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Abstract—We aim at measuring the influence of the nondeter-
ministic choices of a part of a system on its ability to satisfy a
specification. For this purpose, we apply the concept of Shapley

values to verification as a means to evaluate how important a
part of a system is. The importance of a component is measured
by giving its control to an adversary, alone or along with other
components, and testing whether the system can still fulfill the
specification. We study this idea in the framework of model-
checking with various classical types of linear-time specification,
and propose several ways to transpose it to branching ones. We
also provide tight complexity bounds in almost every case.

I. INTRODUCTION

Classical model-checking algorithms try to detect undesired

behaviors in a formal system with reference to a given

specification, and the system is deemed correct if they cannot

find one. However, simply knowing that the system satisfies

the specification is in practice often unsatisfactory: we also

want to know why it does, or does not. Especially in the case

that the specification is violated, knowing where in the system

to look for a potential model repair can significantly reduce

troubleshooting times for both engineers and users.

To this end, Chockler, Halpern and Kupferman defined a

notion of causality aimed at explaining which parts of a system

are relevant for the satisfaction of a specification ϕ [1]. More

specifically, a state s is considered a cause for ϕ with respect

to an atomic proposition p if the value of p can be swapped in

a subset of the states T such that further swapping the value

of p in s turns ϕ from being satisfied to being violated (we

say that (s, T ) is critical). Counterfactual reasoning in this

spirit (i.e., had the cause not occurred, then the event would

not have happened) has a rich history in the philosophy and

moral responsibility literature, and has been formalized in the

framework of structural equation models [2], [3], on which

the work [1] is based. Causes are further assigned a degree of

responsibility by taking the inverse of the size of the smallest

set T ∪ {s} such that (s, T ) is critical. This numerical value,

adapted from [4], is designed to measure the impact of the state

on the specification: Causes with high degree of responsibility
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point to small changes of the system that have the power to

crucially alter its behavior.

In this paper we define a novel measure for the influence

of a state on a specification, called the importance. While it

is related to the degree of responsibility of [1], a significant

difference appears in how the counterfactuality principle is

invoked. The degree of responsibility relies on hypothetical

modifications of the structure and answers the question “Is

the system still working if the truth value of this atomic

proposition in that subset of states is switched?” In contrast,

we never modify the system, but look at how its nonde-

terministic choices are resolved, thus tackling the question

“Does the system yield a satisfying run if the subset of

states is under control (i.e., behaving in a manner conducive

to the functioning) while the others are not (i.e., behaving

antagonistically)?” Hence, our definition of importance relies

on a new viewpoint of what constitutes a critical pair, based

on capturing the specific nondeterministic choices available in

the states.

The approach above determines the impact of a subset of

states on the satisfaction of a specification. In order to turn

this information into the individual importance of a state (or

a component) we employ a solution concept from cooperative

game theory, called the Shapley value [5]. In a context of

collaborative multi-agent interaction, Shapley values aim at

measuring how beneficial the participation of a specific agent

is in reaching some objective. Translated to Kripke structures,

the idea is to compute the probability that taking control over a

particular state makes the system work as intended, where the

control over states is taken in a (uniformly) random order. The

importance distills those parts of the system whose choices are

crucial for its functioning.

As an example, consider a system testing a server sv

by sending regular requests. If the server does not respond

correctly, the system retries to send a request; if it does respond

correctly, then the system may wait before testing again. We

represent this system by a Kripke structure, displayed on the

left in Figure 1. Consider the specification stating that the

system should make infinitely many tests and receive only

finitely many incorrect answers (modeled by the LTL formula

ϕ = GF check ∧ FG¬fail). The system fails this condition

if sv malfunctions and fails infinitely often or if ok waits

indefinitely from some point on without rechecking the server.

As the other states cannot enforce breaching ϕ without sv and
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Fig. 1. Two simple systems, as used in the introductory example.

ok, the importance of these two states is 1/2 and that of the

other states is 0.

Let us now add a backup server sv′ with the same role as

sv (as displayed on the right in Figure 1). Then the system

succeeds if it loops infinitely often between ok, check and

the set {sv, sv′}, which is only possible if ok and at least

two of check, sv and sv
′ behave well. In this case we

get an importance of 1/2 for ok and 1/6 for check, sv

and sv
′ (these values are explained in detail in Example 1).

This is a numerical interpretation of the fact that control over

the behavior of ok is more critical to the functioning of

the system: unfortunate choices made in ok (i.e., avoiding

further tests forever) instantly make the system fail. The equal

importance of check, sv, and sv
′ reflects the fact that –

although their actual roles in the system differ – they play

interchangeable parts when only the functioning is concerned:

any two of them are needed to make the system work.

It is noteworthy that a variant of the degree of responsibility

based on our notion of critical pair (and applied in reverse

fashion, i.e., from violation of ϕ to satisfaction of ϕ) would not

be able to distinguish check, ok, sv, and sv
′ as it evaluates to

1/3 for each of these states. Roughly speaking, the degree of

responsibility only takes a minimal critical pair into account,

whereas the importance computes a weighted average over the

size of all critical pairs that a state belongs to. The rationale

for this is that belonging to many critical pairs makes the state

less dependent on behavior outside of its control, and hence

more powerful.

The construction of the importance value as outlined above

gives rise to the following three problems, whose complexity

we study in this paper for a wide range of specifications.

The value problem consists in determining if a subset of

states of a given Kripke structure can guarantee that the

specification is respected when the other states act in an

adversarial way. The importance problem asks for the actual

importance value. Finally, the usefulness problem asks whether

a state of a system has positive importance, i.e., whether its

behavior has any influence at all on the satisfaction of the

specification. In fact we define the importance value in the

presence of a prescribed partition of the state space, and

study the complexity problems in this generalized setting.

This allows us to capture more realistic scenarios such as the

importance of a system component in a composite architecture.

Table I summarizes the complexity results obtained through-

out the paper. We write ∈ C when the problem is in class C and

we do not have a matching lower bound, and just C when the

problem is C-complete. Since our examinations spread over

a wide range of specifications, our results crucially rely on a

diverse game-theoretic toolkit.

The paper is split into three parts: In the first part we

define the notions in the general setup of turn-based two-player

games on finite graphs. Then we apply these notions in order

to define the importance on Kripke structures with respect to

LTL specifications, and finally we look at the case of CTL

specifications on modal transition systems. The proofs missing

in the main document due to space constraints can be found

in the appendix.

A. Related work

The complexity of computing the aforementioned degree of

responsibility was examined for the general class of structural

equation models in [4] and for Boolean circuits in [1]. They

are closely related to the complexity results about deciding

causality [12], [13].

Our work ties into a ubiquitous quest for powerful ex-

planations of model-checking results. If a system satisfies

a specification, then coverage estimation has been used to

analyze which parts of the system are essential for the suc-

cessful verification result [14]–[17]. As in the definition of

the degree of responsibility, the idea is to apply small changes

to the system (mutants) and check the resulting effect on the

specification. Vacuity detection, on the other hand, applies the

principle of small changes to the specification [18]–[20]. This

strand of research aims at checking whether the specification

is satisfied in an undesired, trivial fashion (typically due to

insufficient modeling of the system). Coverage and vacuity

have been shown to exhibit a formal duality [21], and recent

work on the subject analyzes network formation games [22].

In the case of an unsuccessful verification process, one of

the powerful features of many model checking approaches

is the ability to generate a counterexample [23]. In order to

extract further diagnostic information, there has been extensive

work on localizing errors in faulty traces [24]–[29]. Typically,

one compares an erroneous trace with a successful one that

lies nearby with respect to a suitable metric. Early detection

of error traces has been investigated in [30], where a game-

like description close to ours between a system module and its

environment has been used. Explaining counterexamples using

the notion of causality from [1] has been presented in [31].

The Shapley value is a classical solution concept in eco-

nomics and has recently received considerable attention in

the computer science literature. Shapley-like values have been

used as explanations for machine learning models, where they

estimate the impact of the input parameters on the outcome

[32]–[34]. They have also been employed as a means by which

centrality in networks can be measured [35] or responsibilities

can be assigned in game-like structures [36]. Computational

approaches for the Shapley value are given in [37]–[40]. For

a variety of recent results and applications of Shapley values

we refer to [41].



TABLE I
A SUMMARY OF THE RESULTS ON THE COMPLEXITY OF THE VALUE, USEFULNESS

AND IMPORTANCE PROBLEMS FOR VARIOUS TYPES OF SPECIFICATIONS.

Büchi Rabin Streett Parity Explicit Muller

Value P [6] NP [7] coNP [7] ∈ NP ∩ coNP [8] P [9] [6]

Usefulness NP (Prop. IV.5) ΣP
2

(Prop. IV.8) ΣP
2

(Cor. IV.10) NP (Prop. IV.5) NP (Prop. IV.5)

Importance #P (Thm. IV.6) #PNP (Thm. IV.9) #PNP (Cor. IV.10) #P (Thm. IV.6) #P (Thm. IV.6)

Emerson-Lei LTL 2-turn CTL Concurrent CTL

Value PSPACE [10] 2EXPTIME [11] ΣP
2

(Prop. V.2) ∈ EXPTIME (Rmk. V.7)

Usefulness PSPACE (Thm. IV.7) 2EXPTIME (Thm. IV.3) ΣP
3

(Prop. V.3) ∈ EXPTIME (Rmk. V.7)

Importance PSPACE (Thm. IV.7) 2EXPTIME (Thm. IV.3) #PΣ
P
2 (Thm. V.4) ∈ EXPTIME (Rmk. V.7)

II. PRELIMINARIES

A. Words and structures

a) Words and trees: Let A be an alphabet. We denote

by A∗ (resp. Aω) the set of finite (resp. infinite) words over

A. Given a word w, we write |w| for its length and, for all

0 ≤ i < |w|, we write wi for the (i + 1)th letter of w.

An infinite tree t over A is a prefix-closed subset of A∗ such

that for all p ∈ t, there exists a ∈ A such that pa ∈ t. The set

of sons of a node p of the tree t is denoted by Sonst(p) =
pA ∩ t.

b) Kripke structures: A Kripke structure K is a 5-tuple

(S,AP,∆, init, λ) where S is a finite set of states, AP is

a finite set of atomic propositions, ∆ ⊆ S × S is a set of

transitions, init is an initial state and λ : S → 2AP is a

labeling function. For every s ∈ S, we define its image under

∆ as ∆(s) = {t ∈ S | (s, t) ∈ ∆}, and we always assume

∆(s) to be nonempty for all s. A run of a Kripke structure

K = (S,AP,∆, init, λ) is an infinite sequence r ∈ Sω such

that r0 = init and for all i ∈ N, we have (ri, ri+1) ∈ ∆. To

every run r we can associate a trace, which is the sequence

of labelings λ(r0)λ(r1) · · · . The set of runs of K is denoted

by R(K) while the set of traces it generates is called L(K).

c) Modal transition systems: A modal transition system

(MTS) [42] M is a 6-tuple (S,AP,∆may,∆must, init, λ)
where S is a finite set of states, AP is a set of atomic

propositions, ∆must,∆may ⊆ S × S are sets of transitions

such that ∆must ⊆ ∆may , init ∈ S is an initial state

and λ : S → 2AP is a labeling function. We assume

∆must(s) to be nonempty for every state s. We call a Kripke

structure K = (S,AP,∆, init, λ) an implementation of M if

∆must ⊆ ∆ ⊆ ∆may . This is in contrast to other works in

the modal transition system literature which usually consider

a more general notion of implementation based on refinement

relations (see [43] for a recent overview).

B. Temporal logics

We now define the syntax of the two logics we will consider

in this paper, LTL and CTL. For the semantics and basic

properties of these logics we refer the reader to [44] or [45].

a) Linear temporal logic: The formulas of LTL are given

by the grammar

ϕ ::= a | ϕ ∨ ϕ | ¬ϕ | Xϕ | ϕUϕ

with a ranging over a finite set of atomic propositions AP .

LTL formulas are evaluated on infinite words over 2AP. We

extend the set of operators with ⊤,⊥,∧, F,G and R in the

usual way.

b) Computation tree logic: The syntax of CTL is defined

by the grammar

ϕ ::= a | ϕ ∨ ϕ | ¬ϕ | EXϕ | EϕUϕ | AϕUϕ

with a ranging over a finite set of atomic propositions AP.

CTL formulas are evaluated on infinite trees

over 2AP. We extend the set of operators with

⊤,⊥,∧, EF,EG,ER,AX,AR,AF and AG in the usual

way.

C. Games on graphs

A directed graph G is a pair (V,E) with V a set of

vertices and E ⊆ V 2 a set of edges. An arena is a tuple

(G,SSat, SUnsat) with G a graph and SSat, SUnsat a partition

of its vertices. We say that the vertices of SSat belong to

player Sat, or are controlled by player Sat (and similarly for

Unsat). As the graphs we consider will be induced by Kripke

structures, we will use from now on S to denote the set of

vertices and ∆ for the edges. We will also refer to vertices as

states and edges as transitions.

A game G is defined by an arena ((S,∆), SSat, SUnsat), an

initial vertex init ∈ S and a winning condition (also called

objective) Ω ⊆ Sω. A play of G is an infinite sequence p ∈ Sω

such that p0 = init and for all i ∈ N, (pi, pi+1) ∈ ∆. A

strategy for Sat (resp. Unsat) is a function σSat : S
∗SSat → S

(resp. σUnsat : S∗SUnsat → S). A play p is said to respect a

strategy σ of Sat (resp. σ of Unsat) if for all i ∈ N, if

pi ∈ SSat (resp. pi ∈ SUnsat) then pi+1 = σ(p0 . . . pi). A

strategy σ of Sat (resp. Unsat) is winning if for every play

p respecting σ we have p ∈ Ω (resp. p /∈ Ω). A game G is

determined if there exists a winning strategy for either Sat or

Unsat.



For more information on infinite games played on finite

graphs we refer to [46]. In particular, we will use several

classical winning conditions on such games, whose definitions

can be found in [46, Chapter 2].

D. Complexity classes

We consider mostly well-known and classical complexity

classes, a description of which can be found, e.g., in [47]. We

use logarithmic space reductions for the decision problems and

Turing reductions for the counting complexity classes.

III. A GENERAL DEFINITION OF IMPORTANCE IN

TWO-PLAYER GAMES

Let G be a two-player game between Sat and Unsat on an

arena ((S,∆), SSat, SUnsat). Let Ω ⊆ Sω be Sat’s objective

(i.e. the set of plays of G she wins). In order for the game to

be determined, we assume Ω to be a Borel set.

We start by defining a general notion of importance of a

state (or a set of states, in a given partition), which is a measure

of how much a state contributes towards Sat winning the

game. In other words, if Sat is restricted to controlling only

some of her states (for example, due to resource constraints)

she should opt to control the ones with high importance in

order to win the game.

Definition III.1. For all sets of states S′
Sat

⊆ S, we define

GS′

Sat
as the game between Sat and Unsat played on the arena

((S,∆), S′
Sat
, S\S′

Sat
) with the same initial state and the same

objective Ω for Sat.

Definition III.2 (Value of a state subset). For all sets of states

S′
Sat

⊆ S, we define the value of the set S′
Sat

as

val(S′
Sat

) =

{

1 if Sat has a winning strategy for GS′

Sat

0 if Unsat has a winning strategy for GS′

Sat

Note that the value is defined with respect to a game, but that

game does not appear in the notation as we will always make

it clear from context. The value is well-defined for all S′
Sat

as

we assumed the objective to be a Borel set, thus the game is

determined.

With the definition of value of a subset of states, we are

in the position of defining the importance of a state. This

definition corresponds to the classical formula for the Shapley

value [5]. In our context it can be explained as follows: for a

given state s, it counts the number of orderings of the states

in SSat such that if Sat gives up control of her states one by

one in that order, then Sat loses the game for the first time

after giving up s. The number obtained is then divided by

the total number of such orderings. We can also look at this

definition from a probabilistic point of view: The importance

of a state s is the probability that, if Sat gives up control of

the states sequentially in an order drawn uniformly at random,

the first time Sat is no longer able to win the game is when

she gives up control of s. This is what we call switching in

Definition III.3 below.

Definition III.3 (Importance). The importance for Sat of

a state s ∈ SSat with respect to a game G on an arena

((S,∆), SSat, SUnsat) is defined as

I(s) =
1

n!

∑

π∈ΠSSat

val(Sπ
≥s)− val(Sπ

≥s \ {s})

where n = |SSat|, ΠSSat
is the set of bijections from SSat

to {1, . . . , n}, and Sπ
≥s = {s′ ∈ SSat | π(s′) ≥ π(s)}.

An equivalent definition, obtained by deleting the null terms

from the sum, is obtained through the notion of critical pair.

A pair (s, T ) ∈ SSat × 2SSat is critical if val(T ∪ {s}) = 1
and val(T ) = 0. Then we set

I(s) =
1

n!

∑

(s,T ) critical

(|T |)!(n− |T | − 1)!

as (|T |)!(n−|T |−1)! is the number of π ∈ ΠSSat
such that

Sπ
≥s \ {s} = T .

We say that s switches the value in π if (s, Sπ
≥s \ {s}) is a

critical pair. The importance of a state s can then be seen as

the proportion of orderings π of the states in which s switches

the value.

The following lemma states that if a state s needs another

state s′ (meaning that a set of states containing s but not s′

always has value 0), then the importance of s′ is at least as

large as the one of s.

Lemma III.4. Let s, s′ be two states of G. If for all T ⊆ SSat
such that s ∈ T and s′ /∈ T , we have val(T ) = 0 then

I(s) ≤ I(s′).

Proof. Let T ⊆ SSat and suppose that (s, T ) is critical. Then

T necessarily contains s′ (as val(T ∪{s}) = 1) and therefore

(s′, T∪{s}\{s′}) is critical. We can thus construct an injection

associating to each T such that (s, T ) is critical the set T ′ =
T ∪ {s} \ {s′} of equal size such that (s′, T ′) is critical.

We conclude using the second formula for the importance

in Definition III.3.

We now assume that we are given a partition S1, . . . , Sn

of SSat. We generalize the previous definitions in a straight-

forward manner. We simply replace states with parts of the

partition in the definitions, considering the Si as atomic ele-

ments. In all of our complexity proofs we will show the lower

bounds for the previous case (in which states are partitioned

in singletons) and the upper bounds for the general case. Thus

all complexity results hold for both cases.

Definition III.5 (Importance for partitions). The importance

for Sat of a set of states Si with 1 ≤ i ≤ n is defined as

I(Si) =
1

n!

∑

π∈Πn

val(Sπ
≥i)− val(Sπ

≥i \ Si)

where Πn stands for the set of permutations of {1, . . . , n},

and

Sπ
≥i =

⋃

1≤j≤n
π(j)≥π(i)

Sj



We define a pair (i, J) ∈ {1, . . . , n} × 2{1,...,n} to be critical

if val(
⋃

j∈J∪{i} Sj) = 1 and val(
⋃

j∈J Sj) = 0. Then we

have:

I(Si) =
1

n!

∑

(i,J) critical

|J |!(n− |J | − 1)!

Now let us show some basic results stating that parts

with importance 0 can be ignored in the computation of the

importance of the other parts.

Remark 1. Let 1 ≤ i ≤ n. If I(Si) = 0 then there is no

J ⊆ {1 . . . , n} such that (i, J) is critical. As a consequence,

for all J ⊆ {1, . . . , n}, val(
⋃

j∈J Sj) = val(
⋃

j∈J∪{i} Sj).
This means that if I(Si) = 0, then Sat can always give up

control of states Si without any effect on whether she wins

the game.

Lemma III.6 (Restriction to useful parts). Let I ⊆ {1 . . . , n}
be such that for all j /∈ I , I(Sj) = 0. Then we have for all

i ∈ I

I(Si) =
1

|I|!

∑

π∈ΠI

val(Sπ
≥i)− val(Sπ

≥i \ Si),

with ΠI the set of bijections from I to {1, . . . , |I|}.

Proof. For all π ∈ Πn, let us denote by π
∣

∣

I
: I → {1, . . . , |I|}

the bijection such that for all i, j ∈ I , π(i) < π(j) if and only

if π
∣

∣

I
(i) < π

∣

∣

I
(j).

Note that for all i ∈ I and π ∈ Π we have

Sπ
≥i \ S

π|I
≥i ⊆

⋃

j∈{1,...,n}\I

Sj .

As a consequence, val(Sπ
≥i) = val(S

π|I
≥i ), using Remark 1.

Similarly we get val(Sπ
≥i \ Si) = val(S

π|I
≥i \ Si). This allows

us to rewrite the importance of Si as

I(Si) =
1

n!

∑

π∈Πn

val(Sπ
≥i)− val(Sπ

≥i \ Si)

=
1

n!

∑

π∈Πn

val(S
π|I
≥i )− val(S

π|I
≥i \ Si)

=
1

n!

∑

π′∈ΠI

n!

|I|!
· (val(Sπ′

≥i)− val(Sπ
≥i \ Si))

=
1

|I|!

∑

π′∈ΠI

val(Sπ′

≥i)− val(Sπ′

≥i \ Si)

as for all π′ ∈ ΠI there are n!
|I|! permutations π ∈ Πn such

that π
∣

∣

I
= π′.

Corollary III.7. Just as in Definition III.5, by deleting the null

terms from the sum we can rewrite the sum from Lemma III.6.

Let I ⊆ {1 . . . , n} be such that for all j /∈ I , I(Sj) = 0. Then

we have

I(Si) =
1

|I|!

∑

(i,J) critical,J⊆I

(|J |)!(n − |J | − 1)!

for all i ∈ I .

We will also need the following lemma, stating that the

importance of a part of a system remains unchanged when the

specification is replaced with its complement.

Lemma III.8 (Complement objective). Let G be the game

with the same arena and initial state as G but the complement

objective Ω = Sω \Ω. Then for all 1 ≤ i ≤ n, the importance

of Si is the same for games G and G.

We now define the four computational problems which we

will study throughout this paper. The three first are decision

problems, the fourth is a counting one:

Value problem
{

Input: A game G, a subset S′
Sat

⊆ SSat

Output: Do we have val(S′
Sat

) = 1?

Usefulness problem










Input: A game G, a partition S1, . . . , Sn

of the states, an index i

Output: Do we have I(Si) > 0?

Importance threshold problem










Input: A game G, a partition S1, . . . , Sn

of the states, an index i, η ∈ Q

Output: Do we have I(Si) > η?

Importance computation problem










Input: A game G, a partition S1, . . . , Sn

of the states, an index i

Output: n! · I(Si)

The way the game is encoded is left open at this point, as it

will depend on the specific kind of game in question, especially

when it comes to the encoding of the objective.

The two importance problems characterize the complexity

of computing the importance of a state in a game. We will

generally use the counting problem, except in cases where the

complexity class obtained is more natural for the threshold

version. For instance, if verifying some condition is already

EXPTIME-complete, then we want to say that the problem of

computing how many elements of a set of exponential size

respect that condition is also EXPTIME-complete. However

in order to do that we have to formulate the problem as a

decision one. For the importance computation problem, the

multiplication by n! ensures that the output is always an

integer, which is necessary in order for this to be a counting

problem.

The usefulness problem is a restricted version of the impor-

tance threshold problem, only focusing on whether some part

of the system may become necessary to the satisfaction of the



specification when some other parts malfunction. A similar

problem for voting games, called the pivot problem, has been

studied in [48].

IV. IMPORTANCE VALUES IN LTL

We now apply the theory developed in the preceeding

section to linear time specifications in Kripke structures. It

turns out that the three decision problems defined above are

2EXPTIME-complete for LTL specifications. As this renders

practical applications essentially impossible, we then go on

to investigate the problems when specifications are restricted

to fragments of LTL, for which we obtain more tractable

complexity classes.

A. The full logic

Let K = (S,AP,∆, init, λ) be a Kripke structure and ϕ an

LTL formula over AP.

Definition IV.1. Given a subset of states SSat ⊆ S, let GSSat

be the game between players Sat and Unsat over the arena

((S,∆), SSat, SUnsat) with SUnsat = S\SSat and init as initial

state. The winning condition for player Sat is the set of runs

of K whose labeling satisfies ϕ, i.e. {r ∈ R(K) | λ(r) � ϕ}.

The value val(SSat) of SSat ⊆ S is then defined as the value

of SSat in the game GSSat
(see Definition III.2).

Note that if one of the players owns all the states, then

the game comes down to that player selecting a run in the

structure. As a consequence, val(S) = 1 if and only if K has

a run satisfying ϕ, and val(∅) = 1 if and only if all runs in

K satisfy ϕ.

Definition IV.2. Given a partition S1, . . . , Sn of S, we define

the importance of a set of states Si with respect to LTL

formula ϕ as the importance of Si in game GS under the

same partition (see Definition III.5).

A straightforward telescope sum argument shows that
∑n

i=1 I(Si) = val(S) − val(∅). Therefore we have
∑n

i=1 I(Si) = 1 if and only if there exists a run in K that

satisfies ϕ, but not all runs satisfy ϕ. Otherwise the sum is 0.

The intuition behind these definitions is that the value of a

subset of states is 1 if its elements can cooperate to guarantee

the satisfaction of the specification no matter how the other

states behave. The importance of a state is high if it is critical

in small subsets, or numerous subsets. We now illustrate our

importance notion with a number of examples.

Example 1. Let us first consider the examples given in the

introduction and depicted in Figure 1, with states partitioned

into singletons. Again we consider the specification ϕ =
GF check∧FG¬fail, and we begin with the left-hand system

involving only a single server sv. Then Sat wins the game

GSSat
if and only if {sv,ok} ⊆ SSat: if Sat is not in control

of sv, then Unsat can respond fail forever, and if Sat is not

in control of ok, then Unsat can avoid further checks forever.

Thus (sv, T ) with ok ∈ T and (ok, T ) with sv ∈ T are

the only critical pairs, and it is straightforward to compute

I(ok) = I(sv) = 1/2.

Next consider the right-hand example of Figure 1 involving

two servers sv and sv
′. In this case Sat wins the game GSSat

if and only if ok ∈ SSat and |{sv, sv′, check} ∩ SSat| ≥ 2.

Namely, in this case ok can initiate infinitely many checks; if

both servers can be controlled to respond correctly, then this

automatically results in infinitely many successful checks, and

if one server and check can be controlled, then check can

choose the functioning server infinitely often. As fail only

has one outgoing transition, I(fail) = 0, thus fail can be

ignored by Lemma III.6. Each s ∈ {sv, sv′, check} yields

two critical pairs (s, T ), where |T | = 2, and so I(s) = 1/6.

On the other hand, ok is the left part of every other critical

pair and one then calculates I(ok) = 1/2.

Example 2. In the three following examples we consider ϕ =
aUb, and the states are partitioned into singletons.

0 1

2

3

4

{a} {a}

{a}

∅

{b}

I(0) = 0
I(1) = 1/2
I(2) = 1/2
I(3) = 0
I(4) = 0

Fig. 2. Kripke structure of Example 2 (1), where atomic propositions are
displayed in blue, and importance values for ϕ = aUb

(1) In the example of Figure 2 if 1 and 2 belong to Sat, then

as every game starts with the transition from 0 to 1, she can

then go from 1 to 2 and then to 4, satisfying the specification.

However if 1 belongs to Unsat, then Unsat can win by

indefinitely going back to 0 from 1. Similarly, if 2 belongs

to Unsat, then he can win by going from 2 to 3 if the game

reaches 2, leaving no possibility for Sat to satisfy aUb.

As a result, a set of states will allow Sat to win if and only

if it contains 1 and 2, thus 1 will be the one switching the value

from 1 to 0 whenever it appears before 2 in a permutation.

This happens in half of the permutations, thus state 1 has

importance 1/2 (see Definition III.3 for what we mean by

switching the value). Similarly, 2 also has importance 1/2.

0 1

2

3

4

{a} {a}

{a}

∅

{b}

I(0) = 1/6
I(1) = 1/6
I(2) = 2/3
I(3) = 0
I(4) = 0

Fig. 3. Kripke structure of Ex. 2 (2) and importance values for ϕ = aUb
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Fig. 4. Illustration for the proof of Theorem IV.3. Every state has a transition
to a sink state which is not shown here.

(2) In the example of Figure 3 one can check that a set of

states is allowing Sat to win if and only if it contains 2 and

at least one of 0 and 1. Then 2 will be the one switching the

value in permutations where it appears before either 1 or 0,

i.e. in 2/3 of the permutations. In the other permutations the

one switching the value is the second one to appear between

0 and 1.

We start our complexity results with the general case of

an LTL specification. The complexities of the problems we

consider is inferred from the 2EXPTIME-completeness of

solving LTL games [11], which is inherited by the value

problem.

Theorem IV.3. The usefulness and importance threshold prob-

lems for LTL with respect to Kripke structures are 2EXPTIME-

complete. Further, one can compute the importance of a set

of states in doubly exponential time.

Proof sketch. The upper bound comes from the 2EXPTIME

upper bound on solving LTL games and the fact that enumer-

ating exponentially many permutations still stays within that

class. The idea for the lower bound is to reduce the problem

of solving an LTL game to the usefulness problem (with states

partitioned into singletons). We consider an LTL game with

states split between SSat and SUnsat. We add states cs, cu and

t which are visited at the beginning of the game, and we add

transitions from cs to states of SUnsat and cu to states of SSat.

Finally, we add a sink state and a transition to it from every

state. We partition states into singletons. See Figure 4 for an

illustration.

We encode in the specification that one of the player wins

automatically as soon as cs does not belong to Sat or cu to

Unsat. Let T be a set of states of the game and assume that

one of the states of SSat is not in T . Then we also encode

in the specification that Unsat can win by jumping from cu
to that state and then to sink, making Sat lose with both T
and T ∪ {t}. Similarly we ensure that in order for (t, T ) to

be critical, T has to be disjoint from SUnsat. The only case in

which (t, T ) can be critical is then the case where states are

correctly distributed between the players, and the usefulness

of t is then equivalent to Sat winning the original game. �

B. Fragments of LTL

Considering the high complexity of the computation of the

importance in the case of LTL, we now look at fragments

of the logic in order to get more tractable problems. We

therefore explore several classical winning conditions which

can be expressed as LTL formulas. The value problem over

Kripke structures with respect to some kind of specification is

precisely the problem of deciding the winner of a game on a

finite graph with such a specification as winning condition.

For the usefulness and importance problems, if the value

problem has a complexity at least PSPACE, we can enumerate

permutations of states while keeping the same complexity.

However, if the value problem is for instance in P or NP, then

the complexity of the usefulness and importance problems is

more involved.

Below, we study various types of winning conditions. We

start with the basic case of reachability conditions, which

allows us to also prove tight complexity bounds for Büchi,

Muller and parity conditions. We consider here explicit Muller

conditions, i.e., the condition is encoded as a list of sets

of states. Muller conditions are sometimes encoded in more

concise forms, such as a coloring function. We will give the

complexity of that version as a consequence of the Emerson-

Lei case, studied later in the paper.

Proposition IV.4. The value problems for reachability, Büchi

and explicit Muller conditions are P-complete.

Proof. Reachability, Büchi and explicit Muller conditions are

all known to be in P [9]. Furthermore, solving reachability

games is known to be P-hard [6].

As we can encode the reachability condition reaching f in

all three winning conditions we consider here, we obtain P-

hardness for those conditions.

Remark 2. Solving games with parity conditions is in NP ∩
coNP [8], but tight complexity bounds are not known, thus the

same can be said about the value problem for parity conditions.

Proposition IV.5. The usefulness problems for reachability,

Büchi, parity and explicit Muller conditions with respect to

Kripke structures are NP-complete.

Proof. The problem is clearly in NP in the case of reachability,

Büchi or Muller conditions as one can nondeterministically

guess J ⊆ {1, . . . , n} and check in polynomial time whether

val(
⋃

j∈J Sj) = 0 and val(
⋃

j∈J∪{i} Sj) = 1 hold.

For parity conditions we also have to guess positional

strategies for Sat and Unsat along with J and check in

polynomial time that those strategies allow Sat to win when

she owns
⋃

j∈J∪{i} Sj and Unsat to win when Sat owns
⋃

j∈J Sj .

We obtain NP-hardness through a reduction from 3SAT.

Let ψ = C1 ∧ C2 ∧ · · · ∧ Ck be a 3SAT instance, with Cj =
(ℓ1j ∨ ℓ2j ∨ ℓ3j) for all j, and let {x1, . . . , xn} be the set of

variables appearing in ψ.

We consider the Kripke structure K = (S,AP,∆, c1, λ)
with states partitioned into singletons, and



• S = {f, s, sink} ∪ {ci | 1 ≤ i ≤ k}
∪{ℓpi | 1 ≤ i ≤ k, 1 ≤ p ≤ 3} ∪ {x′j ,¬x

′
j | 1 ≤ j ≤ n}

• AP = {f}
• λ(f) = {f} and λ(q) = ∅ for all q 6= f

∆ ={(ci, ℓ
p
i ) | 1 ≤ p ≤ 3, 1 ≤ i ≤ k}

∪ {(ℓpi , ci+1) | 1 ≤ p ≤ 3, 1 ≤ i ≤ k − 1}

∪ {(ℓpk, s) | 1 ≤ p ≤ 3} ∪ {(s, x′1), (s,¬x
′
1)}

∪ {(x′j , x
′
j+1), (¬x

′
j , x

′
j+1) | 1 ≤ j ≤ n− 1}

∪ {(x′j ,¬x
′
j+1), (¬x

′
j ,¬x

′
j+1) | 1 ≤ j ≤ n− 1}

∪ {(x′n, f), (¬x
′
n, f)} ∪ {(q, sink) | q ∈ S}

∪ {(ℓpj , x
′
m) | ℓpj ≡ ¬xm}

Note that every literal in the clauses has a transition towards

its negation in the variables. Player Sat wins if and only

if f is reached, which can be expressed as a reachability,

Büchi, parity or Muller condition. The construction can be

done in logarithmic space. See Figure 5 for an illustration of

the construction.

We are now going to show that state s is useful if and

only if the 3SAT formula is satisfiable, thus proving NP-

hardness of the usefulness problem for all four types of

winning conditions.

As every state has a transition to a sink state, if at some

point a state belonging to Unsat is reached before reaching

f , then Sat loses. As a consequence, Sat wins with a set of

states if and only if there is a path in this set of states from

c1 to f (possibly not including f ).

Suppose there exists a valuation ν satisfying ψ. We extend

ν to literals in the natural way, i.e. ν(¬xi) = ⊥ if ν(xi) = ⊤
and ν(¬xi) = ⊤ otherwise. Then we set

T ={x′m | ν(xm) = ⊤} ∪ {¬x′m | ν(xm) = ⊥}

∪{ℓpj | ν(ℓpj ) = ⊤} ∪ {ci | 1 ≤ i ≤ k}

Clearly there is a path from c1 to f in T ∪ {s}, as for all

1 ≤ i ≤ k there is at least one lpi satisfied by ν (and thus in T ),

and for all 1 ≤ i ≤ n one of x′i,¬x
′
i is in T . However, for

all (ℓpi , x
′
j) ∈ ∆ (resp. (ℓpi ,¬x

′
j)), if ℓpi ∈ T then ν(ℓpi ) = ⊤

thus, as ℓpi ≡ ¬xj (resp. xj ), ν(xj) = ⊥ (resp. ⊤) and x′j /∈ T
(resp. ¬x′j ). Therefore there is no path in T from c1 to f .

Now suppose there exists T such that there is a path from

c1 to f in T ∪{s} but not in T . Then there is a path in T ∪{s}
from c1 to f going through s. In particular for all 1 ≤ i ≤ n
at least one of x′i,¬x

′
i is in T . Let ν be a valuation such that

for all i, if ν(xi) = ⊤ then x′i ∈ T and ¬x′i ∈ T otherwise.

There is also a path from c1 to s in T , hence for all i there

is a pi such that ℓpi

i ∈ T . Then for all ℓpi

i of the form xj
for some j, the state ¬x′j cannot be in T as otherwise there

would be a path from c1 to ℓpi

i then to ¬x′j and finally to f in

T , not going through s. As a result we have x′j ∈ T and thus

ν(lpi

i ) = ν(xj) = ⊤. By a similar argument, if ℓpi

i = ¬xj
then ν(xj) = ⊥. Hence for every i there is a literal in the ith
clause satisfied by ν, thus the 3SAT instance is satisfiable.

c1

x1

¬x2

¬x1 s

x′1 ¬x′1

x′2 ¬x′2

f

Fig. 5. Construction for (x1 ∨¬x1 ∨¬x2). All states have a transition to a
sink state, not shown here.

Theorem IV.6. The importance computation problems for

reachability, Büchi, parity and explicit Muller conditions with

respect to Kripke structures are #P-complete.

Proof sketch. The idea is to reduce the problem of counting

the valuations satisfying exactly one literal of every clause of

a 3SAT formula ϕ, known to be #P-complete [49]. First we

transform the formula ϕ into another one ψ that is satisfied

by a valuation ν if and only if ν satisfies one literal per

clause in ϕ. We then reuse the construction of the usefulness

proof, and notice that the set of sets of states T making (s, T )
critical in the structure can be split into parts of (up to some

details) equal size, each one matching a valuation satisfying

the formula. Further, all such sets are of (again, up to some

details) the same size. This allows us to compute the number

of valuations satisfying the formula from the importance of s.
�

Remark 3. One can show with nearly identical proofs that

those problems keep the same complexity with co-Büchi,

safety or co-safety conditions.

Now we consider not only Büchi conditions, but Boolean

combinations of them, called Emerson-Lei conditions. As

expected, we get an intermediate complexity between those

for Büchi and LTL conditions.

Theorem IV.7. The value, usefulness and importance thresh-

old problems for Emerson-Lei conditions are PSPACE-

complete. Further, one can compute the importance of a set

of states in polynomial space.

Proof sketch. As Emerson-Lei games are known to be in

PSPACE [10], the upper bound follows easily. We prove the

lower bound by reduction of QSAT. We construct a structure

encoding a sequence of choices of the values of the variables

and partition its states into singletons. The structure contains

a state s, which we will prove to be critical if and only if the

QSAT formula is valid. We ensure that for all T , (s, T ) can

only be critical if T contains the states choosing the values of

the existential variables and not the other ones, by making one

of the players win without using s for sets T not satisfying

this condition.



We also ensure that Unsat wins if he owns s, thus s is

useful if and only if Sat wins with s. We make players

choose valuations of the variables infinitely many times, and

we encode in the specification that the player owning the first

variable xi such that xi and ¬xi are chosen infinitely often

loses. If both players play consistently, the game is decided

by the satisfaction of the QSAT formula. �

Remark 4. It was proven by Hunter and Dawar that Emerson-

Lei conditions are more succinct than Muller conditions

encoded with a coloring of the states and a list of sets of

colors [10]. As a result, the PSPACE lower bounds we obtained

for Emerson-Lei transfer to these succinct Muller conditions.

Hunter and Dawar also show that solving games with those

Muller conditions is PSPACE-complete, from which we can

easily infer the PSPACE-completeness of the value, usefulness

and importance threshold problem for this type of condition.

We continue our exploration with a more complicated

case, the Rabin and Streett conditions. We treat both cases

simultaneously as they are symmetric.

Remark 5. As solving Rabin (resp. Streett) games is NP-

complete (resp. coNP-complete), so is the value problem for

Rabin (resp. Streett) conditions [7].

Proposition IV.8. The usefulness problem for Rabin condi-

tions is ΣP
2-complete.

Proof sketch. The complete proof is in the appendix. We reduce

the dual of the ∀∃3SAT problem to the usefulness problem in

the case when states are partitioned in singletons. The set of

states T witnessing the usefulness of state s will encode the

valuation of the first set of variables, with a trick similar to

the one used in the proof of Proposition IV.5 to ensure that

the encoded valuation is correct.

As Sat plays for a Rabin objective, she has a positional

strategy, with which she has to choose for each clause a

satisfied literal. We use the Rabin condition to make sure that

Sat does not pick a literal and its negation. We also ensure that

Sat wins automatically with T ∪ {s} as soon as T encodes a

correct valuation, and then s is useful if and only if there exists

a set of states T (i.e. a valuation of the first variables) such

that for all positional strategy of Sat over T (i.e. valuation of

the second variables), Sat loses the game (i.e. the formula is

not satisfied). �

The theorem below uses the complexity class #PNP , which

is the class of counting problems P such that there exists a

nondeterministic polynomial-time Turing machine with an NP

oracle such that the answer of P on an input is the number

of accepting runs of the machine on that input.

Theorem IV.9. The importance computation problem for

Rabin conditions is #PNP-complete.

Proof sketch. The idea is simply to observe that in the

construction for Proposition IV.8, the sets of states witnessing

the usefulness of s are in bijection with the valuations of the

universal variables witnessing the non-validity of the ∀∃3Sat

formula (up to some technical details). In the appendix we

show that counting such valuations is #PNP-complete, from

which one can infer #PNP-completeness of the importance

computation problem. �

Corollary IV.10. As Streett conditions are exactly the com-

plements of Rabin ones, by Lemma III.8 and Proposition IV.8,

the usefulness problem for Streett conditions is ΣP
2-complete.

By the same argument, by Lemma III.8 and Theorem IV.9,

the importance computation problem for Streett conditions is

#PNP-complete.

V. IMPORTANCE VALUES IN CTL

We now adapt the definitions to deal with CTL specifica-

tions. A notion of degree of responsibility of a state in a Kripke

structure for the satisfaction of a CTL formula was already

given by Chockler, Halpern, and Kupferman [1]. While in their

approach the responsibility of a state was based on the set of

atomic propositions it chooses to satisfy, in ours it is based on

the set of outgoing transitions it chooses to allow.

In contrast to the previous sections, CTL has the additional

challenge that the formulas are evaluated on trees and not

on words. The first question that arises is the nature of

the nondeterministic choices in this setting. Our definitions

rely on the fact that the nondeterminism of a state may

be resolved in different ways by the two players. However,

due to the branching time nature of CTL, directly applying

this methodology does not make sense, as CTL formulas

already take the nondeterminism into account. This is why

we consider modal transition systems (MTS, as introduced in

Section II-A), in which there is another layer of choice: namely

determining the subset of may transitions that are present

in any state. Modal transition systems have been widely

studied as a formalism to capture the refinement of processes

from abstract specifications to concrete implementations [42],

[43]. They have been extended in various ways, and the

corresponding synthesis and verification problems have been

considered [50]–[52].

The second, and related, issue is that letting the players

construct the tree turn-by-turn runs into the problem that the

order in which different branches are considered will often

make a difference. In Section V-A we explain the difficulties

of defining a game which allows both players to construct a

tree generated by an MTS in a similar fashion as for LTL.

In Section V-B we define a notion of importance for CTL on

MTS, which we call two-turn CTL, where both players choose

once in the beginning which may-transitions they allow in

the states under their control. This choice induces a Kripke

structure on which the CTL formula can be evaluated.

However the order in which the choices are made affects the

importance values. Therefore, in Section V-C we consider also

the concurrent setting in which randomized strategies become

important, which we call Concurrent CTL.

Throughout, let M = (S,AP,∆must,∆may, init, λ) be a

modal transition system and let ϕ be a CTL formula.
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Fig. 6. A modal transition system with must-transitions depicted as solid
lines and may-transitions depicted as dashed lines. This example illustrates
the problem that has to be faced when defining turn-based CTL values (cf.
Example 3). The state in blue belongs to Sat, the state in red to Unsat.

A. Importance in an MTS with respect to a CTL specification

It is appealing to define a notion of importance that relies

on the ability of a set of states to guarantee the satisfaction

of a specification. However, in the case of CTL the fact that

formulas are evaluated on trees and not on runs forbids us

to make the players construct a tree in a similar fashion as

for LTL, as the winning player would heavily depend on the

order in which branches are constructed. This is illustrated in

the following example.

Example 3. Consider the formula [EF3∧EF4∧AG(¬(1 ∧
EX3∧EX4))]∨EF (2∧AX5) and the MTS in Figure 6. Say

we want to make the players construct a tree, and Sat wins if

this tree satisfies the above formula. We would have to decide

in which order the players make their choices. Say we make

Sat choose the successors of 1 before Unsat chooses the ones

of 2. Then Unsat wins by picking at least one of 3 and 4 as

successor if 1 has neither of them as successor, and the same

set of successors as 1 otherwise. If Unsat chooses first, then

Sat can pick 3 and not 4 if Unsat chose 4, and vice-versa

(and pick any one of the two if Unsat chose both or none).

Thus the winner depends on the (arbitrary) order in which we

let the players construct the tree.

We could define a success value where some sets of states

are seen as neutral, meaning that when Sat has this group

of states the game is undetermined, similarly to what was

done in [53]. However we wish to define the importance as

a numerical value, thus it is more practical that the success

value can only be 0 or 1.

B. Two-turn CTL importance

The idea of two-turn importance values is that a set of states

has value one if it can choose sets of outgoing transitions

such that the specification is satisfied no matter which sets

of outgoing transitions are chosen by the other states. This

definition puts more burden on the satisfier, but matches a

vision of the MTS as a way to represent a set of Kripke

structures (possible implementations of a system) rather than

a language of trees.

Definition V.1 (Two-turn importance values). Let

M = (S,AP,∆must,∆may, init, λ) be a modal transition

system, let SSat ⊆ S and let ϕ be a CTL specification. A

pure strategy for Sat is a function σSat : SSat → 2∆may such

that for all v ∈ SSat, ∆must(v) ⊆ σSat(v) ⊆ ∆may(v). We

define pure strategies σUnsat for Unsat symmetrically.

Two pure strategies σSat, σUnsat yield a Kripke structure,

whose states are the ones of M and transitions from a state

are given by the strategy of the player owning that state. We

call that Kripke structure K(σSat, σUnsat).

The value val2turn(SSat) of SSat is defined as 1 if there

exists a pure strategy σSat of Sat such that for all pure

strategies σUnsat of Unsat, K(σSat, σUnsat) satisfies ϕ, and 0
otherwise.

The importance is defined analogously to Definition III.5:

Given a partition S1, . . . , Sn of S, the importance of Si is

defined as:

I2turn(Si) =
1

n!

∑

π∈Πn

val2turn(S
π
≥i)− val2turn(S

π
≥i \ Si)

Example 4. (1) Consider the formula ϕ = A(EFa)Ub and

the modal transition system displayed in Figure 7. Observe

that the two ways in which ϕ may be violated are

• Unsat owns 0, 2 and 5 and allows the transition from 0
to 5 but not from 5 to 4 or 2 to 4, so that there is a path

labeled {a}∅ to 5, but no path from 5 to a state labeled

by an a.

• Unsat owns 1 and 2 and chooses transitions so that there

is no transition from 1 to 3 or from 2 to 4.

The importance is therefore distributed as follows:
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{a} ∅

{b}

{a}

∅

∅

{a, b}
I2turn(0) = 1/12
I2turn(1) = 1/4
I2turn(2) = 7/12
I2turn(3) = 0
I2turn(4) = 0
I2turn(5) = 1/12
I2turn(6) = 0

Fig. 7. MTS of Ex. 4 (1) and 2-turn importance values for ϕ = A(EFa)Ub

(2) In the example of Figure 8 we want to illustrate a

limitation of this notion with respect to what was discussed in

Section V-A. Such a mechanism can be illustrated by trying

to prove AG(a ⇒ EX(EFb)) on the following structure:
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∅

∅ {b}

{a, b} {a}

I2turn(0) = 1/3
I2turn(1) = 0
I2turn(2) = 0
I2turn(3) = 1/3
I2turn(4) = 1/3

Fig. 8. MTS of Ex. 4 (2) and 2-turn importance values for
ϕ = AG(a ⇒ EX(EFb))

In the 2-turn CTL framework, Unsat wins if and only if he

owns 0, 3 and 4 in order to create a path to 4, but no transition

from 4 to 2. Thus in any ordering of the states the last one

between 0, 3 and 4 will be the one switching the value.

However, one might want to design a richer model in which

we would also give the victory to Unsat when he owns either

0, 1 and 3 or 0, 1 and 4. The reason is that after allowing the

transition from 0 to 3 at the start, we would like to let Unsat

delete it. Then Unsat can not allow the transition from 1 to 2,

and ensure that there is no path from 3 to 2. Therefore there

is no path from a successor of 3 reaching a state labeled b.
This observation motivates the study of turn-based def-

initions of CTL importance in MTS for restricted sets of

formulas, which we leave open for future work.

In the appendix we prove the following results. The hard-

ness proofs consist in encoding choices of valuations of vari-

ables in SAT formulas as the players’ choices of transitions.

Proposition V.2. The value problem for two-turn CTL is

ΣP
2-complete.

Proposition V.3. The usefulness problem for two-turn CTL is

ΣP
3-complete.

Theorem V.4. The importance computation problem for two-

turn CTL is #PΣP
2 -complete.

Remark 6. We can define a dual game, in which Unsat plays

first, and then Sat. While in the former game Sat was at a

disadvantage, in this version Unsat is, as he is the one who

has to choose his strategy without knowing the adversary’s.

Let M be an MTS with a set of states S, let SSat ⊆ S
and let ϕ be a specification, the value of SSat with respect to

ϕ in the game where Unsat starts is 1 − val2turn(S \ SSat)
with val2turn(S \ SSat) the value of S \ SSat with respect to

¬ϕ in the game where Sat starts. From this one infers easily

that the value problem for the game where Unsat starts is ΠP
2-

complete and that, by an argument similar to the proof of III.8,

the usefulness problem is ΣP
3-complete and the importance

computation problem #PΣP
2 -complete.

C. Concurrent CTL importance

The previous version of the game breaks the symmetry

between the two players: We have to pick either Sat or Unsat

to play first (we chose Sat in the definition above). One may

prefer a version of this game in which we do not give any

such advantage to a player.

We now introduce a concurrent game, in which both players

choose a mixed strategy, in the form of a distribution over all

the possible choices of sets of transitions from their respective

states. The value of a set of states is the highest probability

such a mixed strategy can guarantee for Sat with this set

of states. The Nash Theorem guarantees the existence of a

Nash equilibrium, which means that the highest probability a

set of states can achieve for Sat is one minus the highest

probability its complement can achieve for Unsat. For an

introductory account on non-cooperative concurrent games, we

refer to [54].

Definition V.5 (Concurrent game induced by CTL formula).

Let M = (S,AP,∆must,∆may, init, λ) be a modal transition

system, let SSat ⊆ S and let ϕ be a CTL specification.

Let CS(M, SSat) be the set of pure strategies for Sat. A

mixed strategy for Sat is a probability distribution pS :
CS(M, SSat) → [0, 1]. We define CU (M, SUnsat) and pU in a

similar way. LetMS andMU denote the set of mixed strategies

of Sat and Unsat, respectively.

We consider the concurrent game with the payoff functions

ρSat(σSat, σUnsat) =

{

1 if K(σSat, σUnsat) satisfies ϕ

0 otherwise

and ρUnsat(σSat, σUnsat) = 1 − ρSat(σSat, σUnsat), for all

σSat ∈ CS(M, SSat), σUnsat ∈ CU (M, SUnsat). Given two

mixed strategies pS, pU , the expected payoff of Sat is

ESat(M, ϕ, pS , pU ) =
∑

σ∈CS(M,SSat)
σ′∈CU (M,SUnsat)

pS(σ)pU (σ
′)ρSat(σ, σ

′)

The expected payoff of Unsat is

EUnsat(M, ϕ, pS , pU ) = 1− ESat(M, ϕ, pS , pU )

. Finally, we define the value of a set of states SSat as

valconcur(SSat) = sup
pS∈MS

inf
pU∈MU

ESat(M, ϕ, pS , pU )

It is a direct consequence of Nash’s Theorem [55] that

valconcur(SSat) is the payoff of Sat obtained in any Nash

equilibrium of the concurrent game defined above. In partic-

ular we have

valconcur(SSat) = inf
pU∈MU

sup
pS∈MS

ESat(M, ϕ, pS , pU )

Definition V.6 (Concurrent importance values). Given a par-

tition of the states S1, . . . , Sn, we define the importance of a

set of states Si as usual:

Iconcur(Si) =
1

n!

∑

π∈Πn

valconcur(S
π
≥i)− valconcur(S

π
≥i \ Si)

Lemma V.7. The importance value of a set of states of an

MTS for a CTL specification with respect to Definition V.6

can be computed in exponential time.



Proof. We can check whether a Kripke structure satisfies a

CTL specification in polynomial time. Hence we can compute

the winner for all (exponentially many) pairs of pure strategies.

Computing the value of a set of states then amounts to solv-

ing a linear optimization problem with exponential input [56].

As the latter problem can be solved in polynomial time, the

former is in EXPTIME [57].

Lemma V.8. For each set of states SSat, we have

valconcur(SSat) = 1 if and only if val2turn(SSat) = 1. In

particular, as val2turn(SSat) ∈ {0, 1} for all SSat, the value

val2turn(SSat) is entirely determined by valconcur(SSat) (it is

its integer part).

Proof. Suppose val2turn(SSat) = 1, then Sat has a winning

pure strategy, thus wins with probability 1 if she applies it in

the concurrent game. Hence valconcur(SSat) = 1.

Now suppose val2turn(SSat) = 0, then for every pure

strategy σ of Sat, Unsat has a winning strategy against σ. As

a result, by taking a uniform distribution over its strategies,

Unsat can achieve a positive probability to win. As a result,

valconcur(SSat) < 1.

Remark 7. We can make a similar statement about the dual

of the two-turn CTL game, described in Remark 6. For all sets

of states and specifications the value given by the dual game

is 0 if and only if the concurrent value is.

Proposition V.9 (2-turn versus concurrent importance values).

Let S1, . . . , Sn be a partition of the states of an MTS. If a set

of states Si is useful with respect to the 2-turn Definition V.1,

then it is useful with respect to the concurrent Definition V.6.

Proof. Suppose Iconcur(Si) = 0. Then for all J ⊆ {1, . . . , n}
we have valconcur(

⋃

j∈J Sj) = valconcur(
⋃

j∈J∪{i} Sj).
Then by Lemma V.8, for all J we have

val2turn(
⋃

j∈J

Sj) = val2turn(
⋃

j∈J∪{i}

Sj)

and thus I2turn(Si) = 0.

The converse of Proposition V.9 does not hold as shown by

the following example.

Example 5. We consider the MTS displayed in Figure 9 and

the formula ϕ1 ∨ ϕ2 ∨ ϕ3, with:

ϕ1 = EX(b ∧ EXc) ∧AX(¬c ∧ ¬(a ∧ EXc))

ϕ2 = AXa ∧ EXEXc

ϕ3 = EXc ∧ EX(b ∧ EXc) ∧ EX(a ∧ EXc)

In this system, ϕ1 expresses that the only path from 0 to 3 is

through 2, ϕ2 that the only path is through 1 and ϕ3 that all

three paths exist.

0

1

2

3
∅

{a}

{b}

{c}

Iconcur(0) = 7/12
Iconcur(1) = 1/3
Iconcur(2) = 1/12
Iconcur(3) = 0

I2turn(0) = 1/2
I2turn(1) = 1/2
I2turn(2) = 0
I2turn(3) = 0

Fig. 9. MTS of Ex. 5

The computation of the concurrent game importance values

is lengthy, but straightforward. We observe that Sat has a pure

winning strategy whenever she has states 0 and 1, and Unsat

has a pure winning strategy whenever he has either 0 or 1 and

2. The remaining case is when Sat has 0 and 2 and Unsat

has 1, so Sat can choose to allow or not the paths 0, 3 and

0, 2, 3, and Unsat can choose to allow or not path 0, 1, 3.

Then one can observe that the case where Unsat allows

path 0, 1, 3 with probability 1/2 and Sat never allows 0, 3
and allows 0, 2, 3 with probability 1/2 is a Nash equilibrium,

thus the set {1, 3} has value 1/2. This example shows that in

some cases some sets of states may be useless from the 2-turn

CTL point of view but not from the Concurrent CTL one.

VI. CONCLUSION

We have introduced a new measure of the influence that

a part of a system has on whether a given specification is

satisfied. We studied it in the context of two model-checking

frameworks, LTL formulas against Kripke structures and CTL

formulas against modal transition systems. In most of the cases

we provided tight complexity bounds for the corresponding

computational problems. A general conclusion is that the

notion of importance value is natural, but still costly in terms

of complexity, especially in the case of LTL. This problem can

be mitigated by considering sets of states rather than single

states, and formulas from weaker logics.

We expect that the principle of designing a game and

computing the importance of a part of the system by shifting

its control from one player to the other can be easily adapted

to many model-checking problems. We have studied here

classical and basic logics, but one could try to find or design

logics more well-suited to the computation of the importance,

yielding lower complexities.

Another continuation of this work would be a fairer defi-

nition of the importance in the case of CTL model-checking.

Some subsets of CTL formulas may allow us to design a game

in which the players can simultaneously choose transitions on

the structure and prove the formula without disadvantaging

one of the two. This could be related to the notion of good-

for-games automata.

Finally we can extend the definition of value to probabilistic

games, by defining the value as the maximal probability of

success that Sat can achieve. This gives us a natural notion

of importance in probabilistic games that calls for study.
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APPENDIX

A. General properties

Proof of Lemma III.8. Let G be the game with the same

arena and initial state as G, but the complement objective Ω =
Sω \ Ω. Then for all 1 ≤ i ≤ n, the importance of Si is the

same for games G and G.

Proof. For all S′ ⊆ S let val(S′) be the value of S′ in G
and let I(Si) be the importance of Si in G for all i. For all

permutations π ∈ Πn let π̃ be the mirror permutation, such

that for all 1 ≤ i ≤ n, π̃(i) = π(n + 1 − i). As the function

associating its mirror to each permutation is a bijection from

Πn to itself, we can rewrite I(Si) as

I(Si) =
1

n!

∑

π∈Πn

val(Sπ̃
≥i)− val(Sπ̃

≥i \ Si)

As Sπ̃
≥i = S \ (Sπ

≥i \ Si), we have

val(Sπ̃
≥i) = 1− val(Sπ

≥i \ Si)

(Sat wins with states Sπ̃
≥i for objective Ω if and only if she

loses with states S \ Sπ̃
≥i for objective Ω). Similarly, we have

val(Sπ̃
≥i \ Si) = 1− val(Sπ

≥i)

.

As a result, for all π ∈ Πn,

val(Sπ
≥i)− val(Sπ

≥i \ Si) = val(Sπ̃
≥i)− val(Sπ̃

≥i \ Si)

Finally, we obtain

I(Si) =
1

n!

∑

π∈Πn

val(Sπ
≥i)− val(Sπ

≥i \ Si) = I(Si)

B. LTL Proofs

Proof of Theorem IV.3. The usefulness and importance

threshold problems for LTL with respect to Kripke structures

are 2EXPTIME-complete.

Proof. First, as one can solve LTL games in doubly exponen-

tial time, one can compute the value of any subset of the states

of K in doubly exponential time as well. There are exponen-

tially many such subsets, thus the computation of all those

values takes again doubly exponential time. The computation

of the importance then comes down to enumerating orderings

of the states and computing the sum along the way. As a

result, one can compute the importance and compare it with

τ in doubly exponential time, thus the importance threshold

problem (and thus also the usefulness one) is in 2EXPTIME.

For the hardness, we prove that the usefulness problem is

2EXPTIME-hard in the case where the states are partitioned

in singletons. The hardness of the usefulness and importance

threshold problems follow directly. We reduce the problem of

solving LTL games. Let K = (S,AP,∆, init, λ) be a Kripke

structure, let ϕ be an LTL formula, and let SSat ⊔SUnsat = S
be a partition of S between states of Sat and Unsat. We

consider the LTL game G induced by those parameters.

Consider the Kripke structure K′ = (S′,AP′,∆′, cs, λ
′)

with S′ = S ∪ {cs, cu, sink, t}, AP′ = AP ∪ S′, and

∆′ = ∆∪{(s, sink) | s ∈ S′}

∪{(cs, s) | s ∈ SUnsat} ∪ {(cu, s) | s ∈ SSat}

∪{(cs, cu), (cu, t), (t, init)}

and for all s ∈ S′, λ′(s) = λ(s)∪{s} if s ∈ S and λ′(s) = {s}
otherwise. In other words, every state is labeled with its own

name. See Figure 4 for an illustration of the construction.

Let ϕ′ = ¬ϕcheckUnsat ∨ (ϕcheckSat ∧X3ϕ) with

ϕcheckSat =¬Xsink

∧X¬cu ⇒ X2sink

∧X2t⇒ X3init

∧X3G(
∨

s∈SSat

s⇒ ¬Xsink)

ϕcheckUnsat =[Xcu ⇒ (¬X2sink ∧ (¬X2t⇒ X3sink))]

∧X3G(
∨

s∈SUnsat

s⇒ ¬Xsink)

This construction can be done in logarithmic space. The

intuition is that if some state in SUnsat belongs to Sat, then

she can win by going from cs to that state and then to sink.

Similarly if some state of SSat belongs to Unsat, then he can

win by going to that state from cu and then to sink. In both

cases players win without using t. The remaining case is when

Sat owns states of SSat and Unsat of SUnsat. Then if Unsat

owns t, he can win by going from there to sink, otherwise

the players have to play the original game G from init. As

a result, t is useful if and only if Sat wins G. We will now

prove that the state t is useful with respect to ϕ′ if and only

if Sat wins the original LTL game.

First suppose that Sat wins G, then we consider

T = {cs} ∪ SSat. Player Sat loses with T :

• If she goes from cs to sink she loses.

• If she goes from cs to a state of SUnsat, Unsat can then

go to some state different from sink and not satisfy

ϕcheckSat while satisfying ϕcheckUnsat (recall that in our

definition of Kripke structure we assume every state to

have at least one outgoing transition).

• If she goes from cs to cu, then Unsat can go to t
then sink and not satisfy ϕcheckSat while satisfying

ϕcheckUnsat.

Moreover, player Sat wins with T ∪ {t}, as she can start

by going from cs to cu and:

• If Unsat goes to sink from cu, he loses.

• If Unsat goes from cu to a state of SSat, Sat can then

go to some state different from sink and not satisfy

ϕcheckUnsat.

• If Unsat goes from cu to s, then Sat can go to init
and then win by playing a winning strategy for G, thus

satisfying ϕcheckSat ∧X3ϕ.



Thus t is useful.

Now suppose that t is useful, let T ⊆ S′ be a set of states

such that (t, T ) is critical. T has to contain cs as otherwise

Unsat can go from cs to sink directly and make Sat lose

with T ∪ {t}. If Sat had a winning strategy with T ∪ {t} not

going from cs to cu, then she would also win with just T by

applying this strategy as t is then never reached.

As a result, Sat with T ∪ {t} has to go from cs to cu. As

a consequence, T has to be disjoint from SUnsat, as otherwise

Sat with T could go from cs to a state in T ∩SUnsat and from

there to sink, unsatisfying ϕcheckUnsat. Further, cu cannot be

in T as otherwise Sat could win by going from cu to sink.

Finally, Unsat cannot win when Sat has T by going from

cu to a state different from t as otherwise he could win when

Sat has T ∪ {t} with the same strategy. As a consequence,

T has to contain SSat, as if not Unsat could go from cu to a

state in SSat \ T and then sink, winning the game.

Whether sink is in T is irrelevant to the game as there is

only one outgoing transition from sink. Thus we can assume

that T = {cs} ∪ SSat. Suppose Unsat wins G, and consider

the game where Sat has T ∪ {t}. As Sat has to go from cs
to cu to win, Unsat can then go from cu to s, and Sat has to

go to init. Then Unsat can apply his winning strategy for G,

as Sat loses if she goes to sink and thus cannot go out of S.

This makes Unsat win, contradicting the hypothesis that Sat

wins with T ∪ {t}. In conclusion, Sat wins G.

As a result, the usefulness and importance threshold prob-

lems are 2EXPTIME-complete for LTL.

Proof of Theorem IV.6. The importance computation

problem for reachability, Büchi, parity and explicit Muller

conditions with respect to Kripke structures are #P-complete.

Proof. First, the upper bound for reachability, Büchi and

explicit Muller conditions is obtained by constructing a Turing

machine guessing an ordering of {1, . . . , n}, and accepting if

the set J of indices coming after i in the ordering is such that

(i, J) is critical, which can be checked in polynomial time.

The number of accepting runs is the number of permutations

satisfying this condition, i.e., n!I(Si). The problem is there-

fore in #P.

For parity conditions, we rely on the result by Jurdziński

that solving parity games can be done by a polynomial-time

unambiguous Turing machine, i.e., a nondeterministic machine

that has at most one accepting run on every input [58].

This allows us to build a machine that takes as input a

Kripke structure K, a partition S1, . . . , Sn of the states, an

index i and a coloring c and guesses an ordering of {1, . . . , n}.

Let J be the set of indices coming after i in the permutation,

our machine can simulate the unambiguous Turing machine

in order to check that Sat wins with
⋃

j∈J∪{i} Sj and Unsat

wins with
⋃

j∈J Sj . The number of accepting runs of this

machine is precisely n!I(Si).

Our reduction to show #P-hardness is from the problem

of counting solutions to a 1-in-3SAT instance, i.e., given a

3SAT formula, counting the number of valuations such that

every clause has exactly one satisfied literal. This problem was

shown to be #P-complete by Creignou and Hermann [59].

Let ϕ = C1 ∧ C2 ∧ · · · ∧ Ck be a 3SAT formula, with

Cj = (ℓ1j ∨ ℓ2j ∨ ℓ3j) for all j, and let {x1, . . . , xn} be the

set of variables appearing in ϕ. We first construct the formula

ψ =
∧k

j=1 Cj ∧
∧n

j=1(xj ∨ ¬xj) ∧
∧k

j=1 C
1,2
j ∧ C2,3

j ∧ C3,1
j

with Ci1,i2
j = (¬ℓi1j ∨ ¬ℓi2j ).

One can check that a valuation ν : {x1, . . . , xn} → {⊥,⊤}
satisfies ψ if and only if it satisfies exactly one literal per

clause in ϕ.

Furthermore if a valuation satisfies ψ, then it satisfies

exactly one literal in every clause except for exactly one of

C1,2
j , C2,3

j , C3,1
j for each j, in which it satisfies both literals.

We reuse the construction from the proof of Proposi-

tion IV.5, with ψ as our 3SAT instance. Recall that this

construction used a reachability condition, easily expressible

as a Büchi, parity or Muller condition, making the reduction

work for all those winning conditions. As sink and f only

have one outgoing transition, they have no influence on the

satisfaction of a specification by a set of states, thus their

importance is 0. As a consequence, by Corollary III.7 they

can be ignored in the computation of the importance, thus we

will only consider set of states containing neither. Then a team

of states T makes (s, T ) critical if and only if it contains all

the ci but not s and there exists a valuation ν satisfying ψ such

that T contains exactly the states associated literals satisfied

by ν, except in clauses Ci1,i2
j in which ν satisfies both literals,

in which T contains either one of the two states or both.

As a result, for every valuation ν satisfying ψ, we have

exactly 3k sets of states T making s critical and matching that

valuation. Indeed, T is completely determined by ν except

for one Ci1,i2
j for each 1 ≤ j ≤ k, in which it has three

possibilities: contain the first literal, the second, or both.

A brief analysis shows that for each such valuation ν, there

are, for each 0 ≤ i ≤ k,
(

i
k

)

2k−i corresponding teams of size

2i+ k − i+ 2k + 2n (those teams being the ones containing

both literals in i out of the k clauses Ci1,i2
j in which ν satisfies

both literals), adding up to 3k teams.

Let N be the total number of states in the Kripke struc-

ture. By Corollary III.7, the number of valuations satisfying

ϕ with exactly one satisfied literal per clause is therefore
(N−2)!
N !M N !I(s), with

M =
k

∑

i=1

(

i

k

)

2k−i(i+ 3k + 2n)!([N − 2]− i− 3k − 2n)!

As M can be computed in polynomial time, the problem is

therefore #P-complete.

Proof of Theorem IV.7. The value, usefulness and im-

portance threshold problems for Emerson-Lei conditions are

PSPACE-complete.

Proof. The upper bounds arise from the complexity of solving

Emerson-Lei games, which are PSPACE-complete [10]. As

enumerating permutations of the states can be done in linear
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Fig. 10. Kripke structure corresponding to formula ∀x1,∃x2, x1 ∧ ¬x2

space, one can compute the importance of a set of states in

PSPACE.

For the lower bounds, we adapt a classic proof that

Emerson-Lei games are PSPACE-hard to our framework. We

only need to prove that the usefulness problem is PSPACE-hard

as the importance threshold problem reduces to it. Further, we

only use the particular case when the set of states is partitioned

in singletons.

We reduce the QSAT problem. Let Q1x1 · · ·Qkxkψ be a

QSAT instance, we consider the following Kripke structure:

• {ci, xi,¬xi | 1 ≤ i ≤ k} ∪ {s, winS, winU} is the set of

states, c1 is the only initial state.

• For all 1 ≤ i ≤ k there are transitions

(ci, xi), (ci,¬xi), (xi, ci+1), (¬xi, ci+1), with ck+1 = s.
There is also a transition (ci, winU ) if Qi = ∃ and

(ci, winS) if Qi = ∀. The remaining transitions are

(s, c1), (s, winU ), (winS , winS), (winU , winU ).

The labeling is irrelevant here. Figure 10 illustrates the con-

struction.

For all 1 ≤ i ≤ k let

ϕi = Inf(xi) ∧ Inf(¬xi) ∧
i
∧

j=1

¬(Inf(xj) ∧ Inf(¬xj))

expressing that i is the minimal i such that both xi and ¬xi
are visited infinitely many times.

We take as winning condition for Sat the formula

(ψ′ ∨ Inf(winS) ∨
∨

Qi=∀

ϕi) ∧ ¬Inf(winU ) ∧
∧

Qi=∃

¬ϕi

where ψ′ is ψ in which every xi has been replaced with

Inf(xi).
This construction can be done in logarithmic space. We will

now prove that the QSAT formula is valid if and only if state

s is useful.

Suppose the QSAT formula is valid, let T = {ci | Qi = ∃}.

Clearly Sat loses with T as by taking the transition to winU

from s, Unsat can guarantee that every play reaches winU

and thus wins.

As the QSAT formula is valid, there exist functions

(fi)Qi=∃ such that for all i fi : {⊤,⊥}i−1 → {⊤,⊥} and

for all ν : {x1, . . . , xk} → {⊤,⊥} such that for all fi we

have ν(xi) = fi(ν(x1), . . . , ν(xi−1)), ν satisfies ψ.

Further, as Sat makes all the existential choices, if Sat

chooses according to fi from every ci she owns, and takes the

transition to c1 from s. Suppose Sat takes the transitions to

xi and ¬xi infinitely many times, then as Sat plays according

to functions fi, it means there exists a j < i such that xj and

¬xj were visited infinitely many times.

As a consequence, the minimal i, if it exists, such that xi
and ¬xi are visited infinitely many times is such that Qi = ∀.

If it exists, then ϕi is satisfied, while ϕj is not satisfied for

any other j, and as winU is never visited, Sat wins.

If it does not exist, then for all j exactly one of xj ,¬xj is

visited infinitely many times, and as Sat plays according to

the fi, we have that ψ′ is satisfied. As no ϕj is satisfied and

winU is never visited, Sat wins.

Now suppose the QSAT formula is not satisfiable, and

suppose there exists T such that Sat wins with T ∪ {s} but

not with T . If there exists ci ∈ T such that Qi = ∀ or ci /∈ T
such that Qi = ∃, then either Sat can reach winS and win

with T , or Unsat can reach winU and win while Sat has

T ∪ {s}. Whether winS , winU or the xi,¬xi belong to T is

irrelevant as they have only one outgoing transition.

Thus we can assume that T = {ci | Qi = ∃}. By similar

arguments as above, there exist functions (fi)Qi=∀ such that fi
associates to the i−1 values of the previous literals a valuation

of xi, and any valuation respecting those functions does not

satisfy ψ. And again by similar arguments as above, playing

according to those functions allows Unsat to win the game

while Sat has T ∪ {s}, contradicting the hypothesis that Sat

wins with T ∪ {s}. As a result, s is not useful.

Proof of Proposition IV.8. The usefulness problem for

Rabin conditions is ΣP
2-complete.

Proof. For the upper bound we simply consider a nonde-

terministic Turing machine guessing a set of indices J and

calling an NP oracle twice to check that player Sat wins with
⋃

j∈J∪{i} Sj as set of states and loses with just
⋃

j∈J Sj .

For the lower bound, we reduce the dual of the ∀∃3SAT

problem, known to be ΠP
2-complete [60] [61]. Given a formula

ϕ = ∀(xi)1≤i≤n, ∃(yi)1≤i≤pψ with ψ =
∨k

i=1 Cli a ∀∃3SAT

instance, we are going to construct a Kripke structure K (with

states partitioned in singletons), a state s and a Rabin condition

R such that s is useful to K with respect to R if and only if

this formula is not valid.

First of all note that we can assume that every

clause contains an existential variable yi. Indeed,

any clause (ℓ1 ∨ ℓ2 ∨ ℓ3) can be replaced by

(ℓ1 ∨ ℓ2 ∨ y) ∧ (¬y ∨ ℓ3) ∧ (¬ℓ3 ∨ y), with y a fresh

variable which we add to the set of existential ones. One can

check that we obtain a formula equisatisfiable to the previous

one.



Consider the structure K whose states are elements of

{ci, xi,¬xi, c
′
i, x

′
i,¬x

′
i | 1 ≤ i ≤ n}

∪{skxi
, sk¬xi

, retxi
, ret¬xi

| 1 ≤ i ≤ n}

∪{yj,¬yj | 1 ≤ j ≤ p} ∪ {Cli | 1 ≤ i ≤ k} ∪ {s, sink}

whose initial state is c1 and whose transitions are as follows:

• There are transitions from init to itself, to c1 and to every

Clj .

• For all i there are transitions from ci to xi and ¬xi and

from xi and ¬xi to ci+1, with cn+1 = c′1.

• For all i, for all ℓ ∈ {xi,¬xi}, there are transitions

(ℓ, skℓ), (skℓ,¬ℓ′)

• We have transitions (c′i, x
′
i), (c

′
i,¬x

′
i), (x

′
i, c

′
i+1), (¬x

′
i, c

′
i+1)

for all 1 ≤ i ≤ n, with the convention c′n+1 = s.

• For all ℓ of the form xi or ¬xi, for all clause Clj
containing ℓ there are transitions (Clj , retℓ) and (retℓ, ℓ).

• For all ℓ of the form yi or ¬yi, for all Clj containing ℓ,
there is a transition (Clj , ℓ) and a transition (ℓ, c1).

• For all clause Clj there is a transition (s, Clj).

• There are transitions from all ci, c
′
i, xi,¬xi, x

′
i,¬x

′
i, Clj

to sink.

Figure 11 illustrates the construction. There are transitions

from the blue and white states to skip, which is omitted

on the picture. The blue states are the ones hardcoded to

belong to Sat, the grey ones are the ones that have only one

outgoing transition, and the white ones are the ones encoding

the valuation of the xi.

As states sink, retℓ, skℓ, yi,¬yi have only one outgoing

transition, whether they belong to Sat or Unsat has no

consequence on the game. In the proof that follows we will

ignore which player they belong to.

We take as Rabin condition

R ={({yi}, {¬yi}), ({¬yi}, {yi}) | 1 ≤ i ≤ p}

∪{({skℓ}, ∅), ({retℓ}, ∅) | 1 ≤ i ≤ n, ℓ ∈ {xi,¬xi}}

∪{(∅, {c′1, sink}), ({init}, ∅)}.

The construction can be done in logarithmic space. We will

now show that the formula ϕ is not valid if and only if s
is useful in the Kripke structure with respect to this Rabin

condition.

{({x2}, {¬x2}), ({¬x2}, {x2}), ({skx1
}, ∅),

({sk¬x1
}, ∅), ({retx1

}, ∅), ({init}, ∅)}

init

c1

x1

¬x1

c′1

x′1

¬x′1

s

Cl1 Cl2

retx1

skx1

sk¬x1

y1

¬y1

Fig. 11. Construction for the formula ∀x1∃x2(x2 ∨ ¬x2) ∧ (x1 ∨ ¬x2).
The sink state is omitted. The Rabin condition is displayed at the top of the
figure.

Suppose that ϕ is not valid, let ν be a valuation of the xi
not satisfying ∃(yi)ψ. We take as set of states T all the ci, c

′
i,

all the Clj , and the ℓ and ℓ′ such that ν(ℓ) = ⊤.

If Sat has states T ∪{s}, then she can pick any clause Clj ,

any literal ℓ in Clj of the form yi or ¬yi.
If Unsat loops on init forever, then Sat wins. If he chooses

to go to c1, then as there is a path P in T from c1 to s, Sat
can repeat indefinitely the cycle taking P from c1 to s, then

going through Clj , then ℓ, then back to c1. This allows Sat

to win as she goes through ℓ infinitely many times without

going through ¬ℓ.
If Unsat goes to some Clj from init then Sat can simply

go to some yi or ¬yi (recall that we assumed every clause to

contain an yi or ¬yi), then to c1 and from there play as in the

previous case.

If Sat has states T , then we proceed by contradiction.

Suppose Sat has a winning strategy, then as she is the player

with a Rabin winning condition, she has a positional one [62].

In particular from every Clj Sat picks either a successor retℓ
with ℓ in Clj or a successor yi or ¬yi in Clj . In the first

case, ℓ has to be satisfied by ν, otherwise after retℓ the game

reaches ℓ, from which Unsat goes to sink and wins.

Further, from every ci Sat has to pick the successor xi or

¬xi satisfied by ν, otherwise Unsat can then reach sink and

win.

From an xi belonging to Sat, she cannot go to skxi
as then

she ends up in ¬x′i, from where Unsat can reach sink. The

same argument stops her from going to sk¬xi
from ¬xi. As

a result, from c1 Sat has to follow a path to s.

As every retℓ to which Sat goes from a Clj is such that ν
satisfies ℓ, if there were a valuation of the yi satisfying every



literal yi or ¬yi to which Sat goes to from a clause, then we

could infer from the strategy of Sat a valuation µ such that ν
and µ combined satisfy ψ. This would contradict the fact that

ν does not satisfy ∃(yi)ψ, thus there is no such valuation µ.

As a result, there exist i, j1, j2 such that Sat picks yi from

Clj1 and ¬yi from Clj2 . As Sat has to go to s from c1, Unsat

can then alternately choose Clj1 and Clj2 as successors,

thus making Sat go infinitely many times through yi and

¬yi (and never through other yi or ¬yi). Then Unsat wins,

contradicting the fact that Sat is playing a winning strategy.

In conclusion, if ϕ is not valid, then s is useful for K with

respect to R.

Now we have to prove that if s is useful for K with respect

to R, then ϕ is not valid. Suppose the former, let T be a set

of states such that Sat wins with T ∪ {s} but not with T .

As Sat loses with T , init cannot be in T , otherwise Sat

could win by looping forever on init.
Suppose there exists a Clj /∈ T , then Unsat can win by

going to Clj from init and then to sink, contradicting the

fact that Sat wins with T ∪ {s}. Thus T contains all Clj .

If Unsat loops on init forever then Sat wins. If Unsat goes

from init to some Clj then Sat can go to some yi or ¬yi and

from there to c1. We can thus assume that the players always

end up reaching c1.

As Sat loses with T , there cannot be any path in T from

c1 to s going through a skℓ, otherwise Sat could go infinitely

many times through that skℓ. However as Sat wins with

T ∪ {s}, there has to be a path from c1 to s in T (otherwise

Sat would have to reach a state of Unsat with a transition to

sink and lose). Thus for all i, ci, c
′
i belong to T , as well as

one of xi,¬xi and one of x′i,¬x
′
i. Further, for all i, we cannot

have both xi and ¬x′i, or both ¬xi and x′i in T . As a result

for all i either xi, x
′
i ∈ T and ¬xi,¬x′i /∈ T or ¬xi,¬x′i ∈ T

and xi, x
′
i /∈ T . Let ν be the valuation of the xi such that

ν(xi) = ⊤ if and only if xi ∈ T .

Let µ be a valuation of the yi, suppose for the sake of

contradiction that the combination of ν, µ satisfies ψ. Then

for all j Clj has a transition either to a retℓ with ν(ℓ) = ⊤
or to an yi with µ(yi) = ⊤ or to a ¬yi with µ(yi) = ⊥.

Then by taking from each Clj the successor as stated above,

Sat wins as she will necessarily either go through a retℓ
infinitely many times, or through an yi or ¬yi infinitely many

times while never visiting the opposite literal.

We obtain a contradiction as Unsat is supposed to win the

game when Sat only owns T .

As a result, ν, µ cannot satisfy ψ, thus ϕ is not valid.

Proof of Theorem IV.9. The importance computation

problem for Rabin conditions is #PNP-complete.

Proof. We reduce the problem of counting, given a formula

ψ in 3CNF over variables x1, . . . , xn, y1, . . . , yp, the number

of valuations of the xi such that for all valuations of the yi,
the combination of those does not satisfy ψ.

First, let us justify that this problem is #PNP-hard. Let M
be a non-deterministic Turing machine with an oracle solving

an NP-complete problem (say SAT), let w be an input.

We can assume without loss of generality that M only

makes one query to the oracle, and accepts if and only if

the answer is negative.

Indeed, say M has to make queries ψ1, . . . , ψk to the oracle,

all over existential variables y1, . . . , yp. It can nondeterministi-

cally guess the answers of the oracle and delay the verification

to the end of the run.

Now let us define the order ≤ on valuations of the existential

variables as the lexicographic order, a valuation ν being

seen as the tuple (ν(y1), . . . , ν(yp)) and with the convention

⊥ ≤ ⊤. Then for the positive answers M can guess a minimal

witness valuation for the yi with respect to ≤, negate the

formula. The problem, given a SAT instance and a valuation

of the existential variables, of checking whether this is the

minimal valuation witnessing the satisfiability of the formula,

is clearly in coNP. As a result M can guess the minimal

valuation of the yi witnessing the satisfiability of the formula,

and then turn it into a SAT formula unsatisfiable if and only

if the guess is correct. As there is for every SAT formula a

unique minimal valuation satisfying it, M can only make one

correct guess, thus its number of runs is unchanged.

Finally, in the end M has to make the oracle check a

disjunction of ∃ formulas, it can rename variables in order to

merge them all into one equivalent SAT instance, and accept

if and only if the oracle rejects that formula.

We now use the classical encoding of Turing machines

in 3CNF formulas to construct a 3CNF formula ψ over

variables x1, . . . , xn, y1, . . . , yp, r1, . . . , rk such that for all

valuations of the xi, yi (encoding respectively the nondeter-

ministic choices of M and the ones of the oracle), there is

a non-accepting run of M on w if and only if there exists a

valuation of the ri (encoding the runs of M and the oracle)

satisfying the formula along with these valuations of xi, yi.

As a result, there is an accepting run of M on w if and

only if the formula ∀(xi)∃(yi), (ri)ϕ1 is not valid, and the

valuations of the xi witnessing non-validity are in bijection

with the runs of M .

Hence the problem is #PNP-hard.

Now in order to prove the hardness for the importance com-

putation problem for Rabin conditions, we use the same con-

struction as in the proof of Proposition IV.8. Let ϕ be a 3CNF

formula with k clauses over variables x1, . . . , xn, y1, . . . , yp,

we consider the Kripke structure from that proof.

Furthermore, a set of states T makes (s, T ) critical if

and only if it contains the ci, c
′
i, Cli, and the xi,¬xi, x′i¬x

′
i

encoding a valuation of the xi such that for all valuation of

the yi, the combination of the two valuations does not satisfy

ϕ.

Note that states skℓ, retℓ, yi,¬yi all have one outgoing

transition and thus have importance 0.

As those sets T all have the same size k + 4n, the

formula from Corollary III.7 gives us that the number of

valuations of the xi such that for all valuation of the yi,
the combination of the two valuations does not satisfy ϕ is

P !
N !(k+4n)!(P−k+4n)!N !I(s) where N is the number of states



in the Kripke structure and P the number of states minus the

skℓ, retℓ, yi,¬yi.
As P !

N !(k+4n)!(P−k+4n)! can be computed in polynomial

time, the importance computation problem for Rabin condi-

tions is #PNP-complete.

C. CTL proofs

Proof of Proposition V.2. The value problem for two-turn

CTL is ΣP
2-complete.

Proof. One can reformulate the problem as the existence

of a subset of outgoing transitions from SSat such that for

all subsets of outgoing transitions from SUnsat, the structure

yielded by those subsets of transitions satisfies ϕ.

As those subsets of transitions are of polynomial size, and

as the satisfaction of a Kripke structure by a CTL formula can

be checked in polynomial time, the problem is in ΣP
2 .

We now prove the lower bound, by reducing ∃∀SAT. Let

∃(xi)1≤i≤n, ∀(yi)1≤i≤kψ with ψ quantifier-free be a ∃∀SAT

instance. Without loss of generality, we assume that all the

negations in ψ have been pushed to the atomic propositions.

We consider the following modal transition system

M = (S,AP,∆must,∆may, init, λ) with:

• S = {sink} ∪ {ci, xi,¬xi | 1 ≤ i ≤ n + k}. The initial

state is c1.

• AP = {xi | 1 ≤ i ≤ n + k} and λ(xi) = {xi} for all

1 ≤ i ≤ n+ k and λ(s) = ∅ for all other s ∈ S.

• ∆must = {(xn+k, sink), (¬xn+k, sink), (sink, sink)}∪
{(xi, ci+1), (¬xi, ci+1) | 1 ≤ i ≤ n+ k − 1}.

• ∆may = {(ci, xi), (ci,¬xi) | 1 ≤ i ≤ n+ k}.

We split S into

SSat = {sink}∪{xi,¬xi | 1 ≤ i ≤ n+k}∪{ci | 1 ≤ i ≤ n}

and SUnsat = {ci | n+ 1 ≤ i ≤ n+ k}.

Informally, we are going to make players choose valuations

of the variables through their choices of transitions. The CTL

formula will then ensure that the choices of transitions yield

well-defined valuations, and that these valuations satisfy the

SAT formula.

With that goal in mind, we define the specification as

follows:

ϕ = (ϕSAT ∧ ϕcheckSat) ∨ ϕcheckUnsat

ϕcheckSat =

n
∧

i=1

EX2i−2(AX(xi) ∨ AX(¬xi)) ∧ EX⊤

ϕcheckUnsat = EX2n
n
∨

i=1

EX2i−2(EX(xi)∧EX(¬xi))∧AX⊥

and ϕSAT is ψ where every xp has been replaced by

EX2p−1xp and every ¬xp replaced by EX2p−1¬xp. Recall

that we assumed that ψ only has negations in front of atomic

propositions. This construction can be done in logarithmic

space.

The idea is that ϕSAT mimics ψ in order to check that

there exists a path in the structure obtained through the

game matching a valuation satisfying ψ. Meanwhile, formulas

ϕcheckSat and ϕcheckUnsat ensure that players never pick both

xi or neither.

Now for the formal proof, suppose there exists a valuation

ν1 : {x1, . . . , xn} → {⊤,⊥} such that for every valuation

ν2 : {xn+1, . . . , xn+k} → {⊤,⊥}, the combination of ν1 and

ν2 satisfies ψ.

Then let σ1(ci) =

{

xi if ν1(xi) = ⊤

¬xi otherwise
for 1 ≤ i ≤ n

and let σ2 be a pure strategy for Unsat. Clearly as

|σ1(ci)| = 1 for all i, the resulting structure satisfies ϕcheckSat.

If |σ2(ci)| = 0 for some i, then ϕcheckUnsat is satisfied, thus

so is ϕ. If Unsat gives every ci a successor, then there is a path

from c1 to sink, representing a valuation whose projection to

{x1, · · · , xn} matches ν1. As a result, ψ is satisfied by this

valuation, thus ϕSAT is satisfied by the structure yielded by

σ1 and σ2, hence so is ϕ.

Now suppose there exists a pure strategy σ1 for Sat such

that for every pure strategy σ2 for Unsat, σ1, σ2 yield a

structure satisfying ϕ. For all 1 ≤ i ≤ n, if we had |σ(ci)| = 0,

then neither ϕcheckSat nor ϕcheckUnsat would be satisfied, and

if we had |σ(ci)| > 1, then ϕcheckSat would not be satisfied,

and Unsat could win by choosing one outgoing transition for

each ci he owns, thereby unsatisfying ϕcheckUnsat. As a result,

σ1 selects exactly one of {xi,¬xi} for each i, thus we can

define ν1 the valuation such that

ν1(xi) =

{

⊤ if σ1(ci) = xi

⊥ otherwise
for 1 ≤ i ≤ n

Let ν2 : {xn+1, . . . , xn+k} → {⊤,⊥}, we define a

corresponding strategy for Unsat as

σ2(ci) =

{

xi if ν2(ci) = ⊤

¬xi otherwise
for n+ 1 ≤ i ≤ n+ k.

As σ1, σ2 yield a structure satisfying ϕ, either ϕSAT is

satisfied or ϕcheckUnsat is. Further, as in that structure every

state has exactly one successor, ϕcheckUnsat is not satisfied,

thus ϕSAT is. As a consequence, the combination of ν1 and

ν2 satisfies ψ.

We have constructed in logarithmic space a CTL formula, a

modal transition system and a subset SSat of states such that

Sat has a pure winning strategy on SSat if and only if ψ with

set of existential variables {x1, · · · , xn} is in ∃∀SAT.

As a result the value problem corresponding to defini-

tion V.1 is ΣP
2-complete.

Proof of Proposition V.3. The usefulness problem for two-

turn CTL is ΣP
3-complete.

Proof. Let M = (S,AP,∆must,∆may, init, λ) be an MTS,

let S1, . . . , Sn be a partition of S, let 1 ≤ i ≤ n, let ϕ be a

CTL formula.

In order to check the usefulness of s, we can guess a set

of indices J and a pure strategy σ1 :
⋃

j∈J∪{i} Sj → ∆may ,

make an adversary choose pure strategies σ′
1 :

⋃

j∈J Sj →
∆may and σ2 : S \ (

⋃

j∈J∪{i} Sj) → ∆may , and then guess a



pure strategy σ′
2 : S\

⋃

j∈J Sj → ∆may such that the structure

yielded by σ1, σ2 satisfies ϕ but the one yielded by σ′
1, σ

′
2 does

not.

This shows that the problem is in ΣP
3 .

Now let us show hardness. We reduce the problem ∃∀∃SAT.

Let ∃x1, . . . , xn, ∀y1, . . . , yk, ∃z1, . . . , zpψ with ψ quantifier-

free be a ∃∀∃SAT instance. We assume without loss of

generality that all negations have been pushed to the atomic

propositions.

We define the MTS M = (S,AP,∆must,∆may, init, λ)
as follows :

S ={xi,¬xi, c
x
i | 1 ≤ i ≤ n}

∪{yi,¬yi, c
y
i | 1 ≤ i ≤ k}

∪{zi,¬zi, c
z
i | 1 ≤ i ≤ p}

∪{x′i,¬x
′
i | 1 ≤ i ≤ n} ∪ {winS, winU , s}

AP =S

∆must ={(xi, c
x
i+1), (¬xi, c

x
i+1) | 1 ≤ i ≤ n− 1}

∪{(yi, c
y
i+1), (¬yi, c

y
i+1) | 1 ≤ i ≤ k − 1}

∪{(zi, c
z
i+1), (¬zi, c

z
i+1) | 1 ≤ i ≤ p− 1}

∪{(xn, c
y
1), (¬xn, c

y
1), (yk, c

z
1), (¬yk, c

z
1)}

∪{(x′i, x
′
i+1), (x

′
i,¬x

′
i+1) | 1 ≤ i ≤ n− 1}

∪{(¬x′i, x
′
i+1), (¬x

′
i,¬x

′
i+1) | 1 ≤ i ≤ n− 1}

∪{(xi,¬x
′
i), (¬xi, x

′
i) | 1 ≤ i ≤ n}

∪{(x′n, winS), (¬x
′
n, winS)}

∪{(winS , winS), (winU , winU ), (zp, s), (¬zp, s)}

∪{(cyi , winU ) | 1 ≤ i ≤ k}

∪{(czi , winS) | 1 ≤ i ≤ p}

∆may ={(cxi , xi), (c
x
i ,¬xi) | 1 ≤ i ≤ n}

∪{(cyi , yi), (c
y
i ,¬yi) | 1 ≤ i ≤ k}

∪{(czi , zi), (c
z
i ,¬zi) | 1 ≤ i ≤ p}

∪{(xi, winU ), (¬xi, winU ) | 1 ≤ i ≤ n}

∪{(x′i, winU ), (¬x
′
i, winU ) | 1 ≤ i ≤ n}

∪{(s, x′1), (s,¬x
′
1)}

λ(t) = {t} for every state t, and the initial state is init = cx1 .

We consider the formula

ϕ =(¬ϕSAT ∧ ϕcheckSat ∧ AG¬winU )

∨(EFwinS ∧ AG¬winU )

∨ϕcheckUnsat

with

ϕcheckSat =

AG(

k
∧

i=1

AX(yi) ∨ AX(¬yi)) ∧ (

k
∧

i=1

(EX2n+2i−2)EX⊤)

ϕcheckUnsat =

EF (

p
∨

i=1

EX(zi) ∧ EX(¬zi)) ∨

p
∨

i=1

(EX2n+2k+2i−2)AX⊥

and ϕSAT is ψ where every xi, yi, zi has been replaced by

respectively EFxi, EFyi and EFzi, and every ¬xi,¬yi,¬zi
by respectively AG¬xi, AG¬yi, AG¬zi. This construction

can be done in logarithmic space. The formulas ϕcheckUnsat

and ϕcheckUnsat ensure that the players never allow transitions

to both or neither variables from a cxi , c
y
i or czi state.

Suppose there exists T such that Sat wins with T ∪{s} but

loses with T . As all xi,¬xi, x′i,¬x
′
i have a may transition to

winU , there has to be either a path from cx1 to cy1 in T , or a

path in T from cx1 to some xi or ¬xi, from there a transition to

some x′i or ¬x′i, and a path in T from there to winS , otherwise

Unsat wins both games. In the second case, Sat wins without

s, thus we have to be in the first case. In particular for every

xi ∈ T , x′i /∈ T and for every ¬xi ∈ T , ¬x′i /∈ T .

As a result, there has to be a path in M (using may and must

transitions) to all cxi , c
y
i , c

z
i from cx1 . In order for the games

with T and T ∪{s} to have different winners, every cyi has to

be in T (as they have a may transition to winU ) and similarly

every czi has to not be in T . The formulas ϕcheckSat and

ϕcheckUnsat force both players to pick exactly one outgoing

transition from each cxi , c
y
i , c

z
i .

Now observe that the choice of transitions from s has no

impact on the satisfaction of ¬ϕSAT , ϕcheckSat, AG¬winU or

ϕcheckUnsat. As Unsat has a winning strategy when Sat only

has T , this same strategy will ensure that Sat can only win by

satisfying EFwinS ∧ AG¬winU in the game with T ∪ {s}.

In order to satisfy EFwinS ∧ AG¬winU , there has to be a

path in T from s to winS . As a result, at least one of x′i,¬x
′
i

has to be in T . As we have seen before, for every xi ∈ T ,

x′i /∈ T and for every ¬xi ∈ T , ¬x′i /∈ T , thus at most one of

xi,¬xi can be in T for all 1 ≤ i ≤ n. Further, we have seen

that at least one of xi,¬xi has to be in T .

As a result, the set of xi in T with 1 ≤ i ≤ n matches

a valuation ν1 of x1, · · · , xn. Let ν2 be a valuation of

y1, · · · , yk, suppose Sat picks transitions matching ν2 from

the cyi . As Unsat wins the game in which Sat owns only

T , and as the satisfaction of both ϕcheckSat and AG¬winU

is guaranteed by the strategy of Sat, the only possibility is

that ¬ϕSAT is dissatisfied, which Unsat can only achieve by

picking transitions matching a valuation ν3 of z1, · · · , zp such

that the combination of ν1, ν2 and ν3 satisfies ϕ. As a result,

the ∃∀∃SAT instance is true.

Now for the converse, suppose there exists a valuation ν1
such that for all ν2, there exists ν3 such that their combination

satisfies ψ. Let T be such that T∩{x1, . . . , xn,¬x1, . . . ,¬xn}



and T ∩ {x′1, . . . , x
′
n,¬x1

′, . . . ,¬xn} both match ν1, T con-

tains every cxi and cyi but does not contain czi for any 1 ≤ i ≤ p.

Let us first look at the game in which Sat has states T∪{s}.

As one of {xi,¬xi} belongs to T for all 1 ≤ i ≤ n, Sat can

choose transitions so that there is a path from c1 to cn+k+1,

and a transition from s to winS .

If Unsat gives no outgoing transition to one of the ci with

n + k + 1 ≤ i ≤ n + k + p, then ϕcheckUnsat is satisfied,

thus so is ϕ. As a result, there is a path from cn+k+1 to either

winS or s, and thus also winS . Hence ϕ is satisfied in every

case, Sat wins that game.

Now let us study the game in which Sat only owns T .

No matter which strategy Sat chooses, Unsat can guarantee

that EFwinS ∧ AG¬winU is not satisfied by allowing the

transition to winU from every xi,¬xix′i,¬x
′
i it owns, and not

allowing any transition from s. This way, all paths to winS go

through states with a transition towards winU . Unsat can also

ensure that ϕcheckUnsat is not satisfied by picking transitions

matching some valuation from the ci he owns.

Assume Sat has a winning strategy to ensure that

ϕcheckSat ∧ϕcheckSat ∧AG¬winU is satisfied. As ϕcheckSat

and AG¬winU are satisfied, the choices of transitions

of Sat from the ci have to match ν1 and a valuation

ν2 of {xn+1, · · · , xn+k}. There exists a valuation ν3 of

{xn+k+1, . . . , xn+k+p} such that the combination of ν1, ν2
and ν3 satisfies ψ. Then if Unsat chooses transitions from

the ci he owns matching ν3, ¬ϕSAT is not satisfied by the

resulting structure, contradicting the existence of a winning

strategy for Sat.

We have proven the proposition.

Proof of Theorem V.4. The importance computation

problem associated to definition V.1 is #PΣP
2 -complete.

Proof. The upper bound is easily obtained by considering the

machine which guesses an ordering π of the elements of the

partition S1, . . . , Sn, computes the set J of indices appearing

after s in π, and then calls a ΣP
2-oracle twice to determine

the winner when Sat owns
⋃

j∈J Sj and when Sat owns
⋃

j∈J∪{i} Sj . The number of accepting runs of the machine

is then precisely the number of permutations π matching the

above condition.

Now for the lower bound, we proceed in two steps. First

we show that the following problem is #PΣP
2 -complete.

Count∃∀∃SAT:






































Input: A SAT formula ψ over variables

{x1, . . . , xn, y1, . . . , ym, z1, . . . , zr}.

Output: The number of valuations of the xi such that

for all valuations of the yi

there exists a valuation of the zi such that

the combination of those valuations satisfies ψ.

Then we show that the importance computation problem

reduces to Count∃∀∃SAT.

For the first part, let M be a nondeterministic Turing

machine with an oracle solving a ΣP
2-complete problem (say

∃∀SAT). We can assume without loss of generality that M
only makes one query to the oracle, and accepts if and only

if the answer is negative.

Indeed, say M has to make queries ψ1, . . . , ψk to the oracle,

all over existential variables y1, . . . , ym and universal variables

z1, . . . , zr. It can nondeterministically guess the answers of the

oracle and delay the verification to the end of the run.

Now let us define the order ≤ on valuations of the existential

variables as the lexicographic order, a valuation ν being

seen as the tuple (ν(y1), . . . , ν(ym)) and with the convention

⊥ ≤ ⊤. Then for the positive answers M can guess a minimal

witness valuation for the yi with respect to ≤, negate the

formula. The problem, given a ∃∀SAT instance and a valuation

of the existential variables, of checking whether this is the

minimal valuation witnessing the satisfiability of the formula,

is clearly in coNP, thus also in ΠP
2. As a result M can guess the

minimal valuation of the yi witnessing the satisfiability of the

formula, and then turn it into a ∃∀SAT formula unsatisfiable

if and only if the guess is correct.

Finally, in the end M has to make the oracle check a

disjunction of ∃∀ formulas, it can rename variables in order

to merge them all into one equivalent ∃∀ formula, and accept

if and only if the oracle rejects that formula.

In all the above transformations, the number of accepting

runs of the machine stays the same as the non-deterministic

transitions we added (in order to guess minimal valuations

witnessing satisfiability of ∃∀SAT formulas) yield at most one

accepting run (as the existence of such a valuation is equivalent

to the existence of a single minimal one).

An adaptation of the classical construction proving that

∃∀SAT is ΣP
2-complete allows us to construct in polynomial

time, given an input w for M , a formula ϕ1((xi), (qi), (si))
such that the following conditions are equivalent for all

valuations ν of the xi, qi and si:

• ν satisfies ϕ1((xi), (qi), (si))
• the ν(xi) encode a sequence of non-deterministic choices

of M , the ν(si) encode a correct run of M following

those choices, and the ν(qi) encode the query made to

the oracle at the end of this run

We can also construct in polynomial time a for-

mula ϕ2((yi)1≤i≤m, (zi)1≤i≤r, (qi)1≤i≤p, (ui)1≤i≤k) simu-

lating the oracle such that a valuation of the qi satisfies

∃(yi), ∀(zi), ϕ2((yi), (zi), (qi), (ui)) if and only if the qi en-

code a valid instance of ∃∀SAT. As a result the formula

∀(yi), ∃(zi), (xi), (qi),

ϕ1((xi), (qi), (si) ∧ ϕ2((yi), (zi), (qi), (ui))

is satisfied by a valuation of the xi if and only if M has a run

accepting w following the choices encoded by this valuation.

Thus the number of accepting runs of M is precisely the

number of valuations of the si witnessing the validity of

∃(xi), ∀(yi), ∃(zi), (si), (qi),

ϕ1((xi), (qi), (si) ∧ ϕ2((yi), (zi), (qi), (ui)



The problem Count∃∀∃SAT is therefore #PΣP
2 -hard.

Finally, Count∃∀∃SAT can be reduced to the importance

computation problem for 2-turn CTL using the same construc-

tion as in the proof of Proposition V.3. Note that the xi,¬xi
for all n+1 ≤ i ≤ n+k+p, as well as winS , winU , all have

no outgoing may transitions, thus have importance 0 and thus,

by a similar argument as in Lemma III.6, can be ignored in

the computation of the importance. We will now only consider

sets of states containing none of those. Then one can observe

that the teams T allowing player Sat to win with T ∪{s} but

not with T are exactly the teams T such that

• T contains all the ci for ≤ n+ k and no other ci.
• T ∩{xi,¬xi | 1 ≤ i ≤ n} and T ∩{x′i,¬x

′
i | 1 ≤ i ≤ n}

match a same valuation ν witnessing the validity of the

∃∀∃SAT formula.

Then we have that all the teams T such that (s, T ) is

critical (and containing none of the aforementioned states with

importance 0) have the same size M .

We obtain that the number of valuations witnessing the

validity of the ∃∀∃SAT formula is P !
N !M !(P−M−1)!N !I(s), with

N the number of states in the constructed MTS and P the

number of states minus the xi,¬xi for n+ 1 ≤ i ≤ n+ k + p,

s, winU and winS . Hence we have a reduction from

Count∃∀∃SAT to the importance problem for 2-turn CTL.

As P !
N !M !(P−M−1)! can be computed in polynomial time, the

latter problem is #PΣP
2 -complete.
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