
A Logic for
Locally Complete Abstract Interpretations

Roberto Bruni∗, Roberto Giacobazzi‡, Roberta Gori∗, Francesco Ranzato§
∗University of Pisa, Italy
‡University of Verona, Italy
§University of Padova, Italy

In loving memory of Anna Maria De Paolis and Dina Gorini

Abstract—We introduce the notion of local completeness in
abstract interpretation and define a logic for proving both the
correctness and incorrectness of some program specification.
Abstract interpretation is extensively used to design sound-by-
construction program analyses that over-approximate program
behaviours. Completeness of an abstract interpretation A for
all possible programs and inputs would be an ideal situation
for verifying correctness specifications, because the analysis can
be done compositionally and no false alert will arise. Our first
result shows that the class of programs whose abstract analysis
on A is complete for all inputs has a severely limited expres-
siveness. A novel notion of local completeness weakens the above
requirements by considering only some specific, rather than all,
program inputs and thus finds wider applicability. In fact, our
main contribution is the design of a proof system, parameterized
by an abstraction A, that, for the first time, combines over- and
under-approximations of program behaviours. Thanks to local
completeness, in a provable triple `A [P] c [Q], the assertion
Q is an under-approximation of the strongest post-condition
post[c](P) such that the abstractions in A of Q and post[c](P)
coincide. This means that Q is never too coarse, namely, under
mild assumptions, the abstract interpretation of c does not yield
false alerts for the input P iff Q has no alert. Thus, `A [P] c [Q]
not only ensures that all the alerts raised in Q are true ones, but
also that if Q does not raise alerts then c is correct.

I. INTRODUCTION

Technology, you can’t live without. But any coin has two
sides and software failures are increasingly more frequent and
their consequences are more disruptive in the Digital Age than
ever before. Quoting Dijkstra’s speech at the Turing Award
lecture [11], the only effective way to raise the confidence
level of a program significantly is to give a convincing proof
of its correctness. Since correctness proof attempts may fail
even when the program is correct, also incorrectness proofs
would be needed to catch actual bugs, because you can’t fix
what you can’t see. Code-review processes and test-driven
development are widely adopted best practices in software
companies. Nevertheless, the problem is far from being solved
and static reasoning should be extended to bug catching, as
advocated by O’Hearn’s incorrectness logic (IL) [24].

Static program analysis has been investigated and used
for over half century and is a major methodology to help
programmers and software engineers in producing reliable
code [4], [12], [15], [18], [23], [27], [28]. Static analysis is
based on symbolic reasoning techniques to prove program
properties without running them. Given a program c and a

correctness specification Spec, the aim of a static verification
is either to prove that the behaviour of c satisfies Spec or to
raise some alerts that point out which circumstances may cause
a violation of Spec. The conditional is needed because, starting
with the fundamental works by Hoare [18], program verifiers
tend to over-approximate the program behaviour: this is an
unavoidable consequence of the will to solve an otherwise un-
decidable analysis problem. As any alerting system, program
analysis turns out to be credible, when few, ideally zero, false
alerts are reported to the user [9]. The dual perspective has
been recently tackled by incorrectness logic [24]: exploiting
under-approximations, any violation exposed by the analysis is
a true alert. This makes IL a credible support for code-review,
but Spec may be violated even when no alert is reported.

Abstract interpretation [6]–[8] is a well-established frame-
work for designing sound-by-construction over-approxima-
tions of the program behaviour. Given an abstraction A,
instead of verifying whether the strongest post-condition
post[c](P) for a program c and a pre-condition P (also written
JcKP) satisfies a correctness specification Spec, a (sound) ab-
stract over-approximation A(post[c](P)) is considered. While
it is obvious that if A(post[c](P)) satisfies Spec then the
program is correct, it may happen that A(post[c](P)) does
not satisfy Spec even if the program is correct, because
A introduced false alerts. Once the specification Spec and
its abstract approximation in A coincide, the ideal program
analysis is achieved by assuring that a sound analysis is also
complete, so that no false alert is ever raised.

Technically, in a domain A of abstract program stores,
with abstraction and concretization maps α and γ resp.,
any store property P is, in general, over-approximated by
A(P) = γα(P) ⊇ P . Assuming that Spec is expressible
in A means that Spec = A(Spec) holds. For instance, in
the abstract domain of intervals Int (see Example III.5) the
property x ≥ 0 is expressible by the infinite interval [0,+∞].
By contrast, x 6= 0 is not expressible in Int, since the least
over-approximating interval is Int(x 6= 0) = Z) Z r {0}.
An abstract semantics associates with each program c a
computable function postA[c] : A → A on the abstraction A
(also written JcK]A). By soundness of abstract interpretation, if
γ(postA[c]α(P)) ⊆ Spec then {P} c {Spec} is a valid Hoare
triple. However, when γ(postA[c]α(P)) 6⊆ Spec we cannot
conclude that {P} c {Spec} is not valid, because any witness
in γ(postA[c]α(P)) r Spec is just a potentially false alert.978-1-6654-4895-6/21/$31.00 ©2021 IEEE

Complete abstract interpretations, instead, do not raise false
alerts for expressible specifications Spec, namely completeness
guarantees that {P} c {Spec} is valid iff γ(postA[c]α(P)) ⊆
Spec holds. Thus, any (complete) abstract analysis of Spec is
the same as verifying Spec concretely.

The Problem: According to a well-established definition
[6], [7], completeness in abstract interpretation is a global
notion, meaning that it involves all possible pre-conditions.
More precisely, A is complete for a program c when:

for all P, postA[c]α(P) = α(post[c]P) holds.

As pre-conditions P are universally quantified, completeness
is very hard to achieve in practice, even for very simple
programs. Moreover, while completeness is expressed exten-
sionally, namely referring to the semantics post[c] of the whole
program c, any effective abstract interpretation postA[c] is
intensional, meaning that it needs to analyze the program c
inductively on its syntax. Therefore, a complete and compo-
sitional abstract interpretation is even harder to design [3].

The case of Boolean guards occurring in programs is partic-
ularly challenging, because they are rarely complete. Letting
Σ be the set of (concrete) stores, completeness of a guard b?,
viewed as predicate transformer Jb?K : ℘(Σ) → ℘(Σ), in an
abstraction A can be reduced to check if for any input P ,

γα(Jb?KP) = γα(Jb?Kγα(P)) (1)

more concisely written as A(Jb?KP) = A(Jb?KA(P)). Be-
cause both branches of a conditional or loop statement must be
taken into account, the same condition applies to the negative
test ¬b?. For instance, the interval domain Int is complete for
a simple rectifier program, known as ReLU in (deep) neural
networks, although its Boolean guards are not complete:

ReLU(x) =
4
if (x < 0) then x := 0 else skip

Int is trivially complete for both x := 0 and skip, the guards
x < 0? and x ≥ 0? are both expressible in Int as, resp.,
x ∈ [−∞,−1] and x ∈ [0,∞], but the lack of completeness
of the abstract interpretation of the two guards prevents us
to inductively prove completeness for ReLU. For example,
when P ≡ x ∈ {−1, 1}, we have that Int(Jx ≥ 0?KP) =
Int({1}) = [1, 1], but Int(Jx ≥ 0?KInt(P)) = Int(Jx ≥
0?K[−1, 1]) = [0, 1], so that Int is not complete for x ≥ 0?
It is precisely the inductive reasoning, necessary to design a
generic abstract interpreter for a programming language, that
hampers recognizing the completeness of ReLU in Int.

Main Results: In Section III, we provide some neces-
sary and sufficient conditions that guarantee completeness
of Boolean guards on an abstract domain A. This condition
requires that b? and ¬b? are both expressible in the abstract
domain and the same has to apply to the union of any
two concretizations of abstract points below α(Jb?K) and
α(J¬b?K). This requirement is very strong: for example, this
condition allows us to prove that any guard on the interval
domain Int is incomplete (cf. Example III.5).

Since completeness is sporadic, in Section IV we investigate
locally complete abstract interpretations, a natural weakening

of completeness. Instead of requiring completeness on all
possible inputs, a locally complete abstract interpretation is
complete just locally to some given set of possible inputs.
In the case of a guard b? with input P , local completeness
amounts to check that condition (1) holds for that particu-
lar P . For example, any guard is trivially locally complete
w.r.t. any input P that is expressible in the abstract domain.
In the latter case, for the above program ReLU it is easy to
check that when the input is any interval or any set of integers
all having the same sign, e.g., either all nonnegative or all
negative, then both guards x < 0? and x ≥ 0? turn out to be
locally complete and therefore we can inductively conclude
that ReLU is locally complete with respect to any such input.

It turns out that local completeness allows us to prove
the absence of false alerts for programs which are globally
incomplete on a given abstract domain. As a simple example,
consider the program Abs for computing the absolute value:

Abs(x) =
4
if (x < 0) then x := −x else skip

Abs is globally incomplete on the abstract domain Int. For
instance, with input P ≡ x ∈ {−7, 7}, Int(post[Abs]P) =
[7, 7] while Int(post[Abs]Int(P)) = Int(post[Abs][−7, 7]) =
[0, 7]. Therefore, even if the pre-condition P does not include
zero, an interval analysis of Abs produce a false alert when
checking the specification Spec = x > 0. As above for ReLU,
this is not the case when the inputs have all the same sign.
Instead, a (true) alert for Spec can be raised only if the set of
input values truly contains zero.

Our main contribution is presented in Section V: a logical
proof system `A for locally complete abstract computations
parameterized by an abstraction A, called LCLA (Local Com-
pleteness Logic on A). The statements are Hoare-like triples
`A [P] c [Q] asserting that:

(i) Q is an under-approximation of post[c]P ;
(ii) post[c] is locally complete for input P on A;

(iii) Q and post[c]P have the same over-approximation in A.
These properties of any provable triple `A [P] c [Q] allow
us to distinguish between true and false alerts raised by an
abstract interpretation postA[c]α(P) for verifying any correct-
ness specification Spec that is expressible in A.

The two distinctive rules of LCLA are:

post[e] locally complete for P
`A [P] e [post[e](P)]

(transfer)

P ′⇒P⇒A(P ′) `A [P ′] c [Q′] Q⇒Q′⇒A(Q)

`A [P] c [Q]
(relax)

The rule (transfer) checks that a basic transfer expression e,
such as a Boolean test b? or an assignment x := a, is locally
complete for P before providing the output of post[e] on P
as post-condition. The consequence rule (relax) is the key
principle of LCLA that combines an over- and under-approx-
imating reasoning: (relax) allows us to infer a post-condition
that defines an under-approximation Q of the exact behavior as
well as a sound over-approximation A(Q) of it, i.e., such that
Q ⇒ post[c](P) ⇒ A(post[c](P)) = A(Q) holds. Likewise

>

⊥

Hoare
Logic

O’Hearn
Logic

A(post[c]P)•

•post[c]P

LCLA

Fig. 1: Local Completeness Logic LCLA.

the consequence rules of de Vries and Koutavas’ reverse Hoare
logic [10], O’Hearn’s incorrectness logic [24] and Raad et
al.’s incorrectness separation logic [25], the logical ordering
between pre-conditions P ′ ⇒ P and post-conditions Q⇒ Q′

in the premises of (relax) is reversed w.r.t. the canonical
consequence rule of Hoare logic and this is needed because
our post-conditions Q are always under-approximations.

The ingenuity of (relax) is to constrain the under-approx-
imating post-condition Q to have the same abstraction as
the exact behaviour, which is needed for preserving local
completeness. This twist is fundamental to guarantee the
effectiveness of any triple derivable in LCLA. Fig. 1 illustrates
the interplay between LCLA approximations (the red-filled
region), Hoare logic for correctness (upper diamond, any over-
approximation of post[c](P)), O’Hearn logic for incorrectness
(lower diamond, any under-approximation of post[c](P)) and
locally complete abstract interpretation A (red bordered region,
any Q such that A(Q) = A(post[c]P)). In particular, it shows
the effect of the (relax) rule that allows us to shrink the post-
condition of our triples, up to some boundary that fringes the
assertions of O’Hearn’s IL. This is made without much loss of
precision: under mild conditions on Spec, any approximation
Q in the red-filled region guarantees that if A(postA[c]P)
reports some alert, then Q contains a true alert and, viceversa,
any alert in Q is a true one. The key point is that any triple
`A [P] c [Q] of LCLA provides an under-approximation Q
which is not too coarse. More precisely, given a correctness
specification Spec expressible in A, two scenarios can occur:

(a) Spec is satisfied: Abstract interpretation in A, as well as
any triple `A [P] c [Q] derivable in LCLA, allow to conclude
that Spec holds. This is not true for Hoare logic: although
{P} c {Spec} is a valid triple, it is also possible to derive some
triple {P} c {Q} whose post-condition Q includes some false
alert. Using incorrectness logic, no true alert can be found and
no conclusion can be drawn about the validity of Spec.

(b) Spec is violated: Since Spec is expressible in A, then any
triple `A [P] c [Q] of LCLA will expose a true alert witnessing
that Spec is violated. On the contrary, abstract interpretation in

A, as well as Hoare logic, can also expose false alerts together
with true ones. In IL, although it is possible to derive triples
`IL [P] c [Q] where Q exhibits some (true) alerts, other triples
for P and c may have no alert at all, e.g., `IL [P] c [ff].

Theorem V.4 states that our proof system is sound for the
previously emphasized properties (i–iii). To prove a result
of logical completeness1 of LCLA for a program c, we add
two more ingredients: (1) an infinitary rule (limit) for loops
and (2) the assumption that all the basic transfer functions
occurring in c are globally complete on A.

Finally, in Section VI, we show that IL coincides with
LCLA when the singleton trivial abstraction Atr =

4
λX.Σ is

taken as abstract domain. The key observation is that Atr is
globally complete for every transfer function, and thus the
premises of the rule (transfer) are always trivially satisfied.
Atr is also the only abstraction for which the proof system
can be logical complete for a Turing complete language. Due
to space constraints, all the proofs are omitted.

II. BACKGROUND

The identity function on a set X is denoted idX and the
subscript is omitted when given by the context. If f : X → Y
then f is overloaded to denote its (often called collecting)
lifting f : ℘(X) → ℘(Y) to sets of values: f(S) =

4 {f(x) |
x ∈ S}. Given two functions f : X → Y and g : Y → Z
we denote with g ◦ f , or simply gf , their composition. For
f : X → X and n ∈ N we let fn : X → X be defined
inductively as: f0 =

4
idX and fn+1 =

4
f ◦ fn.

In ordered structures such as posets, CPOs, and complete
lattices, we typically use ≤ to denote a partial order relation,
∨ for lub, ∧ for glb, > and ⊥ for, resp., greatest and least
elements. We will use ℘(X) to denote the powerset complete
lattice over a set X ordered by inclusion, in which case
the standard symbols ⊆, ∪, etc., will be used to denote its
order-theoretic structure. If C is a poset and l, u ∈ C then
[l, u] =

4 {x ∈ C | l ≤ x ≤ u} denotes the interval between l
and u. Order-preserving functions between posets are called
monotone. For f, g : C → C the notation f ≤ g means that for
all c ∈ C, f(c) ≤ g(c). A function f between complete lattices
is additive (resp. co-additive) when f preserves arbitrary lubs
(resp. glbs). The least fixpoint of a function f : C → C on a
poset C is denoted, when it exists, by lfp(f). If f is (Scott)
continuous on a complete lattice, then lfp(f) = ∨n∈Nfn(⊥).

A. Abstract Interpretation

Abstract interpretation [6], [21], [27] is used to approximate
a program semantics on a domain C on some abstraction A of
C. Since different abstractions are possible, we use subscripts
such as ≤A and ∨A to disambiguate the underlying carrier set
A and omit the subscripts in the case of C. Given complete lat-
tices C and A, a pair of functions α : C → A and γ : A→ C
forms a Galois connection (GC, also called adjunction) when
for all c ∈ C, a ∈ A, α(c) ≤A a ⇔ c ≤ γ(a) holds. In a
GC C and A are called, resp., concrete and abstract domain

1The adjective logical serves to distinguish the usual notion of completeness
for a proof system from the notion of completeness in abstract interpretation.

and α and γ are called, resp., abstraction and concretization
maps. We only consider GCs such that αγ = idA, called
Galois insertions (GIs), where α is onto and γ is 1-1. Let
us recall that α is additive and γ is co-additive. We use
Abs(C) to denote the class of abstract domains of C and write
Aα,γ ∈ Abs(C) to make explicit the maps 〈α, γ〉. An abstract
domain Aα,γ ∈ Abs(C) is strict when γ(⊥A) = ⊥ and a
concrete value c ∈ C is expressible in A when γα(c) = c,
while if c < γα(c) holds then c is (strictly) approximated in
A. Notice that γ(A) and C r γ(A) are the sets of concrete
values which are, resp., expressible and approximated in A. An
abstract domain A is trivial if it is isomorphic to the concrete
domain C (i.e., γα = id) or it is a singleton (i.e., γα = λx.>).

1) Correctness: Given an abstract domain Aα,γ ∈ Abs(C)
and a concrete operation f : C → C (a generalization
to n-ary functions of type Cn → C can be easily done
pointwise), an abstract function f] : A → A is a correct
(or sound) approximation of f when αf ≤A f]α holds. It
is known that if f] is a correct approximation of f then we
also have fixpoint correctness when least fixpoints exist, i.e.,
α(lfp(f)) ≤A lfp(f]) holds. The best correct approximation
(bca) of f in A is the abstract function fA =

4
α ◦ f ◦ γ. Any

other abstract function f] : A→ A is a correct approximation
of f iff fA ≤A f], i.e. f] is less precise than fA.

2) Completeness: The abstract function f] is a complete
approximation of f (or just complete) if α ◦ f = f] ◦α holds.
The abstract domain A is called a complete abstraction for f
if there exists a complete approximation f] : A → A of f .
Completeness of f] intuitively encodes the greatest achievable
precision when abstracting the concrete behaviour of f on the
abstract domain A. In a complete approximation f] the only
loss of precision is due to the abstract domain and not to the
abstract function itself. Analogously to soundness, complete-
ness transfers to fixpoints, meaning that if f] is complete for f
then fixpoint completeness α(lfp(f)) = lfp(f]) holds. It turns
out that there exists an abstract function f] : A→ A such that
completeness α ◦ f = f] ◦α holds iff α ◦ f = α ◦ f ◦ γ ◦α iff
(γα) ◦ f = (γα) ◦ f ◦ (γα) = γ ◦ fA ◦α. Thus, the possibility
of defining a complete approximation f] of f on some abstract
domain A ∈ Abs(C) only depends upon the bca fA of f in
A, i.e., completeness is a property of the abstract domain only
and any trivial abstract domain is complete for any f . In the
following, we write both “A is complete for f” and “f is
complete on A”, and, when convenient, we use A in place of
the function γα : C → C (which is an upper closure operator
on C), as we did in the Introduction, e.g., for Int({−7, 7}).
We write CA(f) to denote that A is complete for f :

CA(f) ⇔4 A ◦ f = A ◦ f ◦A . (2)

B. Regular Commands
Following O’Hearn [24] (see also Winskel [29, Chapter 14,

Exercise 14.4]) we consider a language of regular commands:

Reg 3 r ::= e | r; r | r ⊕ r | r∗

which is general enough to cover deterministic imperative
languages as well as other programming paradigms that in-

clude, e.g., nondeterministic and probabilistic computations,
and equational systems such as Kleene algebras with tests [19],
[20]. The language is parametric on the syntax of basic transfer
expressions (or functions) e ∈ Exp, which provide the basic
commands and can be instantiated with different kinds of
instructions such as (nondeterministic or parallel) assignments,
(Boolean) guards or assumptions, error generation primitives,
etc. More generally, regular commands can be used in the
context of strategy languages for rewrite systems, where basic
instructions can serve to represent enabling conditions for the
applicability of rewrite rules or their application [2], [14],
[13, Section 4]. Then, the term r1; r2 represents sequential
composition, the term r1 ⊕ r2 represents a choice command
that can behave as either r1 or r2, and the term r∗ is the Kleene
iteration of r where r can be executed 0 or any bounded number
of times in a sequence. As an abbreviation, we write rn for
the sequence r; ...; r of n instances of r and let Exp(r) be the
set of basic transfer expressions occurring in r ∈ Reg.

1) Concrete semantics: We assume that basic transfer ex-
pressions have a semantics L ·M : Exp→ C → C on a complete
lattice C such that LeM is an additive function. This assumption
can be done w.l.o.g. in Hoare-like (or collecting) program
semantics, since the basic transfer functions are always defined
by an additive lifting, namely, they are defined as successor or
predecessor transformer of a transition relation The concrete
semantics J·K : Reg → C → C of regular commands is
inductively defined as follows:

JeKc =
4 LeMc Jr1 ⊕ r2Kc =

4 Jr1Kc ∨ Jr2Kc
Jr1; r2Kc =

4 Jr2K(Jr1Kc) Jr∗Kc =
4 ∨{JrKnc | n ∈ N}

(3)

2) Abstract Semantics: The abstract semantics of regular
commands J·K]A : Reg → A → A on an abstract domain
Aα,γ ∈ Abs(C) is defined by structural induction as follows:

JeK]Aa =
4 JeKAa = (α ◦ JeK ◦ γ)a

Jr1; r2K
]
Aa =

4 Jr2K
]
A(Jr1K

]
Aa)

Jr1 ⊕ r2K
]
Aa =

4 Jr1K
]
Aa ∨A Jr2K

]
Aa

Jr∗K]Aa =
4 ∨

A{(JrK]A)na | n ∈ N}

(4)

It is also easy to check by structural induction that the
abstract semantics in (4) is monotonic and correct, i.e.,
α ◦ JrK ≤A JrK]A ◦α holds. Let us point out that as abstract
semantics of basic expressions e we consider their bcas on A,
i.e., we assume that no additional loss of precision is due
to their interpretation. We remark that this is the standard
definition by structural induction of abstract semantics used
in abstract interpretation, adapted to the language of regular
commands. Therefore, it turns out that the abstract semantics
of the choice command preserves bcas, namely Jr1⊕ r2KAa =
Jr1KAa∨AJr2KAa. This property of preserving bcas, in general,
does not hold for sequential composition and Kleene iteration:
for example, Jr2KA ◦ Jr1KA is not guaranteed to be the bca
Jr1; r2KA. On the other hand, it can be easily seen, by structural
induction, that all the definitions in (4) preserve completeness,
meaning that if Jr1K

]
A, Jr2K

]
A, JrK]A are complete, then Jr1; r2K

]
A,

Jr1 ⊕ r2K
]
A and Jr∗K]A are complete as well.

3) Programs: We consider standard basic transfer expres-
sions used in deterministic while programs: no-op instruction,
assignments and Boolean guards, as defined below:

AExp 3 a ::= v ∈ Z | x ∈ Var | a + a | a− a | a ∗ a

BExp 3 b ::= tt | ff | a = a | a < a | a ≤ a | b ∧ b | b ∨ b | ¬b

Exp 3 e ::= skip | x := a | b?

where, for simplicity, we consider just integer values and
variables and Var is a denumerable set of program vari-
ables. Hence, a standard deterministic imperative language
Imp (cf. [29]) can be defined using guarded branching and
loop commands as syntactic sugar (cf. [19, Section 2.2]):

if (b) then c1 else c2 =
4

(b?; c1) ⊕ (¬b?; c2)

while (b) do c =
4

(b?; c)∗ ; ¬b?

To improve readability, in our running examples we will use
this syntactic sugar whenever possible.

A program store σ : V → Z is a total function from a finite
set of variables of interest V ⊆ Var to values and Σ =

4
V → Z

denotes the set of stores on the variables ranging in a set
V that is left implicit. The concrete domain is S =

4
℘(Σ),

ordered by inclusion. Store update [x 7→ v] is defined as usual:
S[x 7→ v] =

4 {σ[x 7→ v] | σ ∈ S} where

σ[x 7→ v](y) =
4
{
v if y = x
σ(y) otherwise

The semantics LeM : S→ S of basic transfer expressions is:

LskipMS =
4
S Lx := aMS =

4 {σ[x 7→ {|a|}σ] | σ ∈ S}

Lb?MS =
4 {σ ∈ S | {|b|}σ = tt}

where {|a|} : Σ → Z and {|b|} : Σ → {tt, ff} are inductively
defined as expected. For brevity, we overload b to denote the
set Lb?M Σ of all and only stores that satisfy b, so that Lb?MS =
S ∩b filters the concrete stores in S making b true. The usual
strongest post-condition for r on pre-condition P ∈ S is thus
post[r]P =

4 JrKP . Analogously, postA[r]α(P) =
4 JrK]Aα(P).

In the following, we will present some simple running
examples involving programs with just one variable, so that
V = {x}. In these cases, to simplify the notation, ℘(Z) will be
used to represent sets of stores in S, i.e., S ∈ ℘(Z) represents
the set {σ ∈ Σ | σ(x) ∈ S} ∈ S. Accordingly, Abs(℘(Z))
will represent Abs(S). For example, {−2, 2} will be used to
represent a more verbose expression such as x = −2∨x = 2.

III. ON THE LIMITS OF (GLOBAL) COMPLETENESS

It has been proven in [3], [16] that completeness holds
for all programs in a Turing complete programming language
only for trivial abstract domains. This means that the only
abstract domains that are complete for all programs are the
straightforward ones: the identical abstraction, making abstract
and concrete semantics the same, and the top abstraction,
making all programs equivalent by abstract semantics. In [16]
the authors observed that since skip is always trivially com-
plete and composition, conditional and loop statements all

preserve the completeness of their subprograms, the only
sources of incompleteness may arise from assignments and
Boolean guards. Nevertheless, one can logically prove the
completeness of specific programs by structural induction on
their syntax, as done by the basic proof system in [16]. In this
case, the completeness of (the semantic functions associated
with) assignments and Boolean guards occurring in a program
is a sufficient condition to guarantee the completeness of the
whole program. While the completeness of assignments has
been extensively studied (e.g., the completeness conditions for
assignments in major numerical domains such as intervals,
congruences, octagons and affine relations have been fully
settled [16], [21]), the case of Boolean guards is troublesome
and largely unexplored. In particular, in the case of conditional
and loop statements, the completeness on a store abstraction
A calls for the validity of the conditions CA(Jb?K) and
CA(J¬b?K), or, equivalently,

∀S ∈ S . A(S ∩ b) = A(A(S) ∩ b) &

A(S ∩ ¬b) = A(A(S) ∩ ¬b)
(5)

The adjective global in the section title refers to the universal
quantification over any possible set S of stores in (5), which
we prove to be a major limitation. The following results
provide a sufficient and necessary condition on the abstract
domain A for guaranteeing both CA(Jb?K) and CA(J¬b?K). It
is worth remarking that the same result extends to any arbitrary
distributive concrete domain C whenever b admits a comple-
ment ¬b, even if the whole lattice C is not complemented.

We first observe that when the functions Jb?K and J¬b?K
are complete in a strict abstract domain A, then b and ¬b are
necessarily expressible in A.

Lemma III.1 Let A ∈ Abs(S) be strict. If CA(Jb?K) and
CA(J¬b?K) hold then b and ¬b are expressible in A.

Furthermore, when b and ¬b are both expressible in A, it
turns out that the completeness of Jb?K and J¬b?K boils down
to a co-additivity requirement of the abstraction map α or,
equivalently, an additivity requirement for the concretization
map γ. This is clearly a way too strong requirement in
abstract interpretation as co-additive abstractions imply that
the abstract domain is a complete join and meet sublattice of
the concrete domain.

Lemma III.2 Let b and ¬b be expressible in Aα,γ ∈ Abs(S).
Then, CA(Jb?K) and CA(J¬b?K) hold iff

∀S ∈ S . α(S ∩ b) = α(S) ∧A α(b) &

α(S ∩ ¬b) = α(S) ∧A α(¬b)
(6)

The next characterization result gives an effective way to
verify whether an abstract domain A is complete w.r.t. a
Boolean guard b. It amounts to check that b and ¬b are both
expressible in A and that the union of the concretizations of
any two abstract points in A below, resp., α(b) and α(¬b), is
also expressible in A (see Example III.4).

∅

Z<0 Z=0 Z>0

Z≤0 Z≥0

ZSign1

∅

Z<0 Z=0

Z≤0 Z≥0

ZSign2

∅

Z<0 Z=0 Z>0

Z≤0 Z 6=0 Z≥0

ZSign

Fig. 2: Abstract Domains for Sign Analysis.

Theorem III.3 (Complete Guards) Let b, ¬b be expressible
in Aα,γ ∈ Abs(S). Then, CA(Jb?K) and CA(J¬b?K) hold iff

∀S]1, S
]
2 ∈ A. (S

]
1 ≤A α(b) & S]2 ≤A α(¬b)⇒

γ(S]1 ∨A S
]
2) = γ(S]1) ∪ γ(S]2))

(7)

Example III.4 Let Sign1,Sign2,Sign ∈ Abs(℘(Z)) be the
abstract domains depicted in Fig. 2. In Sign1 no expressible
Boolean guard is complete (except the trivial ones tt and ff).
Indeed, only the elements ∅ and Z satisfy condition (7). The
negation of Z=0 is Z6=0, which does not belong to Sign1. For
the guard Z<0, its negation Z≥0 is in Sign1, but the join of
Z<0 with Z>0 ≤Sign1 Z≥0 is again Z6=0. Dually for Z>0.
In Sign2 the guards Z≥0 and Z<0 are complete, while Z≤0
and Z=0 are not. For example, for Z=0 ≤Sign2 Z≥0 and Z<0

we have γ(Z=0 ∨Sign2 Z<0) = γ(Z≤0) = γ(Z=0) ∪ γ(Z<0).
It follows that, even if both ReLU and Abs in Section I are
complete in Sign2, only ReLU can be inductively proved to be
complete, because all its basic transfer functions are complete
in Sign2. In the case of Abs instead, the assignment x := −x
is not complete for x > 0, even if such input will never be
provided to that branch of code.
In Sign all expressible Boolean guards are complete and the
completeness of Abs and ReLU can be proved inductively.

Theorem III.3 displays a major drawback of refining an
abstract domain in order to achieve completeness for Boolean
guards. Because all interesting programs contain Boolean
guards, complete abstract domains refining a given domain
may indeed become very close to the concrete domain, there-
fore limiting the effectiveness of this notion of completeness
in program analysis. The following example shows this phe-
nomenon for the case of the abstract domain of intervals.

Example III.5 Consider the well-known abstract domain
Int ∈ Abs(℘(Z)) of integer intervals [6], [21]. The only
Boolean guards b and ¬b that are expressible in Int are the
infinite intervals [−∞, k] and [k,∞] together with the trivial
intervals Z and ∅. In fact, in Int, the complement of any
finite interval [a, b] ∈ Int, with a ≤ b, must be necessarily
approximated. However, if we consider b = [−∞, k] and,
correspondingly, ¬b = [k+ 1,∞] then condition (7) of Theo-
rem III.3 is not satisfied. As an example, let us fix k = 0, i.e.
b = [−∞, 0] and, correspondingly, ¬b = [1,∞]: condition (7)
of Theorem III.3 would require the presence of all the concrete
joins [n1, n2] ∪ [m1,m2] with n1 ≤ n2 ≤ 0 < m1 ≤ m2,
because [n1, n2] ≤Int [−∞, 0] and [m1,m2] ≤Int [1,∞], but
such joins are not intervals, unless n2 = 0 and m1 = 1.

Even a basic guard such as b = [0, 0] would need its
complement ¬b = [−∞,−1] ∪ [1,∞] as well as the concrete
joins [n1, n2] ∪ [0, 0] for any n1 ≤ n2 < −1 or 1 < n1 ≤ n2,
because any such interval [n1, n2] is below [−∞,−1]∪[1,∞].
Moreover, since abstract domains are closed by meet, the
intersection [n,−1]∪ [1,m] of ¬b and any interval [n,m] with
n < 0 < m must be present.

IV. LOCAL COMPLETENESS

Section III shows that the standard notion of (global) com-
pleteness (2) for Boolean guards is a too strong requirement for
abstract domains, often met in practice just by trivial guards
or domains. While completeness can be hard/impossible to
achieve globally, i.e. for all possible sets of stores, it could
well happen that completeness holds locally, i.e. just for
some store properties. We therefore put forward a notion of
local completeness which in program analysis corresponds to
consider completeness only along certain program traces.

Definition IV.1 (Local Completeness) An abstract domain
A ∈ Abs(C) is locally complete for f : C → C on a concrete
value c ∈ C, written CAc (f), if the following condition holds:

CAc (f) ⇔4 Af(c) = AfA(c).

Let us observe that A is trivially locally complete for any f
on any abstract value A(c) (i.e., CAA(c)(f) always holds). As
discussed in Section I, in program analysis it may well happen
that JcK is not globally complete w.r.t. the abstract domain A
but it is locally complete for a particular class of inputs P .

Example IV.2 Consider the Imp program

c =
4

if (0 < x) then x := x− 2 else x := −x

and the interval abstraction Int. While the transfer function
J0 < x?K is not globally complete (see Example III.5),
it is locally complete for any set P ∈ ℘(Z) such that:
(1) P ⊆ Z>0, or (2) P ⊆ Z≤0, or (3) {0, 1} ⊆ P . Since
the transfer functions for constant addition and multiplication
are globally complete, the program c is locally complete
for any P satisfying one of the above conditions (1–3). For
example, if P = {0, 1, 4}, condition (3) holds and we have that
Int(JcKP) = Int({−1, 0, 2}) = [−1, 2] and Int(JcKInt(P)) =
Int(JcK[0, 4]) = Int({−1, 0, 1, 2}) = [−1, 2]. As an example of
local incompleteness, if P = {0, 4} we have that Int(JcKP) =
Int({0, 2}) = [0, 2], but Int(JcKInt(P)) = [−1, 2].

Let us remark that, with respect to a compositional reason-
ing, there is a significant key difference between global and
local completeness: while the composition (via generic reg-
ular commands operators, and consequently via conditionals
and loops) of globally complete transfer functions is always
globally complete, the same does not necessarily hold for
local completeness that depends on a given input property.
Equivalently, local completeness of a composite program may
well depend on the partial store properties met during the
computation, as shown by the following example.

Example IV.3 Consider a composition c; c, where c is defined
in Example IV.2. Int is locally complete for c on the input
property P = {2, 6}, because condition (1) of Example IV.2
holds. However, Int is not locally complete for c; c on P ,
because Int(Jc; cK{2, 6}) = Int(JcK{0, 4}) = [0, 2] while
Int(Jc; cKInt({2, 6})) = Int(Jc; cK[2, 6]) = Int(JcK[0, 4]) =
Int({−1, 0, 1, 2}) = [−1, 2].

V. LOCAL COMPLETENESS LOGIC

We define a logical proof system for program analysis of
regular commands, parameterized by an abstraction A, whose
provable triples `A [P] r [Q] guarantee that:

(i) Q is an under-approximation of JrKP ;
(ii) JrK is locally complete for input P and abstraction A;

(iii) Q and JrKP have the same over-approximation in A.
It turns out that these properties of `A [P] r [Q] allow

us to distinguish between true and false alerts raised by the
abstract interpretation JrK]Aα(P) for checking a correctness
specification Spec, as explained below:

Case 1: If the over-approximation JrK]Aα(P) does not raise
alerts, i.e. γ(JrK]Aα(P)) ⊆ Spec holds, then the program r
does not exhibit unwanted behaviours. It should be remarked
that this already holds for any sound and possibly incomplete
over-approximating abstract interpretation.

Case 2: If Spec is expressible in A and the abstract interpre-
tation JrK]Aα(P) raises some alerts because γ(JrK]Aα(P)) 6⊆
Spec, then, by local completeness, any provable triple
`A [P] r [Q] is such that Q∩¬Spec 6= ∅ and all the stores in
Q∩¬Spec are true alerts. Let us stress that by using ordinary
abstract interpretation we could not distinguish which alerts
in γ(JrK]Aα(P)) r Spec are true ones and which are false.

Case 3: If Spec is expressible in A, some alert is raised
because γ(JrK]AA(P)) 6⊆ Spec but any attempt to derive
a triple `A [P] r [Q] for some under-approximation Q fails
because some proof obligations of local completeness CAc (f)
are not met, then the abstraction A is not precise enough to
distinguish between true and false alerts in a compositional
way (for r on P). In this case, one could refine the abstraction
A to enhance its precision and repeat the analysis, possibly
guided by the failed proof obligations (see Example V.8).

The logical proof system `A is defined in Fig. 3 and called
LCLA (Local Completeness Logic on A). Our objective in
designing this deductive system has been to track the assump-
tions of local completeness needed for having a compositional
proof. The distinctive rules are (transfer) and (relax) whose
premises directly depend on the underlying abstraction A.

The combined consequence rule (relax) is the key principle
which allows us to adapt and generalize partial proofs to
broader contexts. The novelty of (relax) lies in combining an
over- and under-approximating reasoning: (relax) allows to
infer a post-condition Q that is an under-approximation of the
exact behaviour but whose abstraction A(Q) is a sound over-
approximation of it, i.e., such that Q ⊆ JrKP ⊆ A(JrKP) =
A(Q) holds. Likewise the consequence rules of [10], [24],
[25] the logical ordering between pre-conditions P ′ ≤ P and
post-conditions Q ≤ Q′ in the premises of (relax) is reversed

w.r.t. the canonical consequence rule of Hoare logic and this
is needed because our post-conditions Q are always under-
approximations. Let us also remark that the premises of (relax)
imply that A(P) = A(P ′) and A(Q) = A(Q′). Example V.9
will show that a dual version of (relax) with P strengthening
P ′ and Q weakening Q′ as in the classical consequence rule
of Hoare logic would not be sound w.r.t. local completeness.

The crux of (relax) is to constrain this under-approximating
post-condition Q to have the same abstraction as the exact
behaviour, in order to preserve the precision of the deduction.
This opens up an interesting perspective about the generality
of our proof system that will be tackled in Section VI for
showing how to recover O’Hearn’s IL [24] as an instance of
our proof system. Moreover, in Section V-C we also show how
an easy dualization of LCLA allows to accomodate backward
abstract reasoning as used in backward program analysis.

Technically, the validity of the rule (relax) relies on ob-
serving that local completeness is a kind of “abstract convex
property”: if A is locally complete for some c ∈ C then A is
locally complete for all d ∈ C such that c ≤ d ≤ A(c) holds.

Lemma V.1 If CAc (f) and d ∈ [c, A(c)] then CAd (f).

The rule (transfer) checks that the basic transfer expressions
e are locally complete on P and, in that case, provides
the output of the corresponding transfer function JeK on P
as post-condition. Of course, for no-ops, assignments and
Boolean guards, the rule (transfer) can be equivalently stated
in symbolic form as follows:

`A [P] skip [P]
(skip)

CAP (Jb?K)
`A [P] b? [P ∧ b]

(assume)

CAP (Jx := aK)
`A [P] x := a [∃v.(P [v/x] ∧ x = a[v/x])]

(assign)

where [v/x] denotes the substitution for replacing x by v.
The rule (seq) for sequential composition and the rule (join)

for choice are standard. The rule (rec) allows us to unfold one
step of Kleene iteration, until the rule (iterate) can be applied.

(iterate) is a distinguishing rule of LCLA and is as much
fundamental as rule (relax) for several reasons: both rules have
premises depending on the abstraction A; under-approximated
post-conditions are only introduced by these two rules (all
the other rules are otherwise “exact”); while the concrete
semantics of r∗ can be infinitary (e.g., consider (x := x+1)∗),
(iterate) can exploit the abstraction A to stop the proof when
the abstraction of a finitary input P is already an infinitary
abstract invariant (a maybe non-obvious consequence of the
condition Q ≤ A(P)), returning a finite under-approximation
of the concrete invariant; the combination of under- and
over-approximations in the rule (iterate) is therefore more
expressive than the sum of its parts, as it allows us to speed
up both program analysis and alert detection.

The next two examples illustrate the key features of LCLA:
the first one exploits all the rules and the second one is applied
to a classical while-loop. They will be revisited in Section V-A
to show how LCLA can help in program analysis.

CAP (e)

`A [P] e [JeKP]
(transfer)

P ′ ≤ P ≤ A(P ′) `A [P ′] r [Q′] Q ≤ Q′ ≤ A(Q)

`A [P] r [Q]
(relax)

`A [P] r1 [R] `A [R] r2 [Q]

`A [P] r1; r2 [Q]
(seq)

`A [P] r1 [Q1] `A [P] r2 [Q2]

`A [P] r1 ⊕ r2 [Q1 ∨Q2]
(join)

`A [P] r [R] `A [P ∨R] r∗ [Q]

`A [P] r∗ [Q]
(rec)

`A [P] r [Q] Q ≤ A(P)

`A [P] r∗ [P ∨Q]
(iterate)

Fig. 3: The Proof System LCLA.

CIntP1
(Jb1?K)

`Int [P1] b1? [{1, 999, 1000}]
(transfer)

CInt{1,999,1000}(Je1K)

`Int [{1, 999, 1000}] e1? [{0, 998, 999}]
(transfer)

`Int [P1] r1 [{0, 998, 999}]
(seq)

CIntP1
(Jb2?K)

`Int [P1] b2? [{0, 1, 999}]
(transfer)

CInt{0,1,999}(Je2K)

`Int [{0, 1, 999}] e2 [{1, 2, 1000}]
(transfer)

`Int [P1] r2 [{1, 2, 1000}]
(seq)

`Int [P1] r1 ⊕ r2 [{0, 1, 2, 998, 999, 1000}]
(join)

(?)
(iterate)

CIntP (Jb1?K)

`Int [P] b1? [P]
(transfer)

CIntP (Je1K)

`Int [P] e1 [{0, 998}]
(transfer)

`Int [P] r1 [{0, 998}]
(seq)

CIntP (Jb2?K)

`Int [P] b2? [P]
(transfer)

CIntP (Je2K)

`Int [P] e2 [{2, 1000}]
(transfer)

`Int [P] r2 [{2, 1000}]
(seq)

`Int [P] r1 ⊕ r2 [{0, 2, 998, 1000}]
(join)

(?)

`Int [{0, 1, 999, 1000}] r [{0, 1, 2, 998, 999, 1000}]
(iterate)

`Int [{0, 1, 2, 998, 999, 1000}] r [{0, 2, 1000}]
(relax)

`Int [P] r [{0, 2, 1000}]
(rec)

Fig. 4: Derivation of `Int [P = {1, 999}] r [{0, 2, 1000}] for Example V.2.

CSign
P

(Jx ≤ 0?K)

`Sign [P] x ≤ 0? [{−10,−1}]
(transfer)

CSign{−10,−1}(Jx := x ∗ 10K)

`Sign [{−10,−1}] x := x ∗ 10 [{−100,−10}]
(transfer)

`Sign [P] x ≤ 0?; x := x ∗ 10 [{−100,−10}] {−100,−10} ⊆ Sign(P) = Z6=0
(seq)

`Sign [P] (x ≤ 0?; x := x ∗ 10)
∗

[{−100,−10,−1, 100}] {−100, 100} ⊆ {−100,−10,−1, 100} ⊆ Sign({−100, 100}) = Z6=0

(iterate)

`Sign [P] (x ≤ 0?; x := x ∗ 10)
∗

[{−100, 100}]
(relax)

CSign{−100,100}(J0 < x?K)

`Sign [{−100, 100}] 0 < x? [{100}]
(transfer)

`Sign [P] c [{100}]
(seq)

Fig. 5: Derivation of `Sign [P = {−10,−1, 100}] c [{100}] for Example V.3.

Example V.2 Let us consider the interval domain Int, the pre-
condition P =

4 {1, 999} and the command r =
4

(r1⊕r2)∗ where

r1 =
4

(0 < x?;x := x− 1) r2 =
4

(x < 1000?;x := x+ 1)

The triple `Int [P] r [{0, 2, 1000}] can be derived as shown in
Fig. 4, where for brevity we let:

b1 =
4

0 < x e1 =
4
x := x− 1 P1 =

4 {0, 1, 999, 1000}
b2 =
4
x < 1000 e2 =

4
x := x+ 1

Notably, each instance of rule (transfer) used in the derivation
exposes a proof obligation (such as CInt

P (Je2K), CInt
P1

(Jb1?K),
etc.) concerning the local completeness of a basic transfer
function. This proof needs just one application of (rec) to
compute an under-approximation of post[r]P = JrKP , because
the rule (iterate) can stop the unfolding of the Kleene iterate
operator as soon as an abstract invariant is detected, before
the actual concrete invariant is fully computed (in this case
the abstract invariant is detected by {0, 1, 2, 998, 999, 1000} ⊆
[0, 1000]). Moreover, (relax) is exploited to reduce the number
of values to be taken into account (along the pre-conditions by
navigating the derivation tree bottom-up and along the post-
conditions when the tree is explored top-down).
Finally, a similar result is soon obtained on any input Pk =

4

{k, 999} for some k ∈ N, by applying the rule (rec) for k
times: then the rule (iterate) can be used.

Example V.3 Let us consider the domain Sign, the pre-con-
dition P =

4 {−10,−1, 100} and the Imp program

c =
4

while (x ≤ 0) do x := x ∗ 10

= (x ≤ 0? ; x := x ∗ 10)∗ ; 0 < x?

Let us verify that c does not satisfy the correctness speci-
fication Spec =

4
x < 10, even if the loop c diverges on

inputs {−10,−1}. The derivation in Fig. 5 proves the triple
`Sign [P] c [{100}]. As the post-condition {100} is an under-
approximation of JrKP (cf. Theorem V.4 (1)), we conclude that
100 6∈ Spec is a true alert. Observe that all proof obligations
about local completeness due to rule (transfer) are satisfied,
as e.g., letting b =

4
x ≤ 0, for CSign

P (Jb?K), we have

Sign(Jb?KSign(P)) = Sign(Jb?KZ6=0) = Sign(Z<0) = Z<0

Sign(Jb?KP) = Sign({−10,−1}) = Z<0.

Of course, let us point out that some additional valid rules
could be added to our proof system, for example the following
two rules can be easily proved to be valid:

`A [P] r [Q] Q ≤ P
`A [P] r∗ [P]

(invariant)

`A [P] r [Q] A(P) = A(Q)

`A [P] r∗ [Q]
(abs-fix)

Rule (invariant) is the analogous of the loop invariant rule
in Hoare logic, while (abs-fix) allows us to accelerate the
convergence of Kleene iteration to an abstract fixpoint.

A. Soundness

Our logic LCLA turns out to be sound for the target
properties (i–iii) stated at the beginning of Section V, as
formalized below, where (1) and (2) embody (i) and (ii)+(iii),
respectively.

Theorem V.4 (Soundness) Let Aα,γ ∈ Abs(C). For all r ∈
Reg, P,Q ∈ C, if `A [P] r [Q] then: (1) Q ≤ JrK(P) and
(2) JrK]Aα(P) = α(JrKP) = α(Q).

As a consequence, if a correctness specification Spec is
expressible in A, i.e., if Spec = γ(a) for some abstract element
a, then any provable triple `A [P] r [Q] allows us to use Q to
decide both the correctness or the incorrectness of r for the
pre-condition P , as stated by the following result.

Corollary V.5 (Precision) For all Aα,γ ∈ Abs(C), r ∈ Reg,
P,Q ∈ C, if `A [P] r [Q], then:

∀a ∈ A. JrKP ≤ γ(a) iff Q ≤ γ(a).

Example V.6 In Example V.3 we already noticed that, by
Theorem V.4 (1), JcKP does not satisfy Spec. Note that
for P ′ =

4 {−10,−1, 5, 100} we could also prove, e.g.,
`Sign [P ′] c [{5}] where the post-condition {5} has no alert,
even if Spec is not satisfied: since Spec is not expressible in
Sign, then Corollary V.5 is not applicable.

Example V.7 Let us consider again Example V.2 and the
triple `Int [P] r [{0, 2, 1000}] (see Fig. V.2) to discuss the
cases of three different correctness specifications: Spec1 =

4

x 6= 2, Spec2 =
4
x ≤ 1000 and Spec3 =

4
100 ≤ x.

Despite that Spec1 is not expressible in Int, the triple
`Int [P] r [{0, 2, 1000}] exposes the true alert 2 6∈ Spec1,
since 2 ∈ {0, 2, 1000} ⊆ JrKP (cf. Theorem V.4 (1)).
By Theorem V.4 (2), we know that JrKP satisfies Spec2,
because Int(JrKP) = Int({0, 2, 1000}) = [0, 1000] ⊆ Spec2.
Since Spec2 is expressible in Int, by Corollary V.5, any other
provable triple `Int [P] r [Q] will guarantee that Spec2 holds.
Finally, the triple `Int [P] r [{0, 2, 1000}] exposes two true
alerts 0, 2 6∈ Spec3. Likewise Spec2, by Corollary V.5, the
post-condition Q of any provable triple `Int [P] r [Q] will
contain a true alert for Spec3. In particular, any such triple
is such that 0 ∈ Q, contradicting the assertion Spec3, because
it must be Int(Q) = [0, 1000] = Int(JrKP).

Example V.8 Let us consider the program r =
4

r∗1; r2 where:

r1 =
4

(x < 1000?;x := x+ 10)

r2 =
4

(x = 30?;x := −1) ⊕ (x 6= 30?)

Let Spec =
4
x 6= −1, P1 =

4 {10} and P2 =
4 {11}. In the case

of P1, the value 30 for x is actually computed by the Kleene

iteration r∗1, causing a violation of Spec. In the case P2, any
alert raised by a static analysis would be a false positive since
r∗1 will never store the value 30 in x. Let us use the abstract
domain Sign for the analysis of r. Firstly, consider P1 and
observe that by applying (rec) and (iterate) we can derive
`Sign [{10}] r∗1 [{10, 20, 30}]. Then, by (relax), we prove
`Sign [{10}] r∗1 [{10, 30}]. Note that CSign

{10,30}(Jx = 30?K) and
CSign
{10,30}(Jx 6= 30?K), so that `Sign [{10, 30}] r2 [{−1, 10}]

can be proved. Finally, by applying (seq), we derive the triple
`Sign [{10}] r∗1; r2 [{−1, 10}], whose post-condition includes
the true alert −1 violating Spec.
Consider now the pre-condition P2. Here, we apply (rec),
(iterate) and (relax) so as to derive `Sign [{11}] r∗1 [{11, 31}].
In this case, since local completeness CSign

{11,31}(Jx = 30?K)
does not hold (indeed note that any nonempty subset of
{11, 31} is not locally complete for x = 30? on Sign), the
proof cannot be completed in Sign. It is worth observing that
in order to prove that r satisfies Spec for input P2 we need
to resort to a more precise abstract domain where the guard
x = 30? is locally complete for {11, 31}. In this sense, we
remark that the failed proof obligation CSign

{11,31}(Jx = 30?K)
could be exploited to find a refinement of the current abstrac-
tion Sign where the derivation can be completed. For example,
a possible choice is to extend the abstract domain Sign by
taking Sign30 as the Moore closure of Sign∪ {x 6= 30}: then,
the triple `Sign30 [P2] r [{11}] could be derived to witness that
r satisfies Spec (by Corollary V.5).

The next example shows that the classical consequence rule
of Hoare logic for strengthening pre-conditions and weakening
post-conditions is in general not compatible with the local
completeness property (2) of Theorem V.4.

Example V.9 Consider the abstract domain Int, the program

c =
4
if (x < 0) then x := −x else skip

and the pre-conditions P =
4 {−5, 5} and P ′ =

4 {−5,−1, 0, 5}.
By applying (transfer) (to x < 0?, x ≥ 0?, x := −x and skip),
(seq) twice and (join), one can easily derive `Int [P ′] c [Q′]
with Q′ = {0, 1, 5}. In fact, Int is locally complete for JcK on
P ′, because Int(JcKInt (P ′)) = [0, 5] = Int(Q′).
Imagine now to replace the rule (relax) by its dual (convex)
version, inspired by the consequence rule of Hoare logic

P ≤ P ′ ≤ A(P) `A [P ′] r [Q′] Q′ ≤ Q ≤ A(Q′)

`A [P] r [Q]

If we let Q = Int(Q′), since P ⊆ P ′ ⊆ Int(P) = [−5, 5], and
Q′ ⊆ Q = Int(Q′), then we could derive, e.g., `Int [P] c [Q].
However, Int is not locally complete for JcK on P , because
Int(JcKP) = [5, 5] 6= [0, 5] = Int(JcKInt(P)).

B. On the Completeness of LCLA

We now study the completeness, in the logical sense, of
LCLA as a proof system. Our logic LCLA is not logically
complete in general, i.e., the converse of Theorem V.4 does
not hold, as shown by the following example.

Example V.10 Let e1 =
4
x := x − 1, e2 =

4
x := x + 1, and

P =
4 Z≥2. The abstract domain A = Sign, is locally complete

for Je1; e2K on P :

α(Je1; e2KP) = α(Je2K(Je1KP)) = α(P) = Z>0

Je1; e2K
]
Aα(P) = Je2K

]
A(Je1K

]
AZ>0) = Je2K

]
AZ≥0 = Z>0

but the triple `Sign [P] e1; e2 [P] cannot be derived. This is
because, in the attempt to derive the triple `Sign [P] e1 [Je1KP]

by rule (transfer), the proof obligation CSign
P (Je1K) fails:

α(Je1KP) = Z>0 6= Z≥0 = α(Z≥0) = α(Je1KSign(P)). Note
that the rule (relax) cannot help. In fact, let us assume that
there exists some P ′ such that P ′ ⊆ P ⊆ Sign(P ′) and the
triple `Sign [P ′] e1 [Je1KP ′] is provable by (transfer). Then,
Sign(P ′) = Sign(P) = Z>0 and P ′ ⊆ P = Z≥2 imply
that Je1KP ′ ⊆ Z≥1. Hence, we would have that α(Je1KP ′) ≤
α(Z≥1) = Z>0 while α(Je1KSign(P ′)) = α(Je1KZ>0) =
Z≥0. Thus, CSign

P ′ (Je1K) does not hold, contradicting the hy-
pothesis that `Sign [P ′] e1 [Je1KP ′] is provable.

For a result of logical completeness for LCLA, we need:
(1) to add the sound, infinitary rule (limit) for Kleene star:

∀n ∈ N. `A [Pn] r [Pn+1]

`A [P0] r∗ [
∨
i∈N Pi]

(limit)

(2) to assume that all the basic transfer expressions occurring
in a command r ∈ Reg are globally complete on A.

We are therefore able to obtain a result of logical complete-
ness for LCLA when this includes the powerful infinitary rule
(limit) and under an assumption of global completeness for
the basic transfer expressions occurring in the program. Let us
remark that incorrectness logic [24] also includes this infinitary
rule (limit), there called backwards variant rule. Likewise
(limit), the backwards variant rule of IL allows to derive other
finitary rules (e.g., Iterate zero) and plays a crucial role for
proving the logical completeness of IL [24, Theorem 6].

Theorem V.11 (Logical Completeness) Let Aα,γ ∈ Abs(C)
and r ∈ Reg such that any e ∈ Exp(r) is globally complete on
A. For any P,Q ∈ C, if Q ≤ JrKP and JrK]Aα(P) = α(Q)
then `A [P] r [Q].

It is worth noting that if any e ∈ Exp(r) is globally complete
on A then, as proved in [16, Theorem 5.1], JrK]A ◦α = α ◦ JrK
also holds. Thus, the hypotheses of Theorem V.11 imply
that that properties (1–2) of the soundness Theorem V.4 all
hold, i.e. Theorem V.11 provides a result of (limited) logical
completeness for LCLA. Viceversa, whenever the language is
Turing complete, C = S and the abstraction A is not trivial,
LCLA turns out to be intrinsically incomplete, meaning that it
is always possible to find a valid triple (w.r.t. properties (1–2)
of Theorem V.4) but LCLA is unable to prove it.

Theorem V.12 (Intrinsic Incompleteness) Let Reg be a Tur-
ing complete language. Let Aα,γ ∈ Abs(S). If γα 6= id and
γα 6= λx.Σ then there exist P,Q ∈ S and r ∈ Reg such that
Q ≤ JrKP , JrK]Aα(P) = α(JrKP) = α(Q) but 6`A [P] r [Q].

Turing completeness is crucial here because the proof relies
upon the possibility of: (1) specifying in Reg an arbitrary
store in Σ, (2) effectively checking store inequality, and
(3) specifying in Reg an undefined transfer function. The proof
of Theorem V.12 generalizes to LCLA and to Turing complete
regular commands the proofs in [3] and [16] showing that the
class of all programs for which an abstract interpretation on A
is globally complete is the set of all programs (or, equivalently,
an index set for partial recursive functions) if and only if
A is trivial. As a consequence of Theorems V.11 and V.12,
LCLA cannot be a logically complete proof system for a
Turing complete language unless the abstraction A is trivial.
Of course, the identical abstraction is unfeasible here as both
rules (transfer) and (relax) would become vacuous. Hence,
the only meaningful straightforward abstraction for LCLA
is A = λx.Σ. Under this light we may therefore observe
that logical completeness of IL [24, Theorem 6] follows
from the choice made in its consequence rule of letting pre-
conditions and post-conditions be, resp., arbitrarily weakened
and strengthened, i.e., the choice of the abstraction A = λx.Σ
in rule (relax). Section VI provides additional details on the
relationship with incorrectness logic.

C. A Backward Proof System

As pioneered by Cousot [5, Section 3.4], it is known that
abstract interpretation-based program analysis can be defined
backward rather than forward [1], [21]. Instead of propagating
forward an abstract store in a program control flow graph
(CFG) from its entry point, a backward analysis can start from
any program point q of the CFG (possibly, but not necessarily,
an exit point) and from any input abstract value a it abstractly
computes backward in the CFG to derive necessary abstract
conditions for the executions reaching q and satisfying the
store property a. Backward analysis is typically used after a
preliminary forward analysis to refine its results, as acknowl-
edged by Bourdoncle [1] for abstract program debugging. An
under-approximating backward program analysis by abstract
interpretation has been put forward by Miné [22]. In the
following, we show how LCLA can be easily dualized in order
to accomodate backward analyses.

In backward analysis, the basic transfer expressions e have
a co-additive backward concrete semantics LeM� : C → C.
Notably, LeM�Y =

4
p̃reRe

(Y) = {σ | (σ, σ′) ∈ Re ⇒ σ′ ∈ Y },
where Re is the transition relation for e. For example, for the
basic transfer functions of Imp (Section II-B3) we have that:

LskipM�Y =
4
Y

Lx := aM�Y =
4 {σ ∈ Σ | σ[x 7→ {|a|}σ] ∈ Y },

Lb?M�Y =
4 {σ ∈ Σ | {|b|}σ = tt⇒ σ ∈ Y } = Y ∪ ¬b.

Furthermore, in backward concrete and abstract semantics:
(1) the control flows backwards and (2) meets replace joins.
Hence, the backward semantics of regular commands is given
as the following dual definition of (3):

JeK�c =
4 LeM�c Jr1 ⊕ r2K�c =

4 Jr1K�c ∧ Jr2K�c

Jr1; r2K�c =
4 Jr1K�(Jr2K�c) Jr∗K�c =

4 ∧{JrKn�c | n ∈ N}

The backward abstract semantics uses an under-approx-
imating abstraction Uα,γ ∈ Abs�(C), meaning that U is
defined by a Galois insertion w.r.t. the concrete domain 〈C,≥〉
where ≥ =

4 ≤−1. This means that for all x ∈ C, an
under-approximation relation γ(α(x)) ≤ x replaces an over-
approximating approximation x ≤ γ(α(x)).

Example V.13 The interval domain Int can be viewed as an
under-approximating abstraction by dualizing its maps α� :
℘(Z)→ Int and γ� : Int→ ℘(Z) as follows:

γ�([l, u]) =
4 ¬γ([l, u]) = {z ∈ Z | z < l ∨ u > z}

α�(X) =
4
α(¬X) = [min(¬X),max(¬X)]

For example, α�({x ∈ Z | x < −3 ∨ x > 5} ∪ {0, 1, 2}) =
[−3, 5] and α�({x ∈ Z | x < −3} ∪ {0, 1, 2} = [−3,+∞].

Accordingly, the abstract semantics JrK]U for an under-
approximating abstraction U ∈ Abs�(C) is defined as dual
of (4). Correspondingly, when our proof system `U is instan-
tiated to U ∈ Abs�(C), we need to replace ≤, which models
logical implication, with ≥ and logical disjunction ∨ with
conjunction ∧. Hence, the fundamental (relax) rule becomes:

U(P ′) ≤ P ≤ P ′ `U [P ′] r [Q′] U(Q) ≤ Q′ ≤ Q
`U [P] r [Q]

Thus, here the condition P is logically stronger than P ′ and
weaker than the under-approximation U(P ′), and dually for Q.
By duality, as a direct consequence of Theorems V.4 and V.11,
a result of soundness and limited logical completeness for the
dual logic `U can be derived. Hence, a provable triple `U
[P] r [Q] for an under-approximation U implies that: JrK�Q ≤
P , i.e. P is an over-approximation of the backward semantics,
and JrK]Uα(Q) = α(P) = α(JrK�Q), i.e. local completeness
holds.

VI. RELATIONSHIP WITH INCORRECTNESS LOGIC

The idea to reverse the direction of implication in Hoare’s
consequence rule was investigated by de Vries and Koutavas’
reverse Hoare logic [10] to study reachability specifications
for randomized algorithms. They first put forward the rule:

P ′ ≤ P [P ′] r [Q′] Q ≤ Q′

[P] r [Q]
(cons)

O’Hearn’s incorrectness logic extends the approach of re-
verse Hoare logic with an explicit handling of error detection
and propagation. As pointed out by O’Hearn in [24], “Program
correctness and incorrectness are two sides of the same
coin [...] Incorrectness Logic is so basic that it could have
been defined and studied immediately after or alongside the
fundamental works of Floyd and Hoare on correctness in the
1960s”. Because IL is tailored to under-approximations, it can
be used to prove the presence of bugs but not their absence.

In [24], programs are regular commands that include prim-
itives such as: the error() statement, to halt execution and
raise an error signal er; assume(b) statements, analogous
to our Boolean guards b?; and nondeterministic assignments

LskipM(ok :Q, er :R) =
4

ok :Q, er :R

Lx := aM(ok :Q, er :R) =
4

ok :
⋃
σ∈Q{σ[x 7→ {|a|}σ]}, er :R

Lerror()M(ok :Q, er :R) =
4

er :(Q ∪R)

Lassume(b)M(ok :Q, er :R) =
4

ok :(Q ∩ b), er :R

Lx := nond()M(ok :Q, er :R) =
4

ok :
⋃
v∈ZQ[x 7→ v], er :R

Fig. 6: Basic transfer functions for additional statements.

x := nond() also present in the setting of reverse Hoare logic.
Thus, we set:

Exp 3 e ::= skip | x := a | error() | assume(b) | x := nond()

Incorrectness logic triples take the form `IL [P] c [ε :Q], as
their post-conditions are extended with labels ε ∈ {ok, er}
(following [24], we use colors for a visual differentiation)
to distinguish the case of error-free termination ok :Q lead-
ing to an under-approximating post-condition Q, from in-
terrupted computations er :Q, meaning that some error oc-
curred under the circumstances reported by Q. We write
`IL [P] c [ok :Q][er :R] when `IL [P] c [ok :Q] and
`IL [P] c [er :R] are derivable for the same pre-condition
P . Notably, the proof system of IL is proved to be sound and
complete (in the logical sense): an error can arise iff it can be
exposed by some provable triple.

Next, we sketch how IL can be seen as a particular instance
of LCLA. Due to error handling, the domain S is not infor-
mative enough, but this is not a problem given the generality
of LCLA. Therefore, we lay the following four ingredients:

(i) A suitable concrete domain C =
4
℘({ok, er} × Σ) that

can distinguish between normal and erroneous termination. For
Q ∈ ℘(Σ) and ε ∈ {ok, er} we write ε :Q as a shorthand for
{ε :σ | σ ∈ Q} = {ε}×Q. Clearly, a generic S ∈ C takes the
form ok :Q ∪ er :R for suitable Q,R ∈ ℘(Σ), so we denote
elements in C more concisely as ok :Q, er :R.

(ii) Transfer functions f : C → C are additive functions s.t.

f(ok :Q, er :R) = er :R ∪
⋃
σ∈Q f(ok :σ)

meaning that all the errors R are preserved. Possibly further
errors are generated by the application of f to some σ ∈ Q.

(iii) The semantics of basic transfer functions is defined
in Fig. 6. For any r ∈ Reg and any Q,R ∈ ℘(Σ), by
structural induction on r, it follows that JrK(er :R) = er :R
and JrK(ok :Q, er :R) = JrK(ok :Q) ∪ er :R.

(iv) The abstract domain Atr is the trivial abstraction such
that γα = λX.> = λX.({ok, er} × Σ). Note that Atr is
(globally) complete for every transfer function, therefore all
proof obligations CAc (e) are trivially satisfied, and (transfer)
becomes an axiom. Moreover, by Atr(P

′) = > = Atr(Q), the
rule (relax) boils down to the rule (cons).

At the level of concrete semantics, we can establish a tight
connection between the transfer function JrK : C → C asso-
ciated with r ∈ Reg and its relational denotational semantics
that was taken as a reference model for IL. Let us denote
by JrKε ⊆ Σ×Σ the relational semantics defined in [24,
Figure 4]. In order to formalize the correspondence, we find

it convenient to let JrKε : S→ S denote the functional version
of JrKε defined by: JrKεP =

4 {σ′ ∈ Σ | σ ∈ P, (σ, σ′) ∈ JrKε}.

Lemma VI.1 For any r ∈ Reg and P ∈ S we have:

JrK(ok :P) = ok :JrKokP , er :JrKerP

Lemma VI.1 is instrumental for proving the equivalence
between IL and the particular instance LCLAtr of our logic as
determined by (i–iv) above. This correspondence necessarily
follows as a consequence of the (logical) completeness of
IL [24, Theorem 6] and our Theorem V.11 of limited complete-
ness, which guarantee that any under-approximation of the
strongest post-condition post[c]P is provable in both logics.

Corollary VI.2 For any P,Q,R ∈ S and r ∈ Reg:

`IL [P] r [ok :Q][er :R] iff `Atr [ok :P] r [ok :Q, er :R].

It is interesting to observe that any instance LCLA of
our logic using an abstraction A 6= Atr would only be able
to derive some triples of IL but not all of them (while, of
course, any triple derived in `A would also be derivable in
`IL). This is a consequence of the intrinsic incompleteness
Theorem V.12 that extends the impossibility results of [3],
[16] to regular commands. Therefore, whenever A 6= Atr

there will always exist some program r and some triple
`IL [P] r [ok :Q][er :R] such that it will not be possible
to derive `A [ok :P] r [ok :Q, er :R] because some proof
obligation CAS (JeK) of local completeness will fail for some
basic transfer expression e appearing in r.

The correspondence provided by Corollary VI.2 is interest-
ing, because although the rules of IL and ours share some
similarities, they also display significant differences:

(a) The most visible difference is that the pre-conditions of
the triples in `IL are elements of S while pre-conditions of
triples in `Atr are elements of C, meaning that the rules in `IL
are concerned only with normal inputs, while the rules in `Atr

must deal also with (the propagation of) erroneous inputs.
(b) Building on (a), the rules of IL are tailored to error

propagation, while our rules are designed for any concrete
domain. Both logical frameworks can be extended to deal
with different kinds of error and error recovery mechanisms.
Because our rule (transfer) is parametric on basic transfer
expressions, it should not be necessary to change any rule of
our proof system to implement such extensions. For example,
IL exploits two rules for sequential composition while LCLA
just needs a single composition rule but it delegates error
propagation to the underlying concrete domain.

(c) Some rules of IL, such as Disjunction, Choice and Iterate
zero in [24, Fig. 2], are designed to incrementally build the
under-approximation bottom-up by composing smaller under-
approximations into larger ones. On the contrary, LCLA is
constrained to work in the opposite direction by the require-
ment of preserving the over-approximation of the strongest
post-condition in the abstraction A.

(d) Finally, incorrectness logic includes specific rules for
dealing with the introduction of fresh local variables, while

⊥

ok er

> γErr(>) =
4 {ok, er} × Σ

γErr(ok) =
4 {ok} × Σ

γErr(er) =
4 {er} × Σ

γErr(⊥) =
4 ∅

Fig. 7: The abstract domain Err

in the context of abstract interpretation it is typically assumed
that the program variables are statically known. Of course, it
would be possible to deal with dynamic allocation in LCLA
although its formalization would be technically more involved.

The use of an abstract over-approximation in LCLA that
constrains any under-approximation has some advantages but
also carries drawbacks. The main advantages are: (1) by
exploiting the over-approximation, LCLA can also prove the
absence of errors, and (2) under the hypothesis that the
correctness specification Spec is expressible in the abstraction
A, any provable triple will suffice to establish either Spec is
satisfied or violated. However, as already mentioned, whenever
A is not trivial, not all the possible under-approximations
can be obtained by our system. The next example shows this
phenomenon by combining the interval abstraction Int with
the simple error domain Err depicted in Fig. 7.

Example VI.3 Let us revisit Example V.7 (in turn using the
regular command r of Example V.2). To study Spec2, in
the context of `IL we focus on the command r̂2 =

4
r; rs2

where rs2 =
4

(x ≤ 1000?; skip) ⊕ (1000 < x?; error()).
Using `Int, it was shown in Example V.7 that r satisfies
Spec2, so that r̂2 will never issue the error signal. Since
the absence of errors cannot be proved by under-approxima-
tions, incorrectness logic cannot derive any useful information
in this case. Let us consider instead the abstract domain
Int+ =

4
Err u Int defined as reduced product [7, Section 10.1]

of Err and Int, that is, whose concretization map is defined
as γInt+(〈a1, a2〉) =

4
γErr(a1) ∩ γInt(a2). By mimicking the

derivation of `Int [P] r [{0, 2, 1000}], it is not hard to check
that `Int+ [ok :P] r̂2 [ok :{0, 2, 1000}] is derivable. Since
Int+(ok :{0, 2, 1000}) = ok :[0, 1000] over-approximates the
strongest post-condition, this is enough for proving that no
error will be issued by r̂2 with pre-condition P .
To study Spec3, we focus on r̂3 =

4
r; rs3 where

rs3 =
4

(100 ≤ x?; skip)⊕ (x < 100?; error())

We know from Example V.7, that JrKP 6⊆ Spec3, so that r̂3
can issue some errors. Within IL we can derive triples that
exhibit some erroneous situation, like `IL [P] r̂3 [er :{0}] as
well as others that do not, e.g., `IL [P] r̂3 [ok :{1000}].
By mimicking the derivation of `Int [P] r [{0, 2, 1000}], but
applying (rec) 100 times in order to include the values 100
and 101 that are necessary to satisfy the local completeness
requirements for the tests 100 ≤ x? and x < 100?, we
can then derive `Int+ [ok :P] r̂3 [ok :{1000}, er :{0, 2}]
using the abstract domain Int+. Note that, since
Int+(ok :{1000}, er :{0, 2}) = > :[0, 1000], the rule (relax)
cannot be used to discard all the errors because this would

change the abstract over-approximation of the post-condition.
Since ok :[100,+∞] is expressible in Int+, by Corollary V.5,
the label > in the over-approximation provides good evidence
about the occurrence of one or more errors. Moreover,
because the over-approximation induced by Int is always
preserved, any provable triple `Int+ [P] r̂3 [Q] is such that Q
will contain the true alert er :{0} (as well as ok :{1000}).

VII. FUTURE WORK

We have presented a logic for locally complete abstract
interpretations, called LCLA (parametric on an abstraction
A), that can prove the presence as well as the absence of
true alerts, i.e., LCLA is able to prove both the correctness
and incorrectness of some program specification. As far as
we know, LCLA combines for the first time over- and under-
approximations in a logical proof system for abstract interpre-
tation. We think that our work opens many promising lines of
research.

Firstly, when some proof obligation CAc (f) about the local
completeness in A of some basic transfer function f fails, a
natural question is whether it is possible to transform A into
some A′ in order to satisfy CA′c (f) and conclude the derivation
in `A′ . In particular, following [17], we are interested in the
problem of minimally transforming the abstract domain A to
A′ through refinements (i.e. by adding concrete values) and
simplifications (i.e. by removing abstract values) in order to
make A′ locally complete for a set of basic transfer functions.
As sketched in Example V.8, in program verification the
strategy would be to iteratively transform the original abstract
domain A0 through a series of domains A1, ..., An, until a
derivation `An

[P] r [Q] can be completed in An.
While completeness of abstract transfer functions is pre-

served by function composition, one major issue of abstract
interpretation is that bcas are not compositional [26], [30].
The lack of composition for bcas has practical consequences,
because the precision of a program analysis strictly depends
on the granularity of program decomposition into atomic
operations. Finer decompositions commonly induce more im-
precise analyses, while coarser decompositions may enhance
the chance of designing bcas for larger code blocks. We plan
to investigate a proof system for the property of being a bca,
notably for proving when the composition of bcas is a bca.

Finally, we plan to explore whether and how the relationship
of LCLA with IL studied in Section VI could be extended to
incorrectness separation logic [25]. The main challenge will
be to engineer a suitable frame rule for heap assertions that is
able to preserve local completeness for the abstraction A.

Acknowledgments: The authors have been funded by the
Italian MIUR, under the PRIN2017 project no. 201784YSZ5
“AnalysiS of PRogram Analyses (ASPRA)”. The work of
Francesco Ranzato and Roberto Giacobazzi has been par-
tially funded by Facebook Research, under a “Probability and
Programming Research Award”. Francesco Ranzato has also
been partially funded by the University of Padova, under the
SID2018 project “Analysis of STatic Analyses (ASTA)”.

REFERENCES

[1] F. Bourdoncle. Abstract debugging of higher-order imperative languages.
In Proc. ACM SIGPLAN PLDI’93, page 46–55. ACM, 1993.

[2] M. Bravenboer, K. T. Kalleberg, R. Vermaas, and E. Visser. Stratego/XT
0.17. A language and toolset for program transformation. Sci. Comput.
Program., 72(1-2):52–70, 2008.

[3] R. Bruni, R. Giacobazzi, R. Gori, I. Garcia-Contreras, and D. Pavlovic.
Abstract extensionality: on the properties of incomplete abstract inter-
pretations. Proc. ACM Program. Lang., 4(POPL):28:1–28:28, 2020.

[4] C. Calcagno, D. Distefano, J. Dubreil, D. Gabi, P. Hooimeijer, M. Luca,
P. W. O’Hearn, I. Papakonstantinou, J. Purbrick, and D. Rodriguez.
Moving fast with software verification. In Proc. NFM’15, LNCS 9058,
pp. 3–11, 2015.

[5] P. Cousot. Méthodes Itératives de Construction et d’Approximation
de Points Fixes d’Opérateurs Monotones sur un Treillis, Analyse
Sémantique des Programmes. PhD thesis, U. Grenoble, 1978.

[6] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model
for static analysis of programs by construction or approximation of
fixpoints. In Proc. ACM POPL’77, pp. 238–252. ACM, 1977.

[7] P. Cousot and R. Cousot. Systematic design of program analysis
frameworks. In Proc. ACM POPL’79, pp. 269–282. ACM, 1979.

[8] P. Cousot and R. Cousot. Abstract interpretation: past, present and future.
In Proc. Joint Meeting CSL-LICS’14, pp. 2:1–2:10. ACM, 2014.

[9] P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux,
and X. Rival. The ASTRÉE analyzer. In Proc. ESOP’05, LNCS 3444,
pp. 21–30, 2005.

[10] E. de Vries and V. Koutavas. Reverse Hoare logic. In Proc. SEFM’11,
pp. 155–171. Springer, 2011.

[11] E. W. Dijkstra. The humble programmer. CACM, 15(10):859–866, 1972.
[12] D. Distefano, M. Fähndrich, F. Logozzo, and P. O’Hearn. Scaling static

analyses at Facebook. CACM, 62(8):62–70, 2019.
[13] F. Durán, S. Eker, S. Escobar, N. Martı́-Oliet, J. Meseguer, R. Rubio,

and C. L. Talcott. Programming and symbolic computation in maude.
J. Log. Algebraic Methods Program., 110, 2020.

[14] M. Fernández, H. Kirchner, and O. Namet. A strategy language for
graph rewriting. In LOPSTR’11, LNCS 7225, pp. 173–188, 2011.

[15] R. W. Floyd. Assigning meanings to programs. Proceedings of
Symposium on Applied Mathematics, 19:19–32, 1967.

[16] R. Giacobazzi, F. Logozzo, and F. Ranzato. Analyzing program analyses.
In Proc. ACM POPL’15, pp. 261–273. ACM, 2015.

[17] R. Giacobazzi, F. Ranzato, and F. Scozzari. Making abstract interpreta-
tion complete. J. ACM, 47(2):361–416, 2000.

[18] C. A. R. Hoare. An axiomatic basis for computer programming. CACM,
12(10):576–580, 1969.

[19] D. Kozen. Kleene algebra with tests. ACM Trans. Program. Lang. Syst.,
19(3):427–443, May 1997.

[20] D. Kozen. On Hoare logic and Kleene algebra with tests. ACM Trans.
Comput. Logic, 1(1):60–76, July 2000.

[21] A. Miné. Tutorial on static inference of numeric invariants by abstract
interpretation. Found. Trends in Prog. Lang., 4(3-4):120–372, 2017.

[22] A. Miné. Backward under-approximations in numeric abstract domains
to automatically infer sufficient program conditions. Sci. Comput.
Program., 93:154 – 182, 2014.

[23] P. W. O’Hearn. Continuous reasoning: Scaling the impact of formal
methods. In Proc. LICS’18, page 13–25. ACM, 2018.

[24] P. W. O’Hearn. Incorrectness logic. Proc. ACM Program. Lang.,
4(POPL):10:1–10:32, 2020.

[25] A. Raad, J. Berdine, H. Dang, D. Dreyer, P. W. O’Hearn, and J. Villard.
Local reasoning about the presence of bugs: Incorrectness separation
logic. In Proc. CAV’20, Part II, LNCS 12225, pp. 225–252, 2020.

[26] T. Reps, S. Sagiv, and G. Yorsh. Symbolic implementation of the best
transformer. In Proc. VMCAI’04, LNCS 2937, pp. 252–266, 2004.

[27] X. Rival and K. Yi. Introduction to Static Analysis – An Abstract
Interpretation Perspective. MIT Press, 2020.

[28] C. Sadowski, E. Aftandilian, A. Eagle, L. Miller-Cushon, and C. Jas-
pan. Lessons from building static analysis tools at Google. CACM,
61(4):58–66, Mar. 2018.

[29] G. Winskel. The Formal Semantics of Programming Languages: an
Introduction. MIT press, 1993.

[30] G. Yorsh, T. Reps, and S. Sagiv. Symbolically computing most-precise
abstract operations for shape analysis. In Proc. TACAS’04, LNCS 2988,
pp. 530–545, 2004.

	Introduction
	Background
	Abstract Interpretation
	Correctness
	Completeness

	Regular Commands
	Concrete semantics
	Abstract Semantics
	Programs

	On the Limits of (Global) Completeness
	Local Completeness
	Local Completeness Logic
	Soundness
	On the Completeness of LCLA
	A Backward Proof System

	Relationship with Incorrectness Logic
	Future Work
	References

