), for all x ∈ X
and X ′ ⊆ X ′.

This follows from the general theory of bounded mor-

phisms in monotonic neighborhood models [32], [28]: indeed,

the third equivalent statement is exactly the definition of a



bounded morphism in monotonic neighborhood semantics.

When both spaces are topological derivative spaces, the back-

and-forth conditions refer to punctured neighborhoods. When

both are topological closure spaces, we obtain the usual notion

of interior map. The case where X is a topological space and

X ′ a Kripke frame is of a special interest:

Corollary V.7. Let π : X → X ′ be a map between a

topological derivative space (X , d) and a weakly transitive

frame (X ′,−→). Then the following are equivalent:

1) π is a d-morphism;

2) the conjunction of the following back-and-forth condi-

tions holds for all points x ∈ X :

• π(U −{x}) ⊆ π(x)↑, for some open neighborhood U

of x, and

• π(x)↑ ⊆ π(U − {x}), for all open neighborhoods U

of x.

Finally, when both spaces are weakly transitive frames, we

recover the standard notion of bounded frame morphism:

P -morphisms and P -bisimulations between relational

models. When both X and X ′ are weakly transitive frames,

it is easy to see that our notion of P -morphism matches

the standard modal notion of p-morphisms (also known as

“bounded P -morphisms”), i.e. functional P -bisimulations.

Definition V.8. Let M1 = (W1,−→1, ‖ · ‖1) and M2 =
(W2,−→2, ‖ · ‖2) be relational models. A relation B ⊆W1×
W2 is a P -bisimulation if, for all states w1 ∈ W1, w2 ∈ W2,

(w1, w2) ∈ B implies three conditions: (a) w1 ∈ ‖p‖1 iff

w2 ∈ ‖p‖2 (Atomic Preservation); (b) if w1 −→1 s1 then

there exists some s2 ∈W2 with w2 −→2 s2 and (s1, s2) ∈ B
(Forth Condition); (c) if w2 −→2 s2 then there exists some

s1 ∈ W1 with w1 −→1 s1 and (s1, s2) ∈ B (Back Condition).

Then, a bounded P -morphism is just a functional P -

bisimulation. It is well known that relational P -bisimulations

between weakly transitive relational modelsM1 = (X1,−→1

, ‖·‖1) andM2 = (X2,−→2, ‖·‖2) are exactly the relations of

the form π−1
1 ;π2, where π1 :M→M1 and π2 :M→M2

are P -morphisms from some other weakly transitive model

M into the two models, and ; is relational composition.7

Invariance under bisimilarity The relation of P -bisimilarity

≃P on a given model M = (W,−→, ‖ · ‖) is the largest

P -bisimulation relation ≃P ⊆ W × W . When P = P, we

drop the subscript, writing e.g. s ≃ w and talking simply

of ‘bisimulation’ and ‘bisimilarity’. It is easy to see that P -

bisimilarity is an equivalence relation on W . The following

fact is a widely known feature of µ-calculus:

Proposition V.9 (Invariance under Bisimilarity). The valu-

ation ‖ϕ‖ of every formula ϕ ∈ LPµ is closed under P -

bisimilarity: for all s, w ∈ W , if s ≃P w and s ∈ ‖ϕ‖,
then w ∈ ‖ϕ‖.

7This relationship between P -bisimulations and spans of bounded P -
morphisms is well-known in modal logic, and has lead to the general definition
of coalgebraic bisimulation, as a span of coalgebraic morphisms.

Proof. This is well-known (and easy to verify directly).

Locality Another known fact is that µ-calculus is “local”:

the truth value of a formula ϕ at a state depends only on

the accessible part of the model (i.e., the so-called generated

submodel). This can be generalized as follows:

Lemma V.10. Let ϕ = ϕ(x, y) be a formula. Then we have

the following:

1) ‖ϕ(X,Y )‖ ∩ w↑∗ = ‖ϕ(X,Y ∩ w↑∗)‖ ∩ w↑∗, for all

states w ∈W and tuples of sets of states X,Y ;

2) If y = (z, y) and ϕ = ϕ(x, y) = ϕ(x, z, y) is positive in

y, then

ϕαy (X,Z) ∩w↑
∗ = ϕαy (X,Z ∩w↑

∗) ∩w↑∗

for all states w ∈ W , ordinals α ∈ On and tuples of sets

of states X,Z. (Here, ϕαy is the sequence introduced in

Proposition III.1(3).)

Proof. We show the two claims by simultaneous induction on

the subformula-complexity of ϕ. For claim (1), the base case

ϕ = x, as well as the inductive case for Boolean operators,

are trivial.

The case of ♦ϕ for (1): ‖♦ϕ(X,Y )‖ ∩ w↑∗ = {w ∈
W : ∃s ∈ w↑ s.t. s ∈ ‖ϕ(X,Y )‖} ∩ w↑∗. By the induction

hypothesis (for ϕ and s ∈ w↑ ⊆ w↑∗), this is equal to

{w ∈ W : ∃s ∈ w↑ s.t. s ∈ ‖ϕ(X,Y ∩ w↑∗)‖} ∩ w↑∗, i.e. to

‖♦ϕ(X,Y ∩w↑∗)‖ ∩ w↑∗, as desired.

The case of νz.ϕ for (1): Using Proposition III.1(3) and

the inductive hypothesis (2) for ϕ, we have: ‖νz.ϕ(X,Y )‖ ∩
w↑∗ =

⋂
α∈On ϕ

α
z (X,Y )∩w↑∗ =

⋂
α∈On ϕ

α
z (X,Y ∩w↑

∗)∩

w↑∗ = ‖νz.ϕ(X,Y ∩ w↑∗)‖ ∩ w↑∗.

To prove claim (2) for ϕ, assume claim (1) for ϕ =
ϕ(x, z, y) (for all set tuples), and prove (2) by subinduction

on the ordinal α:

ϕαy (X,Z) ∩ w↑
∗ =

⋂

β<α

‖ϕ(X,Z, ϕβy (X,Z))‖ ∩ w↑
∗

=
⋂

β<α

‖ϕ(X,Z ∩ w↑∗, ϕβy (X,Z))‖ ∩w↑
∗

=
⋂

β<α

‖ϕ(X,Z ∩ w↑∗, ϕβy (X,Z ∩w↑
∗))‖ ∩ w↑∗

= ϕαy (X,Z ∩ w↑
∗) ∩ w↑∗,

where we used first the induction hypothesis for ϕ, then the

subinduction hypothesis for β < α.

Asserting properties locally above a point Given a point

w ∈ W , and given a property P (X1, . . . , Xn) involving sets

X1, . . . , Xn ⊆ W , we say that P (X1, . . . , Xn) holds above

w if we have P (X1 ∩ w↑
∗, . . . , Xn ∩ w↑

∗). In particular, for

two sets X,Y ⊆ W , we say that X = Y holds above w iff

X ∩w↑∗ = Y ∩ w↑∗.

Depth of a point in a model Recall that −→6←− is the strict

preorder induced by −→. Given a weakly transitive model



M = (W,−→, ‖ · ‖), and a point w ∈ W , a strict (finite) w-

chain is a finite sequence of points of the form w = w0
−→
6←−

w1
−→6←− . . . −→6←− wn. The number n is called the length of

our finite chain. The depth dpt(w) of the point w ∈ W is

the supremum of the lengths of all strict w-chains. In general,

we have dpt(w) ≥ 0, with dpt(w) = 0 iff for every s ∈ W ,

w −→ s implies s −→ w; and dpt(w) = ω iff there exist

w-chains of every length n ∈ N. The depth dpt(M) of the

model M is the supremum of the depths of all points of the

model:

dpt(M) := sup{dpt(w) : w ∈W}.

Lemma V.11. LetM = (W,−→, ‖ ·‖) be a weakly transitive

model, and w, s ∈ W be two points. Then we have the

following:

1) if w −→∗ s, then dpt(w) ≥ dpt(s);
2) if w ←→ s, then dpt(w) = dpt(s);
3) if w −→ s and dpt(w) = dpt(s) < ω, then w ←→ s;

4) if w −→6←− s and dpt(s) is finite, then dpt(w) > dpt(s).

Proof. Easy verification.

Our goal in the next section is to prove Proposition III.5, in

particular the completeness of our axiomatization with respect

to irreflexive, weakly transitive frames. But for this, recall first

that modal logic cannot express irreflexivity. The following

result allows us to drop the irreflexivity condition:

Lemma V.12. For every weakly-transitive model M, there

exists some irreflexive weakly-transitive model M̃ that vali-

dates/satisfies the same µ-calculus formulas asM. Moreover,

if M is finite, then M̃ can be taken to be finite as well.

Proof. Given any weakly transitive model M = (W,−→, ‖ ·
‖), we associate to it an irreflexive and weakly transitive model

M̃ = (W̃ , −̃→, ‖̃ · ‖), by first taking

W̃ :={x ∈W : x is irreflexive}

∪ {(x, i) ∈W × {0, 1} : x −→ x}.

It is useful to consider a map π : W̃ →W , given by π(x, i) :=
x (for reflexive points x ∈ W ) and π(x) := x (for irreflexive

points x ∈ W ). Using this, we can define the accessibility

relation on W̃ by putting

x̃−̃→ỹ if π(x̃) −→ π(ỹ) and x̃ 6= ỹ,

for all x̃, ỹ ∈ W̃ ; and we define the valuation on W̃ by

‖̃p‖ := {x̃ ∈ W̃ : π(x̃) ∈ ‖p‖}.

It is easy to see that M̃ is an irreflexive and weakly transitive

relational model, and that the map π : W̃ → W is a P-

morphism. Since by Proposition V.9, all formulas of µ-calculus

are invariant under bisimulation, the two models are equivalent

with respect to our syntax.

So, to prove Proposition III.5, it is enough to show com-

pleteness and FMP for weakly transitive frames. This is topic

of the next section.

VI. PROOF OF THE MAIN COMPLETENESS/FMP RESULT

In this section, we prove our main completeness result

(Theorem III.5). Throughout the section, we fix a consistent

formula ϕ0, and let P0 = Free(ϕ0). We also fix some finite set

Σ ⊆ Lµ, with the following properties: ϕ0 ∈ Σ; Σ is closed

under subformulas; Σ is closed up to logical equivalence (in

our axiomatic system) under negation ¬ϕ and under 〈∗〉ϕ
operators. The existence of such a finite set Σ (for every

formula ϕ0) follows from the fact that 〈∗〉 is provably an S4-

type modality, together with the well-known fact that there

are only finitely many non-equivalent modalities in the modal

system S4 [10, Ch. 3]. Note that ϕ0 ∈ Σ, and P0 ⊆ Σ is finite.

Plan of the Proof We start with the canonical model Ω
(comprising all maximally consistent theories), a standard

construction in modal logic. But we should stress that the

canonical model is not our intended model. Indeed, the usual

Truth Lemma fails for the µ-calculus in the canonical model:

consistent µ-calculus formulas are not necessarily satisfied in

the canonical model by the theories that contain them.8 In fact,

the notion of truth in the canonical model will play no role in

this paper: we never evaluate our formulas in Ω. Instead, we

only use a few basic syntactic properties of this model.

Next, we select a special submodel of the canonical model

ΩΣ (called the Σ-final model). Essentially, this consists of the

theories whose cluster is locally definable by some formula in

Σ. Our goal will be to show that the Truth Lemma does hold

in ΩΣ for Σ-formulas. It is easy to show that ΩΣ satisfies the

usual ♦-Witness Lemma for formulas in Σ, but extending this

to fixed points requires some work.

An important role will be played by the notion of Σ-

bisimilarity, a strengthening of the standard notion of bisimi-

larity, in which the Atomic Permanence clause is replaced by

the requirement that Σ-bisimilar theories agree on Σ-formulas.

Since it is stronger than usual P0-bisimilarity, Σ-bisimilarity

still preserves the truth values of µ-calculus formulas, as long

as their free variables belong to Σ.

Another key ingredient in our proof is the fact that ΩΣ is

“essentially” a finite object: though possibly infinite in size, it

has finite ‘depth’, and moreover it contains only finitely many

Σ-bisimilarity classes. As a consequence, all relevant fixed

points are attained at some fixed finite stage of the iterative

process from Proposition III.1(3).

We will then use these ingredients to prove our Truth

Lemma for the final model ΩΣ. The inductive step for the

fixed-point formulas uses the fact that the valuation of these

formulas is locally definable by some Σ-formula.

Once completeness is obtained in this way, we will prove

the finite model property by taking the quotient of the final

model ΩΣ modulo Σ-bisimilarity.

8To see this, consider atoms (pn)n<ω and check that for every n, the set
Φn := {pn,¬♦∞⊤} ∪ {[∗](pi ⇒ ♦pi+1) : i < ω} is consistent (since
all finite subsets are satisfiable). Use the Canonical Truth Lemma for Basic
Modal Logic (and the fact that [∗] is definable in it) to construct (Tn)n<ω

with Φn ⊆ Tn and T0 → T1 → . . . → Tn → . . .. Thus, T0 |= ♦∞⊤
although (¬♦∞⊤) ∈ T0.



Canonical Model The standard ‘canonical model’ construc-

tion provides an (infinite) weakly transitive model. A theory is

a maximally consistent set of formulas in Lµ (i.e. a set T ⊆ Lµ
that is consistent and has no proper consistent extension).

We denote by Ω the family of all theories. The canonical

accessibility relation−→ between two such theories T, T ′ ∈ Ω
is given as usual by putting

T −→ T ′ iff ∀ϕ ( if �ϕ ∈ T then ϕ ∈ T ′) ,

and the canonical valuation is given by

‖x‖ := {T ∈ Ω : x ∈ T }.

The canonical model is the structure (Ω,−→, ‖ · ‖). Since

the weak-transitivity condition is Sahlqvist, it immediately

follows that the canonical model is weakly transitive (though

not irreflexive); see [9], [10] for details on Sahlqvist formulas

and their properties. As a consequence, the reflexive closure,

which we denote −→∗, of the canonical relation coincides

with its reflexive-transitive closure.

We will make use of a few well-known properties of the

canonical model, given by the next four results (see, e.g., [9]).

Lemma VI.1 (Lindenbaum Lemma). Every consistent set Φ
of formulas can be extended to a maximal consistent set T ∈ Ω
s.t. Φ ⊆ T .

Lemma VI.2 (Canonical ♦-Witness Lemma). For every the-

ory T ∈ Ω and formula ϕ ∈ Lµ, we have that ♦ϕ ∈ T iff

there exists some theory T ′ ∈ Ω s.t. T −→ T ′ ∋ ϕ.

We also have an equivalent statement in �-form:

�ϕ ∈ T iff ∀T ′ ∈ Ω ( if T −→ T ′ then ϕ ∈ T ′) .

The left-to-right implication in the first statement above is

known as the (Canonical) ♦-Existence Lemma. The proofs are

well-known (see, e.g., [9, Ch. 4]), and these results imply that

the so-called Truth Lemma holds in the canonical model for

the ♦-fragment of our logic.

In fact, we can extend this to a Canonical 〈∗〉-Witness

Lemma, using the following result

Lemma VI.3. For theories T, T ′ ∈ Ω, we have:

T −→∗ T ′ iff ∀ϕ( if [∗]ϕ ∈ T then ϕ ∈ T ′).

Proof. The left-to-right implication: Assume that T −→∗ T ′.

If T = T ′, then [∗]ϕ ∈ T implies by definition that ϕ ∈ T =
T ′, as desired. If T 6= T ′, then we must have T −→ T ′,

and then [∗]ϕ ∈ T implies by definition that �ϕ ∈ T , which

implies that ϕ ∈ T ′ (by the Canonical ♦-Witness Lemma), as

desired.

The right-to-left implication: Assume that we have

∀ϕ([∗]ϕ ∈ T =⇒ ϕ ∈ T ′). To show that T −→∗ T ′, we

assume that T 6= T ′, and we need to prove that T −→ T ′.

Since T 6= T ′, there exists some formula θ ∈ T with θ 6∈ T ′.

To show the desired conclusion, let φ be any arbitrary formula

s.t. �ϕ ∈ T , and we need to prove that ϕ ∈ T ′. From θ ∈ T ,

we infer (ϕ ∨ θ) ∈ T ; similarly, from �ϕ ∈ T , we infer

�(ϕ∨θ) ∈ T . Putting these together, we obtain [∗](ϕ∨θ) ∈ T .

By our assumption, this implies that (ϕ ∨ θ) ∈ T ′, and since

θ 6∈ T ′, we conclude that ϕ ∈ T ′, as desired.

As a consequence of Lemma VI.3, we immediately get:

Lemma VI.4 (Canonical 〈∗〉-Witness Lemma). For every

formula ϕ and theory T ∈ Ω, we have that 〈∗〉ϕ ∈ T iff

there exists some theory T ′ ∈ Ω s.t. T −→∗ T ′ ∋ ϕ.

Final Theories Given a formula θ, a theory T ∈ Ω is θ-final

if we have: θ ∈ T , and for all theories S ∈ Ω, if T −→ S

and θ ∈ S then S −→ T (hence T ←→ S). Given a set Σ of

formulas, a theory T ∈ Ω is Σ-final (or ‘final’, for short) if it

is θ-final for some formula θ ∈ Σ.

Final Model Let Σ be any set of formulas. The final model is

the canonical submodel9 determined by the set ΩΣ := {T ∈
Ω : T is Σ-final} of all final theories.

The final model may be infinite, but we can show that it

has finite depth:

Lemma VI.5 (Finite Depth Lemma). The final model ΩΣ has

depth bounded by |Σ|−1. In other words: for every chain of Σ-

final theories T0 −→6←− T1
−→
6←− . . . Tn, we have that n ≤ |Σ|−1.

Proof. Suppose, towards a contradiction, that T0 −→ T1 −→
. . . Tn is a strict chain of Σ-final theories of length n ≥ |Σ|.
Since all Ti are Σ-final, there exist formulas θ0, . . . , θn ∈ Σ
s.t. Ti is θi-final (and hence θi ∈ T ) for all i ≤ n. But this

is a sequence of n + 1 ≥ |Σ| + 1 > |Σ| formulas in Σ, so

some formula θ must be repeated. Let θ be such a repeating

formula in the enumeration, and let i and j be indices such

that i < j and θi = θj = θ.

So we have Ti −→ Ti+1 −→
∗ Tj , with both Ti and Tj being

θ-final, and so also Ti −→∗ Tj . We have two cases: either

Ti −→ Tj or Ti = Tj . We claim that in both cases we have

Ti+1 −→∗ Ti. To show this, consider first the case Ti −→ Tj .

By θ-finality we get Ti ←→ Tj , hence Ti −→ Ti+1 −→∗

Tj ←→ Ti, and thus Ti −→ Ti+1 −→∗ Ti, as desired. In the

second case, we assume Ti = Tj , so we immediately obtain

Ti+1 −→∗ Tj = Ti, as desired.

So we showed that we have Ti −→ Ti+1 −→∗ Ti. There

are again two cases: either Ti −→ Ti+1 −→ Ti, or Ti −→
Ti+1 = Ti. In the first case, we immediately conclude that

Ti ←→ Ti+1, which contradicts the ‘strictness’ of our chain.

In the second case, we have Ti −→ Ti+1 = Ti −→ Ti+1 = Ti,

so we again conclude that Ti ←→ Ti+1, in contradiction with

our ‘strictness’ assumption.

In order to prove completeness with respect to the final

model, we first need to show that every consistent formula

belongs to some final theory. This is achieved by combining

the Lindenbaum Lemma with the following.

9Any subset X′ ⊆ X of the set of worlds of a relational model M =
(X,−→, ‖ • ‖) determines a unique submodel, obtained by taking: X′ as its
set of worlds; the restriction of −→ to X′ as its accessibility relation; and
the valuation given by ‖p‖ ∩X′.



Lemma VI.6 (Final Lemma). If ϕ ∈ T ∈ Ω, then there

exists some ϕ-final theory T ∗ ∈ Ω such that T −→∗ T ∗ (and

obviously, ϕ ∈ T ∗, by finality).

Proof. We will use a well-known variant of Zorn’s Lemma,

stated for preorders: a preordered set (S,≤) has a maximal

element if every chain has an upper bound. (Here, being

maximal in a preordered set means that there is no strictly

larger element.)

Let ϕ ∈ T ∈ Ω. Take S := {T ′ ∈ Ω : T −→∗ T ′ ∋ ϕ},
with the relation −→∗ as its preorder. Let S ′ ⊆ S be a chain

of theories in S. To show that it has an upper bound, take the

set

Φ := {ϕ} ∪ {[∗]θ : [∗]θ ∈ T ′ for some T ′ ∈ S ′}

We show that Φ is consistent: suppose this is not the case.

Then there exists some finite such inconsistent subset Φ′ =
{ϕ} ∪ {[∗]θ1, . . . , [∗]θn}, with [∗]θ1 ∈ T1, . . . , [∗]θn ∈ Tn
for some theories T1, T2, . . . , Tn ∈ S ′. Since S ′ is a chain,

we can assume that T1, T2, . . . Tn−1 −→∗ Tn, and thus

[∗]θ1, . . . , [∗]θn ∈ Tn. Since Tn ∈ S, we also have ϕ ∈ Tn,

so Φ′ ⊆ Tn, which contradicts the consistency of Tn.
Applying now Lindenbaum’s Lemma, there exists some

maximally consistent extension S ∈ Ω with Φ ⊆ S. By

construction (and using Lemma VI.3), we have T ′ −→∗ S for

all T ′ ∈ S ′, so S is an upper bound for the chain S. Applying

Zorn’s lemma, we obtain a −→∗-maximal element T ∗ ∈ S. In

particular, this means that ϕ ∈ T ∗ and T −→∗ T ∗, as desired.

To prove that T ∗ is ϕ-final, suppose that T ∗ −→ S ∋ ϕ;

we have to show that S −→ T ∗. By the −→∗-maximality

of T ∗, we must have S −→∗ T ∗, i.e. either S −→ T ∗ or

S = T ∗. If S −→ T ∗, then we are done. If S = T ∗, then

S = T ∗ −→ S = T ∗, so we get again S −→ T ∗, as

desired.

Using similar reasoning, we may establish an analogue of

the ♦-Witness Lemma for final theories:

Lemma VI.7 (Final ♦-Witness Lemma). For any theory T ∈
Ω and formula ϕ, we have that ♦ϕ ∈ T iff there exists some

ϕ-final theory T ′ such that T −→ T ′. (Obviously, we have

ϕ ∈ T ′ in this case, by finality.)

Proof. The left-to-right implication: by the Canonical ♦-

Witness Lemma VI.2, ♦ϕ ∈ T implies the existence of some

theory S with T −→ S and ϕ ∈ S. By the Final Lemma

VI.6, there exists some ϕ-final theory S∗ with S −→ S∗ and

ϕ ∈ S∗. If T −→ S∗, then we can take T ′ := S∗ and we

are done (since S∗ is ϕ-final and T −→ S ∋ ϕ, as desired).

If T 6−→ S∗, then from this and T −→ S −→ S∗ we get by

weak transitivity that T = S∗, and so T −→ S −→ S∗ = T .

In this case, we can take T ′ := S. Indeed, since we already

know that T −→ S ∋ ϕ, to finish the proof we only need

to check that S is ϕ-final. For this, let U ∈ Ω be any theory

with S −→ U ∋ ϕ; we need to show that U −→ S. From

S∗ = T −→ S −→ U , we obtain by weak transitivity

that either U = S∗ = T −→ S (and we are done), or

S∗ −→ U ∋ ϕ. In the second case, by the ϕ-finality of S∗, we

have U −→ S∗ = T −→ S; by weak transitivity, we obtain

either U −→ S (and we are done) or U = S −→ U = S. So,

in all cases, we concluded that U −→ S, as desired.

The converse follows directly from the Canonical ♦-Witness

Lemma VI.2, as a special case.

It will be useful to observe that θ-final theories are closely

related to 〈∗〉θ-final theories.

Lemma VI.8. Let T ∈ Ω be a θ-final theory. Then:

1) T is also 〈∗〉θ-final.

2) For every S ∈ Ω s.t. T −→∗ S, we have 〈∗〉θ ∈ S iff

either T = S or T ←→ S.

3) All theories S ∈ Ω satisfying T ←→ S are 〈∗〉θ-final.

Proof. Assume T is θ-final. To show that it is also 〈∗〉θ-final,

observe that we have 〈∗〉θ ∈ T (since θ =⇒ 〈∗〉θ is a theorem

in our logic). Second, let S ∈ Ω be s.t. T −→ S and 〈∗〉θ ∈ S,

and we need to prove that S −→ T . Since 〈∗〉θ ∈ S, we have

either θ ∈ S or ♦θ ∈ S. In the first case, from T −→ S ∋ θ
and the fact that T is θ-final, we conclude that S −→ T , as

desired. In the second case, from ♦θ ∈ S we infer (by the

Canonical ♦-Witness Lemma) that there exists S′ ∈ Ω, with

S −→ S′ ∋ θ. Since T −→ S −→ S′, by weak transitivity

we have either T = S′ or T −→ S′. If T = S′, then we

conclude S −→ S′ = T , and we are done. If T −→ S′, then

since T is θ-final and θ ∈ S′, we get S′ −→ T . Thus we

have S −→ S′ −→ T , hence by weak transitivity we get that

either S −→ T (and we are done) or S = T (in which case

S = T −→ S = T , so we again obtain S −→ T , as desired).

For the second claim of the Lemma: assuming S ∈ Ω s.t.

T −→∗ S (i.e. T = S or T −→ S), we need to show that

〈∗〉θ ∈ S holds iff either T = S or T ←→ S. The case T = S

is obvious. In the case T −→ S, the left-to-right implication

follows from the fact that T is 〈∗〉θ-final. As for the converse:

assuming T ←→ S, and using the fact that ♦θ ∈ T , we obtain

♦〈∗〉θ ∈ S (by the Diamond Existence Lemma and S −→ T ),

and so 〈∗〉θ ∈ S (because ♦〈∗〉θ ⇒ 〈∗〉θ is a theorem in our

axiomatic system).
For the third claim of the Lemma: assume that S ∈ Ω is

s.t. T ←→ S. Since this implies that T −→∗ S, we are in

the conditions of the second claim, and hence we can apply it

to derive from T ←→ S that 〈∗〉θ ∈ S. To show finality, let

S′ ∈ Ω be s.t. S −→ S′ and 〈∗〉θ ∈ S′; we need to prove that

S′ −→ S. From T −→∗ S and S −→ S′, we get T −→∗ S′.

From this and 〈∗〉θ ∈ S′, we obtain by the second claim that

we have either S′ ←→ T or S′ = T . Both cases, combined

with the fact that T −→∗ S, give us S′ −→∗ S. This means

that we either have S′ −→ S (as desired) or else S′ = S (in

which case we have S′ = S −→ S′ = S, hence we again get

S′ −→ S, as desired).

Locality in the final model For the rest of this section,

whenever we talk about ‘locality’, we refer to the final

model ΩΣ. In particular, for T ∈ ΩΣ, we use the notations

T ↑:= {S ∈ ΩΣ : T −→ S}, T ↑∗ := {S ∈ ΩΣ : T −→∗ S},
and whenever we write that a property holds locally “above

T ”, we mean that it holds above T in ΩΣ.



Notation. It is useful to introduce the notation

ϕ̂ := {T ∈ ΩΣ : ϕ ∈ T }

for all formulas ϕ ∈ Lµ. From the definition of the canonical

valuation on (the canonical model, and hence on) the final

submodel, it is obvious that we have ‖x‖ΩΣ = x̂, for all atoms

p ∈ P . Our goal is to extend this observation to all sentences

in Σ.

Σ-Bisimilarity in the Final Model We can apply the concept

P -bisimilarity ≃P to the final model ΩΣ (for any set of vari-

ables P ⊆ P), and in fact the special case of P0-bisimilarity

≃P0
will be relevant for our proof. But it is convenient to

introduce a stronger notion: a relation B ⊆ ΩΣ × ΩΣ is a Σ-

bisimulation if it satisfies the same back-and-forth clauses as

a usual P -bisimulation, but the Atomic Preservation clause

is replaced by the requirement that: (T, T ′) ∈ B implies

T ∩Σ = T ′∩Σ. The relation ≃Σ ⊆ ΩΣ×ΩΣ of Σ-bisimilarity

is defined as the largest Σ-bisimulation relation on ΩΣ.

It is easy to see that ≃Σ is an equivalence relation on ΩΣ,

and that it is stronger than P0-bisimilarity: if T ≃Σ T ′ then

T ≃P0
T ′. Using this and the above-mentioned well-known

fact about invariance of µ-calculus under standard bisimilarity,

we immediately obtain the following:

Lemma VI.9. All the formulas ϕ ∈ LP0

µ are invariant under

Σ-bisimilarity, i.e. if T, T ′ ∈ ΩΣ satisfy T ≃Σ T
′, then for all

ϕ ∈ LP0

µ we have T ∈ ‖ϕ‖ iff T ′ ∈ ‖ϕ‖.

It is useful to introduce a more “local” version of closure

under bisimilarity.

Closure under Σ bisimilarity above a point This is just

a special case of the general notion of asserting a property

locally: a set X ⊆ ΩΣ is closed under Σ-bisimilarity above a

theory T ∈ ΩΣ if X ∩ T ↑∗ is closed under Σ-bisimilarity.

Of course, global closure implies local closure: if a set X ⊆
ΩΣ is closed under Σ-bisimilarity, then it is also closed under

Σ-bisimilarity above every T ∈ ΩΣ. Note also that: X is

closed under Σ-bisimilarity above T iff X ∩ T ↑∗ is.

Convention on global/local versions Sometimes we want to

assert that both the global and the local version of a statement

hold in the final model ΩΣ: e.g. if a certain premise holds,

either globally or locally, then a certain conclusion holds,

either globally or locally. To do this in a compact manner,

we will state the global version, but adding in brackets the

words “above T ”, to include the local version as well. An

example is the following result:

Proposition VI.10. If X = (X1, . . . , Xn) is a tuple of sets

Xi ⊆ ΩΣ that are closed under Σ-bisimilarity (above some

T ∈ ΩΣ), and ϕ = ϕ(x) ∈ Σ is a Σ-formula, then ‖ϕ(X)‖ is

also closed under Σ-bisimilarity (above T ).

Proof. We prove only the local version (since the proof of the

global statement is just a simplification the local proof, ob-

tained by omitting every mention of T ). Let Q = {q1, . . . , qn}
be a set of n ‘fresh’ propositional atoms (with P∩Q = ∅). We

extend the valuation of the final model ΩΣ to all the atoms in

P∪Q, by putting ‖qi‖ = Xi∩T ↑
∗, for all i ≤ n. Then, using

the fact that all Xi are invariant under Σ-bisimilarity above T

(together with the fact that P0 ⊆ Σ), it is easy to see that Σ-

bisimilarity above T implies P0∪Q-bisimilarity above T , i.e.:

if T ′, T ′′ ∈ T ↑∗ are s.t. T ′ ≃Σ T
′′, then T ′ ≃P0∪Q T ′′. Putting

this together with the fact that ϕ(q) ∈ LP0∪Q
µ is closed under

P0 ∪Q-bisimilarity and using Lemma V.10, we conclude that

‖ϕ(X)‖∩T ↑∗ = ‖ϕ(X ∩ T ↑∗)‖∩T ↑∗ = ‖ϕ(‖q‖)‖ = ‖ϕ(q)‖
is closed under Σ-bisimilarity above T , and hence ‖ϕ(X)‖ is

also closed under Σ-bisimilarity above T .

Next, we will use the following easy observation:

Lemma VI.11. If T, T ′ ∈ ΩΣ are such that T ←→ T ′ and

T ∩ Σ = T ′ ∩Σ, then T ≃Σ T
′.

Proof. Take

B := {(T, T ′) ∈ ΩΣ×ΩΣ : T∩Σ = T ′∩Σ, and T ←→∗ T ′}

Clearly, to prove our lemma it is enough to show that B is a

Σ-bisimulation.

For this, assume (T, T ′) ∈ B, and we have to check that

(T, T ′) satisfy the three clauses in the definition of a P -

bisimulation:

“Atomic” preservation is automatically ensured by the fact

that T ∩ Σ = T ′ ∩ Σ.

For the forth condition, let S ∈ ΩΣ such that T −→ S. We

need to show that this, together with (T, T ′) ∈ B, implies the

existence of some S′ ∈ ΩΣ with T ′ −→ S′ and (S, S′) ∈ B:

If T = T ′, we can take S′ := S, and we are done, since

(S, S′) = (S, S) ∈ B. Otherwise, we have T ←→ T ′ and

T −→ S. From these, we infer that we have either T ′ −→ S

or T ′ = S. In the first case, we can take again S′ := S, and we

are done. In the second case, T ′ = S yields T ←→ T ′ = S,

hence we can take S′ := T : we then have T ′ −→ T = S′ and

(S, S′) = (T ′, T ) ∈ B (by the symmetry of B and the fact

that (T, T ′) ∈ B), as desired.

The back condition follows from the satisfaction of the forth

condition and the symmetry of B.

Notations: (sets of) Σ-bisimilarity classes. It is convenient

to introduce a notation for Σ-bisimilarity classes over the final

model: for every final theory T ∈ ΩΣ, we put

TΣ := {S ∈ ΩΣ : T ≃Σ S}

for the Σ-bisimilarity class of T . For every set S ⊆ ΩΣ of

final theories, we put

SΣ := {SΣ : S ∈ S}

for the set of Σ-bisimilarity classes of theories in S. In

particular, for the case of the set ΩΣ of all final theories, we

simplify the notation, writing

ΩΣ := (ΩΣ)Σ = {SΣ : S ∈ ΩΣ}



for the set of Σ-bisimilarity classes of all Σ-final theories.

Similarly, for each number n, we put

ΩnΣ := {T ∈ ΩΣ : dpt(T ) ≤ n}Σ

= {TΣ : T ∈ ΩΣ with dpt(T ) ≤ n}

for the set of all Σ-bisimilarity classes of theories of depth

no larger than n. By the Finite Depth Lemma VI.5, we have

ΩΣ = ΩNΣ for some natural number N .

Proposition VI.12. There are only finitely many distinct

bisimilarity classes in the final model ΩΣ.

Proof. It is enough to show that, for each natural number n,

the set ΩnΣ is finite (since the desired conclusion will obviously

follow from the above observation that the set of all final Σ-

bisimilarity classes ΩΣ coincides with ΩNΣ for some number

N ).
The finiteness of |ΩnΣ| for all n follows immediately by

induction from the following two claims:

1) |Ω0
Σ| ≤ 2|Σ| · 22

|Σ|

;

2) |ΩnΣ| ≤ 2|Σ| · 22
|Σ|

· 2|Ω
n−1

Σ
| for all n > 0.

To prove these two claims, note first that, for every final the-

ory T ∈ ΩΣ, its bisimilarity class TΣ is uniquely determined

by the pair (T ∩ Σ, T ↑Σ), where T ↑Σ = {SΣ : T −→ S}
is the set of Σ-bisimilarity classes of T ’s successors. We can

split further this second component into two parts, depending

on whether these bisimilarity classes are of the same depth as

T or of lower depth. In other words: for a final theory T of

depth n, its Σ-bisimilarity class TΣ is uniquely determined by

the triplet

(T ∩ Σ, T ↑Σ − Ωn−1

Σ
, T ↑Σ ∩ Ωn−1

Σ
),

where the third component is empty when n = 0.
To count these triplets, note that the number of distinct

possibilities for the first component of the triple T∩Σ ⊆ Σ is at

most 2|Σ|. Further, since T −→ S and dpt(S) ≥ n = dpt(T )
implies T ←→ S, we have that T ↑Σ −Ωn−1

Σ
⊆ {SΣ : T ←→

S}. But, by Lemma VI.11 (and the fact that T ←→ S, S′

implies by weak transitivity that we have either S = S′ or

S ←→ S′), distinct elements SΣ 6= S′
Σ of this last set must

have S ∩Σ 6= S′ ∩Σ. So the set {SΣ : T ←→ S} has at most

2|Σ| elements, and thus the number of distinct possibilities for

the second component of the triple is at most 22
|Σ|

. Finally, for

the third component, we have T ↑Σ∩Ω
n−1

Σ
⊆ Ωn−1

Σ
for n > 0

(and is empty for n = 0), so the number of distinct possibilities

for the third component is at most 2|Ω
n−1

Σ
| for n > 0 (and is

= 0 for n = 0). The above two claims immediately follow.

Corollary VI.13. For every fixed-point formula νy.ϕ(y, x)
where the values of x are closed under Σ-bisimilarity, the

iterative process in Proposition III.1(3) reaches its fixed point

on the final model (above some T ∈ ΩΣ) at some finite stage.

More precisely: for all tuples X of subsets of ΩΣ that are

closed under Σ-bisimilarity (above some T ∈ ΩΣ), there exists

some N s.t. we have that

‖νy.ϕ(y,X)‖ =
⋂

n

ϕny (X) = ϕNy (X) holds (above T ),

where ϕ0
y(X) := ΩΣ, ϕn+1

y (X) = ‖ϕ(ϕny (X), X)‖ (and all

the formulas are interpreted in the final model ΩΣ).

Proof. It is obvious that the sequence

ϕ0
y(X) ⊇ ϕ1

y(X) ⊇ . . . ϕny (X) ⊇ . . .

stabilizes, reaching the fixed point (above T ) at the first

stage N s.t. ϕNy (X) = ϕN+1
y (X) holds (above T ), provided

that such a finite number N exists. To show that such an

N exists, suppose towards a contradiction that all the sets

ϕny (X) \ ϕn+1
y (X) are non-empty (above T ). For every n,

let Tn ∈ ϕny (X) \ ϕn+1
y (X). From the definition of the

sequence ϕny (X) and Proposition VI.10, it follows (by an

easy induction) that all the sets ϕny (X) are closed under Σ-

bisimilarity (above T ). So, when Tn (in T ↑∗) is eliminated in

the move from stage n to stage n+1, the whole Σ-bisimilarity

class of Tn (above T ) is also eliminated. But since there are

only finitely many Σ-bisimilarity classes (above T ) in ΩΣ,

this elimination process cannot go forever. In fact, an upper

bound for the stabilizing stage N is given by the number of

bisimilarity classes.

Lemma VI.14 (Functional Truth Lemma). For every formula

ϕ = ϕ(y) ∈ Σ in which the variables in the string y =
(y1, . . . , yn) are free (or do not occur), every Σ-final theory

T ∈ ΩΣ, and every tuple θ = (θ1, . . . , θn) of formulas θi ∈
LP0

µ s.t. θ̂i is closed under Σ-bisimilarity above T , we have:

(1) T ∈ ‖ϕ(θ̂)‖ iff T ∈ ϕ̂(θ);
(2) if ϕ = ϕ(y) = ϕ(z, y) is positive in z, then for all natural

numbers n ∈ N , we have:

• ϕnz (θ̂) =
̂ϕnz (θ) holds above T ;

• moreover, ̂ϕnz (θ) is closed under Σ-bisimilarity above

T ;

where: ‖ϕ‖ is the interpretation of ϕ in the final model ΩΣ;

ϕnz (θ̂) is an instance of the sequence of sets in Corollary

VI.13 (i.e. it is recursively defined by putting ϕ0
z(θ̂) := ΩΣ,

ϕn+1
z (θ̂) := ‖ϕ(ϕnz (θ̂), θ̂)‖); and ϕnz (θ) is a sequence of for-

mulas, recursively defined by putting ϕ0
z(θ) := ⊤, ϕn+1

z (θ) :=
ϕ(ϕnz (θ), θ).

Proof. We prove both assertions (1) and (2) by double induc-

tion on the depth dpt(T ) of T ∈ ΩΣ and on the subformula-

complexity of ϕ.

Proof of assertion (1):

The base cases ϕ := yi and ϕ := x ∈ P0, as well as the

Boolean cases ¬ϕ and ϕ ∧ ϕ′, are trivial.

Case ♦ϕ. We have the sequence of equivalencies: T ∈

‖♦ϕ(θ̂)‖ iff ∃S ∈ ‖ϕ(θ̂)‖ s.t. T −→ S (by the semantic

clause for ♦ in the final model) iff ∃S ∈ ϕ̂(θ) s.t. T −→ S

(by the induction hypothesis for ϕ) iff T ∈ ̂
♦ϕ(θ) (by the

Final ♦-Witness Lemma VI.7).

Case νx.ϕ with ϕ = ϕ(x, y). Since T is Σ-final, there

exists some ρ ∈ Σ s.t. T is ρ-final, and so (by Lemma VI.8)



T is also 〈∗〉ρ-final, and moreover 〈∗〉ρ locally defines T ’s

cluster above T . Also by Lemma VI.8, all theories S ∈ Ω
s.t. T ←→ S are also 〈∗〉ρ-final, hence they all belong to ΩΣ

(since 〈∗〉ρ is provably equivalent to some Σ-formula)10. For

each theory S in the cluster of T (i.e. s.t. either T ←→ S or

T = S), we put

χS :=
∧
{ψ : ψ ∈ S ∩Σ}.

Note that, for any theory T ′ ∈ Ω, we have χS ∈ T ′ iff T ′∩Σ =
S ∩ Σ. Put

χ :=
∨
{χS : S ∈ ‖νx.ϕ(θ̂)‖, and T ←→∗ S}.

Take now the sentence

η := (〈∗〉ρ ∧ χ) ∨ ([∗]¬ρ ∧ νx.ϕ(x, θ))

Claim 1: ‖νx.ϕ(θ̂)‖ = η̂ holds above T .

Proof of Claim 1: Let S ∈ T ↑∗, i.e. s.t. T −→ S. We

need to show that: S ∈ ‖νx.ϕ(θ̂)‖ iff η ∈ S. For this, we

distinguish two cases.

Case 1: T ←→ S or T = S. By Lemma VI.8, we have

〈∗〉ρ ∈ S. Then the desired conclusion follows from the

following sequence of equivalencies: η ∈ S iff χ ∈ S iff

∃S′ ∈ ‖νx.ϕ(θ̂)‖ s.t. (S′ ←→ T or S′ = T )&S′∩Σ = S∩Σ

iff S ∈ ‖νx.ϕ(θ̂)‖ (by Lemma VI.11, Proposition VI.10 and

the assumption that all θi are closed under Σ-bisimilarity

above T ).

Case 2: T 6←→ S and T 6= S, hence T −→6←− S, and thus

dpt(S) < dpt(T ). By Lemma VI.8, we have 〈∗〉ρ 6∈ S, so

[∗]¬ρ ∈ S. Once again, the desired conclusion follows from

the sequence of equivalencies: η ∈ S iff νx.ϕ(θ̄) ∈ S iff

S ∈ ̂νx.ϕ(θ̄) iff S ∈ ‖νx.ϕ(θ̂)‖ (by the induction hypothesis

for theories S ∈ ΩΣ with dpt(S) < dpt(T )).

Given Claim 1, we can now prove:

Claim 2. η̂ is closed under Σ-bisimilarity above T .

Proof of Claim 2: By Claim 1, we have η̂ ∩ T ↑∗ =

‖νx.ϕ(θ̂)‖ ∩ T ↑∗, and the right-hand side can be easily seen

to be closed under Σ-bisimilarity above T (using Proposition

VI.10 and the assumption that all θ̂i are closed under Σ-

bisimilarity above T ). Hence, η̂ is also closed under Σ-

bisimilarity above T .

Claim 3. (η ⇒ νx.ϕ(x, θ)) ∈ T .

Proof of Claim 3: Suppose not. Then by Proposition III.4(4),

we must have [∗](η ⇒ ϕ(η, θ)) 6∈ T . By the Canonical 〈∗〉-
Witness Lemma VI.4, there exists T ′ ∈ Ω (not necessarily

final!) such that T −→∗ T ′, η ∈ T ′ and ϕ(η, θ) 6∈ T ′. Once

again, we distinguish two cases.

Case 1: 〈∗〉ρ ∈ T ′. From T −→∗ T ′ and the 〈∗〉ρ-finality

of T , we obtain that T ′ is also 〈∗〉ρ-final, hence T ′ ∈ ΩΣ and

thus T ′ ∈ η̂ ∩ T ↑∗ (since η ∈ T ′ ∈ ΩΣ and T −→∗ T ′). We

have the following sequence of equalities:

10This follows from ρ ∈ Σ, together with the fact that Σ is closed under
the 〈∗〉 operator up to logical equivalence.

η̂∩T ↑∗ = ‖νx.ϕ(θ̂)‖∩T ↑∗ = ‖ϕ(‖νx.ϕ(θ̂)‖, θ̂)‖∩T ↑∗ =

‖ϕ(‖νx.ϕ(θ̂)‖ ∩ T ↑∗, θ̂)‖ ∩ T ↑∗ = ‖ϕ(η̂ ∩ T ↑∗, θ̂)‖ ∩ T ↑∗ =

‖ϕ(η̂, θ̂)‖ ∩ T ↑∗ = ̂ϕ(η, θ) ∩ T ↑∗

(where we used repeatedly Claim 1, Lemma V.10, the fact

that ‖νx.ϕ(θ̂)‖ is a fixed point of X 7→ ‖ϕ(X, θ̂)‖, as well as

the induction hypothesis for ϕ, combined with the fact that all

θ̂i’s and η̂ are closed under Σ-bisimilarity above T ). Using the

above equalities, we get from T ′ ∈ η̂ ∩ T ↑∗ to T ′ ∈ ̂ϕ(η, θ),
which contradicts the above assumption that ϕ(η, θ) 6∈ T ′.

Case 2: [∗]¬ρ ∈ T ′. From this, together with η ∈ T ′,

we obtain (using reasoning in the axiomatic system) that

([∗]¬ρ ∧ νx.ϕ(x, θ)) ∈ T ′. Using the Fixed Point Axiom,

we get ([∗]¬ρ∧ϕ(νx.ϕ(x, θ), θ)) ∈ T ′. Applying Proposition

III.4(2) (and the fact that ϕ is positive in x), we infer

that ϕ([∗]¬ρ ∧ νx.ϕ(x, θ)) ∈ T ′, then applying Proposition

III.4(3) (as well as the fact that ([∗]¬ρ ∧ νx.ϕ(x, θ)) ⇒ η

is provable in propositional logic, hence by Necessitation

[∗](([∗]¬ρ∧νx.ϕ(x, θ))⇒ η) is a theorem in our system), we

obtain that ϕ(η, θ) ∈ T ′, which again contradicts the above

assumption that ϕ(η, θ) 6∈ T ′.

Given the above three Claims, let us prove the case νx.ϕ.

For the left-to-right direction: assume that T ∈ ‖νx.ϕ(θ̂)‖.
Then by Claim 1, we have T ∈ η̂, hence η ∈ T , and thus by

Claim 3, we also have νx.ϕ(x, θ) ∈ T , i.e. T ∈ ̂νx.ϕ(x, θ),
as desired.

For the converse: assume that T ∈ ̂νx.ϕ(x, θ). Using

reasoning in the axiomatic system (making essential use of

the Fixed Point Axiom), we see that νx.ϕ(x, θ)⇒ ϕnx(θ) for

all n, so we get T ∈̂ϕnx(θ) for all n. By the inductive assertion

(2) of our Lemma (for ϕ), we obtain that T ∈ ϕnx(θ̂) for all n.

So T ∈
⋂
n ϕ

n
x(θ̂). But, by Corollary VI.13 (and the fact that

all θ̂i are closed under Σ-bisimilarity above T ), this last set

is equal above T with the greatest fixed point of the operator

X 7→ ‖ϕ(X, θ̂)‖, i.e. with ‖νx.ϕ(θ̂)‖, and so we obtain the

desired conclusion.

Proof of assertion (2): We prove assertion (2) of our Lemma

for ϕ, using the fact that we proved assertion (1) of the Lemma

for ϕ. The proof is by induction on n. For n = 0: ϕ0
z(θ̂) =

W = ̂ϕ0
z(θ), and W is obviously closed under Σ-bisimilarity.

For the inductive step n+ 1, assume the assertion is true for

n. Then, for all theories S ∈ T ↑∗, we have the following

sequence of equivalencies:

S ∈ ϕn+1
z (θ̂) iff S ∈ ‖ϕ(ϕnz (θ̂), θ̂)‖ iff S ∈ ‖ϕ(̂ϕnz (θ), θ̂)‖

(by the inductive hypothesis (2) for n) iff S ∈ ̂ϕ(ϕnz (θ), θ)
(by the induction hypothesis (1) for ϕ and S, and using the

closure of θ̂ and of ̂ϕnz (θ) under Σ-bisimilarity above T , by

the inductive hypothesis (2) for n, and as a consequence their

closure under Σ-bisimilarity above S ∈ T ↑∗) iff S ∈ ̂ϕn+1
z (θ).

That takes care of the first item in assertion (2) of our

Lemma. As for the second item of this assertion (closure of
̂ϕnz (θ) under Σ-bisimilarity above T ): first, using Proposition



VI.10 and the recursive definition of ϕnz (θ̂), an easy induction

on n shows that all ϕnz (θ̂) are closed under Σ-bisimilarity

above T ; from this, together with the already proven first item

of assertion (2), we conclude that all ̂ϕnz (θ) are also closed

under Σ-bisimilarity above T .

Lemma VI.15 (Truth Lemma). For every formula ϕ ∈ Σ, we

have:

‖ϕ‖ΩΣ = ϕ̂.

Proof. For ϕ = ϕ(y1, . . . , yn) ∈ Σ, apply the Functional

Truth Lemma VI.14 to formula θi := yi.

Weak completeness for wK4 frames follows immediately

from Lemma VI.15 (cf. Appendix). By Lemma V.12, this

also applies to irreflexive wK4 frames, hence to topological

derivative spaces, and thus to arbitrary derivative spaces.

Proof of Completeness for wK4 frames, topological deriva-

tive spaces, and general derivative spaces:

Recall that we started with a consistent formula ϕ0, and a

set Σ s.t. ϕ0 ∈ Σ and Σ is closed under negations and 〈∗〉 up to

logical equivalence. Take some Σ-final theory T0 ∈ ΩΣ with

ϕ0 ∈ T0 (-such a theory exists by the Lindenbaum Lemma

combined with the Final Lemma VI.6). Since ϕ0 ∈ T0 ∈ ΩΣ,

the above Truth Lemma VI.15 shows that T0 |= ϕ0 holds in

ΩΣ. Hence, our axiomatic system is complete for the class

of weakly transitive relational models. By Lemma V.12, we

can add irreflexivity: the logic is the same, so the system is

also complete for the class of irreflexive and weakly transitive

models. But, as already mentioned in Example II.6, this class

coincides with the class of Alexandroff topological derivative

models. So the system is also complete for topological deriva-

tive models (and thus also for general derivative models).

As for finite model property, this can be shown by taking

the quotient of ΩΣ modulo Σ-bisimilarity:

Final Quotient The final quotient (ΩΣ,−→Σ, ‖·‖Σ) is defined

as the “strongly extensional Σ-quotient” of the final model ΩΣ;

i.e. the set of worlds ΩΣ consists of all equivalence classes

TΣ = {S ∈ ΩΣ : T ≃Σ S}, the accessibility relation is

given by putting TΣ −→Σ SΣ if there are T ′ ∈ TΣ, S′ ∈ SΣ

s.t. T −→ S, and the valuation is given by putting, for each

p ∈ P, TΣ ∈ ‖p‖Σ iff there is T ′ ∈ TΣ s.t. T ′ ∈ ‖p‖.

Proposition VI.16 (Finite Model Property).

1) The final quotient ΩΣ is finite (with an upper bound given

by a computable function of |Σ|);
2) for every formula ϕ ∈ LP0

µ , we have that: ϕ is true in

the final model at some final theory T ∈ ΩΣ iff ϕ is true

in the final quotient at the Σ-bisimilarity class TΣ;

3) µ-calculus has FMP (wrt relational, topological and

derivative-space semantics).

Proof. The finite bound follows immediately from Proposition

VI.12.

The second part follows from the easily checked fact that

the map T 7→ TΣ is a functional P0-bisimulation between the

two models, and that all µ-calculus sentences ϕ ∈ LP0

µ are

invariant under P0-bisimulations.

To check part 3 (FMP) for weakly transitive models, it is

enough to check that the relation −→Σ is weakly transitive in

the final quotient ΩΣ. For this, suppose that TΣ, SΣ, UΣ ∈ ΩΣ

are s.t. TΣ −→Σ SΣ −→Σ UΣ. By the definition of −→Σ,

this means that we can assume T −→ S and S′ −→ U , for

some theory S′ ≃Σ S. Since Σ-bisimilarity is a bisimulation

relation, this implies that there exists some U ′ ≃Σ U s.t.

S −→ U ′. But from T −→ S −→ U ′, we obtained (by

weak transitivity) that we have either T = U ′, in which

case TΣ = U ′
Σ = UΣ, or else T −→ U ′, in which case

TΣ −→Σ U
′
Σ = UΣ, as desired.

Using again Lemma V.12 (and the fact that the copying

construction in its proof preserves a model’s finiteness), we

get FMP for irreflexive and weakly transitive models, i.e. (by

the equivalence in Example II.6) for Alexandroff topological

derivative models (and hence for arbitrary topological deriva-

tive models, as well as general derivative models).

Axiomatization of natural sublanguages The proofs in this

section can all be carried out within any natural sublanguage

L of Lµ. In particular, natural sublanguages are closed under

all operations used to define Σ, and moreover the formulas

considered in the proof are all built from elements of Σ
using substitution, Booleans or applications of modalities. This

finishes the proof of Theorem III.5, establishing completeness

and FMP for all logics µ-wK4L.

Next, we get similar results for many logics above µ-wK4.

VII. GENERALIZATION TO COFINAL SUBFRAME LOGICS

Our completeness and finite model property uses only a

handful of properties of the logic wK4, and can readily be

extended to a wide class of related logics. To be precise,

we will now show that FMP holds for any canonical cofinal

subframe logic above wK4 enriched with fixed-points.

Definition VII.1. ([10, Ch. 9]) Let (W,−→) be a weakly

transitive frame. A subset X ⊆ W is called cofinal if X↑ ⊆
X↓∗. That is, for every x ∈ W , if there is y ∈ X such that

y −→ x, then there is z ∈ X with x −→∗ z.

Let Λ be any normal modal logic over L♦ that extends wK4.

Recall that a Kripke frame (W,−→) is called a Λ-frame if it

validates all the formulas in Λ, and that a modal logic Λ is

canonical if the underlying frame of the canonical model for Λ
is a Λ-frame. Every logic axiomatized by Sahlqvist formulas

is canonical [9]. Recall also that a canonical logic Λ is cofinal

subframe if and only if for every Λ-frame F = (W,−→) and

every cofinal U ⊆ X , the restriction of F to U is also a

Λ-frame [10].

Examples of canonical cofinal subframe logics above wK4

are wKT0, K4, K4D = K4+♦⊤, K4.1 = K4+�♦p→ ♦�p,

K4.2 = K4 + ♦�p → �♦p, K4.3 = K4 + �(�+p → q) ∨



�(�+q → p), S4 = K4+�p→ p, S4.1 = S4+�♦p→ ♦�p,

S4.2 = S4+♦�p→ �♦p, S4.3 = S4+�(�p→ q)∨�(�q →
p), S5 = S4+ p→ �♦p, etc. (see [10, Chapter 9]).

We are ready to state Theorem III.5 in full generality.

Theorem VII.2. Let Λ be a canonical cofinal subframe logic

over wK4, and L be a natural sublanguage of Lµ. Then, µ-ΛL

is sound for the class of Λ-frames, and complete for the class

of finite Λ-frames.

Proof. We just follow the proof of the previous section. First,

we note that by canonicity, the Kripke frame underlying the

canonical model of µ-Λ is a Λ-frame. This does require some

checking, as canonicity only tells us that the canonical model

for Λ is a Λ-frame, but this can be done by observing that

the canonical model of µ-Λ is a generated submodel of the

canonical model of Λ. We proceed as in the proof of weak

completeness in the previous section with a small modification

that if ⊤ does not belong to Σ, then we add it to Σ. The fact

that ⊤ ∈ Σ ensures that the final model ΩΣ contains all final

point of the canonical frame. Therefore, ΩΣ is based on a

cofinal subframe of the canonical frame. Hence, the underlying

frame of ΩΣ is a Λ-frame. Finally, as p-morphic images

preserve the validity of modal µ-formulas, the finite p-morphic

image of ΩΣ is a finite Λ-frame. Thus, every consistent Lµ-

formula is satisfied in a model based on a Λ-frame, and hence,

on a µ-Λ-frame, implying the FMP of µ-Λ.

There exist continuum many canonical cofinal subframe

logics above K4 ([10, Theorem 11.28 and Exercise 11.14]).

Hence the above theorem covers continuum many logics.11

Of course, only countable many of them have a recursively

enumerable set of axioms: for those logics, decidability fol-

lows from Theorem VII.2. Next, we single out some important

ones.12

Corollary VII.3. The logics µ-wKT0, µ-K4, µ-K4D, µ-K4.1,

µ-K4.2, µ-K4.3, µ-S4, µ-S4.1, µ-S4.2, µ-S4.3 have the FMP

and are decidable.

VIII. COMPLETENESS FOR T0 AND TD SPACES

The simple world-duplication construction underlying the

last step of the topological completeness proof in Section III.5

does not work in the case of T0 and TD spaces. So we will

use d-morphisms to prove topological completeness for these

cases. In the process we give an alternative to the above-

mentioned proof of completeness for arbitrary spaces, although

this new proof has the disadvantage that it does not yield the

finite model property in this setting.

For this it suffices, given a wK4 frame F = (W,−→),
to construct a topological space (X, τ) and a d-morphism

π : X → W as characterized by Lemma V.7, in such a way

11As far as we are aware, this is a first non-trivial example of a completeness
result for modal fixed-point logics that covers so many logical systems.

12Topological completeness of wK4, wKT0 and K4 has already been
discussed in Section 3. We also recall that S4.1 is the logic of spaces whose
dense sets form a filter, that S4.2 is the logic of extremally disconnected
spaces [6, Sec. 2.6] and that S4.3 is the logic of hereditarily extremally
disconnected spaces [33].

that if F is a wK4T0 frame then X will be T0, and if F is a

K4 frame, then X will be TD.

Definition VIII.1. Let F = (W,−→) be a wK4 frame. We

build a topological space (X, τ) = (XF , τF ) and a map

π : X → W as follows. Let W r be the set of reflexive points

of W and W i be the set of irreflexive points. Then, set

X = (W r × N) ∪ (W i × {ω}),

and say that U ⊆ X is open if whenever (w,α) ∈ U , the

following two properties are satisfied:

1) There is n ∈ N such that for all (v, β) ∈ X , v ←→ w

and β ≥ n implies that (v, β) ∈ U .

2) If (v, β) ∈ X and w −→6←− v then (v, β) ∈ U .

Finally, set π(w,α) = w.

In other words, if an open set contains (w,α) then it

contains all copies of v whenever w −→∗ v, except possibly

for cofinitely many in the case that v ←→ w.

Lemma VIII.2. If F = (W,−→) is any wK4 frame then τF
is a topology on XF and π : XF →W is a d-morphism.

Proof. Let (X, τ) = (XF , τF ). We omit the proof that τ is a

topology, which proceeds by routine verification. To see that

π is a d-morphism, we appeal to Lemma V.7. Let (w,α) ∈ X
and note that w = π(w,α). Define

O = {(v, β) : w −→∗ v and β ≥ 0}.

It should be clear that O is a neighborhood of (w,α). More-

over, if (v, β) ∈ O \ {(w,α)}, then w −→∗ v. It follows that

w −→ v, except in the case where w = v and w is irreflexive.

But then α = β = ω, so that (v, β) = (w,α), contradicting

(v, β) ∈ O \ {(w,α)}. Hence O \ {(w,α)} ⊆ π−1(w↑), as

needed.

Now let U be any neighborhood of (w,α) and v ∈ w↑; we

must show that v ∈ π(U \ {(w,α)}). Then, there is n ∈ N

such that β > n and (v, β) ∈ X implies that (v, β) ∈ U .

If v is reflexive, choose any β 6= α such that n < β < ω.

Then, (v, β) ∈ U \ {(w,α)} and π(v, β) = v, as required. If

v is irreflexive, then from w −→ v we obtain v 6= w. Thus

(v, ω) ∈ U \ {(w,α)} and π(v, ω) = v.

Finally, π is surjective since π(w, 0) = w if w is reflexive

and π(w, ω) = w if w is irreflexive.

Lemma VIII.3. If F = (W,−→) is any wK4 frame then:

1) If F is a wK4T0 frame then XF is T0.

2) If F is a K4 frame then XF is TD.

Proof. Let X = XF . First assume that F is a wK4T0

frame and let (w,α) 6= (v, β) ∈ X . If w 6−→∗ v then

{(u, γ) ∈ X : w −→∗ u} is a neighborhood of (w,α) which

is not a neighborhood of (v, β). The case where v 6−→∗ w is

symmetric, so we may assume w ←→∗ v. If β < ω then

U = {(u, γ) ∈ X : w −→∗ u} \ {(v, β)}

is a neighborhood of (w,α) not containing (v, β). The case

where α < ω is symmetric. So we are left with the case where



α = β = ω. Since (w,α) 6= (v, β), it follows that w 6= v.

Since w ←→ v and F is a wK4T0 frame, we cannot have

that both w, v are irreflexive; but if w is reflexive then α < ω,

contrary to our assumption, and similarly if v is reflexive then

β < ω. We conclude that the case α = β = ω is impossible.

Now assume that F is a K4 frame and let (w,α) ∈ X ; we

must find open U and closed F such that U ∩F = {(w,α)}.
Let

U = {(v, β) ∈ X : w −→∗ v}

F = {(v, β) ∈ X : v −→ w} ∪ {(w,α)}.

It should be clear that U∩F = {(w,α)} and that U is open, so

we check only that F is closed; that is, that the complement of

F is open. So, define O := X \F . Let (v, β) ∈ O. If (u, γ) ∈
X is such that v −→ u, then we cannot have u −→∗ w by

transitivity, since this would lead to v −→ w and (v, β) ∈ F .

Thus u 6−→ w and u 6= w, yielding (u, γ) 6∈ F regardless of

γ. Next we check that there is n so that if γ > n, u ←→∗ v

and (u, γ) ∈ X , it follows that (u, γ) ∈ O. If v 6←→ ∗w,

then we may set n = 0. For then, u ←→∗ v and v 6−→ w

yield u 6−→ w and u 6= w, so that (u, γ) ∈ O regardless of

γ. If v ←→∗ w, we claim that w is reflexive. If not, then

v ←→∗ w yields v = w since F is a K4 frame, and the

definition of X yields α = β = ω, so that (v, β) = (w,α)
and (v, β) ∈ O is impossible. Thus w is reflexive, so that

α < ω. But then, u ←→∗ v and γ > α yield (u, γ) ∈ O, so

we may set n = α.

We can now proceed to prove topological completeness for

T0 and TD spaces. In fact, the proof also works for the wK4

case of arbitrary spaces (but unlike the proof in the previous

section it does not give us finite model property)13:

Theorem VIII.4. 1) µ-wK4 is sound and complete for the

class of all topological spaces.

2) µ-wK4T0 is sound and complete for the class of all T0
topological spaces.

3) µ-K4 is sound and complete for the class of all TD
topological spaces.

Proof. Let Λ be any of the logics µ-wK4, µ-wK4T0 or µ-K4.

Soundness of Λ for its class of spaces follows from Lemma

III.3 and the fact that each fixed point-free fragment is sound

for the respective class of spaces (see Section III). Since Λ is a

canonical subframe logic, by Kripke completeness, if ϕ is not

derivable then it is falsifiable on some Λ-frame F = (W,−→).
Then, by Lemma VIII.3, (XF , τF ) is a Λ-space and F is a

d-morphic image of XF , so ϕ is also falsifiable on (XF , τF ),
as needed.

13On the other hand, neither wK4T0 nor K4 have the finite topological
model property, so the next result cannot be improved upon.

IX. CONCLUSION AND COMPARISON WITH OTHER WORK

In this paper, we have studied the µ-calculus over arbitrary

topological spaces, as well as some natural subclasses, and

obtained a general soundness and completeness result for the

standard axiomatization.

Our results are novel for several reasons. First, in the setting

of Kripke semantics, neither completeness nor the FMP for

weakly transitive frames were known, nor do they follow

immediately from known results. Moreover, our completeness

proof appears to be the first such result for a variant of µ-

calculus that simultaneously applies to infinitely many logics

and their respective classes of frames.

From the topological perspective, neither completeness nor

decidability for non-TD spaces were known, nor they fol-

low from known results. Unlike the transitive/TD case, our

logics do not embed into standard µ-calculus, or any of its

known decidable extensions. This is in sharp contrast to the

TD/transitive case, where FMP and decidability follow via

a simple encoding into standard µ-calculus.14 Moreover, we

showed that the tangled derivative is not expressively complete

over the class of all topological (or even T0) spaces, so we had

to give a completeness proof that applies to the full language

of µ-calculus.

But note that even on TD spaces, our proof is the first

to directly establish completeness over such spaces of a

Kozen-type axiomatization for full µ-calculus (rather than for

some semantically equivalent modal logic). Prior work on

TD spaces, mainly by Goldblatt and Hodkinson [26], had

focused only on the tangled fragment. Though this fragment

is known to be co-expressive with µ-calculus over TD spaces

(and transitive frames), completeness for the full µ-calculus

over these spaces only follows if we combine the results in

[26] with Walukiewicz’s proof of Kripke completeness for

µ-calculus. In contrast, our proof of completeness is self-

contained (for both the TD and the non-TD case), taking

advantage of the weak transitivity to give a streamlined proof

tailored for the topological setting.

Furthermore, our results are based on an innovative use of

the proof techniques using final submodels (due to Fine and

Zakharyaschev). This method has not been applied previously

in a setting with fixed points, and provides a novel, general and

relatively simple approach to dealing with fixed point logics

over wK4 frames (for which the filtration method, used in [26]

and elsewhere in the study of fixed point logics, does not seem

to work). In fact, even for the much easier case of topological

closure spaces, our method provides a simpler and more

uniform way to reprove existing results: while Goldblatt and

14As already mentioned, the transitive closure of a relation can be encoded
in µ-calculus (and thus the decidability of µ-calculus over transitive frames
follows immediately from Kozen’s result on the decidability of µ-calculus
over arbitrary frames). In contrast, the weakly-transitive closure of a relation
does not seem to be definable in µ-calculus, and not even in its recent hybrid
extension [34]. Weakly-transitive closure is definable only if one adds the
binding operator from hybrid logic. But this increases the complexity of hybrid
µ-calculus, and the resulting logic is no longer known to have FMP (or to
even be decidable).



Hodkinson [35] had to do a lot of work to show the FMP for

S4-tangle logic (and thus also for the semantically equivalent

µ-S4), in Corollary VII.3 we get this result essentially for free

from our general methods.

There are many open questions left within the context of

topological fixed point logics. The problem of finding a simple

but expressively complete fragment of the µ-calculus over

wK4, in analogy to the tangled fragment for logics over K4,

remains open. But we conjecture that topological µ-calculus

does indeed collapse to a simpler natural fragment, possibly

the alternation-free fragment, with a proof along the lines of

the similar argument for transitive frames in [36]. Anticipating

such a development, we have set up our main completeness

result in a modular fashion so that, if such a fragment L is ever

found, the completeness for its natural axiomatization µ-wK4L

will follow immediately from Theorem III.5.

Another line of inquiry that we leave open here is the

problem of extending our methods to classes of spaces which

enjoy topologically natural properties that do not correspond

to any cofinal subframe logic. The prime example here is that

of connected spaces, whose modal logic is well understood in

presence of the universal modality [37]. We believe that our

methods can be extended to such settings, but some non-trivial

modifications would be required.
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[19] A. Özgün, “Evidence in epistemic logic : A topological perspective,”
Ph.D. dissertation, ILLC, Univ. of Amsterdam and Univ. of Lorraine,
2017.

[20] A. Baltag, N. Bezhanishvili, A. Özgün, and S. Smets, “Justified belief
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