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Abstract. Markov chains are the de facto finite-state model for stochastic dynamical
systems, and Markov decision processes (MDPs) extend Markov chains by incorporating
non-deterministic behaviors. Given an MDP and rewards on states, a classical optimiza-
tion criterion is the maximal expected total reward where the MDP stops after T steps,
which can be computed by a simple dynamic programming algorithm. We consider a
natural generalization of the problem where the stopping times can be chosen according
to a probability distribution, such that the expected stopping time is T , to optimize the
expected total reward. Quite surprisingly we establish inter-reducibility of the expected
stopping-time problem for Markov chains with the Positivity problem (which is related to
the well-known Skolem problem), for which establishing either decidability or undecidabil-
ity would be a major breakthrough. Given the hardness of the exact problem, we consider
the approximate version of the problem: we show that it can be solved in exponential time
for Markov chains and in exponential space for MDPs.

1. Introduction

Stochastic models and optimization. The de facto model for stochastic dynamical systems is
finite-state Markov chains [FV97, Gal13, KSK66], with several application domains [BK08].
In modeling optimization problems, rewards are associated with states of the Markov chain,
and the optimization criterion is formalized as the expected total reward provided that
the Markov chain is stopped after T steps [PT87, FV97]. The extension of Markov chains
to allow non-deterministic behavior gives rise to Markov decision processes (MDPs), and
the optimization criterion is to maximize, over all non-deterministic choices, the expected
total reward for T steps. This notion of optimization for fixed time is called finite-horizon
planning, which has many applications in logic and verification [EMSS92, BCC+03] and con-
trol problems in artificial intelligence and robotics [NR10, Chapter 10, Chapter 25], [OR94,
Chapter 6].

Optimization with expected stopping time. In the most basic case the stopping time for
collecting rewards in the stochastic model is a fixed constant T . A natural generalization
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is to consider that the stochastic model can be stopped at a random time such that the
expectation of the stopping time is T . We consider the problem of optimizing (maximiz-
ing/minimizing) the expected total reward, when the stopping-time probability distribution
can be chosen arbitrarily such that the expected stopping time is T . In other words, we
consider stochastic models of Markov chains/MDPs with total reward, and instead of fixed
stopping time T , we consider expected stopping time T .

Example and motivation. Consider a classical example where a robot explores a region for
natural resources (e.g., the well-studied RockSample problem in AI literature [SS04]), and
the exploration of the robot is modeled as a Markov chain. The success of the exploration is
characterized by the expected total reward, and the stopping time T denotes the expected
duration of the exploration. The expected stopping-time problem asks to choose the prob-
ability distribution of the exploration duration to optimize the collected reward, satisfying
the average exploration time. A classical stopping-time distribution is the exponential dis-
tribution where the stochastic model is stopped at every instant with probability λ, called
discount factor, which entails that the expected stopping time is T = 1/λ [FV97]. The
discount-factor model makes an assumption on the shape of the stopping-time distribution,
whereas in realistic scenarios the distribution is not precisely known, or time-varying dis-
count factors are considered [DB12]. When the discount factors are not known, then robust
solutions require the worst-case choice of the factors. Thus in many examples realistic
modeling requires complex stopping-time distributions, and if the precise parameters are
unknown, then a robust analysis requires to consider the worst-case stopping-time distribu-
tion. Hence, when the stopping-time distribution is important yet unknown, a conservative
estimate (i.e., lower bound) of the optimal value is obtained using the worst-case choices.
Thus we consider problems that represent robust extensions of the classical finite-horizon
planning.

Previous and our results. For fixed stopping time T , the expected total reward for Markov
chains and MDPs can be computed via a simple dynamic programming (or backward in-
duction) approach [Put94, Chapter 4], [FV97, How60, BKN+19]. Perhaps surprisingly the
optimization problem for Markov chains and MDPs with expected stopping time has not
been considered in the literature (to the best of our knowledge). Our main results are as
follows:

• In contrast to the simple algorithm for fixed stopping time T , we show that quite surpris-
ingly the expected stopping-time problem is Positivity-hard. The Positivity problem is
known to be at least as hard as the well-known Skolem problem, whose decidability has
been open for more than eight decades [OW14]. Moreover, we establish inter-reducibility
between the expected stopping-time problem and the Positivity problem, and thus show
that for a simple variant (adding expectation to stopping time) of the classical Markov
chain problem, establishing either decidability or undecidability would be a major break-
through.

• We then consider approximating the optimal expected total reward under the constraint
that the expected stopping time is T , and show that for every additive absolute error
ε > 0, the approximation can be achieved in time logarithmic in 1/ε and exponential in
the size of the Markov chain.

• For MDPs we show that infinite-memory strategies are required. While the expected
stopping-time problem is Positivity-hard for MDPs (since Markov chains are a special
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case), we show that the approximation problem can be solved in exponential space in the
size of the MDP and logarithm of 1/ε.

Comparison with related work. The optimization problem with fixed expected stopping
time has been considered for the simple model of graphs [CD19], which is a model without
stochastic aspects. The graph problem can be solved in polynomial time [CD19], while in
sharp contrast, we show that the problem is Positivity-hard for Markov chains.

Remark 1.1. The expected stopping-time problem for Markov chains has a similar flavor
as probabilistic automata (or blind MDPs) [Rab63]. In probabilistic automata a word (or
letter sequence) must be provided without the information about how the probabilistic au-
tomaton executes. Similarly, for the expected stopping-time problem for Markov chains the
probability distribution for stopping times must be chosen without knowing the execution of
the Markov chain (in contrast to stopping criteria based on current state or accumulated re-
ward, which rely on knowing the execution of the Markov chain). For probabilistic automata,
even for basic reachability, all problems related to approximation are undecidable [MHC03].
In contrast, we show that while the exact problem for expected stopping time in Markov
chains is Positivity-hard, the approximation problem can be solved in exponential time.

2. Preliminaries

A stopping-time distribution (or simply, a distribution) is a function δ : N → [0, 1] such that∑
t∈N δ(t) = 1. The support of δ is Supp(δ) = {t ∈ N | δ(t) 6= 0}. We denote by ∆ the set of

all stopping-time distributions, and by ∆⇈ the set of all distributions δ with |Supp(δ)| ≤ 2,
called the bi-Dirac distributions.

The expected utility of a sequence u = u0, u1, . . . of real numbers under a distribution
δ is Eδ(u) =

∑
t∈N ut · δ(t). In particular, the expected utility of the sequence 0, 1, 2, 3, . . .

of all natural numbers is called the expected time (of distribution δ), denoted by Eδ.
We recall the definition of the Positivity problem and of the related Skolem problem.

In the sequel, we denote by M t
ij the (i, j) entry of the t-th power of matrix M (we should

write it as (M t)i,j, but use this simpler notation when no ambiguity can arise).

Positivity problem [OW14, AAOW15]. Given a square integer matrix M , decide whether
there exists an integer t ≥ 1 such that M t

1,2 > 0.

Skolem problem [OW14, AAOW15]. Given a square integer matrix M , decide whether
there exists an integer t ≥ 1 such that M t

1,2 = 0.

The decidability of the Positivity and Skolem problems is a longstanding open ques-
tion [OW14], and there is a reduction from the Skolem problem to the Positivity problem
that increases the matrix dimension quadratically [HHH06, OW14].

3. Markov Chains

We present the basic definitions related to Markov chains and the decision problems for the
optimal total reward with expected stopping time.
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3.1. Definitions. A Markov chain is a tuple 〈M,µ,w〉 consisting of:

• an n × n stochastic matrix M (in which all entries Mij are nonnegative rationals1, and
the sum

∑
j Mij of the elements in each row i is 1),

• an initial distribution µ ∈ ([0, 1] ∩ Q)n (viewed as 1 × n row vector, and such that∑
i µi = 1), and

• a vector w ∈ Qn of weights (or rewards).

We also view µ and w as functions V → Q where V = {1, 2, . . . , n} is the set of vertices of
the Markov chain. We often abbreviate Markov chains as M , when µ and w are clear from
the context. We denote by ‖w‖ = maxv∈V |w(v)| the largest absolute value in w.

A Markov chain induces a probability measure on sequences of vertices of a fixed length,

namely P(v0v1 . . . vk) = µ(v0) ·
∏k−1

i=0 Mvi,vi+1
. Analogously, we denote by E(f) the expected

value of the function f : V ∗ → Q defined over finite sequences of vertices.
Given a stopping-time distribution δ : N → [0, 1], let Nδ be a random variable whose

distribution is δ. We are interested in computing the optimal (worst-case) expected value
(or simply the value) of Markov chains with expected stopping time T , defined by:

val(M,T ) = inf
δ∈∆
Eδ=T

E

[
Nδ∑

i=0

w(vi)

]
= inf

δ∈∆
Eδ=T

E

[
Nδ∑

i=0

µ ·M i · w⊺

]

= inf
δ∈∆
Eδ=T

∞∑

t=0

δ(t) · ut,

where w⊺ is the transpose of w, and u is the sequence of utilities defined by ut =
∑t

i=0 µ ·
M i · w⊺ for all t ≥ 0. With this definition in mind, we also denote the optimal expected
value of a Markov chain M by val(u, T ). The best-case expected value, defined using sup
instead of inf in the above definition, can be computed as the opposite of the worst-case
expected value for the Markov chain with all weights multiplied by −1.

Exact value problem with expected stopping time. Given a Markov chain 〈M,µ,w〉,
a rational stopping time T , and a rational threshold θ, decide whether the optimal expected
value of M with expected stopping time T is below θ, i.e., whether val(M,T ) < θ.

Approximation of the value with expected stopping time. We also consider an
approximate version of the exact value problem, where the goal is to compute, given ε > 0,
a value vε such that |val(M,T )− vε| ≤ ε. We say that vε is an approximation with additive
error ε of the optimal value.

3.2. Hardness of the exact value problem. This section is devoted to the proof of
the following result, which establishes the inter-reducibility of the exact value problem, the
Positivity problem, and the Markov Reachability problem (defined in Section 3.2.3).

Theorem 3.1. The Positivity problem, the inequality variant of the Markov Reachability
problem, and the exact value problem with expected stopping time are inter-reducible.

1For decidability and complexity results, we assume the numbers are rationals encoded as two binary
numbers.
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0 Tt1 t2 t

optimal value of the sequence

(a) When an optimal distribution exists

0 Tt1 t

optimal value of the sequence

(b) When no optimal distribution exists

Figure 1. Geometric interpretation of the value of a sequence of utilities.

The decidability status of the Positivity problem is a longstanding open question, al-
though decidability is known for dimension n ≤ 5 [OW14, Section 4]. Therefore, construct-
ing an algorithm to compute the exact value of a Markov chain with expected stopping time
T would require the significant advances in number theory that are necessary to solve the
Positivity problem [OW14, Section 5].

We also show the converse reduction from the exact value problem to the Positivity
problem. Hence proving the undecidability of the exact value problem would also be a
major breakthrough, as it would entail the undecidability of the Positivity problem.

The proof of Theorem 3.1 is presented in the rest of this section.

3.2.1. Geometric interpretation. A geometric interpretation for (arbitrary) sequences of real
numbers and expected stopping-time was developed in previous work [CD19]. We recall the
main result in this section. The rest of our technical results is independent from [CD19]
(see also Comparison with related work in Section 1).

It is known that bi-Dirac distributions are sufficient for optimal expected value, namely
for all sequences u = u0, u1, . . . of utilities, for all time bounds T , the following holds [CD19]:

inf{Eδ(u) | δ ∈ ∆ ∧ Eδ = T} =

inf{Eδ(u) | δ ∈ ∆⇈ ∧ Eδ = T}.

Moreover the value of the expected utility of the sequence u under a bi-Dirac distribution
with support {t1, t2} (where t1 < T < t2) and expected time T is given by

ut1 +
T − t1
t2 − t1

· (ut2 − ut1). (3.1)

As illustrated in Figure 1a, this value is obtained as the intersection of the vertical axis at
T and the line that connects the two points (t1, ut1) and (t2, ut2). Intuitively, the optimal
value of a sequence of utilities is obtained by choosing the two points t1 and t2 such that
the connecting line intersects the vertical axis at T as low as possible.

It is always possible to fix a value of t1 such that it is sufficient to consider bi-Dirac
distributions with support containing t1 to compute the optimal value (because t1 ≤ T is
to be chosen among a finite set of points), but the optimal value of t2 may not exist, as in
Figure 1b. In that case, the value of the sequence of utilities is obtained as t2 → ∞.



6 K. CHATTERJEE AND L. DOYEN

Positivity Problem A> Markov Reachability>

Exact value problem
with expected stopping time

[AAOW15] [AAOW15]

Lemma 3.6

Lemma 3.3
Lemma 3.5

Figure 2. Known reductions (solid lines), and reductions established in
this paper (dashed lines).

Given such a value of t1, let ν = inft2≥T
ut2

−ut1

t2−t1
, and Lemma 3.2 shows that ut ≥ fu(t),

for all t ≥ 0 where fu(t) = ut1 + (t− t1) · ν. The optimal expected utility is

val(u, T ) = min
0≤t1≤T

inf
t2≥T

ut1 +
T − t1
t2 − t1

· (ut2 − ut1)

= min
0≤t1≤T

ut1 + (T − t1) · ν

= fu(T ),

hence fu(T ) is the optimal value.

Lemma 3.2 (Geometric interpretation [CD19]). For all sequences u of utilities:

• if ut ≥ a · t+ b for all t ≥ 0, then the optimal value of the sequence u is at least a · T + b;
• we have ut ≥ fu(t) for all t ≥ 0, and the optimal expected value of u is fu(T ).

It follows from Lemma 3.2 that the optimal value of the sequence u is the largest possible
value at T of a line that lies below u: val(u, T ) = sup{f(T ) | ∃a, b · ∀t : f(t) = a · t+ b ≤ ut}.

3.2.2. Reduction of the Positivity problem to the exact value problem. It is known that the
Positivity problem can be reduced to the inequality variant of [AAOW15, Problem A], de-
fined below as A>. A subsequent reduction of A> to the exact value problem with expected
stopping time establishes one direction of Theorem 3.1. We present such a reduction in the
proof of Lemma 3.3 (see also Figure 2).

Problem A= [AAOW15]. Given a n × n aperiodic2 stochastic matrix M with rational
entries, an initial distribution µ = (1, 0, . . . , 0), and a vector z ∈ {0, 1, 2}n, decide whether
there exists an integer t ≥ 1 such that µ ·M t · z⊺ = 1.

2Although in the original formulation of Problem A, the stochastic matrix M need not be aperiodic, the
reduction of the Positivity problem to Problem A produces stochastic matrices that define aperiodic Markov
chains (even ergodic unichains) [AAOW15].
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Problem A> [AAOW15]. Given a n × n aperiodic stochastic matrix M with rational
entries, an initial distribution µ = (1, 0, . . . , 0), and a vector z ∈ {0, 1, 2}n, decide whether
there exists an integer t ≥ 1 such that µ ·M t · z⊺ > 1.

Problems A= and A> are difficult to solve only in the case where µ ·M t · z⊺ converges
to 1 as t → ∞. Otherwise, an argument based on the definition of convergence to a limit
shows that the problems are decidable [KA04, Theorem 1]. Note that limt→∞ µ ·M t exists
since M is aperiodic, and the limit is the steady-state vector π, which is algorithmically
computable. Hence we can assume that the instances of Problem A> are such that

π · z⊺ = 1. (3.2)

Moreover, without loss of generality, we can modify M such that there is no incoming
transition to the initial vertex 1 (remember that µ(1) = 1) by creating a copy of the initial
vertex, and redirecting the transitions to 1 towards the copy vertex. Thus we require the
matrix M in Problem A> to define a Markov chain consisting of an initial vertex 1 with no
incoming transition. This may however increase the dimension of the matrix by 1.

Lemma 3.3. Problem A> can be reduced to the exact value problem with expected stopping
time.

Corollary 3.4. The Positivity problem can be reduced to the exact value problem with
expected stopping time.

The proof of Lemma 3.3 is organized as follows: we first recall basic results from the
theory of Markov chains, then present a reduction of Problem A> to the exact value problem
with expected stopping time, and establish its correctness.

Basic results. First we show that, given an aperiodic Markov chain 〈M,µ,w〉 that has a
single recurrent class, there exist vectors x, y such that the expected utility after t steps
tends to µ · x⊺ · t+ µ · y⊺ as t → ∞, formally:

lim
t→∞

∣∣∣∣∣

t−1∑

i=0

µ ·M i · w⊺ − µ · (x⊺ · t+ y⊺)

∣∣∣∣∣ = 0. (3.3)

The vector x is called the gain per time unit, and y is the relative-gain vector. They
can be computed by solving the following equations (following [Gal13, Section 4.5]):





xi = π · w⊺ for all vertices i ∈ V

y⊺ = M · (y − x)⊺ + w⊺

π · y⊺ = 0

(3.4)

The number g = π · w⊺ is the gain per time unit. Note that x = g · e where e =
(1, 1, . . . , 1), and thatM ·x⊺ = x⊺ = g·e⊺ becauseM is stochastic and the sum of the elements
in each of its row is 1. It follows that Equation (3.4) can be written as y⊺ = M ·y⊺+w⊺−x⊺,
and by t− 1 successive substitutions of y⊺, we get

y⊺ = M t · y⊺ +

t−1∑

i=0

M i · w⊺ −

t−1∑

i=0

M i · x⊺

= M t · y⊺ +

t−1∑

i=0

M i · w⊺ − t · x⊺
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0

T
t

a

start simulating
Markov chain M

asymptotic
reward

optimal value if total reward always remains above asymptote

Figure 3. Reduction of the Positivity problem to the exact value problem.

Then, the rate of convergence of the expected utility evaluates as follows, for all t ≥ 1:

t−1∑

i=0

µ ·M i · w⊺ − µ · (x⊺ · t+ y⊺)

=

t−1∑

i=0

µ ·M i · w⊺ − µ · x⊺ · t

− µ ·M t · y⊺ − µ ·

t−1∑

i=0

M i · w⊺ + t · µ · x⊺

=− µ ·M t · y⊺ (3.5)

which tends to −π · y⊺ = 0 as t → ∞, establishing (3.3).
In the case of an aperiodic Markov chain with multiple recurrent classes, the gain and

relative gain satisfying Equation (3.3) can be computed as the linear combination of the
vectors x, y obtained for each recurrent class, where the coefficient in the linear combination
is the mass of probability that reaches (in the limit) the recurrent class from the initial
distribution µ.

Reduction. The reduction from Problem A> to the exact value problem with expected
stopping time is as follows. Given an instance (M,µ, z) of Problem A>, we construct an
instance of the exact value problem in two stages. First, let w⊺ = z⊺ −M · z⊺ be a reward
vector defining a Markov chain 〈M,µ,w〉. We explain later why w is defined in this way.

We proceed to the second stage of the construction, and define the instance of the
exact value problem, namely the Markov chain 〈M ′, µ′, w′〉, the expected time T , and the
threshold θ. The key idea of the construction is illustrated in Figure 3. Given the Markov
chain 〈M,µ,w〉, we can compute its asymptotic expected utility, shown as the dashed line
µ · (x⊺ · t + y⊺) in Figure 3 which also plots the sequence ut−1 for t ≥ 1. Note that
by Equation (3.3) we have limt→∞ |ut−1 − µ · (x⊺ · t+ y⊺)| = 0 and by Equations (3.4)
x = π · z⊺ − π ·M · z⊺ = 0.

We construct an instance of the exact value problem in such a way that, if the utility of
M always remains above its asymptote, then the optimal value is the value of the asymptote
at time T , and otherwise, the optimal value is strictly smaller. We achieve this by having an
initial vertex with weight a such that, if the Markov chain 〈M,µ,w〉 is executed (simulated)
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after the initial vertex, then the weight a lies exactly on the asymptote of 〈M,µ,w〉 (see
Figure 3 and the geometric interpretation in Section 3.2.1). Since we simulate 〈M,µ,w〉
after one time step, the value of a is chosen such that the point (0, a) belongs to the line
µ · (x⊺ · t + y⊺). Since µ = (1, 0, . . . , 0) in Problem A>, we have a = y(1). To recover
the original behavior of the Markov chain 〈M,µ,w〉, we subtract a from the weight of the
initial vertex of M , thus w′(1) = w(1) − a. As we assumed that the initial vertex in M
has no incoming transition, it is never re-visited later. We take T = 1 and the value of the
asymptote at time T is µ · (x⊺ + y⊺) = x(1) + y(1) = a, which we define as the threshold θ
of the exact value problem, thus θ = a.

Formally, the instance of the exact value problem is defined as follows:

w′ =




a
w(1) − a
w(2)
...

w(n)




, M ′ =

(
0 µ
0 M

)
,
µ′ = (1, 0, . . . , 0),
T = 1,
θ = a

where a = y(1) and y is the relative-gain vector of the Markov chain 〈M,µ,w〉. Note that
the initial vertex of M has no incoming transition (in M), and thus the sequence of expected
utilities in M ′ indeed simulates the sequence of expected utilities in M , and the asymptotic
expected utilities as well as the steady-state vectors of 〈M,µ,w〉 and 〈M ′, µ′, w′〉 coincide.

Correctness of the reduction. To establish the correctness of the reduction, we show the
following equivalences:

(1) the optimal expected value of M ′ with expected stopping time T is smaller than θ (i.e.,
the answer to the exact value problem is Yes) if and only if the utility sequence of M
eventually drops below its asymptote;

(2) the utility sequence ofM eventually drops below its asymptote if and only if µ·M t·z⊺ > 1
for some t ≥ 1 (i.e., the answer to Problem A> is Yes).

To show the first equivalence, consider the first direction and assume that the value of
M ′ is smaller than θ. Given that the line µ · (x⊺ · t + y⊺) has value θ at t = T , it follows
from Lemma 3.2 that the utility sequence of M ′ does not always remain above that line,
and thus the utility sequence of M eventually drops below its asymptote.

Now consider the second direction of the first equivalence and assume that the utility
sequence of M eventually drops below its asymptote. Then the utility sequence of M ′ drops
below the line µ · (x⊺ · t+y⊺), say at time t2 ≥ 1. We construct a distribution δ with Eδ = T
such that the value of the expected reward under δ is less than µ · (x⊺ · T + y⊺) = θ (which
implies that the optimal value, obtained as the infimum over all distributions, is also below
θ).

We consider two cases: (1) if t2 = 1 (i.e., t2 = T ), consider the distribution δ such that
δ(t2) = 1 (note that Eδ = T ) and the result follows immediately; (2) otherwise, t2 > 1 and
consider the bi-Dirac distribution with support {t1, t2} where t1 = 0. Note that t1 < T < t2
and the value of the expected reward under this distribution is given by the value at time
T of the line connecting the point (t1, a) and a point below the asymptote (at t2), see
Equation (3.1). This value is below the value θ of the asymptote at time T since (t1, a) is
on the asymptote, and the other point (at t2) is strictly below the asymptote.

To show the second equivalence, note that by Equation (3.5) the utility sequence of M
eventually drops below its asymptote if and only if −µ ·M t · y⊺ < 0 for some t ≥ 1. Hence
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0 T

t

ν

value is at least ν if the sequence of utilities
remains above the bottom line

?

Figure 4. Solving the exact value problem using an oracle for Problem A>.

we can establish the second equivalence by showing that −µ · M t · y⊺ < 0 if and only if
µ · M t · z⊺ > 1. This is where the value of w is important. The result holds if y = z − e,
and we just need to show that y = z − e satisfies Equations (3.4), namely that

(z − e)⊺ = M · (z − e− x)⊺ + w⊺

π · (z − e)⊺ = 0

that is

(z − e)⊺ = M · z⊺ − e⊺ − x⊺ + z⊺ −M · z⊺

π · z⊺ − π · e⊺ = 0

which hold since x = 0 and π · z⊺ = 1 = π · e⊺ (Equation (3.2)). This concludes the proof
of Lemma 3.3.

Using the reduction of the Positivity problem to Problem A> [AAOW15], we obtain
Corollary 3.4, showing that a decidability result for the exact value problem would imply
the decidability of the Positivity problem, which is a longstanding open question.

3.2.3. Reduction of the exact value problem to the Positivity problem. We present the con-
verse reduction of Section 3.2.2, showing that to potentially prove the exact value problem
is undecidable would require such a proof for the Positivity problem as well. We sketch
the reduction by showing how the exact value problem can be solved using an oracle for
Problem A>, illustrated in Figure 4, and then present a reduction of Problem A> to the
Positivity problem.

Lemma 3.5. The exact value problem with expected stopping time can be reduced to Prob-
lem A>.

Proof. Given a Markov chain 〈M,µ,w〉 with expected stopping time T and threshold θ, we
solve the exact value problem using an oracle for Problem A> as follows. First, if uT < θ
then the answer to the exact value problem is Yes. Otherwise, we compute the value of
utilities ut =

∑t
i=0 µ ·M i · w⊺ for all 0 ≤ t < T , and let b = max0≤t<T

ut−θ
t−T . Consider the

bottom line of equation b · (t− T ) + θ and observe that ut ≥ b · (t− T ) + θ for all 0 ≤ t ≤ T
(see Figure 4). By the geometric interpretation lemma (Lemma 3.2), it suffices to determine
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whether the sequence of utilities ever drops below the bottom line to answer the exact value
problem.

For simplicity of presentation, we assume that the recurrent classes of the Markov
chain are all aperiodic. The case of periodic recurrent classes (say C1, C2, . . . , Cl with
respective period d1, . . . , dl) can be solved analogously by applying the procedure to each
initial distribution µ, µ ·M,µ ·M2, . . . , µ ·Md−1, and the transition matrix Md where d is
the period of the Markov chain, i.e., d = lcm{d1, . . . , dl}.

Using Equations (3.4), we can compute the asymptote of the sequence of utilities as
µ ·x⊺ ·(t+1)+µ ·y⊺. Comparing the slope of the bottom line and the slope of the asymptote,
we have the following cases:

• if b < µ · x⊺, then from some point on the utilities always remain above the bottom line.
Such a point can be computed using the convergence rate of Markov chains (Appendix B).
Then the answer to the exact value problem is No if ut ≥ b · (t−T )+θ for all (the finitely
many) values of t up to that point. Otherwise the answer is Yes.

• if b > µ · x⊺, then eventually the utility gets below the bottom line, thus the answer to
the exact value problem is Yes.

• if b = µ ·x⊺, then either the bottom line is different from the asymptote, and we can reuse
one of the above cases, or the bottom line is equal to the asymptote, and the condition for
the sequence of utilities to eventually drop below the bottom line is that −µ ·M t · y⊺ < 0
for some t ≥ 1 (Equation (3.5)), which is equivalent to µ · M t · (e + y)⊺ > 1 for some
t ≥ 1 (where e = (1, 1, . . . , 1)). We cannot immediately use an oracle for Problem A>

with z = e + y because Problem A> requires z ∈ {0, 1, 2}n. However, we can obtain a
valid instance of Problem A> as follows. First we apply a scaling factor to y to ensure
that its components are in the interval [−1, 1]. Scaling the vector y does not affect the
answer to the original question (whether −µ ·M t · y⊺ < 0). Then we construct a Markov
chain 〈M ′, µ′, w′〉 as follows: for each vertex v ∈ V of the Markov chain M , we create a
copy v0 and w′(v0) = 0. Define w′(v) = 1 if y(v) ≥ 0 and w′(v) = −1 if y(v) < 0, where

y(v) is the component in y corresponding to vertex v. For each transition v
p
−→ u (i.e.,

Mv,u = p), we have the transitions v
p·|y(u)|
−−−−→ u and v

p·(1−|y(u)|)
−−−−−−−→ u0 in M ′. The outgoing

transitions from the copy v0 are the same as from v. Note that the weights in w′ are in
the set {−1, 0, 1}, and therefore the vector z = e + w′ is in {0, 1, 2}2n. We now call the
oracle for Problem A> with the Markov chain M ′ and z = e+w′ which gives the answer
to the exact value problem (in this way we transferred the value of y into the transition
probabilities of M ′, and note that the dimension of M ′ is twice the dimension of M).

To obtain the inter-reducibility result of Theorem 3.1, we need to show that Problem A>

can be reduced to the Positivity problem, which we establish by showing that the inequality
version of the Markov reachability problem (defined below) can be reduced to the Positivity
problem, as it is known that Problem A> can be reduced to the inequality variant of the
Markov reachability problem [AAOW15] (see also Figure 2). This is a straightforward result
established in Lemma 3.6.

Markov reachability> problem [AAOW15]. Given a square stochastic matrix M with
rational entries and a rational number r > 0, decide whether there exists an integer t ≥ 1
such that M t

1,2 > r.
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Markov reachability= problem [AAOW15]. Given a square stochastic matrix M with
rational entries and a rational number r > 0, decide whether there exists an integer t ≥ 1
such that M t

1,2 = r.

Lemma 3.6. The Markov reachability> problem can be reduced to the Positivity problem.

Proof. The reduction of the Markov reachability> problem to the Positivity problem is
as follows. Given a n × n stochastic matrix M and a rational number r > 0, define the
(n+3)× (n+3) matrix P as follows, where 0n×1 is the zero column-vector of length n, and
e1 = (1, 0, 0, . . . , 0) and e2 = (0, 1, 0, . . . , 0) (so that e1 ·M · e⊺2 = M1,2):

P =




M 0n×1 0n×1 e⊺2
e1 ·M 0 −r 0
01×n 0 1 1
01×n 0 0 0




All entries of P are rational numbers, hence there exists d ∈ N such that P̃ = d · P is an
integer matrix. It is easy to show by induction that for all t ≥ 2:

P̃ t = dt ·




M t 0n×1 0n×1 M t−1 · e⊺2
e1 ·M

t 0 −r e1 ·M
t−1 · e⊺2 − re1 ·M
t−1 · e⊺2 − re1 ·M
t−1 · e⊺2 − r

01×n 0 1 1
01×n 0 0 0




It follows that P̃ t
n+1,n+3 = dt ·(e1 ·M

t−1 ·e⊺2−r) = dt ·(M t−1
1,2 −r), and therefore P̃ t

n+1,n+3 > 0

if and only if M t−1
1,2 > r (for all t ≥ 2). Since P̃n+1,n+3 = 0, we conclude that there exists an

integer t ≥ 1 such that P̃ t
n+1,n+3 > 0 if and only if there exists an integer t ≥ 1 such that

M t
1,2 > r, which concludes the reduction by rearranging the order of the rows and columns

of P̃ , and the desired result follows.

The results of Lemma 3.3, 3.5 and 3.6 establish Theorem 3.1. The reduction in
Lemma 3.6 can easily be adapted to show that the Markov reachability= problem can
be reduced to the Skolem problem and thus these problems are inter-reducible with Prob-

lem A= (the adaptation is to replace P̃n+1,n+3 by an arbitrary nonzero value, which has no

effect on the value of the powers of P̃ ).

Theorem 3.7. The Skolem problem, Problem A=, and the Markov reachability= problem
are inter-reducible.

3.3. Approximation of the optimal value. We can compute an approximation of the
optimal value with additive error by considering an approximation u′ of the exact sequence
u of expected utilities of the Markov chain as follows: for a large number of time steps, let
the approximate sequence u′ be equal to u, and then from some point on it switches to the
value of the limit (asymptotic, and possibly periodic) sequence of expected utilities at the
steady-state distribution(s). By taking the switching point large enough, the approximation
sequence u′ can be made arbitrarily close to the exact sequence u. We show that the value
of the sequences u′ approximates arbitrarily closely the (exact) optimal value of u.

By the results of Section 3.2.1, the optimal expected value of any sequence u′ of utilities
is given by the expression



STOCHASTIC PROCESSES WITH EXPECTED STOPPING TIME 13

val(u′, T ) = min
0≤t1≤T

inf
t2≥T

u′t1(t2 − T ) + u′t2(T − t1)

t2 − t1
. (3.6)

We can effectively compute the value of val(u′, T ) when u′ is an ultimately periodic
sequence, i.e. u′ = A.Cω where A,C are finite sequences (with C nonempty): we show in
Lemma 3.8 that the infinite range of t2 in the expression (3.6) can be replaced by a finite
range, because the optimal value is obtained either by taking t2 before the first repetition
of the cycle C, or by taking t2 → ∞ (i.e., if repeating the cycle once improves the value,
then repeating the cycle infinitely often improves the value even more). Let SA and SC be

the sum of the weights in A and C respectively, let MC = SC

|C| be the average weight of the

cycle C.

Lemma 3.8. The optimal value of an ultimately periodic sequence u = A.Cω is val(u, T ) =
min{E1, E2} where

E1 = min
0≤t1≤T

min
T≤t2≤|A|+|C|

ut1(t2 − T ) + ut2(T − t1)

t2 − t1
, and

E2 = min
0≤t1≤T

ut1 +MC · (T − t1).

If T ≥ |A|+ |C|, then val(u, T ) = min0≤t1≤|A|+|C| ut1 +MC · (T − t1).

Proof. The expression E1 is the expression (3.6) where the range of t2 is the interval [T, |A|+
|C|]. We now show that the expression E2 corresponds to t2 ≥ |A| + |C|. We have two
cases:

• If T ≤ |A|+|C|, then for t2 ≥ |A|, we can express t2 as t0+k·|C| where |A| ≤ t0 ≤ |A|+|C|
and k ≥ 0. Then the expression (3.6) gives val(u, T ) =

min
0≤t1≤T

inf
k≥0

ut1(t0 + k · |C| − T ) + (ut0 + k · SC)(T − t1)

t0 + k · |C| − t1

where the numerator and denominator of the fraction are linear in k. Such functions a·k+b
c·k+d

are monotone (their first derivative has constant sign), and note that the denominator
t0+ k · |C|− t1 is nonzero for all k ≥ 0. It follows that the infimum over k ≥ 0 is obtained
either for k = 0, which is covered by the expression E1, or for k → ∞, which gives the

expression
ut1

·|C|+SC ·(T−t1)

|C| = ut1 +MC · (T − t1), corresponding to E2.

• If T ≥ |A|+ |C|, then the same reasoning as above show that val(u, T ) = min0≤t1≤T ut1 +
MC ·(T−t1), as the range of t2 in expression E1 is empty. Now observe that if t1 = t0+k·|C|
where |A| ≤ t0 ≤ |A|+|C|, then ut1+MC ·(T−t1) = ut0+MC ·(T−t0)+k·SC−MC ·k·|C| =
ut0 +MC · (T − t0) and thus we can restrict the range of t1 to [0, |A| + |C|]. The result
follows.

We show that for a sequence u′ of utilities that approximates the sequence u, the value
of u′ approximates the value of u and the error can be bounded. Precisely, if the weights
in a Markov chain are shifted by at most η, then the optimal expected value of the Markov
chain with expected stopping time T is shifted by at most η · (T +1). Consider w′ such that
|w′(v)−w(v)| ≤ η for all vertices v ∈ V , and consider the sequences u and u′ of utilities of
a path according to w and w′ respectively. Then we have |u′t − ut| ≤ (t+1) · η for all t ≥ 0,
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and for all distributions δ with Eδ = T :
∣∣∣
∑

i

δ(i) · u′i −
∑

i

δ(i) · ui

∣∣∣ ≤
∑

i

δ(i) · |u′i − ui|

≤
∑

i

δ(i) · (i+ 1) · η

= (T + 1) · η.

It follows that |val(u′, T )−val(u, T )| ≤ (T +1) ·η, that is the value of the sequence is shifted
by at most (T+1)·η (it is easy to see that if ∀δ : |f(δ)−g(δ)| ≤ K, then |infδ f−infδ g| ≤ K).

Lemma 3.9. Given η ≥ 0 and two sequences u and u′ of utilities such that |u′t − ut| ≤
(t + 1) · η for all t ≥ 0, we have |val(u′, T ) − val(u, T )| ≤ (T + 1) · η. Analogously, if
u′t = ut + (t+ 1) · η for all t ≥ 0, then val(u′, T ) = val(u, T ) + (T + 1) · η.

We recall a result about Markov chains, which states that for Markov chains with only
aperiodic recurrent classes, the vector µ · M t converges to a steady-state vector π, and
the rate of convergence is bounded by an exponential in n [Gal13, Theorem 4.3.7] (see
Appendix B for detailed computation). For all j ∈ V :

|(µ ·M t)j − πj| ≤ K1 ·K
t
2

whereK1,K2 are constants withK2 < 1, namely K2 = (1−αn2

)1/3n
2

where α is the smallest
non-zero probability in M (i.e., α = min{Mij | Mij > 0}) and n is the number of vertices
of M .

For general Markov chains (with possibly periodic recurrent classes), we adapt the above
result as follows. Consider the set T of transient vertices, each recurrent class C1, C2, . . . , Cl

with their respective period d1, d2, . . . , dl, and let d = lcm{d1, . . . , dl} be their least common
multiple. Note that di ≤ n for all 1 ≤ i ≤ l and d is at most the product of all prime
numbers smaller than n, thus at most exponential in n [Erd89]. Then Md can be viewed as
the transition matrix of a Markov chain with aperiodic recurrent classes, and thus µ ·Md·t

converges to a steady-state vector π as t → ∞. Considering a recurrent class Ci, and the
vertices j ∈ Ci ∪ T the rate of convergence can be bounded as follows, where αdi is a lower
bound on the smallest non-zero probability in Mdi :

|(µ ·Md·t)j − πj| = |(µ · (Mdi)
d·t

di )j − πj |

≤ K1 · (1− αdi·n2

)
d·t

di·3n
2

≤ K1 · (1− αn3

)
t

3n2 ,

which is independent of i, and thus holds for all j ∈ V . Let K3 = (1− αn3

)1/3n
2

.
It follows that |µ·Md·t ·w⊺−π·w⊺| ≤ n·W ·K1 ·K

t
3 whereW = ‖w‖ is the largest absolute

weight in w. Then for all ε > 0, for all t ≥
ln( ε

n·W ·K1
)

ln(K3)
=: B, we have |µ ·Md·t ·w⊺−π ·w⊺| ≤ ε,

and by the same reasoning with initial distributions µ · M,µ · M2, . . . , µ · Md−1 we get
|µ ·Md·t+k · w⊺ − π ·Mk · w⊺| ≤ ε for all 0 ≤ k < d.

Consider the sequence u′ defined by

u′t =

{
ut for all t ≤ d · B

ud·B +
∑t

k=d·B+2 π ·Mk%d · w⊺ for all t > d · B
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Figure 5. A family of Markov chains for Proposition 3.11.

where k%d is the remainder of the division of k by d. Intuitively, u′t approximates ut after
time t = d · B by considering the (expected) weight at time t to be given by the limit
(expected) weight at the steady-state distribution.

Then |u′t−ut| ≤ (t+1) ·ε for all t ≥ 0, and therefore |val(u′, T )−val(u, T )| ≤ ε · (T +1)
(by Lemma 3.9). The sequence u′ is an ultimately periodic sequence of the form A.Cω where
|A| = d · B and |C| = d. Hence the optimal value of u′ is given by Lemma 3.8 and can be
obtained by computing the first d ·B + d terms of the sequence u′, the steady-state vector

π, the number d, and the average weight MC = SC

|C| where SC =
∑d−1

i=0 π · M i · w⊺. This

provides a way to compute an approximation with additive error ε of the optimal value of
a Markov chain in time O(P (n) · T · B · d) where P (n) is a polynomial in the size of the
Markov chain (that accounts for matrix multiplication, steady-state vector computation,
etc.). Using the fact that (1− 1

x)
x ∈ O(1), and that ln

(
1− 1

x

)
∈ O(−1/x) (by Lemma A.1

in Appendix), we obtain the bounds in Theorem 3.10 in the special cases where α or n is
constant.

Theorem 3.10. The optimal expected value of a Markov chain with expected stopping time
T can be computed to an arbitrary level of precision ε > 0, in time

O

(
P (n) · T ·

ln
(

ε
n·W

)

ln(K3)
· 2O(n)

)

where K3 = (1− αn3

)1/3n
2

and P (·) is a polynomial.
If α (the smallest non-zero probability) is constant, then the computation time is in

O

(
P (n) · 2O(n)

αn3
· T · ln

(
n ·W

ε

))
(as n → ∞).

If n (the number of vertices) is constant, then the computation time is in

O

(
1

αO(1)
· T · ln

(
W

ε

))
(as α → 0).

We present a lower bound on the execution time of the approximation algorithm of
Theorem 3.10: we show that the algorithm runs in time exponential in the number of vertices
of the Markov chains presented in Figure 5. This shows that the complexity analysis of our
algorithm cannot be improved to eliminate the exponential dependency in the number of
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vertices. However, whether there exists a polynomial-time algorithm for the approximation
problem is an open question.

Figure 5 shows a family of Markov chainsM with 2n vertices and transition probabilities
parameterized by α ≤ 1

2 , with initial distribution µ that assigns probability 1 to vertex 0.
The steady-state distribution assigns probability 1 to vertex n. It is easy to show that from
vertex 0 the probability to reach vertex n after t · n steps is 1 − (1 − αn)t. Therefore the
distance between the distribution µ · M t at time t and the steady-state vector is at least

(1−αn)
t

n . It follows that, to ensure that this distance is less than ε, the algorithm needs to

compute the sequence of utilities of the Markov chain up to time at least n·ln(ε)
ln(1−αn) ≥

n·ln(1/ε)
αn

(using Lemma A.1 in Appendix to get 1
ln(1− 1

x
)
≥ −x for all x > 1).

Proposition 3.11. There exists a family of aperiodic Markov chains M(n, α) with 2n
vertices (n ∈ N) and smallest probability α (α ≤ 1

2) such that, for the initial distribution
µ = (1, 0, . . . , 0), we have

max
j

|(µ ·M(n, α)t)j − πj| ≥ (1− αn)
t

n ,

where π is the steady-state vector of M(n, α), and the computation time of the approximation
algorithm (of Theorem 3.10) for M(n, α) is at least

n · ln(1/ε)

αn
.

4. Markov Decision Processes

Markov decision processes (MDPs) extend Markov chains with transition choices determined
by control actions. We give the basic definitions of MDPs and of the optimal expected value
of an MDP with expected stopping time T .

4.1. Definitions. A Markov decision process is a tuple M = 〈V,A, θ, µ,w〉 consisting of:

• a finite set V of vertices and a finite set A of actions,
• a transition function θ : V ×A → (V → [0, 1]) such that θ(v, a) is a probability distribution
over V , that is

∑
v′∈V θ(v, a)(v′) = 1 for all v ∈ V and a ∈ A.

• µ : V → [0, 1] is an initial distribution and w : V → Q is a vector of weights, as in Markov
chains.

Given a vertex v ∈ V and a set U ⊆ V , let AU (v) be the set of all actions a ∈ A such
that Supp(θ(v, a)) ⊆ U . A closed set in an MDP is a set U ⊆ V such that AU (v) 6= ∅ for all
v ∈ U . A set U ⊆ V is an end-component [dA97, BK08] if (i) U is closed, and (ii) the graph
(U,EU ) is strongly connected where EU = {(v, v′) ∈ U × U | θ(v, a)(v′) > 0 for some a ∈
AU (v)} denote the set of edges given the actions. In the sequel, end-components should be
considered maximal, that is such that no strict superset is an end-component.

A strategy in M is a function σ : V + → (A → [0, 1]) such that σ(ρ) is a probability
distribution over A, for all sequences ρ ∈ V +. A strategy σ is pure if for all ρ ∈ V +, there
exists an action a ∈ A such that σ(ρ)(a) = 1; σ is memoryless if σ(ρv) = σ(ρ′v) for all
ρ, ρ′ ∈ V ∗ and v ∈ V ; σ uses finite memory if there exists a right congruence ≈ over V +

(i.e., if ρ ≈ ρ′, then ρ · v ≈ ρ′ · v for all ρ, ρ′ ∈ V + and v ∈ V ) of finite index such that ρ ≈ ρ′

implies σ(ρ) = σ(ρ′).
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Given the initial distribution µ, and a strategy σ, a probability can be assigned to every
finite path ρ = v0 · · · vn as follows:

Pσ
µ(v0v1 . . . vk) = µ(v0) ·

k−1∏

i=0

∑

a∈A

σ(v0 · · · vi)(a) · θ(vi, a)(vi+1).

Analogously, we denote by Eσ
µ(f) the expected value of the function f : V ∗ → Q defined

over finite sequences of vertices. Let ut = Eσ
µ(
∑t

i=0 w(vi)) and define the optimal expected
value of M with expected stopping time T ∈ Q as follows:

val(M, T ) = sup
σ

inf
δ∈∆
Eδ=T

∞∑

t=0

δ(t) · ut.

The strategy σ is ε-optimal if the sequence u = (ut)t∈N it induces is such that val(u, T ) ≥
val(M, T )− ε. For ε = 0, we simply say that σ is optimal (instead of 0-optimal).

For an arbitrary strategy σ, with probability 1 the set of states visited infinitely often
along an (infinite) path is an end-component [CY95, dA97]. Let the limit-probability of a
(maximal) end-component U be the probability that the set of states visited infinitely often
along a path is a subset of U . A limit distribution under σ is a distribution δ∗ such that,
for every end-component U , the limit-probability of U is

∑
v∈U δ∗(v).

4.2. Infinite memory is necessary. Since MDPs are an extension of Markov chains,
the problem of computing the optimal expected value val(M, T ) is Positivity-hard (by
Corollary 3.4). Another source of hardness for this problem is that infinite memory is
required for optimal strategies, as illustrated in the following example.

Example. We show in Figure 6 an MDP where infinite memory is required for optimal
expected value. The only strategic choice is in vertex v′1 (we omit the actions in the figure,
and all weights not shown are 0). In particular, the upper part {v1, . . . , v6} is a Markov
chain and after 3k + 2 steps, the probability mass in v4 is pk = 1

3 · (1−
1

2k+1 ). For instance

p0 =
1
6 . Note that one step before, the probability mass in v1 is 1

3 · 1
2k
.

We claim that the optimal expected value of the MDP is 0, which can be obtained by
a strategy σopt that ensures utility 0 at every step: let mk be the mass of probability in
v′1 after 3k + 1 steps (thus m0 = 2

3 , and m1,m2, . . . depend on the strategy). In v′1, after
3k + 1 steps, the strategy σopt chooses v

′
4 with probability αk such that m0 · α0 = p0, thus

α0 = 1
4 , and mk · αk = pk − pk−1 for all k ≥ 1. It is easy to see that mk = 1

3 + 1
3 · 1

2k
and

αk = 1
2+2k+1 ensure this as well as mk+1 = mk ·(1−αk) for all k ≥ 0. Therefore the strategy

σopt maintains always the same probability in v′4 as in v4, and the expected total reward is
0 at every step.

It is easy to show that any other strategy (with a different value of some αk) produces
a negative total utility at some time step (either by putting too much probability into v′4,
and thus too much probability for weight −2 in v′5, as compared to the weight 2 in v5, or
by putting too little probability into v′4, and thus too little probability for weight 1 in v′4,
as compared to the weight −1 in v4), and that it entails a negative expected value of the
MDP.

The strategy σopt requires infinite memory, since the sequence αk is strictly decreasing,

and the vertex v′1 is reached after 3k + 1 steps along a unique path ρk = v0v
′
1(v

′
2v

′
3v

′
1)

k. It
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Figure 6. An MDP where infinite memory is required for optimal expected
value.

follows that for all right congruences ≈ over V + such that ρ ≈ ρ′ implies σopt(ρ) = σopt(ρ
′),

we have ρk 6≈ ρl for k 6= l since αk 6= αl for k 6= l, thus ≈ cannot have finite index.

As the above example illustrates, infinite-memory strategies are required in MDPs.
The expected stopping-time problem can be formulated as a game between a player that
controls the transition choice and the opponent that chooses the stopping times. However,
the game is not a perfect-information game as the opponent chooses the stopping times
without knowing the execution of the MDP (in particular, the stopping-time distribution
cannot be adapted according to the outcome of the probabilistic choices in the MDP). As
a consequence, while finite-memory strategies are sufficient in finite-horizon planning (even
in perfect-information stochastic games), in contrast we show infinite-memory strategies
are required. In general, in imperfect-information probabilistic models such as probabilistic
automata [Paz71, Rab63, Rei99], infinite-memory strategies are required [BGB12], and the
basic computational problems (such as optimal reachability probability) as well as their
approximation are undecidable [MHC03]. However, our setting only represents limited
imperfect information for the opponent, and we establish in the rest of this section that the
approximation problem is decidable.

4.3. Approximation of the optimal value. The problem of computing val(M, T ) up to
an additive error ε can be solved as follows. We show that there exist ε-optimal strategies of
a simple form: after some time t∗ (that depends on ε), it is sufficient to play a (memoryless)
strategy that maximizes the mean-payoff expected reward, defined as follows for a strategy
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Markov chains

valMP(·)= 0

Lemma 4.2

MDP, single EC

with valMP(·)≤ 0

Lemma 4.3
reduction to MC

MDP, all EC

have valMP(·)≤ 0

Lemma 4.4
back-edge transform.

Arbitrary MDP

valMP(·)≤ 0

Lemma 4.6
uniformization

Uniform MDP

valMP(·)≤ 0

Lemma 4.5
reduction to all EC ≤ 0

Figure 7. Main steps towards the proof that the supremum of total ex-
pected reward is bounded in MDPs with mean-payoff value at most 0 (The-
orem 4.7).

σ in M:

MP(M, σ) = lim sup
t→∞

1

t

t−1∑

i=0

Eσ
µ(w(vi)),

and the optimal mean-payoff value is

valMP(M) = sup
σ

MP(M, σ).

Remark 4.1. It is known that (see e.g. [Put94]):

• pure memoryless strategies are sufficient for mean-payoff optimality, that is there exists
a pure memoryless strategy σ such that valMP(M) = MP(M, σ);

• for variants of the definition of mean-payoff expected reward (using lim inf instead of
lim sup), or where the lim sup and E(·) operators are swapped (also known as the expected
mean-payoff value), the same pure memoryless strategy is optimal;

• all vertices in an end-component have the same optimal mean-payoff value.

Intuitively, a strategy σ that plays according to an optimal mean-payoff strategy after
some time t∗ has an asymptotic behaviour that is at least as good as any strategy, in
particular any ε-optimal strategy; up to time t∗ (thus for finitely many steps), if the strategy
σ plays like an ε-optimal strategy, then the sequence of expected reward (defined above as
ut) is also good enough; the only question is whether switching to an optimal mean-payoff
strategy may induce a transient loss of reward after t∗ that could impede ε-optimality. In
fact, we show that (1) the loss is bounded, and (2) the impact of a bounded loss on the
expected value is negligible if t∗ is large enough. That the loss is bounded, namely:

sup
σ

sup
t

t∑

i=0

Eσ
µ(w(vi)) is bounded if valMP(M) ≤ 0,

may appear intuitively true, but is not simple to prove even in the special case where the
mean-payoff value is 0. The proof has several steps, summarized in Figure 7, leading to
Theorem 4.7. We start by proving that the loss is bounded in the simple case of Markov
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chains with mean-payoff value 0, then for larger classes of MDPs, using reductions that
transform an MDP M of a larger class into an MDP M′ of a smaller class for which
a bound on the loss is already established. The transformations may increase the total
expected reward (as then, an upper bound for M′ gives an upper bound for M).

Lemma 4.2. In aperiodic Markov chains 〈M,µ,w〉, if the mean-payoff value, defined as

lim supt→∞
1
t

∑t−1
i=0 E(w(vi)), is 0, then

sup
t

∣∣∣∣∣

t∑

i=0

E(w(vi))

∣∣∣∣∣ ≤ 4nW · t0(α)

where α is the smallest positive transition probability, t0(α) = 3 · n5 ·
(
1
α

)n2

, and W is the
largest absolute weight according to w.

Proof. Consider the convergence rate of aperiodic Markov chains (Appendix B):

|(µ ·M t)j − πj | ≤ 3 ·Kt for all j ∈ V

where K is a constant with K < 1, namely K = (1− αn2

)1/3n
2

.

Consider time t0 = 3 · n5 ·
(
1
α

)n2

, which is such that Kt0 ≤ 1
2n3 for all k ≥ 1 (using

Lemma A.1 in Appendix).
Now consider the expected total reward at time t, given by

∣∣∣∣∣

t∑

i=0

E(w(vi))

∣∣∣∣∣ =
∣∣∣∣∣

t∑

i=0

µ ·M i · w

∣∣∣∣∣

and show that it is bounded by 4nW · t0(α), for all t ≥ 0. The proof goes by showing
a bound on the total reward that can be accumulated within a time unit. At time i, the
reward per time unit is µ ·M i · w ≤ 3nW ·Ki, since the mean-payoff value of the Markov
chain is 0, which implies π · w = 0. For times t < t0, we bound the total reward per time
unit trivially by W . For times k · t0 ≤ t < (k + 1) · t0 (where k ≥ 1), we bound the total

reward per time unit by 3nW ·
(

1

2n3

)k
since 3 ·Kt ≤ 3 ·Kk·t0 ≤ 3 ·

(
1

2n3

)k
.

It is now sufficient to show that the sum of the bounds on the total reward per time
unit is bounded by t0(α) · (W + 1) for arbitrarily large t, which we establish as follows:

t0 ·W +

∞∑

k=1

3nW ·
( 1

2n3

)k
· t0 = t0 ·W + 3nW ·

t0

2n3 − 1
≤ 4nW · t0.

To prove a similar result for MDPs (Theorem 4.7), we first consider the case of MDPs
that consist of a single end-component, and show by contradiction that if it has mean-
payoff value 0 and a large expected total reward could be accumulated from a vertex v0
using some strategy σ0, then by reaching v0 again (which is possible since the MDP is
strongly connected) and repeating the same strategy σ0, we could get a strictly positive
mean-payoff value. A technical difficulty in this proof is that v0 may be reached by paths
of different lengths, but the large expected total reward that can be accumulated from v0
is obtained in a fixed number of steps.
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Lemma 4.3. In an MDP M that is an end-component (i.e., V is an end-component), if

valMP(M) ≤ 0 and |V | = n, then

sup
σ

sup
t

t∑

i=0

Eσ
µ(w(vi)) ≤ 12 · n6 ·W ·

(
1

α

)n3

where α is the smallest positive transition probability in M, and W its largest absolute
weight.

Proof. Assume towards contradiction that there exists an initial distribution µ such that
the inequality of the lemma does not hold in M. It follows that in some initial vertex v0
(such that µ(v0) > 0) the inequality does not hold, i.e. there exists a strategy σ0 and time t0
such that the expected total reward from v0 under σ0 at time t0 is at least 12 ·n6 ·W · ( 1α)

n3

.
First we modify the MDP M to obtain an MDP M′ as follows, in a way that does not

decrease the value of supσ supt
∑t

i=0 E
σ
µ(w(vi)) :

• increase the weight of every vertex by |valMP(M)| (define w′(v) = w(v) − valMP(M)),
and

• add a copy v̂0 of v0 with weight −W and a self-loop; formally, define a new action set
A′ = A∪{â | a ∈ A}, a new state space V ′ = V ∪{v̂0} with w′(v̂0) = −W and w′(v) = w(v)
for all v ∈ V , and transitions on â that replace v0 by v̂0 as follows, for all v ∈ V and
all a ∈ A: θ′(v, â)(v̂0) = θ(v, a)(v0), θ

′(v, â)(v0) = 0, and θ′(v, â)(v′) = θ(v, a)(v′) for all
v′ ∈ V \{v0}. The self-loop on v̂0 is defined on all actions â (i.e., θ′(v̂0, â)(v̂0) = 1), and the
other actions have the same effect as from v0 (i.e., θ

′(v̂0, a) = θ(v0, a) and θ′(v, a) = θ(v, a)
for all v ∈ V ).

In the new MDP M′ = 〈V ′, A′, θ′, µ, w′〉, we note that:

• the expected total reward from v0 is not smaller in M′ than in M, since we increased
weights of existing transitions, and we added new transitions, which cannot decrease the
expected total reward (strategies of M can still be played in M′);

• the optimal mean-payoff value of M′ is valMP(M′) = 0 since increasing all weights by

|valMP(M)| has the effect to increase the mean-payoff value by the same amount; more-
over, adding the copy v̂0 with weight −W does not change the optimal mean-payoff value.
To see this, fix a memoryless strategy σ, and consider the recurrent classes of the re-
sulting Markov chain. If a recurrent class C contains v̂0, then either the self-loop on v̂0
is used by the strategy σ and then the mean-payoff value of C is −W , or the self-loop
on v̂0 is not used and the mean-payoff value of C is less than the mean-payoff value of
C ′ = C∪v0 \{v̂0} which is a recurrent class that can be obtained in M using the strategy

that copies σ but plays a whenever σ plays â. Since valMP(M) ≤ 0, it follows that the
mean-payoff value of C ′ (and thus of C) is at most 0. On the other hand, if C does not
contain v̂0, then it can be obtained in M and thus its mean-payoff value is also at most
0.

• the state space of M′ is of size |V ′| = n+ 1 ≤ n2, and M′ is still an end-component.

Given the strategy σ0 and time t0 as above, we show that there exists a strategy σ∗

and a time t∗ such that from all vertices v ∈ V , we have

t∗−1∑

i=0

Eσ∗

v (w′(vi)) ≥ 5 · n6 ·W ·

(
1

α

)n3

> 0 (4.1)
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which entails, since the bound t∗ is the same for all vertices, that by repeating the strategy
σ0 every t0 steps the mean-payoff value of M′ is positive, valMP(M′) > 0, in contradiction

with the fact that valMP(M′) = 0.
Let t∗ = treach + t0 where treach = n

αn and we construct σ∗ that plays as follows:

• for treach steps, play a pure memoryless strategy σreach to reach v̂0 almost-surely (and
play the self-loop with weight −W in v̂0); such a strategy exists because the MDP is an
end-component [dA97];

• after treach steps: if the current vertex is v̂0, play for the next t0 steps the strategy σ0; if
the current vertex is not v̂0, play for the next t0 steps a memoryless optimal strategy for
the mean-payoff value (thus using only actions in A and without visiting v̂0).

The value treach is such that the probability mass in v̂0 after treach steps is at least 1
2 :

since the strategy σreach is pure memoryless and |V ′| = n + 1, we can use the analysis of
Markov chain reachability to claim that the probability to have reached target vertex v̂0
after treach = k · n steps is at least 1− (1− αn)k > 1

2 since k = 1
αn and

(
1− 1

x

)x
< e−1 < 1

2
(by Lemma A.1 in Appendix).

We bound the expected total reward of σ∗ as follows:

• after treach steps, since all weights are bounded by W , the expected total reward is at
least −treach ·W ;

• in the next t0 steps, the collected reward from v̂0 (in which the probability mass is at

least 1
2 ) is at least 12 · n6 · W · ( 1α)

n3

(by the definition of σ0 and t0), and the collected

reward from other vertices is at least −12 ·n6 ·W ·( 1α )
n2

(by Lemma 4.2, since the optimal
strategy for the mean-payoff value is memoryless and plays only actions in A, which gives
a Markov chain with n vertices and mean-payoff value equal to 0).

It follows that the expected total reward of σ∗ after t∗ steps is at least:

−
nW

αn
+ 6 · n6 ·W ·

(
1

α

)n3

− 6 · n6 ·W ·

(
1

α

)n2

≥ 6 · n6 ·W ·

(
1

α

)n3

− 7 · n6 ·W ·

(
1

α

)n2

≥ 5 · n6 ·W ·
1

αn3
since n ≥ 2 and α ≤

1

2
,

which establishes the bound (4.1) and concludes the proof.

We can easily extend the result to MDPs with several end-components, if all of them
have mean-payoff value at most 0.

Lemma 4.4. In an MDP M with n vertices in which all end-components have an optimal
mean-payoff value at most 0, we have

sup
σ

sup
t

t∑

i=0

Eσ
µ(w(vi)) ≤ 12 · n8 ·W ·

(
1

α

)n3+n

where α is the smallest positive transition probability in M, and W its largest absolute
weight.

Proof. Consider an MDP M as in the lemma statement, and assume without loss of gener-
ality that the initial distribution µ is a Dirac distribution, namely µ(v0) = 1 for some vertex
v0.
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v0

M
v<0

−n2·W
αn

reset

A ∪ {reset}

Figure 8. Back-edge transformation (Proof of Lemma 4.4).

We present the back-edge transformation from M to an MDP M′ as follows (Figure 8).
We add a special action reset, thus the action set of M′ is A∪{reset}. The state space of M′

is V ∪ {v<0} where v<0 is a new vertex with weight −n2·W
αn , and the transition functions of

M′ and M are identical for actions in A and vertices in V . On action reset, the transition
function θ′ of M′ has a “back-edge” from every vertex to v<0; from v<0 there is an edge to
v0 on every action. Thus θ′(v, reset) = v<0 for all vertices v ∈ V , and θ′(v<0, a) = µ for all
actions a ∈ A ∪ {reset}.

First note that the supremum of expected total reward is not smaller in M′ than in M,
since M′ contains all vertices and transitions of M.

We now show that the mean-payoff value of M′ is at most 0, which establishes the
bound in the lemma statement as follows: since the whole M′ is an end-component, we

can apply Lemma 4.3 where the largest absolute weight in M′ is n2·W
αn , which gives the

announced bound for M′, thus also for M.
To show that the mean-payoff value of M′ is at most 0, fix an optimal strategy σ for

mean-payoff in M′, which we can assume to be pure memoryless (Remark 4.1). In the
resulting Markov chain, we show that all recurrent classes have mean-payoff value at most 0
as follows: if a recurrent class does not contain v<0, then it is an end-component in the
original MDP M, and therefore its mean-payoff value is at most 0; otherwise it contains
v<0 and since the frequency3 f0 of a recurrent vertex is at least αn

n+1 ≥ αn

n2 , the mean-payoff

value of the recurrent class is at most −f0 ·
n2·W
αn + (1 − f0) · W ≤ −W + W = 0. This

shows that all recurrent classes have mean-payoff value at most 0, and thus the optimal
mean-payoff value of the MDP M′ is at most 0.

In an arbitrary MDP with mean-payoff value at most 0, some end-components may
have positive value, and others negative value, as in the example of Figure 9: the three
end-components {v0}, {v1, v2}, {v3} have respective mean-payoff value −1, 1, and −2.
From the initial distribution µ where µ(v0) = µ(v1) =

1
2 , the mean-payoff value is 0. The

case where the MDP has some end-components with positive mean-payoff value requires
a slightly more technical proof (see also Figure 7): we first show in Lemma 4.5 that the
supremum of expected total reward in MDPs is bounded if all end-components are uniform
(an end-component is uniform if all its vertices have the same weight); then we present
uniformization in Lemma 4.6 to transform arbitrary MDPs into uniform MDPs.

3The frequency of the vertex with largest frequency is at least fn = 1

n+1
, and the frequency of the

(k + 1)-th frequent vertex is at least αk · fn.
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Figure 9. An MDP with positive and negative end-components. Its mean-
payoff value is 0.

Given an MDP with weight vector w, let E be the union of all its end-components.
Define the vector wtrans and wec as follows:

wtrans(v) =

{
w(v) if v ∈ V \ E
0 if v ∈ E

wec(v) =

{
0 if v ∈ V \ E
w(v) if v ∈ E

It follows that w = wtrans + wec and by the triangular inequality, we have

sup
k

k∑

i=0

Eσ
µ(w(vi)) ≤

sup
k

k∑

i=0

Eσ
µ(wtrans(vi)) + sup

k

k∑

i=0

Eσ
µ(wec(vi)).

Using Lemma 4.4, it is easy to bound the supremum of expected total reward for wtrans, and
we present a bound on the supremum of expected total reward for wec in uniform MDPs as
follows.

Lemma 4.5. Given an MDP M with n vertices, let wtrans and wec be the weight vectors of
the transient vertices and of the end-components, respectively. We have

sup
σ

sup
t

t∑

i=0

Eσ
µ(wtrans(vi)) ≤ 12 · n8 ·W ·

(
1

α

)n3+n

,

and if valMP(M) ≤ 0 and all end-components of M are uniform, then

sup
σ

sup
t

t∑

i=0

Eσ
µ(wec(vi)) ≤ 12 · n8 ·W ·

(
1

α

)n3+n

,

where α is the smallest positive transition probability in M, and W its largest absolute
weight.
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Proof. For the first part, the bound for wtrans is given by Lemma 4.4, since the MDP with
weight vector wtrans has all its end-component with mean-payoff value 0.

For the second part, assuming valMP(M) ≤ 0 and all end-components of M are uniform,
the bound for wec is established as follows. First consider the MDP M with weight function
w′ defined by w′(v) = w(v) if v ∈ E , and w′(v) = −W otherwise (i.e., for transient vertices).
Note that w′ = wec − w0 where w0(v) = 0 if v ∈ E , and w0(v) = W otherwise. In M with
w′, we will show that:

sup
σ

sup
t

t∑

i=0

Eσ
µ(w

′(vi)) ≤ 0. (4.2)

To obtain the bound for wec = w′ + w0 and conclude the proof, we use the triangular
inequality which entails that supσ supt

∑t
i=0 E

σ
µ(wec(vi)) ≤ 0 + B where B is the bound

given by the first part of the lemma for w0.
To show (4.2), we consider an arbitrary strategy σ and we show that for all n ≥ 0, the

expected reward at step n is at most 0, that is:
∑

v∈V

δσn(v) · w
′(v) ≤ 0

where δσn is the vertex distribution of M after n steps under strategy σ.
Given δσn (as an initial distribution), consider a memoryless strategy σE such that end-

components are never left, defined as follows for all v ∈ V : if v ∈ E , then σE (v) is an action
to stay in the end-component of v in the next step; otherwise, σE(v) is an arbitrary action.
Such a strategy σE exists by definition of end-components.

By the assumption that valMP(M) ≤ 0 (with weight vector w thus also with w′), it
follows that the limit distributions δ∗ satisfy

∑
v∈E δ

∗(v) · η(v) ≤ 0.
Then, within the distribution δσn , the probability mass pE in E never leaves an end-

component, and the probability mass 1− pE in V \ E eventually (in the limit) gets injected
in E (and then never leaves). The (future) contribution of the probability mass 1 − pE to
the expected reward of limit distributions is bounded below by −W (since η(v) ≥ −W for
all v ∈ E , where η(v) is the mean-payoff value of v and of the end-component containing v
since M is uniform). It follows that:

0 ≥
∑

v∈E

δ∗(v) · η(v)

≥
∑

v∈E

δσn(v) · η(v) +
∑

v∈V \E

δσn(v) · (−W )

=
∑

v∈V

δσn(v) · w
′(v)

which concludes the proof by entailing (4.2).

Uniformization. We present a uniformization procedure that, given an MDP M with mean-
payoff value at most 0, constructs an MDP M′ with the same mean-payoff value as M, with
a larger supremum of expected total reward, and in which all end-components are uniform.

The procedure has two steps. First we construct M′ and weight vector w1 by trans-
forming the structure of M in such a way that for each end-component, there is a single
vertex from which the end-component can be entered (as illustrated on the left of Figure 10).
This shape of MDP can be obtained as follows: for each end-component E, create a new
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0 vE

end-comp.
with value η

w1

⇒

B vE

every
vertex

has weight η

w′

Figure 10. Uniformization (including transformation of the weight vector
w1 into w′) for Lemma 4.6. The number B is twice the bound given by
Lemma 4.4.

vertex vE (with weight w1(vE) = 0) with an edge from vE to every vertex in E, and modify
the transition function from every vertex v outside E to redirect all the probability mass
that was going from v to E to go to vE . Analogously we transfer the probability of the
initial distribution that was in E to vE . By doubling the weight of every vertex to define
w1 (and inserting, for every vertex, a new intermediate vertex with weight 0 that is entered
before going to the original vertex), it is easy but tedious to show that the mean-payoff
value according to w1 remains the same, and that the supremum of expected total reward
is at least twice the original one (note also that the number of vertices has at most tripled).

In the second step, we construct a new vector w′ of weights for M′ such that every
end-component becomes uniform (illustrated on the right of Figure 10). Given an end-
component E and the vertex vE , let w

′(vE) = B and w′(v) = η where η is the mean-payoff

value of E (according to w1, or equivalently according to w) and B = 12 ·n8 ·(3W ) ·
(
1
α

)n3+n

is three times the bound given by Lemma 4.4.

Lemma 4.6. Given an MDP M with n vertices, we can construct an MDP M′ with the
following properties:

(1) all end-components of M′ are uniform.
(2) M and M′ have the same mean-payoff value;
(3) the number of vertices in M′ is at most 3n;
(4) the supremum of expected total reward in M is less than half the supremum of expected

total reward in M′;

Proof. Consider M′ obtained from M by the uniformization procedure. Item 1. holds
by construction, and the proof of item 2. and item 3. has been sketched along with the
uniformization procedure (note that the definition of w′ does not change the mean-payoff
value of the end-components, as compared to weight vector w1 and w).

We show item 4. for the transformation of one end-component E (Figure 10), and the
lemma follows by applying the result successively to each end-component.

Given an arbitrary strategy σ, let sk(v) =
∑k

i=0 E
σ
v (w1(vi)) and s′k(v) =

∑k
i=0 E

σ
v (w

′(vi))
be the expected total reward from initial vertex v after k steps, according to the weight
vector w1 and w′ respectively. We show that for all v ∈ V \ E, and for all k, we have
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−B

weight of v
is w(v) − η,
for all v

0

Figure 11. Over-approximation of the MDP with weight vector wdif =
w − w′ (from Figure 10).

sk(v) ≤ s′k(v), which establishes the claim that M′ (with w′) has a larger supremum of
expected total reward than M′ (with w1), since the initial distribution of M′ has support
in V \ E (and we showed that the supremum of expected total reward in M′ (with w1) is
at least twice the one in M). We show this by induction on k. The base case k = 0 holds
since w1(v) ≤ w′(v) for all v ∈ V \ E. For the induction case, assume st(v) ≤ s′t(v) for all
v ∈ V \ E, and for all t ≤ k − 1. Let v ∈ V \E and we consider two cases:

• If v 6= vE , the claim sk(v) ≤ s′k(v) holds since all successors of v are in V \E and we can
use the induction hypothesis:

sk(v) = w1(v) + max
a∈A

∑

u∈V \E

sk−1(u) · θ(v, a)(u)

≤ w1(v) + max
a∈A

∑

u∈V \E

s′k−1(u) · θ(v, a)(u)

= s′k(v)

• If v = vE, then all successors of v belong to E, and we cannot directly use the in-
duction hypothesis. Consider the weight vector wdif = w1 − w′, and show that for

sdifk (v) =
∑k

i=0 E
σ
v (wdif(vi)), we have sdifk (v) ≤ 0, which implies sk(v) ≤ s′k(v). Given

the weight vector wdif , we know that starting from v = vE, as soon as a path leaves the
end-component E, its contribution to the expected total reward is at most 0 (by induction
hypothesis, since at most k − 1 steps remain after exiting). Therefore, it is sufficient to
show that the expected total reward in k steps is at most 0 in the MDP of Figure 11
where the edges going out of the end-component E are directed to a sink with weight 0.
The weights defined by wdif in E are bounded by ‖w1‖+‖w′‖ ≤ 2W +W . The number of
vertices in E is less than 2n (where n is the number of vertices in the original MDP M),
and only half of them are relevant to define the expected total reward. By Lemma 4.4,
since all end-components have mean-payoff value 0 in the MDP of Figure 11, and B is
the bound given by Lemma 4.4, we have supk s

dif

k (v) ≤ 0 and therefore sdifk (v) ≤ 0, which
concludes the proof of the induction case.
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We finally obtain an analogue of Lemma 4.2 for MDPs: the expected total reward is
bounded in MDPs with non-positive mean-payoff value.

Theorem 4.7. Given an MDP M with n vertices and valMP(M) ≤ 0, we have:

sup
σ

sup
t

t∑

i=0

Eσ
µ(w(vi)) ∈ O

(
n16 ·W ·

(
1

α

)O(n3)
)

where α is the smallest positive transition probability in M, and W its largest absolute
weight.

Proof. Given MDP M, we use the triangular inequality to bound the supremum of expected
total reward by the sum the supremum on the transient vertices and on the end-components.
For transient vertices, we use directly the bound in Lemma 4.5, and for end-components,
we use the construction of M′ in Lemma 4.6, and then apply Lemma 4.5 where the number

of vertices is 3n, and the largest weight is B = 12 ·n8 · (3W ) ·
(
1
α

)n3+n
. Since the supremum

of expected total reward in M′ is twice the supremum of expected total reward in M, we
get the following bound:

sup
σ

sup
t

t∑

i=0

Eσ
µ(w(vi))

≤ 12 · n8 ·W ·

(
1

α

)n3+n

+
12

2
· (3n)8 ·

(
12 · n8 · (3W ) ·

(
1

α

)n3+n
)

·

(
1

α

)27n3+3n

= 12 · n8 ·W ·

(
1

α

)n3+n

+ 23 · 311 · n16 ·W ·

(
1

α

)28n3+4n

︸ ︷︷ ︸
B∗

∈ O

(
n16 ·W ·

(
1

α

)O(n3)
)
.

Using Theorem 4.7, for all ε > 0 we can compute a bound t∗ such that there exists
an ε-optimal strategy (for expected value) that plays according to an optimal mean-payoff
strategy after time t∗.

Lemma 4.8. Given an MDP M and ε > 0, there exists an ε-optimal strategy that plays,

after time t∗ = T ·(2B∗+ε)
ε (where B∗ is the bound given by Theorem 4.7), according to a

memoryless optimal strategy σMP for the mean-payoff value.

Proof. Consider an arbitrary strategy σ in M (under expected stopping time T ), and given
t∗ ≥ T , consider a strategy σ∗ that plays like σ up to time t∗, and then switches to a
memoryless mean-payoff optimal strategy σMP, in the MDP M with initial distribution
µ∗ = δσt∗ (the vertex distribution of M after t∗ steps under strategy σ). Let η∗ be the
optimal mean-payoff value from µ∗ in M, and let w′ = w− η∗ (where w′(v) = w(v)− η∗ for
all v ∈ V ). With weight vector w′, the optimal mean-payoff value of M is 0 from µ∗.
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Using Lemma 4.2 in the Markov chain obtained by fixing the strategy σMP in M with
initial distribution µ∗, we obtain:

sup
t

∣∣∣∣∣

t∑

i=0

E
σMP

µ∗ (w′(vi))

∣∣∣∣∣ ≤ 12 · n6 ·W ·

(
1

α

)n2

︸ ︷︷ ︸
C∗

. (4.3)

Let ut =
∑t

i=0 E
σ
µ(w(vi)) and let u∗t =

∑t
i=0 E

σ∗

µ (w(vi)) be the sequence of expected
total reward under strategy σ and σ∗ respectively. To show ε-optimality of σ∗, take t∗ ≥
T ·(2B∗+ε)

ε and show that:
val(u∗, T ) ≥ val(u, T ) − ε

The proof is in two steps. First we bound the difference ut−u∗t as follows, for all t ≥ 1:

ut − u∗t =
t∑

i=0

Eσ
µ(w(vi))−

t∑

i=0

Eσ∗

µ (w(vi))

=
t∑

i=0

Eσ
µ(w

′(vi))−
t∑

i=0

Eσ∗

µ (w′(vi))

(since E(w(·)) = E(w′(·)) + η∗)

=

t∑

i=t∗

Eσ
µ(w

′(vi))−

t∑

i=t∗

Eσ∗

µ (w′(vi))

(σ and σ∗ agree in the first t∗ steps)

≤ B∗ + C∗ ≤ 2B∗

(triangular inequality and bounds

given by Theorem 4.7 and (4.3))

In a second step, consider an arbitrary bi-Dirac distribution δ with support {t1, t2} and
expected stopping-time T , and consider the difference between the value of sequences ut
and u∗t under δ, if t2 ≥ t∗ (the difference is 0 if t2 < t∗):

Eδ(u)− Eδ(u
∗)

=
ut1(t2 − T ) + ut2(T − t1)

t2 − t1
−

u∗t1(t2 − T ) + u∗t2(T − t1)

t2 − t1

=
T − t1
t2 − t1

· (ut2 − u∗t2)

(since σ and σ∗ agree in the first t∗ steps,

and thus ut1 = u∗t1)

≤
T − t1
t2 − t1

· 2B∗ ≤
T

t∗ − T
· 2B∗ ≤ ε

(since 0 ≤ t1 ≤ T )

It follows that under all bi-Dirac distributions δ with expected stopping-time T , the
expected value of the sequence u∗t is, up to additive error ε, greater than the expected value
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of ut. Therefore, since bi-Dirac distributions are sufficient for optimality (Section 3.2.1), we
have val(u∗, T ) ≥ val(u, T )− ε. Hence σ∗ is ε-optimal.

We can express in the existential theory of the reals that the value of a strategy that
eventually plays according to a memoryless strategy (as in Lemma 4.8) is above a given
threshold, which entails decidability of computing an approximation of the optimal value
up to an additive error ε.

Lemma 4.9. Given an MDP M and a time t∗, we can compute to an arbitrary level of
precision ε > 0 the optimal value among the strategies that play after time t∗ according to
a memoryless strategy.

Proof. We describe the choices of an arbitrary strategy up to time t∗ using variables xv,t,a
for every v ∈ V , 0 ≤ t ≤ t∗, and a ∈ A, where xv,t,a is the probability to play action a at
time t in vertex v. Note that we ignore the history of vertices, which is no loss of generality
since the utility achieved by a strategy at time t only depends on the probability mass in
each vertex at time t, and if a sequence of distribution can be achieved by some strategy,
then it can be achieved by a Markov strategy (in which the choice depends only on the
time and the current vertex). It is easy to express the probability mass in v at time t (and
therefore the utility ut) as a function of the variables xv,t,a.

After time t∗, consider a memoryless strategy and we can express its mean-payoff value
η∗ as a function of the vertex distribution at time t∗, thus as a function of the variables
xv,t,a. Then for t = t∗ + 1, t∗ + 2, . . . , t̂, we compute the utility ut at time t as a function
of the variables xv,t,a, and consider the utility sequence u0, . . . , ut̂, ut̂ + η∗, ut̂ + 2η∗, . . .
(corresponding to an ultimately periodic path) using Lemma 3.8 and by an argument similar
to the proof of Lemma 3.9 using the bound of Lemma 4.2 for Markov chains, we get a bound

on the approximation error as follows: the value after t̂ differ by at mostD = n·W ·K1 ·K
t̂−t∗

3
from the actual utility, thus the error on the value is at most

D · (T − t1)

t2 − t1
≤ D · T

which is at most ε for t̂ ≥ t∗ +B where B =
ln( ε

n·W ·T ·K1
)

ln(K3)
(Lemma 3.9).

By Lemma 4.8 and Lemma 4.9, we can compute up to error ε
2 the value of an ε

2 -optimal
strategy, and since the error is additive (ε = ε

2 +
ε
2 ), it follows from the proof of Lemma 4.9

that, by computing (as a symbolic expression in variables xv,t,a) the sequence of utilities

up to time t̂ = T ·(4B∗+ε)
ε +

ln( ε

2n·W ·T ·K1
)

ln(K3)
and then considering an increment of η∗ at every

step, we can compute the value of optimal expected value of the MDP up to error ε in
exponential space (since t̂ is exponential and the existential theory of the reals can be
decided in PSPACE [Can88]). In this way, we obtain the main result of this section: an
approximation of the value with expected stopping time can be computed for MDPs up to
an arbitrary additive error.

Theorem 4.10. The optimal expected value of an MDP with expected stopping time T can
be computed to an arbitrary level of precision ε > 0, in exponential space.
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v0 1
2

1 −2 1

−1 2 −1 v7 −1 2 −1

v14

1 −2 1

a

b

Figure 12. An MDP where memory is necessary for optimal expected value
in pure strategies.

5. Conclusion

We studied Markov chains and MDPs with expected stopping time, and showed the hardness
of computing the exact value, as the associated decision problem for Markov chains is
inter-reducible with the Positivity problem, thus at least as hard as the Skolem problem.
Approximation of the value can be computed in exponential time for Markov chains, and
exponential space for MDPs (thus the approximation problem is decidable although optimal
strategies require infinite memory).

It is an open question to determine the exact complexity of the approximation problem,
and whether approximations can be computed in polynomial time, or if any complexity-
theoretic lower bound can be established. We are not aware of any complexity lower bounds
for approximation of the Positivity problem. Another direction for future work is to deter-
mine the memory requirement for pure strategies in MDPs. Figure 12 shows an MDP where
memory is necessary in pure strategies. Consider expected stopping time T = 8, and the
weight of states v0, v7, v14 is 0. A pure strategy that plays action a initially in v0 and action b
in the next visit to v0 ensures expected value of 0 whereas the expected value of the two
memoryless strategies (playing either always a, or always b) is negative. This example can
be adapted to show that support-based4 strategies are not sufficient either.
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Appendix A. Basic Inequalities

We recall basic inequalities that follow from the properties of the exponential and logarithm
functions.

Lemma A.1. For all x ∈ R:

(1) if x ≥ 1, then
(
1− 1

x

)x
< e−1, and

(2) if x < 1, then ln(1− x) ≤ −x.

Appendix B. Convergence rate in Markov chains

Let 〈M,µ,w〉 be an aperiodic Markov chain (i.e., all recurrent classes are aperiodic). We
show that there exist a vector π and numbers K1,K2 with K2 < 1 such that for all t ≥ 0
we have:

‖µ ·M t − π‖∞ ≤ K1 ·K
t
2.

We recall the following results of [Gal13, Chapter 4]. In every recurrent class (or
bottom scc) C of a Markov chain M , there is a steady-state vector π such that for all
µ with Supp(µ) ⊆ C, the vector µ · M t converges to π as t → ∞. Moreover by [Gal13,
Eq. (4.22)], for all vertices i, j ∈ C and for all t ≥ 0, we have

|M t
ij − πj| ≤

(
1− 2αn2

)⌊t/n2⌋
, (B.1)

where α = min{Mij | Mij>0} is the smallest non-zero probability in M , and by [Gal13,
Lemma (4.3.6)] for all i ∈ T where T is the set of all transient vertices,

∑

j∈T

M t
ij ≤ (1− αn)⌊t/n⌋, (B.2)

which gives a bound on the probability to remain in the set of transient vertices after t
steps. For i ∈ V and recurrent class C ⊆ V , let Pi(♦C) be the probability to eventually
reach a vertex in C (and stay there forever since C is a recurrent class) from i. It directly
follows from (B.2) that

Pi(♦C) ≥
∑

j∈C

Mm
ij ≥ Pi(♦C)− (1− αn)⌊m/n⌋. (B.3)

Now consider a Markov chain M with only aperiodic recurrent classes, and let T be
the set of transient vertices, and R be the set of recurrent classes. The sequence µ · M t

converges to a steady-state vector π =
∑

i∈V µi ·
∑

C∈R Pi(♦C) · πC where πC is the steady-

state vector of the class C, that is πC
j = limt→∞M t

ij (for arbitrary i ∈ C, and remember

that the limit is independent of i). Let u = ⌊t/2⌋ and B =
(
1− 2αn2

)⌊(t−u)/n2⌋
. Then for

all j ∈ V ,
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∣∣∣∣∣
∑

i∈V

µi ·M
t
ij − πj

∣∣∣∣∣

=

∣∣∣∣∣
∑

i∈V

µi ·

(
∑

k∈T

Mu
ikM

t−u
kj +

∑

k∈C

Mu
ikM

t−u
kj − Pi(♦C) · πC

j

)∣∣∣∣∣

(where C is a recurrent class that contains j

if j is recurrent, and C is an arbitrary

recurrent class if j is transient,

since then M t−u
kj = πC

j = 0 for all k ∈ C)

≤

∣∣∣∣∣
∑

i∈V

µi ·

(
∑

k∈T

Mu
ik +

∑

k∈C

Mu
ik(πj +B)− Pi(♦C) · πC

j

)∣∣∣∣∣

≤

∣∣∣∣∣
∑

i∈V

µi ·

(
(1− αn)⌊u/n⌋ +B +

∑

k∈C

(Mu
ik − Pi(♦C)) · πC

j

)∣∣∣∣∣

≤ (1− αn)⌊u/n⌋ +B +

∣∣∣∣∣
∑

i∈V

µi · (1− αn)⌊u/n⌋

∣∣∣∣∣

≤ 2(1− αn)⌊u/n⌋ +
(
1− 2αn2

)⌊(t−u)/n2⌋

≤ 3(1− αn2

)t/3n
2

which proves the result (take K1 = 3 and K2 = (1− αn2

)1/3n
2

).
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