
ar
X

iv
:2

10
2.

00
51

0v
1

 [
cs

.L
O

]
 3

1
Ja

n
20

21

Commutative Monads for Probabilistic

Programming Languages

Xiaodong Jia∗‡, Bert Lindenhovius†, Michael Mislove‡ and Vladimir Zamdzhiev§

∗ School of Mathematics, Hunan University, Changsha, 410082, China
† Department of Knowledge-Based Mathematical Systems, Johannes Kepler Universität, Linz, Austria

‡ Department of Computer Science, Tulane University, New Orleans, LA, USA
§ Université de Lorraine, CNRS, Inria, LORIA, F 54000 Nancy, France

Abstract

A long-standing open problem in the semantics of programming languages supporting probabilistic choice is to find a
commutative monad for probability on the category DCPO. In this paper we present three such monads and a general construction
for finding even more. We show how to use these monads to provide a sound and adequate denotational semantics for the
Probabilistic FixPoint Calculus (PFPC) – a call-by-value simply-typed lambda calculus with mixed-variance recursive types, term
recursion and probabilistic choice. We also show that in the special case where we consider continuous dcpo’s, then all three
monads coincide with the valuations monad of Jones and we fully characterise the induced Eilenberg-Moore categories by showing
that they are all isomorphic to the category of continuous Kegelspitzen of Keimel and Plotkin.

I. INTRODUCTION

Probabilistic methods now are a staple of computation. The initial discovery of randomized algorithms [1] was quickly

followed by the definition of Probabilistic Turing machines and related complexity classes [2]. There followed advances in

a number of areas, including, e.g., process calculi, probabilistic model checking and verification [3]–[5], right through to the

recent development of statistical probabilistic programming languages (cf. [6]–[8]), not to mention the crucial role probability

plays in quantum programming languages [9], [10].

Domain theory, a staple of denotational semantics, has struggled to keep up with these advances. Domain theory encompasses

two broad classes of objects: directed complete partial orders (dcpo’s), based on an order-theoretic view of computation, and

the smaller class of (continuous) domains, those dcpo’s that also come equipped with a notion of approximation. However,

adding probabilistic choice to the domain-theoretic approach has been a challenge. The canonical model of (sub)probability

measures in domain theory is the family of valuations – certain maps from the lattice of open subsets of a dcpo to the unit

interval. It is well-known that these valuations form a monad V on DCPO (the category of dcpo’s and Scott-continuous

functions) and on DOM (the full subcategory of DCPO consisting of domains) [11], [12].

In fact, the monad V on DOM is commutative [12], which is important for two reasons: (1) its commutativity is equivalent

to the Fubini Theorem [12], a cornerstone of integration theory and (2) computationally, commutativity of a monad together

with adequacy can be used to establish contextual equivalences for effectful programs. However, in order to do so, one typically

needs a Cartesian closed category for the semantic model, and DOM is not closed; in fact, despite repeated attempts, it remains

unknown whether there is any Cartesian closed category of domains on which V is an endofunctor; this is the well-known

Jung-Tix Problem [13]. On the other hand, it also is unknown if the monad V is commutative on the larger Cartesian closed

category DCPO. In this paper, we offer a solution to this conundrum.

A. Our contributions

We use topological methods to construct a commutative valuations monad M on DCPO, as follows: it is straightforward

to show the family SD of simple valuations on D can be equipped with the structure of a commutative monad, but SD is

not a dcpo, in general. So, we complete SD by taking the smallest subdcpo MD ⊆ VD that contains SD. This defines the

object-mapping of a monad M on DCPO. The unit, multiplication and strength of the monad M at D are given by the

restrictions of the same operations of V to MD. Topological arguments then imply that M is a commutative valuations monad

on DCPO.

In fact, there are several completions of SD that give rise to commutative valuations monads on DCPO. These completions

are determined by so-called K-categories, introduced by Keimel and Lawson [14]. This observation allows us to define two

additional commutative valuations monads, W and P , on DCPO simply by specifying their corresponding K-categories.

Finally, while we have identified three such K-categories, there likely are more that meet our requirements, each of which

would define yet another commutative monad of valuations on DCPO containing S.

With this background, we now summarise our main results.

http://arxiv.org/abs/2102.00510v1

Commutative monads: A K-category is a full subcategory of the category T0 of T0-spaces satisfying properties that

imply it determines a completion of each T0-space among the objects of the K-category. For example, each K-category defines

a completion of a poset endowed with its Scott topology, among the dcpo’s in the K-category. In particular, each K-category

determines a completion of the family SD when considered as a subset of VD, for each dcpo D.

By specifying an additional constraint on K-categories, we can show the corresponding completions of S define commutative

monads on DCPO. We identify three commutative monads concretely: M, W and P , corresponding to the K-categories of

d-spaces, that of well-filtered spaces and that of sober spaces, respectively (see Theorem 8 and Theorem 22). As part of our

construction, we also prove the most general Fubini Theorem for dcpo’s yet available (see Theorem 21).

Eilenberg-Moore Algebras: All three of M,W and P restrict to monads on DOM, where they coincide with V . We

characterize their Eilenberg-Moore categories over DOM by showing they are isomorphic to the category of continuous

Kegelspitzen and Scott-continuous linear maps [15]; this corrects an error in [12] (see Remark 36 below).

On the larger category DCPO, we show the Eilenberg-Moore algebras of our monads M,W and P are Kegelspitzen

(see Subsection III-E). It is unknown if every Kegelspitze is an M-algebra, but we believe this to be the case.

Semantics: We consider the Probabilistic FixPoint Calculus (PFPC) – a call-by-value simply-typed lambda calculus

with mixed-variance recursive types, term recursion and probabilistic choice (see Section II). We show that each of the Kleisli

categories of our three commutative monads is a sound and computationally adequate model of PFPC (see Section V). Moreover,

we show that adequacy holds in a strong sense (Theorem 55), i.e., the interpretation of each term is a (potentially infinite)

convex sum of the values it reduces to.

B. Related work

The first dcpo model for probabilistic choice was given in [16], but this preceded Moggi’s seminal work using Kleisli

categories to model computational effects [17]. The work closest to ours is Jones’ thesis [12] (see also [11]), which considers

the same language PFPC, but with a slightly different syntax. This work is based on an early version of FPC, and uses the

Kleisli category of V over DCPO as the semantic model. While soundness and adequacy theorems are included in [12], the

proof of adequacy does not identify a semantic space on which V is commutative, instead offering arguments based on the

commutativity of S, and on realizing the valuations needed to interpret the language as directed suprema of simple valuations.

Our semantic results improve those of Jones, because the commutativity of our monads together with adequacy allows us to

establish a larger class of contextual equivalences.

Another related paper is [18], where the authors describe a different construction for a commutative monad for probability.

The construction in [18] is based on functional-analytic techniques similar to those in [19], [20], whereas ours is based on the

topological and categorical methods in [21]. Furthermore, the two constructions yield distinct monads. With our construction,

we identify three probabilistic commutative monads, study the structure of the induced Eilenberg-Moore and Kleisli categories

and then prove semantic results such as soundness and adequacy for PFPC. The work in [18] constructs yet another commutative

monad that is used to study a different language (a real PCF-like language with sampling and conditioning) with a semantics

that reflects a concern for implementability and computability.

Other related work includes [22], where the authors use probabilistic coherence spaces to provide a fully abstract model of a

probabilistic call-by-push-value language with recursive types. This work builds on previous work [23] which describes a fully

abstract model of probabilistic PCF also based on probabilistic coherence spaces. Recently, quasi-Borel spaces were introduced

in [24] and they were later used to provide a sound and adequate model of SFPC (a statistical probabilistic programming

language with recursive types, sampling and conditioning) in [8]. Compared to probabilistic coherence spaces and quasi-Borel

spaces, our methods are based on the traditional domain-theoretic approach and its well-established connections to probability

theory [25]–[27]; we hope to exploit these connections in future work.

The paper [28] uses Kegelsptizen to provide a sound and adequate model for probabilistic PCF. The author then discusses

a possible interpretation of a version of linear PFPC without contraction or a !-modality (which means the system is strongly

normalising), but [28] does not state any soundness, nor adequacy results for it.

II. SYNTAX AND OPERATIONAL SEMANTICS

In this section we describe the syntax and operational semantics of our language. The language we consider is the Probabilistic

FixPoint Calculus (PFPC). The presentation we choose for PFPC is exactly the same as FPC [29]–[31] together with the addition

of one extra term (M orp N) for probabilistic choice. The same language is also considered by Jones [12], but with a slightly

different syntax.

A. The Types of PFPC

Recursive types in PFPC are formed in the same way as in FPC. We use X,Y to range over type variables and we use Θ
to range over type contexts. A type context Θ = X1, . . . , Xn is well-formed, written Θ ⊢, if all type variables within it are

distinct. We use A,B to range over the types of our language which are defined in Figure 1. We write Θ ⊢ A to indicate that

Type Variables X,Y Term Variables x, y
Type Contexts Θ ::= · | Θ, X
Types A,B ::= X | A+B | A×B | A → B | µX.A
Term Contexts Γ ::= · | Γ, x : A
Terms M,N ::= x | (M,N) | π1M | π2M | in1M | in2M | (case M of in1x ⇒ N1 | in2y ⇒ N2) |

λx.M | MN | fold M | unfold M | M orp N
Values V,W ::= x | (V,W) | in1V | in2V | fold V | λx.M

Fig. 1. Grammars for types, contexts and terms.

Θ ⊢
Θ ⊢ Θi

Θ ⊢ A Θ ⊢ B ⋆ ∈ {+,×,→}
Θ ⊢ A ⋆ B

Θ, X ⊢ A

Θ ⊢ µX.A

Fig. 2. Formation rules for types.

Γ, x : A ⊢ x : A
Γ ⊢ M : A Γ ⊢ N : A

Γ ⊢ M orp N : A
Γ ⊢ M : A Γ ⊢ N : B
Γ ⊢ (M,N) : A×B

Γ ⊢ M : A1 ×A2 i ∈ {1, 2}
Γ ⊢ πiM : Ai

Γ ⊢ M : Ai i ∈ {1, 2}
Γ ⊢ iniM : A1 +A2

Γ ⊢ M : A1 +A2 Γ, x : A1 ⊢ N1 : B Γ, y : A2 ⊢ N2 : B

Γ ⊢ (case M of in1x ⇒ N1 | in2y ⇒ N2) : B

Γ, x : A ⊢ M : B

Γ ⊢ λxA.M : A → B

Γ ⊢ M : A → B Γ ⊢ N : A
Γ ⊢ MN : B

Γ ⊢ M : A[µX.A/X]

Γ ⊢ fold M : µX.A

Γ ⊢ M : µX.A

Γ ⊢ unfold M : A[µX.A/X]

Fig. 3. Formation rules for terms. All types are assumed to be closed and well-formed.

π1(V,W)
1
−→ V π2(V,W)

1
−→ W

(case in1V of in1x ⇒ N1 | in2y ⇒ N2)
1
−→ N1[V/x]

(case in2V of in1x ⇒ N1 | in2y ⇒ N2)
1
−→ N2[V/y]

unfold fold V
1
−→ V

(λx.M)V
1
−→ M [V/x]

M orp N
p
−→ M M orp N

1−p
−−→ N

E ::= [·] | (E,M) | (V,E) | πiE | EM | V E |

iniE | (case E of in1x ⇒ N1 | in2y ⇒ N2) |

fold E | unfold E

M
p
−→ M ′

E[M]
p
−→ E[M ′]

Fig. 4. Reduction rules for PFPC. The grammar for E defines our call-by-value evaluation contexts.

type A is well-formed in type context Θ whenever the judgement is derivable via the rules in Figure 2. A type A is closed

when · ⊢ A. We remark that there are no restrictions on the admissible logical polarities of our type expressions, even when

forming recursive types.

Example 1. Some important (closed) types may be defined in the following way. The empty type is defined as 0
def
= µX.X

and the unit type as 1
def
= 0 → 0. We may also define:

• Booleans as Bool
def
= 1 + 1;

• Natural numbers as Nat
def
= µX.1 +X ;

• Lists of type A as List(A)
def
= µX.1 +A×X ;

• Streams of type A as Stream(A)
def
= µX.1 → A×X ;

and many others.

B. The Terms of PFPC

We now explain the syntax we use for terms. When forming terms and term contexts, we implicitly assume that all types

within are closed and well-formed. We use x, y to range over term variables and we use Γ to range over term contexts. A

(well-formed) term context Γ = x1 : A1, . . . , xn : An is a list of (distinct) variables with their types. The terms (ranged over

by M,N) and the values (ranged over by V,W) of PFPC are specified in Figure 1 and their formation rules in Figure 3. They

are completely standard. In Figure 3, the notation A[µX.A/X] indicates type substitution which is defined in the standard

way. The term M orp N represents probabilistic choice. A term M of type A is closed when · ⊢ M : A and in this case we

also simply write M : A.

Example 2. Important closed values in PFPC include: the unit value ()
def
= λx0.x : 1; the false and true values given by

ff
def
= in1() : Bool and tt

def
= in2() : Bool; the zero natural number zero

def
= fold in1() : Nat and the successor function

succ
def
= λnNat.fold in2n : Nat → Nat; among many others.

C. The Reduction Rules of PFPC

To describe execution of programs in PFPC, we use a small-step call-by-value operational semantics which is described in

Figure 4. The reduction relation M
p
−→ N should be understood as specifying that term M reduces to term N with probability

p ∈ [0, 1] in exactly one step. Our reduction rules are simply the standard rules for small-step reduction in FPC [32, §20] and

small-step reduction for probabilistic choice [33]. Of course, it is well-known this system is type-safe.

Theorem 3. If Γ ⊢ M : A and M
p
−→ N, then Γ ⊢ N : A. In this situation, if p < 1, then there exists a term N ′, such that

M
1−p
−−→ N ′. Furthermore, if · ⊢ M : A, then either M is a value or there exists N, such that M

p
−→ N for some p ∈ [0, 1].

Assumption 4. Throughout the rest of the paper, we implicitly assume that all types, terms and contexts are well-formed.

D. Recursion and Asymptotic Behaviour of Reduction

It is well-known that type recursion in FPC induces term recursion [29], [30], [32] and the same is true for PFPC. This allows

us to derive the call-by-value fixpoint operator

· ⊢ fixA→B : ((A → B) → A → B) → A → B

at any function type A → B (see [29] and [30, §8] for more details). Using fixA→B , we may write recursive functions.

Example 5. Consider the following program:

coins
def
= fix1→1λf

1→1.λx1. case(ff or0.5 tt) of

in1z ⇒ () | in2z ⇒ fx.

It follows · ⊢ coins : 1 → 1. Evaluating at () shows that coins() performs a fair coin toss and depending on the outcome,

either terminates to () or repeats the process again. We see that there is no upper bound on the number of coin tosses

this program would perform. On the other hand, it is easy to see that the probability coins() terminates to () is precisely
∑∞

i=1 2
−i = 1.

The above simple example shows that a rigorous operational analysis of PFPC has to consider the asymptotic behaviour of

terms under reduction. We do this by showing how to determine the probability that a term reduces to a value in any number

of steps. We will later see that this is crucial for proving our adequacy result (Theorem 55).

We may determine the overall probability that a term M reduces to a value V in the same way as in [9]. The probability

weight of a reduction path π =
(

M1
p1

−→ · · ·
pn
−→ Mn

)

is P (π)
def
=
∏n

i=1 pi. The probability that term M reduces to the value

V in at most n steps is

P (M −→≤n V)
def
=

∑

π∈Paths≤n(M,V)

P (π),

where Paths≤n(M,V) is the set of all reduction paths from M to V of length at most n. The probability that term M reduces

to value V (in any finite number of steps) is P (M −→∗ V)
def
= supi P (M −→≤i V).

Finally, the probability that term M terminates is denoted Halt(M) and it is determined in the following way:

Val(M)
def
= {V | V is a value and P (M −→∗ V) > 0} (1)

Halt(M)
def
=

∑

V ∈Val(M)

P (M −→∗ V). (2)

Note that the sum in (2) is countably infinite, in general.

III. COMMUTATIVE MONADS FOR PROBABILITY

In this section we present a novel and general construction for probabilistic commutative monads on DCPO and we use

it to identify three such monads.

A. Domain-theoretic and Topological Preliminaries

A nonempty subset A of a partially ordered set (poset) D is directed if each pair of elements in A has an upper bound in

A. A directed-complete partial order, (dcpo, for short) is a poset in which every directed subset A has a supremum supA.

For example, the unit interval [0, 1] is a dcpo in the usual ordering. A function f : D → E between two (posets) dcpo’s is

Scott-continuous if it is monotone and preserves (existing) suprema of directed subsets.

The category DCPO of dcpo’s and Scott-continuous functions is complete, cocomplete and cartesian closed [34]. We

denote with A1 ×A2 (A1 + A2) the categorical (co)product of the dcpo’s A1 and A2 and with π1, π2 (in1, in2) the associated

(co)projections. We denote with ∅ and 1 the initial and terminal objects of DCPO; these are the empty dcpo and the singleton

dcpo, respectively. DCPO is Cartesian closed, where the internal hom of A and B is [A → B], the Scott-continuous functions

f : A → B ordered pointwise.

The category DCPO⊥! of pointed dcpo’s and strict Scott-continuous functions also is important. DCPO⊥! is symmetric

monoidal closed when equipped with the smash product and strict Scott-continuous function space, and it is also complete

and cocomplete [34].

The Scott topology σD on a dcpo D consists of the upper subsets U = ↑U = {x ∈ D | (∃u ∈ U)u ≤ x} that are

inaccessible by directed suprema: i.e., if A ⊆ D is directed and supA ∈ U , then A ∩ U 6= ∅. The space (D, σD) is also

written as ΣD. Scott-continuous functions between dcpo’s D and E are exactly the continuous functions between ΣD and

ΣE [35, Proposition II-2.1]. We always equip [0, 1] with the Scott topology unless stated otherwise.

A subset B of a dcpo D is a sub-dcpo if every directed subset A ⊆ B satisfies supD A ∈ B. In this case, B is a dcpo

in the induced order from D. The d-topology on D is the topology whose closed subsets consist of sub-dcpo’s of D. Open

(closed) sets in the d-topology will be called d-open (d-closed). The d-closure of C ⊆ D is the topological closure of C with

respect to the d-topology on D, which is the intersection of all sub-dcpo’s of D containing C.

The family of open sets of a topological space X , denoted OX , is a complete lattice in the inclusion order. The specialization

order ≤X on X is defined as x ≤X y if and only if x is in the closure of {y}, for x, y ∈ X . We write ΩX to denote X
equipped with the specialization order. It is well-known that X is T0 if and only if ΩX is a poset. A subset of X is called

saturated if it is an upper set in ΩX . A space X is called a d-space or a monotone-convergence space if ΩX is a dcpo and

each open set of X is Scott open in ΩX . As an example, ΣD is always a d-space for each dcpo D. The full subcategory

of T0 consisting of d-spaces is denoted by D. There is a functor Σ: DCPO → D that assigns the space ΣD to each dcpo

D, and the map f : ΣD → ΣE to the Scott-continuous map f : D → E. Dually, the functor Ω: D → DCPO assigns ΩX
to each d-space X and the map f : ΩX → ΩY to each continuous map f : X → Y . In fact, Σ ⊣ Ω, i.e., Σ is left adjoint to

Ω [36].

A T0 space X is called sober if every nonempty closed irreducible subset of X is the closure of some (unique) singleton

set, where A ⊆ X is irreducible if A ⊆ B ∪ C with B and C nonempty closed subsets implies A ⊆ B or A ⊆ C. The

category of sober spaces and continuous functions is denoted by SOB. Sober spaces are d-spaces, hence SOB ⊆ D [14].

B. A Commutative Monad for Probability

To begin, a subprobability valuation on a topological space X is a Scott-continuous function ν : OX → [0, 1] that is strict

(ν(∅) = 0), and modular (ν(U) + ν(V) = ν(U ∪ V) + ν(U ∩ V)). The set of subprobability valuations on X is denoted by

VX . The stochastic order on VX is defined pointwise: ν1 ≤ ν2 if and only if ν1(U) ≤ ν2(U) for all U ∈ OX . VX is a

pointed dcpo in the stochastic order, with least element given by the constantly zero valuation 0X and where the supremum

of a directed family {νi}i∈I is supi∈I νi
def
= λU. supi∈I νi(U).

The canonical examples of subprobability valuations are the Dirac valuations δx for x ∈ X , defined by δx(U) = 1 if x ∈ U
and δx(U) = 0 otherwise. VX enjoys a convex structure: if νi ∈ VX and ri ≥ 0, with

∑n
i=1 ri ≤ 1, then the convex sum

∑n
i=1 riνi

def
= λU.

∑n
i=1 riνi(U) also is in VX . The simple valuations on D are those of the form

∑n
i=1 riδxi

, where xi ∈ X ,

ri > 0, i = 1, . . . , n and
∑n

i=1 ri ≤ 1. The set of simple valuations on X is denoted by SX . Clearly, SX ⊆ VX . Unlike VX ,

SX is not directed-complete in the stochastic order in general.

Given ν ∈ VX and f : X → [0, 1] continuous, we can define the integral of f against ν by the Choquet formula

∫

x∈X

f(x)dν
def
=

∫ 1

0

ν(f−1((t, 1]))dt,

where the right side is a Riemann integral of the bounded antitone function λt.ν(f−1((t, 1])). If no confusion occurs, we

simply write
∫

x∈X
f(x)dν as

∫

fdν. Basic properties of this integral can be found in [12]. Here we note that the map

ν 7→
∫

fdν : VX → [0, 1], for a fixed f , is Scott-continuous, and

∫

fd

n
∑

i

riδxi
=

n
∑

i=1

rif(xi) (3)

for
∑n

i=1 riδxi
∈ VX .

For a dcpo D, VD is defined as V(D, σD). Using Manes’ description of monads (Kleisli triples) [37], Jones proved in her

PhD thesis [12] that V is a monad on DCPO:

• The unit of V at D is ηVD : D → VD : x 7→ δx.

• The Kleisli extension f † of a Scott-continuous map f : D → VE maps ν ∈ VD to f †(ν) ∈ VE by

f †(ν)
def
= λU ∈ σE.

∫

x∈D
f(x)(U)dν.

Then the multiplication µV
D : VVD → VD is given by id†VD; it maps ̟ ∈ VVD to λU ∈ σD.

∫

ν∈VD ν(U)d̟ ∈ VD. Thus, V

defines an endofunctor on DCPO that sends a dcpo D to VD, and a Scott-continuous map h : D → E to V(h)
def
= (ηE ◦ h)†;

concretely, V(h) maps ν ∈ VD to λU ∈ σE.ν(h−1(U)).

Jones [12] also showed that V is a strong monad over DCPO: its strength at (D,E) is given by

τVDE : D × VE → V(D × E) : (x, ν) 7→ λU.

∫

y∈E

χU (x, y)dν,

where χU is the characteristic function of U ∈ σ(D × E). Whether V is a commutative monad on DCPO has remained an

open problem for decades. Proving this to be true requires showing the following Fubini-type equation holds:

∫

x∈D

∫

y∈E

χU (x, y)dξdν =

∫

y∈E

∫

x∈D

χU (x, y)dνdξ, (4)

for dcpo’s D and E, for U ∈ σ(D × E) and for ν ∈ VD, ξ ∈ VE [11, Section 6]. The difficulty lies in the well-known fact

that a Scott open set U ∈ σ(D × E) might not be open in the product topology σD × σE in general [35, Exercise II-4.26].

However, if either ν or ξ is a simple valuation, then Equation (4) holds. For example, if ν =
∑n

i=1 riδxi
∈ SD, then by (3)

both sides of (4) are equal to
∑n

i=1 ri
∫

y∈E χU (xi, y)dξ. The Scott continuity of the integral in ν then implies Equation (4)

holds for valuations that are directed suprema of simple valuations. This is why, for example, V is a commutative monad on

the category of domains and Scott-continuous maps, as we now explain.

If D is a dcpo and x, y ∈ D, we say x is way-below y (in symbols, x ≪ y) if and only if for every directed set A with

y ≤ supA, there is some a ∈ A such that x ≤ a. We write ↓↓ y = {x ∈ D | x ≪ y}. A basis for a dcpo D is subset B
satisfying ↓↓ x ∩B is directed and x = sup ↓↓x ∩B, for each x ∈ D. D is continuous if it has a basis. Continuous dcpo’s are

also called domains, and the category of domains and Scott-continuous maps is denoted by DOM.

Applying the reasoning above about simple valuations, we obtain a commutative monad of valuations on DCPO by

restricting to a suitable completion of SD inside VD. There are several possibilities (cf. [21]), and we choose the smallest

and simplest – the d-closure of SD in VD.

Definition 6. For each dcpo D, we define MD to be the intersection of all sub-dcpo’s of VD that contain SD. 1

Since VD itself is a dcpo containing SD, it is immediate from the definition of sub-dcpo’s that MD is a well-defined dcpo

in the stochastic order with SD ⊆ MD ⊆ VD. Analogous to VD, MD also enjoys a convex structure.

Lemma 7. For νi ∈ MD and ri ≥ 0, i = 1, . . . , n with
∑n

i=1 ri ≤ 1, the convex sum
∑n

i=1 riνi is still in MD.

Proof. In Appendix A.

For the proofs of the following results, we repeatedly use the fact that Scott-continuous maps between dcpo’s D and E are

d-continuous, i.e., continuous when D and E are equipped with the d-topology [38, Lemma 5].

Theorem 8. M is a commutative monad on DCPO.

Proof. We sketch the key steps in showing M is commutative:

Unit: The unit of M at D is ηMD : D → MD : x 7→ δx, the co-restriction of ηVD to MD. Obviously, it is a well-defined

Scott-continuous map.

Extension: Since a Scott-continuous map f : D → ME is also Scott-continuous from D to VE, the Kleisli extension

f ‡ : MD → ME of f can be defined as the restriction and co-restriction of f † : VD → VE to MD and ME, respectively.

The validity of this definition requires f †(MD) ⊆ ME, which boils down to f †(SD) ⊆ ME by d-continuity of f †, since

f † is Scott-continuous. Hence we only need to check that f †(
∑n

i=1 riδxi
) ∈ ME for each

∑n
i=1 riδxi

∈ SD. However,

f †(
∑n

i=1 riδxi
) =

∑n
i=1 rif(xi), which is indeed in ME by Lemma 7.

1The same definition applies in the case of topological spaces.

Strength: The strength τMDE of M at (D,E) is given by τVDE restricted to D ×ME and co-restricted to M(D × E).
This is well-defined provided that τVDE maps D×ME into M(D×E). Again, we only need to prove that τVDE maps D×SE
into M(D × E) and conclude the proof with the d-continuity of τVDE in its second component. Towards this end, we pick

(a,
∑n

i=1 riδyi
) ∈ D × SE, and see

τVDE(a,

n
∑

i=1

riδyi
) = λU.

∫

χU (a, y)d

n
∑

i=1

riδyi

(3)
= λU.

n
∑

i=1

riχU (a, yi)

= λU.

n
∑

i=1

riδ(a,yi)(U)
def
=

n
∑

i=1

riδ(a,yi)

is indeed in M(D × E).
With f ‡ and τM well-defined, the same arguments used to prove (V , ηV , _†, τV) is a strong monad in [12] prove

(M, ηM, _‡, τM) is a strong monad on DCPO.

Commutativity: Finally, we show M is commutative by proving the Equation (4) holds for any dcpo’s D and E and

ν ∈ MD, ξ ∈ ME. As commented above, this holds if ν is simple, and then the Scott-continuity of the integral in the

ν-component implies Equation (4) also holds for directed suprema of simple valuations, directed suprema of directed suprema

of simple valuations and so forth, transfinitely. But these are exactly the valuations MD.

Formally, we consider for each fixed ξ ∈ ME (even for ξ ∈ VE) the functions

F : ν 7→

∫

x∈D

∫

y∈E

χU (x, y)dξdν : MD → [0, 1]

and

G : ν 7→

∫

y∈E

∫

x∈D

χU (x, y)dνdξ : MD → [0, 1].

Note that both F and G are Scott-continuous functions hence d-continuous, and they are equal on SD by Equation (3). Since

[0, 1] is Hausdorff in the d-topology, F and G are then equal on the d-closure of SD which is, by construction, MD.

Remark 9. The multiplication µM
D of M at D is given by (idMD)‡. Concretely, µM

D maps each valuation ̟ ∈ M(MD)
to λU ∈ σD.

∫

ν∈MD ν(U)d̟. In particular, µM
D maps each simple valuation

∑n
i=1 riδνi ∈ M(MD) to

∑n
i=1 riνi, where

νi ∈ MD, i = 1, . . . , n, and
∑n

i=1 ri ≤ 1.

Remark 10. The double strength of M at (D,E) is given by the Scott-continuous map (ν, ξ) 7→ ν ⊗ ξ : M(D)×M(E) →
M(D × E), where ν ⊗ ξ is defined as λU ∈ σ(D × E).

∫

y∈E

∫

x∈D
χU (x, y)dνdξ.

Remark 11. We note that MD is the first example of a commutative valuations monad on DCPO that contains the simple

valuations. And, since every valuation on a domain D is a directed supremum of simple valuations [12, Theorem 5.2], it

follows that M = V on the category DOM.

C. Dcpo-completion versus D-completion

Recall that a dcpo-completion of a poset P is a pair (D, e), where D is a dcpo and e : P → D is an injective Scott-continuous

map, such that for any dcpo E and Scott-continuous map f : P → E, there exists a unique Scott-continuous map f ′ : D → E
satisfying f = f ′ ◦ e. The dcpo-completion of posets always exists [38, Theorem 1].

As we have seen, for each dcpo D, MD is the smallest sub-dcpo in VD containing SD, one may wonder whether MD,

together with the inclusion map from SD into MD, is a dcpo-completion of SD. The answer is “no” in general. The

reason is that the inclusion of SD into MD may not be Scott-continuous, even when D is a domain (see [21, Section 6]). The

construction MD is actually more in a topological flavour, as we now explain. For simplicity, we assume all spaces considered

in the sequel are in T0, the category of T0 spaces and continuous maps.

Definition 12. Let X be a topological space. The weak topology on VX is generated by the sets

[U > r]
def
= {ν ∈ VX | ν(U) > r},

which form a subbasis, where U is open in X and r ∈ [0, 1].

Remark 13. For each continuous map f : X → [0, 1] and r ∈ [0, 1], the set [f > r]
def
= {ν ∈ VX |

∫

fdν > r} is open in the

weak topology.

We use VwX to denote the space VX equipped with the weak topology. We will use the fact that VwX is a sober space,

which follows from [39, Proposition 5.1]. It is easy to see that the specialization order on VwX is just the stochastic order.

Hence VX = Ω(VwX).
We also use SwX (MwX) to denote the space SX (MX) endowed with the relative topology from VwX . Accordingly,

MX = Ω(MwX), and SX = Ω(SwX). Although MX is not the dcpo-completion of SX in general, we do have the

following:

Proposition 14. For each space X , MwX is a D-completion of SwX . That is, MwX itself is a d-space, an object in D;

the inclusion map i : SwX → MwX is continuous; and for any d-space Y and continuous map f : SwX → Y , there exists a

unique continuous map f ′ : MwX → Y such that f = f ′ ◦ i.

The above proposition is a straightforward application of Keimel and Lawson’s K-category theory [14] to the category D.

Definition 15. A K-category K is a full subcategory of T0, whose objects will be called k-spaces, satisfying:

1) Homeomorphic copies of k-spaces are k-spaces;

2) All sober spaces are k-spaces, i.e., SOB ⊆ K;

3) In a sober space S, the intersection of any family of k-subspaces, equipped with the relative topology from S, is a

k-space;

4) For any continuous map f : S → T between sober spaces S and T , and any k-subspace K of T , f−1(K) is k-subspace

of S.

If K is a K-category, then the K-completion2 of any T0-space X always exists, and one possible completion process goes

as follows [14, Theorem 4.4]: First, pick any j : X → Y such that Y is sober and j is a topological embedding. For example,

one can take j as the embedding of X into its standard sobrification. Second, let X̃ be the intersection of all k-subspaces of

Y containing j(X) and equip it with the relative topology from Y . Then X̃ , together with the co-restriction i : X → X̃ of j,

is a K-completion of X .

Now we apply this procedure to prove Proposition 14. First, note that D is indeed a K-category as proved in [14, Lemma

6.4]. We embed SwX into the sober space VwX , and notice that all d-subspaces of VwX are precisely sub-dcpo’s of VX .

Hence MwX , which is the intersection of sub-dcpo’s VX containing SX equipped with the relative topology from VwX , is

a D-completion of SwX .

D. A uniform construction

Proposition 14 motivates the next definition.

Definition 16. Let K be a K-category. For each space X , we define VKX to be the intersection of all k-subspaces of VwX
containing SwX , equipped with the relative topology from VwX .

As discussed above, VKX is a K-completion of SwX . It was proved in [21, Theorem 3.5]3 that VK : T0 → T0 is a monad

for each K-category K: The unit of VK at X maps x ∈ X to δx, and for any continuous map f : X → VKY , the Kleisli

extension f † : VKX → VKY maps ν to λU ∈ OY.
∫

x∈X
f(x)(U)dν. Therefore, if K is a full subcategory of D, then according

to the construction VKX is always a d-space for each X , hence the monad VK : T0 → T0 can be restricted to a monad on

D.

Theorem 17. Let K be a K-category with K ⊆ D. Then VK,≤
def
= Ω ◦ VK ◦ Σ is a monad on DCPO.

DCPO D D
VK

Σ F

VK

Ω

⊣

U

⊣

Proof. Let D
VK be the Eilenberg-Moore category of VK over D and F ⊣ U be the adjunction that recovers VK, then

VK,≤ = Ω ◦ U ◦ F ◦ Σ. The statements follow from the standard categorical fact that adjoints compose: F ◦ Σ ⊣ Ω ◦ U .

Remark 18. The unit of VK,≤ at dcpo D sends x ∈ D to δx, and for dcpo’s D and E, the Kleisli extension f † : VK,≤D →
VK,≤E of f : D → VK,≤E maps ν to λU ∈ σE.

∫

x∈D
f(x)(U)dν.

Remark 19. Mw = VD and M = VD,≤.

Note that the category SOB of sober spaces is the smallest K-category [14, Remark 4.1]. We denote VSOB by Pw and

VSOB,≤ by P . The following statement is then obvious.

2The definition of K-completion is similar to that of D-completion and can be found in [14].
3The authors allow valuations to take values in [0,∞]. However, the theorem is also true for valuations with values in [0, 1]

Proposition 20. Let K be a K-category with K ⊆ D. Then for each dcpo D, we have SD ⊆ MD ⊆ VK,≤D ⊆ PD ⊆ VD.

Heckmann [39, Theorem 5.5] proved that PD consists of the so-called point-continuous valuations on D. We claim that

the Equation 4 holds when either ν or ξ is point-continuous:

Theorem 21. Let D and E be dcpo’s, and U ∈ σ(D × E). Then the equation
∫

x∈D

∫

y∈E

χU (x, y)dξdν =

∫

y∈E

∫

x∈D

χU (x, y)dνdξ,

holds for (ν, ξ) ∈ PD × VE (equivalently, (ν, ξ) ∈ VD × PE).

As far as we know, this is the most general Fubini theorem on dcpo’s. The proof, which relies on the Schröder-Simpson

Theorem [40], is included in Appendix A. Hence by combining Remark 18, Proposition 20 and Theorem 21 we get our next

theorem.

Theorem 22. For any K-category K with K ⊆ D, VK,≤ is a commutative monad on DCPO.

Proof. In Appendix A.

As promised, we conclude this subsection with a third commutative monad W on DCPO by describing a K-category lying

between SOB and D, the category WF consisting of well-filtered spaces and continuous maps. A T0 space X is well-filtered

if, given any filtered family {Ka}a∈A of compact saturated subsets of X with
⋂

a∈A Ka ⊆ U , with U open, there is some

a ∈ A with Ka ⊆ U . A proof that WF is a K-category between SOB and D can be found in [41]. Hence W
def
= VWF,≤ is a

commutative monad on DCPO and MD ⊆ WD ⊆ PD for every dcpo D.

Remark 23. All subsequent results we present in this paper hold for the three monads M,W and P . To avoid cumbersome

repetition, we explicitly state them for M.

E. Continuous Kegelspitzen and M-algebras

Kegelspitzen [15] are dcpo’s that enjoy a convex structure. In this section, we show every continuous Kegelspitze K has

a linear barycenter map β : MK → K making (K,β) an M-algebra and conversely, every M-algebra (K,β) on DCPO

admits a Kegelspitze structure on K making β : MK → K a linear map. We begin with the notion of a barycentric algebra.

Definition 24. A barycentric algebra is a set A endowed with a binary operation a+r b for every real number r ∈ [0, 1] such

that for all a, b, c ∈ A and r, p ∈ [0, 1], the following equations hold:

a+1 b = a; a+r b = b+1−r a; a+r a = a;

(a+p b) +r c = a+pr (b+ r−pr

1−pr
c) provided r, p < 1.

Definition 25. A pointed barycentric algebra is a barycentric algebra A with a distinguished element ⊥. For a ∈ A and

r ∈ [0, 1], we define r · a
def
= a+r ⊥. A map f : A → B between pointed barycentric algebras is called linear if f(⊥A) = ⊥B

and f(a+r b) = f(a) +r f(b) for all a, b ∈ A, r ∈ [0, 1].

Definition 26. A Kegelspitze is a pointed barycentric algebra K equipped with a directed-complete partial order such that,

for every r in the unit interval, the functions determined by convex combination (a, b) 7→ a +r b : K ×K → K and scalar

multiplication (r, a) 7→ r ·a : [0, 1]×K → K are Scott-continuous in both arguments. A continuous Kegelspitze is a Kegelspitze

that is a domain in the equipped order.

Remark 27. In a Kegelspitze K , the map (r, a) 7→ r · a = a+r ⊥ is Scott-continuous, hence monotone, in the r-component,

which implies ⊥ = ⊥+1 a = a+0 ⊥ = 0 · a ≤ 1 · a = a for each a ∈ K , i.e., ⊥ is the least element of K .

Example 28. For each dcpo D, MD is a Kegelspitze: for ν1, ν2 ∈ MD and r ∈ [0, 1], ν1+r ν2 is defined as rν1+(1− r)ν2.

Lemma 7 implies this is well-defined.4 The constantly zero valuation 0D is the distinguished element. Verifying that MD is

a Kegelspitze is then straightforward.

As a consequence, for each Scott-continuous map f : D → E, the map M(f) : MD → ME : ν 7→ λU ∈ σE.ν(f−1(U)) is

obviously linear.

Definition 29. In each pointed barycentric algebra K , for ai ∈ K, ri ∈ [0, 1], i = 1, . . . , n with
∑n

i=1 ri ≤ 1, we define the

convex sum inductively
n
∑

i=1

riai
def
=

{

a1 , if r1 = 1,

a1 +r1 (
∑n

i=2
ri

1−r1
ai) , if r1 < 1.

4Note that Lemma 7 is stated only for M, but it also holds for W and P : one notes that ν1 7→ rν1 + (1 − r)ν2 : VwD → VwD is a continuous map
between sober spaces and then uses Definition 15 Item (4) to replace “d-continuity” in the proof.

This is invariant under index-permutation: for π a permutation of {1, . . . , n},
∑n

i=1 riai =
∑n

i=1 rπ(i)aπ(i) [12, Lemma 5.6]. If

K is a Kegelspitze, then the expression
∑n

i=1 riai is Scott-continuous in each ri and ai. A countable convex sum may also be

defined: given ai ∈ K and ri ∈ [0, 1], for i ∈ I , with
∑

i∈I ri ≤ 1, let
∑

i∈I riai
def
= sup{

∑

j∈J rjaj | J ⊆ I and J is finite}.

Lemma 30. A function f : K1 → K2 between pointed barycentric algebras K1 and K2 is linear if and only if f(
∑n

i=1 riai) =
∑n

i=1 rif(ai) for ai ∈ K1, i = 1, . . . , n and
∑n

i=1 ri ≤ 1.

Definition 31. Let K be a Kegelspitze and s =
∑n

i=1 riδxi
be a simple valuation on K . The barycenter of s is defined as

β∗(s)
def
=
∑n

i=1 rixi.

As a straightforward consequence of Jones’ Splitting Lemma ([35, Proposition IV-9.18]), the map β∗(s) is monotone from

SK to K . If K is continuous, then MK = VK and SK is a basis for MK (see Remark 11). We extend β∗ to the barycenter

map

β : MK → K by β(ν)
def
= sup{β∗(s) | s ∈ SK and s ≪ ν}.

Note that for each simple valuation s =
∑n

i=1 riδxi
∈ SK , there exists a directed set A of SK with supremum s consisting

of simple valuations way-below s. For example, one can choose A = {
∑n

i=1
mri
m+1δyi

| m ∈ N and yi ≪ xi}. By [35, Lemma

IV-9.23.], the map β, as defined above, is a Scott-continuous map extending β∗, i.e., β(ν) = β∗(ν) for ν ∈ SK . Moreover, β
is a linear map since β∗ is.

Proposition 32. Each continuous Kegelspitze K admits a linear barycenter map β : MK → K (as above) for which the pair

(K,β) is an Eilenberg-Moore algebra of M.

Proof. Clearly, β ◦ ηMK = idK . To prove that β ◦ µM
K = β ◦M(β), we only need to prove both sides are equal on simple

valuations in M(MK), since S(MK) is dense in M(MK) in the d-topology, and both sides of the equation are d-continuous

functions. However, when applied to the simple valuation
∑n

i=1 riδνi ∈ S(MK), both sides equal
∑n

i=1 riβ(νi). This follows

from direct computation by employing Remark 9 and linearity of β.

We next show that every Eilenberg-Moore algebra (K,β) of M on DCPO admits a Kegelspitze structure on K making

β : MK → K a linear map.

Proposition 33. Let (K,β) be an M-algebra on DCPO. For a, b ∈ K and r ∈ [0, 1], define a +r b
def
= β(δa +r δb). Then

with the operation +r, K is a Kegelspitze and β : MK → K is linear.

Proof. See Appendix A.

Proposition 34. Let (K1, β1) and (K2, β2) be M-algebras on DOM. A Scott-continuous function f : K1 → K2 is an algebra

morphism from (K1, β1) to (K2, β2) if and only if f is linear with respect to the Kegelspitze structure on K1 and K2 introduced

by β1 and β2, respectively, as in Proposition 33.

Proof. See Appendix A.

Theorem 35. The Eilenberg-Moore category DOM
M of M over DOM is isomorphic to the category of continuous

Kegelspitzen and Scott-continuous linear maps.

Proof. Combine Propositions 32, 33 and 34.

Remark 36. Theorem 35 characterises DOM
M, which equals DOM

VK,≤ for any K-category K with K ⊆ D since V = M
on domains (see Remark 11 and Proposition 20). This corrects an error in [12]: there it is proved that continuous abstract

probabilistic domains and linear maps form a full subcategory of DOM
V . But there is a claim that all objects in DOM

V

are abstract probabilistic domains. A separating example is the extended non-negative reals [0,∞], which is a continuous

Kegelspitze but not an abstract probabilistic domain.

IV. CATEGORICAL MODEL

In this section we describe the categorical properties of the Kleisli category of our monad M. Everything we say in this

section is also true for our other two monads as well.

We write DCPOM for the Kleisli category of our monad M : DCPO → DCPO. In order to distinguish between the

categorical primitives of DCPO and DCPOM, we indicate with f : A .→ B the morphisms of DCPOM and we write

f �g
def
= µ◦M(f)◦g for the Kleisli composition of morphisms in DCPOM. We write idA : A .→A with idA = ηA : A → MA

for the identity morphisms in DCPOM. The monad M induces an adjunction J ⊣ U : DCPOM → DCPO, where:

JA
def
= A, J f

def
= η ◦ f, UA

def
= MA, Uf

def
= µ ◦Mf.

1) Coproducts: The category DCPOM inherits (small) coproducts from DCPO in the standard way [42, pp. 264] and we

write A1
.
+A2

def
= A1+A2 for the induced (binary) coproduct. The induced coprojections are given by J (in1) : A1 .→A1

.
+A2

and J (in2) : A2 .→A1
.
+A2. Then for f : A .→ C and g : B .→D, f

.
+ g = [M(inC) ◦ f,M(inD) ◦ g].

2) Symmetric monoidal structure: Because our monad M is commutative, it induces a symmetric monoidal structure on

DCPOM in a canonical way [43, pp. 462]. The induced tensor product is A
.
× B

def
= A × B and the Kleisli projections

are J (πA) : A
.
× B .→ A and J (πB) : A

.
× B .→ B 5. For f : A .→ C and g : B .→ D, their tensor product is given by

f
.
× g = λ(a, b).f(a)⊗ g(b). Note that the last expression uses the double strength of M, see Remark 10.

Standard categorical arguments now show that the Kleisli products distribute over the Kleisli coproducts. We write dA,B,C :
A

.
× (B

.
+ C) ∼= (A

.
×B)

.
+ (A

.
× C) for this natural isomorphism.

3) The left adjoint J : The functor J , whose action is the identity on objects, preserves the monoidal structure and the

coproduct structure up to equality (and not merely up to isomorphism). That is, J (A⋆B) = JA
.
⋆JB and J(f ⋆g) = Jf

.
⋆Jg,

where ⋆ ∈ {×,+}.
4) Kleisli Exponential: Our Kleisli adjunction also contains the structure of a Kleisli-exponential (which is also known as

a M-exponential). Following Moggi [17], we will use this to interpret higher-order function types. Next, we describe this

structure in greater detail.

The functor J(−)
.
× B : DCPO → DCPOM has a right adjoint, which we write as [B .→−] : DCPOM → DCPO,

for each dcpo B. In particular [B .→ −]
def
= [B → U(−)], which means that, on objects, [B .→ C] = [B → MC]. This data

provides us with a family of Scott-continuous bijections

λ : DCPOM(JA
.
×B,C) ∼= DCPO(A, [B .→ C]) (5)

natural in A and C, called currying. We also denote with ǫ : J [B .→−]
.
× B ⇒ Id, the counit of the adjunctions (5), often

called evaluation. Because this family of adjunctions is parameterised by objects B of DCPOM, it follows using standard

categorical results [44, §IV.7] that the assignment [B .→−] : DCPOM → DCPO may be extended uniquely to a bifunctor

[− .→−] : DCPO
op
M ×DCPOM → DCPO, such that the bijections λ in (5) are natural in all components6.

Remark 37. Some authors describe currying and evaluation for Kleisli exponentials without referring to the functor J . This

cannot lead to confusion on the object level, but to be fully precise, one has to specify that the naturality properties on the

A-component hold only for total maps. We make this explicit by including J in our presentation.

5) Enrichment Structure: The category DCPOM is enriched over DCPO⊥!: for all dcpo’s A,B and C, the Kleisli

exponential [A .→B] = [A → MB] = DCPOM(A,B) is a pointed dcpo in the pointwise order, and the Kleisli composition

� : [A .→ B]× [B .→ C] → [A .→ C] : (f, g) 7→ g � f = g‡ ◦ f

is obviously a strict Scott-continuous map. Moreover, the adjunction J ⊣ U : DCPOM → DCPO is also DCPO-enriched

(see [45, Definition 6.7.1] for definition) and so are the bifunctors (−
.
×−), (−

.
+ −) and [− .→−].

We interpret probabilistic effects using the convex structure of our model which we now describe. For each dcpo B, MB
is a Kegelspitze in the stochastic order (Example 28) : for r ∈ [0, 1] and ν1, ν2 ∈ MB, ν1 +r ν2 is defined as rν1 +(1− r)ν2;

the zero-valuation 0B is the distinguished element (which is also least). It follows that [A .→ B] = DCPOM(A,B) is a

Kegelspitze in the pointwise order: for f, g ∈ [A .→B], f +r g is defined as λx.f(x) +r g(x). Next, we note that this convex

structure is preserved by Kleisli composition �, Kleisli coproduct
.
+ and Kleisli product

.
×.

Lemma 38. Let A,B,C,D be dcpo’s, f, f1, f2 ∈ [A .→B], g, g1, g2 ∈ [B .→C], h, h1, h2 ∈ [C .→D] and r ∈ [0, 1]. Then we

have:

• (g1 +r g2) � f = g1 � f +r g2 � f ;
• g � (f1 +r f2) = g � f1 +r g � f2;
• (f1 +r f2)

.
⋆ h = f1

.
⋆ h+r f2

.
⋆ h;

• f
.
⋆ (h1 +r h2) = f

.
⋆ h1 +r f

.
⋆ h2,

where ⋆ ∈ {×,+} in the last two cases.

Proof. See Appendix C.

6) Important Subcategories: In order to describe our denotational semantics, we have to identify two important subcategories

of DCPOM.

5These projections do not satisfy the universal property of a product.

6This extension is canonically given by [f .→ g]
def
= λ(g � ǫC1

� (id
.
× f)).

Definition 39. The subcategory of deterministic total maps, denoted TD, is the full-on-objects subcategory of DCPOM each

of whose morphisms f : X .→ Y admits a factorisation f = J (f ′) =

(

X
f ′

−→ Y
ηY
−−→ MY

)

.

Therefore, by definition, each map f : X .→ Y in TD satisfies f(x) = δy for some y ∈ Y . These maps are deterministic

in the sense that they carry no interesting convex structure and they are total in the sense that they map all inputs x ∈ X to

non-zero valuations. The importance of this subcategory is that all values of our language admit an interpretation within TD.

Moreover, the categorical structure of TD is very easy to describe, as our next proposition shows.

Proposition 40. There exists a DCPO-enriched isomorphism of categories DCPO ∼= TD.

Proof. Each map ηX : X → MX is injective, because ΣX is a T0 space and so J : DCPO → DCPOM is faithful. Its

corestriction to TD is the required isomorphism.

In our model, the canonical copy map at an object A is given by the map J 〈idA, idA〉 : A .→ A
.
× A and the canonical

discarding map at A is the map J (1A) : A .→ 1, where 1A : A → 1 is the terminal map of DCPO. Because maps in TD

are in the image of J , it follows that they are compatible with the copy and discard maps and thus also with weakening and

contraction [46], [47].

The next subcategory we introduce is important, because we will use it for the interpretation of open types. It has sufficient

structure to solve recursive domain equations.

Definition 41. The subcategory of deterministic partial maps, denoted PD, is the full-on-objects subcategory of DCPOM

each of whose morphisms f : X .→ Y admits a factorisation f =

(

X
f ′

−→ Y⊥
φY
−−→ MY

)

, where Y⊥ is the dcpo obtained

from Y by freely adding a least element ⊥, and φY is the map:

φY : Y⊥ → MY :: y 7→

{

0Y , if y =⊥

δy , if y 6=⊥ .

These maps are partial because some inputs are mapped to 0, but also deterministic, because the convex structure is trivial

in both cases. This is further justified by the next proposition.

Proposition 42. There exists a DCPO⊥!-enriched isomorphism of categories DCPOL
∼= PD, where DCPOL is the Kleisli

category of the lift monad L : DCPO → DCPO.

Proof. The assignment φ from Definition 41 is a strong map of monads φ : L ⇒ M which then induces a functor

F : DCPOL → DCPOM (Appendix B). Each φY is injective, so the corestriction of F to PD is the required

isomorphism.

7) Solving Recursive Domain Equations: In order to interpret recursive types, we solve the required recursive domain

equations by constructing parameterised initial algebras [30], [31] within (the subcategory of embeddings of) PD using the

limit-colimit coincidence theorem [48].

Definition 43 (see [30, §6.1]). Given a category C and a functor T : Cn+1 → C, a parameterised initial algebra for T is a

pair (T ♯, ιT), such that:

• T ♯ : Cn → C is a functor;

• ιT : T ◦ 〈Id, T ♯〉 ⇒ T ♯ : Cn → C is a natural transformation;

• For every ~C ∈ Ob(Cn), the pair (T ♯ ~C, ιT~C) is an initial T (~C,−)-algebra.

In the special case when n = 1, we recover the usual notion of initial algebra. We consider parameterised initial algebras

because we need to interpret mutual type recursion. Similarly, one can also define the dual notion of parameterised final

coalgebra.

Proposition 44 (see [49, §4.3]). Let C be a category with an initial object and all ω-colimits and let T : Cn+1 → C

be an ω-cocontinuous functor. Then T has a parameterised initial algebra (T ♯, ιT) and the functor T ♯ : Cn → C is also

ω-cocontinuous.

The next proposition shows that the subcategory PD has sufficient structure to solve recursive domain equations.

Proposition 45. The subcategory PD is (parameterised) DCPO-algebraically compact. More specifically, every DCPO-

enriched functor T : PD
n+1 → PD has a parameterised compact algebra, i.e., a parameterised initial algebra whose inverse

is a parameterised final coalgebra for T .

Proof. By Proposition 42, we have PD ∼= DCPOL
∼= DCPO⊥! and the latter two categories are well-known to be DCPO-

algebraically compact (which may be easily established using [30, Corollary 7.2.4]).

Therefore, every DCPO-enriched covariant functor on DCPOM which restricts to PD can be equipped with a

parameterised compact algebra. In order to solve equations involving mixed-variance functors (induced by function types),

we use the limit-colimit coincidence theorem [48]. In particular, an important observation made by Smyth and Plotkin in [48]

allows us to interpret all type expressions (including function spaces) as covariant functors on subcategories of embeddings.

These ideas are developed in detail in [49], [50] and here we also follow this approach.

Definition 46. Given a DCPO-enriched category C, an embedding of C is a morphism e : X → Y , such that there exists (a

necessarily unique) morphism ep : Y → X , called a projection, with the properties: ep ◦ e = idX and e ◦ ep ≤ idY . We denote

with Ce the full-on-objects subcategory of C whose morphisms are the embeddings of C.

Proposition 47. The category PDe has an initial object and all ω-colimits, and the following assignments:

•
.
×e : PDe ×PDe → PDe by

X
.
×e Y

def
= X

.
× Y and e1

.
×e e2

def
= e1

.
× e2.

•
.
+e : PDe ×PDe → PDe by

X
.
+e Y

def
= X

.
+ Y and e1

.
+e e2

def
= e1

.
+ e2

• [.→]Je : PDe ×PDe → PDe

[X .→ Y]Je
def
= J [X .→ Y] and [e1 .→ e2]

J
e

def
= J [ep1 .→ e2]

define covariant ω-cocontinuous bifunctors on PDe.

Proof. This follows using results from [48] together with some restriction arguments which we present in Appendix B.

Therefore, by Proposition 44 and Proposition 47 we can solve recursive domain equations induced by all well-formed type

expressions (with no restrictions on the admissible logical polarities of the types) within PDe. However, since our judgements

support weakening and contraction, we have an extra proof obligation: showing each isomorphism that is a solution to a

recursive domain equation can be copied and discarded. This is indeed true (for any isomorphism in PD) because of the next

proposition.

Proposition 48. Every isomorphism of PD (and PDe) is also an isomorphism of TD.

Proof. In Appendix B.

We have already explained that morphisms of TD are compatible with weakening and contraction, so the above proposition

suffices for our purposes.

V. DENOTATIONAL SEMANTICS

We now give the denotational semantics of our language by using ideas from [49], [50].

A. Interpretation of Types

We begin with the interpretation of (open) types. Every type Θ ⊢ A is interpreted as a functor JΘ ⊢ AK : PD
|Θ|
e → PDe

and its interpretation is defined by induction on the derivation of Θ ⊢ A in Figure 5. The validity of this definition is justified

by the next proposition.

Proposition 49. The assignments JΘ ⊢ AK : PD
|Θ|
e → PDe are ω-cocontinuous functors.

Proof. By induction using Propositions 44 and 47.

We are primarily interested in closed types and for them we simply write JAK
def
= J· ⊢ AK(∗), where ∗ is the unique object

of the terminal category 1 = PD
0
e. For closed types, it follows that JAK ∈ Ob(PDe) = Ob(DCPO).

We proceed by defining the folding/unfolding isomorphisms for recursive types and proving a necessary lemma.

Lemma 50 (Substitution). If Θ, X ⊢ A and Θ ⊢ B, then:

JΘ ⊢ A[B/X]K = JΘ, X ⊢ AK ◦ 〈Id, JΘ ⊢ BK〉.

Definition 51. For closed types µX.A, we define:

foldµX.A : JA[µX.A/X]K = JX ⊢ AKJµX.AK ∼= JµX.AK,

JΘ ⊢ AK : PD
|Θ|
e → PDe

JΘ ⊢ ΘiK
def
= Πi

JΘ ⊢ A+BK
def
=

.
+e ◦ 〈JΘ ⊢ AK, JΘ ⊢ BK〉

JΘ ⊢ A×BK
def
=

.
×e ◦ 〈JΘ ⊢ AK, JΘ ⊢ BK〉

JΘ ⊢ A → BK
def
= [.→]Je ◦ 〈JΘ ⊢ AK, JΘ ⊢ BK〉

JΘ ⊢ µX.AK
def
= JΘ, X ⊢ AK

♯

Fig. 5. Interpretation of types.

JA×BK = JAK × JBK

JA+BK = JAK + JBK

JA → BK = [JAK → MJBK]

JµX.AK ∼= JA[µX.A/X]K

Fig. 6. Derived equations for closed types.

JΓ ⊢ M : AK : JΓK .→ JAK in DCPOM

JΓ, x : A ⊢ x : AK
def
= J π2

JΓ ⊢ (M,N) : A×BK
def
= (JMK

.
× JNK) � J 〈id, id〉

JΓ ⊢ πiM : AiK
def
= J πi � JMK, for i ∈ {1, 2}

JΓ ⊢ iniM : A1 +A2K
def
= J ini � JMK, for i ∈ {1, 2}

JΓ ⊢ (case M of in1x ⇒ N1 | in2y ⇒ N2) : BK
def
=

[JN1K, JN2K] � d � (id
.
× JMK) � J 〈id, id〉

JΓ ⊢ λxA.M : A → BK
def
= J λ(JMK)

JΓ ⊢ MN : BK
def
= ǫ � (JMK

.
× JNK) � J 〈id, id〉

JΓ ⊢ fold M : µX.AK
def
= fold � JMK

JΓ ⊢ unfold M : A[µX.A/X]K
def
= unfold � JMK

JΓ ⊢ M orp N : AK
def
= JMK +p JNK

Fig. 7. Interpretation of term judgements.

where the equality is Lemma 50 and the isomorphism is the initial algebra. We write unfoldµX.A for the inverse isomorphism.

Note that both of them are isomorphisms in TD.

Now the equations for closed types in Figure 6 follow immediately.

B. Interpretation of Terms

A context Γ = x1 : A1, . . . , xn : An is interpreted as the dcpo JΓK
def
= JA1K × · · · × JAnK. A term Γ ⊢ M : A is, as usual,

interpreted as a morphism JΓ ⊢ M : AK : JΓK .→ JAK in DCPOM and we will abbreviate this by writing JMK when its type

and context are clear. The interpretation of term judgements are defined by induction in Figure 7. This interpretation is defined

in the standard categorical way using the structure of DCPOM and using the structure of the Kleisli exponential following

Moggi [17]. To interpret probabilistic choice, we use the convex structure of DCPOM. All the notation used in Figure 7 is

introduced in Section IV and Section V.

C. Soundness and Computational Adequacy

In this subsection we prove the main semantic results for our model – soundness and (strong) adequacy. In order to do so,

we first have to prove some useful lemmas.

As usual, the interpretation of values enjoys additional structural properties.

Lemma 52. For any value Γ ⊢ V : A, its interpretation JV K is a morphism of TD. Equivalently, it is in the image of J .

Proof. Straightforward induction on the derivation of V .

This means the interpretation of each closed value may be seen as a Dirac valuation. Next, we prove a substitution lemma.

Lemma 53 (Substitution). Let Γ ⊢ V : A be a value and Γ, x : A ⊢ M : B a term. Then:

JM [V/x]K = JMK � (idJΓK
.
× JV K) � J 〈idJΓK, idJΓK〉.

Proof. By induction on M using Lemma 52.

Soundness and (strong) adequacy are formulated in terms of convex sums of the interpretations of terms. For a collection

of terms Mi with Γ ⊢ Mi : A, for each i ∈ I , each interpretation JMiK is a map in the Kegelspitze DCPOM(JΓK, JAK), so,

we may form convex sums of these maps.

Soundness is the statement that our interpretation is invariant under single-step reduction (in a probabilistic sense).

Theorem 54 (Soundness). For any term Γ ⊢ M : A,

JMK =
∑

M
p
−→M ′

pJM ′K,

assuming M
p
−→ M ′ for some rule from Figure 4 and where the convex sum ranges over all such rules.

Proof. Straightforward induction using Lemma 53.

In the above theorem, the convex sum has at most two summands which are reached after a single reduction step. The next,

considerably stronger statement, generalises this result to reductions involving an arbitrary number of steps. Strong adequacy

is the statement that the denotational interpretation is invariant with respect to reduction in a big-step sense (see [51], [8], [12]

where such results are proven).

Theorem 55 (Strong Adequacy). For any term · ⊢ M : A,

JMK =
∑

V ∈Val(M)

P (M −→∗ V)JV K.

Proof. In Appendix D.

Remark 56. In the above theorem, Val(M) is defined in (1) and it may contain (countably) infinitely many elements; the

convex sum is defined in Definition 29.

This theorem is also true to its name, because it immediately implies the usual notion of adequacy.

Corollary 57 (Adequacy). Let · ⊢ M : 1 be a term. Then

JMK(∗)({∗}) = Halt(M), (see (2))

where ∗ is the unique element of the singleton dcpo 1.

Proof. Special case of Theorem 55 when A = 1 using the fact that if · ⊢ V : 1 is a value, then JV K(∗)({∗}) = 1 ∈ R.

The commutativity of our monad M implies that given any well-formed terms Γ ⊢ M1 : A1 and Γ ⊢ M2 : A2 and

Γ, x1 : A1, x2 : A2 ⊢ N : B, then

Jlet x1 = M1 in let x2 = M2 in NK = Jlet x2 = M2 in let x1 = M1 in NK, (6)

where let x = M in N may be defined using the usual syntactic sugar. This, together with adequacy (Corollary 57) and some

standard arguments (see [8]) implies that the programs in (6) are contextually equivalent. This improves on the results obtained

by Jones [12], because Equation 6 could not be established in her model without a proof that the monad V on DCPO is

commutative; as we commented earlier, this remains an open problem. We finally note that all results in this section also hold

for the monads W and P .

SUMMARY AND FUTURE WORK

We have constructed three commutative valuations monads on DCPO that contain the simple valuations, and shown how

to use any of them to give purely domain-theoretic models for PFPC that are sound and adequate. Our construction using

topological methods can be applied to any K-category K with K ⊆ D, offering the possibility of further such monads. We also

identified the Eilenberg-Moore algebras of each monad as consisting of Kegelspitzen. In the special case where we consider

continuous domains, we characterized the Eilenberg-Moore algebras over DOM of all three of our monads and also the V
monad as precisely the continuous Kegelspitzen. We also proved the most general Fubini theorem for dcpo’s yet available.

For future work, we are interested in applying our constructions to extensions of PFPC. For example, we believe our

constructions can be extended to add sampling, scoring, conditioning and the other tools needed to model statistical probabilistic

programming languages, such as those considered in [7], [8]. In particular, the authors of [8] comment that the lack of a

commutative monad of valuations on DCPO is what required them to develop the theory of ω-quasi-Borel spaces. We believe

our approach could support a model of such a statistical programming language solely using domain-theoretic methods, where

we can adapt the ideas from [52] to model random elements; we believe such a model would lead to a simplification of the

development.

In a different vein, we plan to apply our results to construct a model of a programming language that supports both classical

probabilistic effects and also quantum resources. We have already identified a suitable type system, where the probabilistic

effects are induced by quantum measurements. We plan to interpret the quantum fragment in a category of von Neumann

algebras [53]. We also plan to show how the decomposition of classical probabilistic effects in terms of quantum ones can be

interpreted by moving between the Kleisli category of our monad M and the category of von Neumann algebras we identified

using the barycentre maps we described in this paper.

REFERENCES

[1] M. O. Rabin, “Probabilistic algorithms,” in Algorithms and complexity, recent results and new direction, J. F. Traub, Ed. Academic Press, 1976, pp.
21–40.

[2] J. Gill, “Computational complexity of probabilistic Turing machines,” SIAM Journal on Computing, pp. 675–695, 1977.

[3] J. Baeten, J. Bergstra, and S. Smolka, “Axiomatizing probabilistic processes: ACP with generative probabilities,” Information and Computation, vol.
121, pp. 234–255, 1995.

[4] K. G. Larsen and A. Skou, “Bisimulation through probabilistic testing,” in Proceedings of the 16th Annual ACM Symposium on Principles of Programming

Languages. IEEE Press, 1989.

[5] C. Morgan, A. McIver, and K. Seidel, “Probabilistic predicate transformers,” ACM Transactions on Programming Languages and Systems, vol. 18, pp.
325–353, 1996.

[6] “Archive of workshops on probabilistic programming languages.” [Online]. Available: https://pps2017.luddy.indiana.edu/2017/01/

[7] S. Staton, F. Wood, H. Yang, C. Heunen, and O. Kammar, “Semantics for probabilistic programming: higher-order functions, continuous distributions,
and soft constraints,” in Proceedings of 2016 31st Annual ACM/IEEE Symposium on Logic in Computer Science (LICS). ACM Press, 2016.

[8] M. Vákár, O. Kammar, and S. Staton, “A domain theory for statistical probabilistic programming,” Proc. ACM Program. Lang., vol. 3, no. POPL, pp.
36:1–36:29, 2019. [Online]. Available: https://doi.org/10.1145/3290349

[9] M. Pagani, P. Selinger, and B. Valiron, “Applying quantitative semantics to higher-order quantum computing,” in The 41st Annual ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’14, San Diego, CA, USA, January 20-21, 2014, S. Jagannathan and
P. Sewell, Eds. ACM, 2014, pp. 647–658. [Online]. Available: https://doi.org/10.1145/2535838.2535879

[10] K. Cho, “Semantics for a quantum programming language by operator algebras,” New Generation Computing, vol. 34, pp. 25–68, 2016.
[11] C. Jones and G. D. Plotkin, “A probabilistic powerdomain of evaluations,” in Proceedings of the Fourth Annual Symposium on Logic in

Computer Science (LICS ’89), Pacific Grove, California, USA, June 5-8, 1989. IEEE Computer Society, 1989, pp. 186–195. [Online]. Available:
https://doi.org/10.1109/LICS.1989.39173

[12] C. Jones, “Probabilistic Non-determinism,” Ph.D. dissertation, University of Edinburgh, UK, 1990. [Online]. Available: http://hdl.handle.net/1842/413
[13] A. Jung and R. Tix, “The troublesome probabilistic power domain,” in Comprox III, Third Workshop on Computation and Approximation, vol. 13, 1998,

pp. 70 – 91.

[14] K. Keimel and J. D. Lawson, “D-completions and the d-topology,” Ann. Pure Appl. Log., vol. 159, no. 3, pp. 292–306, 2009. [Online]. Available:
https://doi.org/10.1016/j.apal.2008.06.019

[15] K. Keimel and G. D. Plotkin, “Mixed powerdomains for probability and nondeterminism,” Logical Methods in Computer Science, vol. 13, Issue 1, Jan.
2017. [Online]. Available: https://lmcs.episciences.org/2665

[16] N. Saheb-Djagromi, “Cpos of measures for nondeterminism,” Theoretical Computer Science, vol. 12, pp. 19–37, 1980.

[17] E. Moggi, “Notions of Computation and Monads,” Inf. Comput., vol. 93, no. 1, pp. 55–92, 1991. [Online]. Available:
https://doi.org/10.1016/0890-5401(91)90052-4

[18] Anonymous, “Statistical Programming Languages meet Real PCF,” 2021, submitted to LICS 2021.

[19] R. Tix, “Continuous d-cones: Convexity and powerdomain constructions,” Ph.D. dissertation, Technische Universität Darmstadt, 1999.

[20] J. Goubault-Larrecq, “Continuous previsions,” in Proceedings of the 16th Annual EACSL Conference on Computer Science Logic (CSL’07), ser. Lecture
Notes in Computer Science, J. Duparc and Th. A. Henzinger, Eds., vol. 4646. Lausanne, Switzerland: Springer, Sep. 2007, pp. 542–557. [Online].
Available: lsv.ens-cachan.fr/Publis/PAPERS/PDF/JGL-csl07.pdf

[21] X. Jia and M. Mislove, “Completing Simple Valuations in K-categories,” 2020, preprint. [Online]. Available: https://arxiv.org/abs/2002.01865

[22] T. Ehrhard and C. Tasson, “Probabilistic call by push value,” Log. Methods Comput. Sci., vol. 15, no. 1, 2019. [Online]. Available:
https://doi.org/10.23638/LMCS-15(1:3)2019

[23] T. Ehrhard, M. Pagani, and C. Tasson, “Full abstraction for probabilistic PCF,” J. ACM, vol. 65, no. 4, pp. 23:1–23:44, 2018. [Online]. Available:
https://doi.org/10.1145/3164540

[24] C. Heunen, O. Kammar, S. Staton, and H. Yang, “A convenient category for higher-order probability theory,” in 32nd Annual ACM/IEEE Symposium

on Logic in Computer Science, LICS 2017, Reykjavik, Iceland, June 20-23, 2017. IEEE Computer Society, 2017, pp. 1–12. [Online]. Available:
https://doi.org/10.1109/LICS.2017.8005137

https://pps2017.luddy.indiana.edu/2017/01/
https://doi.org/10.1145/3290349
https://doi.org/10.1145/2535838.2535879
https://doi.org/10.1109/LICS.1989.39173
http://hdl.handle.net/1842/413
https://doi.org/10.1016/j.apal.2008.06.019
https://lmcs.episciences.org/2665
https://doi.org/10.1016/0890-5401(91)90052-4
lsv.ens-cachan.fr/Publis/PAPERS/PDF/JGL-csl07.pdf
https://arxiv.org/abs/2002.01865
https://doi.org/10.23638/LMCS-15(1:3)2019
https://doi.org/10.1145/3164540
https://doi.org/10.1109/LICS.2017.8005137

[25] A. Edalat, “Domain theory and integration,” in Annual IEEE Symposium on Logic in Computer Science, LICS 1994. IEEE Computer Society, 1994,
pp. 115–124. [Online]. Available: https://https://www.computer.org/csdl/proceedings-article/lics/1994/00316080/12OmNyxFKiO

[26] ——, “When Scott is weak on the top,” Mathematical Structures for Computer Science, vol. 7, pp. 401–417, 1997.
[27] M. Alvarez-Manilla, A. Edalat, and N. Saheb-Djarhomi, “An extension result for continuous valuations,” Electronic Notes in Theoretical Computer

Science, vol. 13, 1998.
[28] M. Rennela, “Convexity and order in probabilistic call-by-name FPC,” LMCS, vol. 16, 2020.
[29] M. Abadi and M. P. Fiore, “Syntactic considerations on recursive types,” in Proceedings 11th Annual IEEE Symposium on Logic in Computer Science,

July 1996, pp. 242–252.
[30] M. P. Fiore, “Axiomatic domain theory in categories of partial maps,” Ph.D. dissertation, University of Edinburgh, UK, 1994.
[31] M. Fiore and G. Plotkin, “An axiomatization of computationally adequate domain theoretic models of FPC,” in LICS. IEEE Computer Society, 1994,

pp. 92–102.
[32] R. Harper, Practical Foundations for Programming Languages (2nd. Ed.). Cambridge University Press, 2016. [Online]. Available:

https://www.cs.cmu.edu/%7Erwh/pfpl/index.html
[33] C. Faggian and S. R. D. Rocca, “Lambda Calculus and Probabilistic Computation,” in 34th Annual ACM/IEEE Symposium on Logic in Computer

Science, LICS 2019, Vancouver, BC, Canada, June 24-27, 2019. IEEE, 2019, pp. 1–13. [Online]. Available: https://doi.org/10.1109/LICS.2019.8785699
[34] S. Abramsky and A. Jung, “Domain Theory,” in Handbook of Logic in Computer Science (Vol. 3). Oxford, UK: Oxford University Press, 1994, pp.

1–168. [Online]. Available: http://dl.acm.org/citation.cfm?id=218742.218744
[35] G. Gierz, K. H. Hofmann, K. Keimel, J. D. Lawson, M. W. Mislove, and D. S. Scott, Continuous Lattices and Domains, ser. Encyclopedia of Mathematics

and Its Applications 93. Cambridge University Press, 2003.
[36] W. K. Ho, J. Goubault-Larrecq, A. Jung, and X. Xi, “The Ho-Zhao problem,” Log. Methods Comput. Sci., vol. 14, no. 1, 2018. [Online]. Available:

https://doi.org/10.23638/LMCS-14(1:7)2018
[37] E. G. Manes, Algebraic Theories, ser. Graduate Texts in Mathematics. Springer-Verlag, 1976, vol. 26. [Online]. Available:

https://doi.org/10.1007/978-1-4612-9860-1
[38] D. Zhao and T. Fan, “Dcpo-completion of posets,” Theor. Comput. Sci., vol. 411, no. 22-24, pp. 2167–2173, 2010. [Online]. Available:

https://doi.org/10.1016/j.tcs.2010.02.020
[39] R. Heckmann, “Spaces of valuations,” in Papers on General Topology and Applications: Eleventh Summer Conference at the University of Southern

Maine, ser. Annals of the New York Academy of Sciences, S. Andima, R. C. Flagg, G. Itzkowitz, P. Misra, Y. Kong, and R. Kopperman, Eds., vol. 806,
1996, pp. 174–200.

[40] J. Goubault-Larrecq, “A short proof of the Schröder-Simpson Theorem,” Math. Struct. Comput. Sci., vol. 25, no. 1, pp. 1–5, 2015. [Online]. Available:
https://doi.org/10.1017/S0960129513000467

[41] G. Wu, X. Xi, X. Xu, and D. Zhao, “Existence of well-filterifications of T0 topological spaces,” Topology and its Applications, vol. 270, no. 1, 2020.
[42] B. Jacobs, Introduction to Coalgebra: Towards Mathematics of States and Observation, ser. Cambridge Tracts in Theoretical Computer Science.

Cambridge University Press, 2016, vol. 59. [Online]. Available: https://doi.org/10.1017/CBO9781316823187
[43] J. Power and E. Robinson, “Premonoidal Categories and Notions of Computation,” Math. Struct. Comput. Sci., vol. 7, no. 5, pp. 453–468, 1997.

[Online]. Available: https://doi.org/10.1017/S0960129597002375
[44] S. Mac Lane, Categories for the Working Mathematician (2nd ed.). Springer, 1998.
[45] F. Borceux, Handbook of Categorical Algebra 2: Categories and Structures. Cambridge University Press, 1994.
[46] P. Benton, “A mixed linear and non-linear logic: Proofs, terms and models,” in Computer Science Logic: 8th Workshop, CSL ’94, Selected Papaers,

1995. [Online]. Available: http://dx.doi.org/10.1007/BFb0022251
[47] P. N. Benton and P. Wadler, “Linear logic, monads and the lambda calculus,” in LICS 1996, 1996.
[48] M. Smyth and G. Plotkin, “The Category-theoretic Solution of Recursive Domain Equations,” Siam J. Comput., 1982.
[49] B. Lindenhovius, M. W. Mislove, and V. Zamdzhiev, “LNL-FPC: The Linear/Non-linear Fixpoint Calculus,” 2020, available at

http://arxiv.org/abs/1906.09503. [Online]. Available: http://arxiv.org/abs/1906.09503
[50] B. Lindenhovius, M. Mislove, and V. Zamdzhiev, “Mixed Linear and Non-linear Recursive Types,” Proc. ACM Program. Lang., vol. 3, no. ICFP, pp.

111:1–111:29, Aug. 2019. [Online]. Available: http://doi.acm.org/10.1145/3341715
[51] T. Leventis and M. Pagani, “Strong Adequacy and Untyped Full-Abstraction for Probabilistic Coherence Spaces,” in Foundations of Software Science

and Computation Structures - 22nd International Conference, FOSSACS 2019, Held as Part of the European Joint Conferences on Theory and

Practice of Software, ETAPS 2019, Prague, Czech Republic, April 6-11, 2019, Proceedings, ser. Lecture Notes in Computer Science, M. Bojanczyk
and A. Simpson, Eds., vol. 11425. Springer, 2019, pp. 365–381. [Online]. Available: https://doi.org/10.1007/978-3-030-17127-8_21

[52] M. Mislove, “Domains and stochastic processes,” Theoretical Computer Science, vol. 807, pp. 284 – 297, 2020. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0304397519302713

[53] A. Kornell, “Quantum Sets,” J. Math. Phys., vol. 61, p. 102202, 2020. [Online]. Available: https://doi.org/10.1063/1.5054128

https://https://www.computer.org/csdl/proceedings-article/lics/1994/00316080/12OmNyxFKiO
https://www.cs.cmu.edu/%7Erwh/pfpl/index.html
https://doi.org/10.1109/LICS.2019.8785699
http://dl.acm.org/citation.cfm?id=218742.218744
https://doi.org/10.23638/LMCS-14(1:7)2018
https://doi.org/10.1007/978-1-4612-9860-1
https://doi.org/10.1016/j.tcs.2010.02.020
https://doi.org/10.1017/S0960129513000467
https://doi.org/10.1017/CBO9781316823187
https://doi.org/10.1017/S0960129597002375
http://dx.doi.org/10.1007/BFb0022251
http://arxiv.org/abs/1906.09503
http://arxiv.org/abs/1906.09503
http://doi.acm.org/10.1145/3341715
https://doi.org/10.1007/978-3-030-17127-8_21
http://www.sciencedirect.com/science/article/pii/S0304397519302713
https://doi.org/10.1063/1.5054128

APPENDIX A

MONADS, COMMUTATIVITY AND M-ALGEBRAS

Let D be a dcpo. Recall that the d-topology on D consists of all sub-dcpo’s of D as closed subsets. The d-topology on D
is finer than the Scott topology. In fact D is even Hausdorff in the d-topology: for x 6≤ y in D, D \ ↓y and ↓y are disjoint

open sets in the d-topology, containing x and y respectively. Functions that are continuous between dcpo’s equipped with the

d-topology are called d-continuous functions. Scott-continuous functions between dcpo’s are d-continuous [38, Lemma 5].

Recall that MD is the smallest sub-dcpo of VD that contains SD, hence MD is actually the topological closure of SD
in VD equipped with the d-topology. Hence we also say that MD is the d-closure of SD inside VD.

Let f : D → [0, 1] be a Scott-continuous function and ν ∈ VD. The integral
∫

x∈D f(x)dν, defined as the Riemann integral
∫ 1

0
ν(f−1((t, 1]))dt, satisfies the following properties, which can be found in [12].

Proposition 58. Let D be a dcpo, f : D → [0, 1] be a Scott-continuous function. Then we have the following:

1) The map (νi 7→
∑n

i=1 riνi) : VD → VD is Scott-continuous hence d-continuous, for fixed νj , j 6= i and ri, i = 1, . . . , n
with

∑n
i=1 ri ≤ 1.

2) For
∑n

i=1 riνi ∈ VD, it is true that
∫

fd
∑n

i=1 riνi =
∑n

i=1 ri
∫

fdνi.
3) For ν ∈ VD and f, g ∈ [D → [0, 1]],

∫

rf + sgdν = r
∫

fdν + s
∫

gdν for r + s ≤ 1.

Proof of Lemma 7 . We prove the case n = 2 and the general case can be proved similarly. We realize that for a fixed simple

valuation s ∈ SD, the map (ν 7→ r1ν+ r2s) : VD → VD maps SD into SD. From the previous proposition, Item 1, this map

is d-continuous, it then maps the dcpo-closure of SD, which is MD, into MD, the dcpo-closure of SD. That is, for each

simple valuation s and each ν ∈ MD, r1ν + r2s ∈ MD. Now we fix ν ∈ MD. Then the map ξ 7→ r1ν + r2ξ : VD → VD
maps SD into MD, hence it also maps MD into MD since it is d-continuous. This means for ξ, ν ∈ MD, r1, r2 ∈ [0, 1]
with r1 + r2 ≤ 1, r1ν + r2ξ ∈ MD.

Proof of Theorem 21. To prove this theorem, we first recall two results due to Heckmann [39, Theorem 2.4, Theorem 5.5].

Specifying these results to dcpo D, it implies that if ν is a point-continuous valuation in PD, and ν ∈ O for O an open set

in PwD, then there exists a simple valuation
∑n

i=1 riδxi
∈ SD such that

∑n
i=1 riδxi

≤ ν and
∑n

i=1 riδxi
∈ O.

Now we fix ξ ∈ PE and U ∈ σ(D × E), and consider the functions

F : VwD → [0,∞] : ν 7→

∫

x∈D

∫

y∈E

χU (x, y)dξdν

and

G : VwD → [0,∞] : ν 7→

∫

y∈E

∫

x∈D

χU (x, y)dνdξ,

where [0,∞] is equipped with the Scott topology. We claim that F and G are continuous.

The fact that F is continuous is straightforward from Remark 13. To see that G is continuous, we assume that
∫

y∈E

∫

x∈D χUdνdξ > r and aim to find an open set U of VwD such that ν ∈ U and for any ν′ ∈ U ,
∫

y∈E

∫

x∈D χUdν
′dξ > r.

To this end, we note that g : E → [0, 1] : y 7→
∫

x∈D χU (x, y)dν is Scott-continuous. Hence [g > r]∩PE is an open subset of

PwE that contains ξ. Applying the aforementioned result we find a simple valuation
∑n

i=1 riδyi
∈ SE such that

∑n
i=1 riδyi

≤ ξ
and

∑n
i=1 riδyi

∈ [g > r]. This implies that

∫

y∈E

∫

x∈D

χU (x, y)dνd

n
∑

i=1

riδyi
> r.

By applying Equation 3, this in turn implies that

n
∑

i=1

∫

x∈D

riχU (x, yi)dν > r.

Obviously, we could find si ≥ 0, i = 1, . . . , n such that
∫

x∈D riχU (x, yi)dν > si and
∑n

i=1 si > r. Now we let

U =

n
⋂

i=1

[riχU (x, yi) > si].

By Remark 13 the set U is open in VwD and obviously ν ∈ U . Moreover, for any ν′ ∈ U , we have

∫

y∈E

∫

x∈D

χU (x, y)dν
′dξ ≥

∫

y∈E

∫

x∈D

χU (x, y)dν
′d

n
∑

i=1

riδyi
=

n
∑

i=1

∫

x∈D

riχU (x, yi)dν
′ ≥

n
∑

i=1

si > r.

Hence G is continuous indeed.

The functions F and G are also linear from Proposition 58, Item 2. Hence both F and G are continuous linear map from

VwD to [0,∞], we now apply a varied version of the Schröder-Simpson Theorem, which can be found in [40, Corollary 2.5],

to see that F and G are uniquely determined by their actions on Dirac measures δa, a ∈ D. However, we note that F (δa) =
∫

y∈E χU (a, y)dξ = G(δa), again by Equation 3. Hence F = G, and we finish the proof by letting ξ range in PwE.

Proof of Theorem 22. We only need to prove that the strength of VK,≤ exists, and is of the same form as τV , the strength

of V , and then conclude with Theorem 21.

We know that for each K-category K ⊆ D, VK,≤ is a monad on DCPO. Hence, for any dcpo’s D and E, and any

Scott-continuous map f : D → VK,≤E, the function

f † : VK,≤D → VK,≤E : ν 7→ λU ∈ σE.

∫

x∈D

f(x)(U)dν

is a well-defined Scott-continuous map.

Now we apply this fact to the map g : E → VK,≤(D × E) : y 7→ δ(a,y), where a is any fixed element in D. The map g is

obviously Scott-continuous. Hence for any ν ∈ VK,≤E,

g†(ν) = λU ∈ σ(D × E).

∫

y∈E

δ(a,y)(U)dν = λU ∈ σ(D × E).

∫

y∈E

χU (a, y)dν

is in VK,≤(D × E). This implies the map

τD,E : D × VK,≤E → VK,≤(D × E) : (a, ν) 7→ λU ∈ σ(D × E).

∫

y∈E

χU (a, y)dν

is well-defined, and it is obviously Scott-continuous. Note that apart from the domain and codomain, the map τD,E is same

to the strength τVD,E of V at (D,E). Then the same arguments as in Jones’ thesis would show that τD,E is the strength of

VK,≤ at (D,E). Hence VK,≤ is a strong monad.

Proof of Proposition 33. We first prove that K is a pointed barycentric algebra. It is easy to see that β(0K) is the least

element in K , since for any x ∈ K , β(0K) ≤ β(δx) = x. It is also easy to see that a +1 b = a, a +r b = b +1−r a and

a+r a = a. We now proceed to prove that (a+p b) +r c = a+pr (b + r−pr

1−pr
c) for any r, p < 1 and a, b, c ∈ K . To this end,

we perform the following:

(a+p b) +r c = β(δa+pb +r δc) definition of +r

= β(δβ(δa+pδb) +r δβ(δc)) definition of +p and β(δc) = c

= β(M(β)(δδa+pδb +r δδc)) M(β) is linear and M(β)(δν) = δβ(ν)

= β(µM
K (δδa+pδb +r δδc)) (K,β) is an M-algebra

= β((δa +p δb) +r δc) µM
K is the multiplication of M at K

= β(δa +pr (δb + r−rp

1−pr
δc)) MK is a Kegelspitze

= β(µM
K (δδa +pr δ(δb+ r−rp

1−pr

δc))) µM
K is the multiplication of M at K

= β(M(β)(δδa +pr δ(δb+ r−rp
1−pr

δc))) (K,β) is an M-algebra

= β(δβ(δa) +pr δβ(δb+ r−rp
1−pr

δc)) M(β) is linear and M(β)(δν) = δβ(ν)

= β(δa +pr δ(b+ r−rp
1−pr

c)) definition of b+ r−rp

1−pr
c and β(δa) = a

= a+pr (b + r−pr

1−pr
c). definition of +pr

The map (a, b) 7→ a+r b = β(δa +r δb) : K ×K → K is Scott-continuous since β and δ are Scott-continuous and MK is a

Kegelspitze. The map (r, a) 7→ ra = a+r β(0K) = β(δa +r δβ(0K)) : [0, 1]×K → K is Scott-continuous in a for the exactly

same reasons; to see that it also is Scott-continuous in r, we only need to show that r 7→ δa +r δβ(0K) : [0, 1] → MK is

Scott-continuous for any fixed a ∈ K . This is true if β(0K) ≤ a. However, we already see that β(0K) is the least element in

K . Hence we have proved that K is a Kegelspitze. The map β is clearly linear.

Proof of Proposition 34.

The “if” direction: Assume that f : K1 → K2 is linear. We need to prove that f ◦ β1 = β2 ◦M(f). Since both sides

are Scott-continuous hence d-continuous and K2 is Hausdorff in the d-topology (if K2 has more than one elements). We only

need to prove they are equal on simple valuations on K1. To this end, we pick
∑n

i=1 riδxi
∈ MK1, and see

f(β1(

n
∑

i=1

riδxi
)) = f(

n
∑

i=1

rixi) β1 is linear and β1(δxi
) = xi

=
n
∑

i=1

rif(xi) f is linear

= β2(

n
∑

i=1

riδf(xi)) β2 is linear and β2(δf(xi)) = f(xi)

= β2(M(f)(

n
∑

i=1

riδxi
)). M(f) is linear and M(f)(δxi

) = δf(xi)

The “only if” direction: Assume that f : K1 → K2 is an algebra morphism from (K1, β1) to (K2, β2). Then we know

that f ◦ β1 = β2 ◦M(f). We prove that f is linear. First, for a, b ∈ K1 and r ∈ [0, 1], we have

f(a+r b) = f(β1(δa +r δb)) definition of a+r b

= β2(M(f)(δa +r δb)) f is an algebra morphism

= β2(δf(a) +r δf(b)) M(f) is linear and M(f)(δx) = δf(x)

= f(a) +r f(b). definition of f(a) +r f(b)

Second, to prove that f maps β(0K1
) to β2(0K2

), we see that f(β1(0K1
)) = β2(M(f)(0K1

)) = β2(0K2
) because M(f) is

linear.

APPENDIX B

SOLVING RECURSIVE DOMAIN EQUATIONS IN DCPOM

We use (M, η, µ, τ) to indicate our commutative monad and we write (L, ηL, µL, τL) to indicate the lift monad on DCPO,

which is also commutative.

Recall that the lift monad L : DCPO → DCPO freely adds a new least element, often denoted ⊥, to a dcpo X . The

resulting dcpo is LX
def
= X⊥. The monad structure of L is defined by the following assignments:

ηLX : X → X⊥

x 7→ x

µL
X : (X⊥1

)⊥2
→ X⊥

x 7→

⊥ , if x =⊥1

⊥ , if x =⊥2

x , if ⊥1 6= x 6=⊥2

τLXY : X⊥ × Y → (X × Y)⊥

(x, y) 7→

{

⊥ , if x =⊥

(x, y) , if x 6=⊥

We write DCPOL for the Kleisli category of L and we write its morphisms as f : X ⇀ Y, which is by definition

a morphism f : X → Y⊥ in DCPO. We write X ⊗ Y and X ⊕ Y for the symmetric monoidal product and coproduct,

respectively, which are (canonically) induced by the commutative monad L.

Proposition 59. The assignment φ : L ⇒ M defined by

φX : X⊥ → MX

x 7→

{

0X , if x =⊥

δx , if x 6=⊥

is a strong map of monads (see [42, Definition 5.2.9] for more details).

Proof. To see that φ is a natural transformation, we need to show, for any Scott-continuous map f : X → Y , φY ◦ Lf =
Mf ◦ φX : X⊥ → MY . However, it is easy to see that both sides send ⊥ to 0Y and x that is not ⊥ to δf(x).

Now, we first verify that φ is a map of monads. That is, for each dcpo X , we need to prove that φX ◦ ηLX = ηX and

φX ◦ µL
X = µX ◦M(φX) ◦ φX⊥

: (X⊥1
)⊥2

→ M(X).
The first equation is trivial, hence we proceed to prove the second. For this, we see

φX ◦ µL
X(x) =

{

φX(⊥) = 0X , if x =⊥1 or x =⊥2

φX(x) = δx , if ⊥1 6= x 6=⊥2

and

µX ◦M(φX) ◦ φX⊥
(x) =

µX ◦M(φX)(0X⊥
) = µX(0MX) = 0X , if x =⊥2

µX ◦M(φX)(δ⊥) = µX(δφX(⊥)) = µX(δ0X
) = 0X , if x =⊥1

µX ◦M(φX)(δx) = µX(δφX (x)) = µX(δδx) = δx , if ⊥1 6= x 6=⊥2 .

Hence φ : L ⇒ M is a map of monads.

To prove that φ is a strong map of monads, we need to show that for any dcpo’s X and Y ,

τXY ◦ (φX × idY) = φXY ◦ τLXY : X⊥ × Y → M(X × Y).

The strength τ of M at (X,Y) is defined as follows:

τXY : MX × Y → M(X × Y) : (ν, y) 7→ λU.

∫

x∈X

χU (x, y)dν,

where χU is the characteristic function of U ∈ σ(X × Y), i.e., χU (x, y) = 1 if (x, y) ∈ U and χU (x, y) = 0, otherwise. Now

we perform the following computation

τXY ◦ (φX × idY)(x, y) =

{

τXY (0X , y) = λU.
∫

x∈X
χU (x, y)d0X = λU.0 = 0X×Y , if x =⊥

τXY (δx, y) = λU.
∫

x∈X χU (x, y)dδx = λU.χU (x, y) = δ(x,y) , if x 6=⊥

and

φXY ◦ τLXY (x, y) =

{

φXY (⊥) = 0X×Y , if x =⊥

φXY ((x, y)) = δ(x,y) , if x 6=⊥

which concludes the proof.

Recall that any map of monads induces a functor between the corresponding Kleisli categories of the two monads (see [42,

Exercise 5.2.1]). This allows us to show the next corollary.

Corollary 60. The functor F : DCPOL → DCPOM, induced by φ : L ⇒ M, and defined by:

FX
def
= X

F(f : X ⇀ Y)
def
= φY ◦ f

strictly preserves the monoidal and coproduct structures in the sense that the following equalities:

F(X ⊗ Y) = FX
.
×FY F(X ⊕ Y) = FX

.
+ FY

F(f ⊗ g) = Ff
.
×Fg F(f ⊕ g) = Ff

.
+ Fg

hold.

Proof. This follows by canonical categorical arguments and is just a straightforward verification.

Before we may prove our next proposition, let us recall an important result from [48].

Proposition 61. Let A, B and C be DCPO-enriched categories. Assume further that A and B have all ω-colimits (or all

ωop-limits). If T : Aop ×B → C is a DCPO-enriched functor, then the assignment

T E : Ae ×Be → Ce

T E(A,B)
def
= T (A,B)

T E(e1, e2)
def
= T (ep1, e2)

defines a covariant ω-cocontinuous functor.

Proof. This follows by combining several results from [48], namely Theorem 2, the corollary after it and Theorem 3.

Therefore, by trivialising the category A, we may obtain results for purely covariant functors. When neither category is

trivialised, this allows us to interpret mixed-variance functors (such as function space) as covariant functors on subcategories

of embeddings.

Proposition 62. The category PDe has an initial object and all ω-colimits and the following assignments:

.
×e : PDe ×PDe → PDe

.
+e : PDe ×PDe → PDe

X
.
×e Y

def
= X

.
× Y X

.
+e Y

def
= X

.
+ Y

e1
.
×e e2

def
= e1

.
× e2 e1

.
+e e2

def
= e1

.
+ e2

[.→]Je : PDe ×PDe → PDe

[X .→ Y]Je
def
= J [X .→ Y]

[e1 .→ e2]
J
e

def
= J [ep1 .→ e2]

define covariant ω-cocontinuous functors on PDe.

Proof. The empty dcpo ∅ is a zero object in PD such that each map e : ∅ .→X is an embedding and each map p : X .→∅ is a

projection. Therefore, ∅ is initial in PDe. The existence of all ω-colimits in PDe follows from the existence of all ω-colimits

of PD together with results from [48].

Next, we show that
.
× : DCPOM×DCPOM → DCPOM restricts to a functor

.
×PD : PD×PD → PD. On objects, this

is obvious. For morphisms, observe that the morphisms of PD are exactly those which are in the image of F . Therefore
.
×PD

restricts as indicated because Ff
.
×Fg = F(f⊗g) by Corollary 60. Then, by Proposition 61, it follows that (

.
×PD)E : PDe×

PDe → PDe is a covariant ω-cocontinuous functor. However, by definition,
.
×e = (

.
×PD)E which shows the result for

.
×e.

Exactly the same argument (swapping
.
× for

.
+ and ⊗ for ⊕) shows the result for

.
+e.

For function spaces, consider the functor J ◦ [.→] : DCPO
op
M ×DCPOM → DCPOM. This composition (co)restricts to

a functor (J ◦ [.→])PD : PD
op ×PD → PD, because J (f .→ g) = η ◦ (f .→ g) = φ ◦ ηL ◦ (f .→ g) = F(ηL ◦ (f .→ g)). By

Proposition 61, it follows ((J ◦ [.→])PD)E : PDe×PDe → PDe is a covariant ω-cocontinuous functor. Finally, by definition,

[.→]Je = ((J ◦ [.→])PD)E which concludes the proof.

We conclude the appendix with a proof that the subcategories TD and PD contain the same isomorphisms.

Proposition 63. Every isomorphism of PD is also an isomorphism of TD.

Proof. Observe that, by definition, the morphisms of TD are those in the image of J : DCPO → DCPOM and the

morphisms of PD are those in the image of F : DCPOL → DCPOM. Then, it is easy to see that the following diagram:

TD PD

DCPOLDCPO
J L

∼ = ∼ =

commutes, where:

• the top arrow is the subcategory inclusion TD →֒ PD;

• the left vertical isomorphism is the corestriction of J to TD;

• the right vertical isomorphism is the corestriction of F to PD;

• the functor J L is the Kleisli inclusion of DCPO into DCPOL, defined by J L(X)
def
= X and J L(f)

def
= ηL ◦ f.

It is well-known (and easy to prove) that if f : X ⇀ Y in DCPOL is an isomorphism, then there exists f ′ : X → Y in

DCPO which is also an isomorphism and f = J L(f ′). The proof is finished by a simple diagram chase using this fact.

APPENDIX C

PRODUCTS, COPRODUCTS AND KLEISLI COMPOSITION PRESERVE BARYCENTRIC SUMS OF FUNCTIONS

The monoidal product _
.
×_ : DCPOM×DCPOM → DCPOM is defined as: for dcpo’s A and B, A

.
×B

def
= A×B, and for

Scott-continuous maps f : A → MC and g : B → MD, f
.
×g

def
= λ(a, b).f(a)⊗g(b), where f(a)⊗g(b) is defined in Remark 10.

For f, h : A → MC and r ∈ [0, 1], f +r h is defined pointwise, that is, (f +r h)(a) = f(a) +r h(a) = rf(a) + (1− r)h(a).
It follows from Lemma 7 that f +r h is well-defined and obviously f +r h is Scott-continuous, hence f +r h ∈ [A → MC].

Proposition 64. For f, h : A → MC, g : B → MD and r ∈ [0, 1], we have

1) (f +r h)
.
× g = f

.
× g +r h

.
× g : A

.
×B → M(C

.
×D);

2) g
.
× (f +r h) = g

.
× f +r g

.
× h : B

.
×A → M(D

.
× C).

Proof. We only prove Item 1, the second item can be proved similarly.

For each (a, b) ∈ A
.
× B, we have the following:

((f +r h)
.
× g)(a, b)

= (f +r h)(a)⊗ g(b) definition of _
.
× _

= (f(a) +r h(a))⊗ g(b) definition of f +r h

= λU ∈ σ(C
.
×D).

∫

y∈D

∫

x∈C

χU (x, y)d(f(a) +r h(a))dg(b) definition of the operation ⊗

= λU.

∫

y∈D

(

∫

x∈C

χU (x, y)df(a) +r

∫

x∈C

χU (x, y)dh(a))dg(b) by Proposition 58, Item 2

= λU.

∫

y∈D

∫

x∈C

χU (x, y)df(a)dg(b) +r

∫

y∈D

∫

x∈C

χU (x, y)dh(a)dg(b) by Proposition 58, Item 3

= λU.

∫

y∈D

∫

x∈C

χU (x, y)df(a)dg(b) +r λU.

∫

y∈D

∫

x∈C

χU (x, y)dh(a)dg(b) by definition of +r of valuations

= (f
.
× g)(a, b) +r (h

.
× g)(a, b) definition of _

.
× _

= (f
.
× g +r h

.
× g)(a, b) definition of +r of functions.

Hence the proof is completed.

The functor _
.
+ _ : DCPOM × DCPOM → DCPOM is defined as: for dcpo’s A and B, A

.
+ B

def
= A + B, and for

Scott-continuous maps f : A → MC and g : B → MD, f
.
+ g = [M(iC) ◦ f,M(iD) ◦ g], where iC : C → C + D and

iD : D → C +D are the obvious injections.

Proposition 65. For f, h : A → MC, g : B → MD and r ∈ [0, 1], we have

1) (f +r h)
.
+ g = (f

.
+ g) +r (h

.
+ g);

2) g
.
+ (f +r h) = (g

.
+ f) +r (g

.
+ h).

Proof. Again, we only prove the first claim as the second can be proved similarly. Let a ∈ A, we perform the following

computation:

((f +r h)
.
+ g)(iA(a)) = [M(iC) ◦ (f +r h),M(iD) ◦ g](iA(a)) definition of _

.
+ _

= M(iC)((f +r h)(a)) obvious

= M(iC)(f(a) +r h(a)) definition of f +r h

= λU.(f(a) +r h(a))(i
−1
C (U)) definition of M(iC)

= λU.f(a)(i−1
C (U)) +r h(a)(i

−1
C (U)) definition of f(a) +r h(a)

= λU.f(a)(i−1
C (U)) +r λU.h(a)(i

−1
C (U)) definition of +r of valuations

= M(iC)(f(a)) +r M(iC)(h(a)), definition of M(iC)

= (f
.
+ g)(iA(a)) +r (h

.
+ g)(iA(a)) definition of _

.
+ _

= ((f
.
+ g) +r (h

.
+ g))(iA(a)). definition of (f

.
+ g) +r (h

.
+ g)

Moreover, it is easy to see that for b ∈ B, ((f +r h)
.
+ g)(iB(b)) = M(iD)(g(b)) = M(iD)(g(b)) +r M(iD)(g(b)) =

((f
.
+ g) +r (h

.
+ g))(iB(b)). Hence we finish the proof.

Recall that in DCPOM the Kleisli composition � : [A .→ B]× [B .→ C] → [A .→ C] is given by

(f, g) 7→ g � f = g‡ ◦ f.

Proposition 66. For f, h : A → MB, g, k : B → MC and r ∈ [0, 1], we have

1) g � (f +r h) = g � f +r g � h;

2) (g +r k) � f = g � f +r k � f .

Proof. 1) Let a ∈ A. We have

g � (f +r h)(a) = (g‡ ◦ (f +r h))(a) definition of �

= g‡(f(a) +r h(a)) definition of f +r h

= λU.

∫

x∈B

g(x)(U)d(f(a) +r h(a)) definition of g‡

= λU.

∫

x∈B

g(x)(U)df(a) +r λU.

∫

x∈B

g(x)(U)dh(a) by Proposition 58, Item 2

= g‡(f(a)) +r g
‡(h(a)) definition of g‡

= (g � f +r g � h)(a).

2) Let a ∈ A. We have

((g +r k) � f)(a) = (g +r k)
‡(f(a)) definition of �

= λU.

∫

x∈B

(g +r k)(x)(U)df(a) definition of _‡

= λU.

∫

x∈B

g(x)(U)df(a) +r λU.

∫

x∈B

k(x)(U)df(a) by Proposition 58, Item 3

= g‡(f(a)) +r k
‡(f(a)) definition of _‡

= (g � f +r k � f)(a).

APPENDIX D

PROOF OF STRONG ADEQUACY

The purpose of this appendix is to provide a proof Theorem 55. We begin by stating a corollary for the soundness theorem.

Corollary 67. For any closed term · ⊢ M : A, we have:

JMK ≥
∑

V ∈Val(M)

P (M −→∗ V)JV K.

Proof. First, let us decompose the convex sum on the right-hand side.
∑

V ∈Val(M)

P (M −→∗ V)JV K = sup
F⊆Val(M)

F finite

∑

V ∈F

P (M −→∗ V)JV K (Definition)

= sup
F⊆Val(M)

F finite

∑

V ∈F

(

sup
i∈N

P (M −→≤i V)

)

JV K (Definition)

= sup
F⊆Val(M)

F finite

sup
i∈N

∑

V ∈F

P (M −→≤i V)JV K

(

Scott-continuity of
∑

i

riai in each ri

)

.

Therefore, it suffices to show that

JMK ≥
∑

V ∈F

P (M −→≤i V)JV K (7)

for any choice of finite F ⊆ Val(M) and i ∈ N. This can now be shown by induction on i. If M ∈ F (which means M is a

value), then (7) is a strict equality. Assume M 6∈ F . If i = 0, then the right-hand side of (7) is 0 and so the inequality holds.

For the step case, if M is a value, then RHS is 0 and the inequality holds. Otherwise:
∑

V ∈F

P (M −→≤i+1 V)JV K =
∑

V ∈F

∑

M
p
−→M ′

p · P (M ′ −→≤i V)JV K

=
∑

M
p
−→M ′

p ·
∑

V ∈F

P (M ′ −→≤i V)JV K

≤
∑

M
p
−→M ′

p · JM ′K (IH for M ′)

= JMK (Soundness)

where we also implicitly used the fact that Val(M ′) ⊆ Val(M).

The remainder of the appendix is dedicated to showing the converse inequality, which is considerably more difficult to prove.

A. Overview of the Proof Strategy

The proof of strong adequacy requires considerable effort. Our proof strategy consists in formulating logical relations that we

use to prove our adequacy result. These logical relations are described in Theorem 107 and the design of our logical relations

follows that of Claire Jones in her thesis [12]. Once this theorem is proved, the proof of adequacy is fairly straightforward.

We use the logical relations to establish some useful closure properties in Subsection D-F and this allows us to easily prove

Lemma 117, which is often called the Fundamental Lemma. This lemma easily implies Strong Adequacy as we show.

Most of the effort in proving our Strong Adequacy result lies in the proof of Theorem 107. It is not possible to use the

properties (A1) – (A4) as a definition of the relations, because then condition (A4) would be defined via non-well-founded

induction. The proof of the existence of this family of relations is not obvious. We use techniques from [49], [50] (which are

in turn based on ideas from [30]) to show the existence of these relations. The main idea of the proof of existence is to define,

for every type A, a category R(A) of logical relations with a suitable notion of morphism. We then show that every such

category has sufficient structure to construct parameterised initial algebras (Proposition 87). We may then define functors on

these categories (Definition 94) which construct logical relations in the same manner as they are needed in Theorem 107. These

functors are ω-cocontinuous (Proposition 96) which means that we may form (parameterised) initial algebras using them. This

allows us to define an augmented interpretation of types on the categories R(A) which satisfies some important coherence

conditions with respect to the standard interpretation of types (Corollary 105). These coherence conditions show that each

augmented interpretation ‖A‖ of a type A contains the standard interpretation JAK, together with the logical relation that we

need, as shown in Theorem 107.

B. Logical Relations

Assumption 68. Throughout this appendix, we assume that all types are closed, unless otherwise noted.

Definition 69. For each type A, we write:

• Val(A)
def
= {V | V is a value and · ⊢ V : A}.

• Prog(A)
def
= {M | M is a term and · ⊢ M : A}.

Next, we define sets of relations that are parameterised by dcpo’s X from our semantic category, types A from our language

and partial deterministic embeddings eX : X .→JAK which show how X approximates JAK. We shall write relation membership

in infix notation, that is, for a binary relation ⊳, we write v ⊳ V to indicate (v, V) ∈⊳ .

Definition 70. For any dcpo X , type A and morphism e : X .→ JAK in PDe, let:

ValRel(X,A, e) = {⊳e
X,A⊆ TD(1, X)×Val(A) | ∀V ∈ Val(A). (−) ⊳e

X,A V is a Scott closed subset of TD(1, X) and

∀V ∈ Val(A). v ⊳
e
X,A V ⇒ e � v ≤ JV K}.

Remark 71. In the above definition, relations ⊳
e
X,A∈ ValRel(X,A, e) can be seen as ternary relations ⊳

e
X,A⊆ TD(1, X)×

Val(A) × {e}. However, since there is no choice for the third component, we prefer to see them as binary relations that

are parameterised by the embeddings e. Indeed, this leads to a much nicer notation. We shall also sometimes indicate the

parameters X,A and e of the relation in order to avoid confusion as to which set ValRel(X,A, e) it belongs to.

The relations we need for the adequacy proof inhabit the sets ValRel(JAK, A, idJAK). In the remainder of the appendix, we

will show how to choose exactly one relation (the one we need) from each of those sets.

Before we may define the relation constructors we need, we have to introduce some auxiliary definitions.

Definition 72. Let M : A and N : A be closed terms of the same type. We define

Paths(M,N)
def
=
{

π | π =
(

M = M0
p0

−→ M1
p1

−→ M2
p2

−→ · · ·
pn
−→ Mn = N

)

is a reduction path
}

.

In other words, Paths(M,N) is the set of all reduction paths from M to N . The probability weight of a path π ∈ Paths(M,N)

is P (π)
def
=
∏n

i=0 pi, i.e., it is simply the product of all the probabilities of single-step reductions within the path. The set of

terminal reduction paths of M is

TPaths(M)
def
=

⋃

V ∈Val(A)

Paths(M,V).

Thus the endpoint of any path π ∈ TPaths(M) is a value. If π ∈ Paths(M,W), where W is a value, then we shall write

Vπ
def
= W. That is, for a path π ∈ TPaths(M), the notation Vπ indicates the endpoint of the path π which is indeed a value.

Remark 73. We also note that for each closed term M , the set TPaths(M) is countable.

The next definition we introduce is crucial for the proof of strong adequacy.

Definition 74. Given a relation ⊳
e
X,A∈ ValRel(X,A, e) and a term · ⊢ M : A, let S(⊳e

X,A;M) be the Scott-closure in

DCPOM(1, X) of the set

S0(⊳
e
X,A;M)

def
=

{

∑

π∈F

P (π)vπ | F ⊆ TPaths(M), F is finite and vπ ⊳
e
X,A Vπ for each π ∈ F

}

. (8)

In other words, S(⊳e
X,A;M) is the smallest Scott-closed subset of DCPOM(1, X) which contains all morphisms of the form

in (8). For a subset U ⊆ DCPOM(1, X), we write U to indicate its Scott-closure in DCPOM(1, X).

Lemma 75. For any value V , we have S(⊳e
X,A;V) = {v | v ⊳

e
X,A V } ∪ {0} = {v | v ⊳

e
X,A V } ∪ {0} .

Proof. This is because all of the sums in (8) are singleton sums or the empty sum.

Lemma 76 ([12, Lemma 8.4]). Let Y be a dcpo and let {Xi}i∈F be a finite collection of dcpo’s. Let f :
∏

i Xi → Y be a

Scott-continuous function. Let CY be a Scott-closed subset of Y . Let Ui ⊆ Xi be arbitrary subsets, such that f(
∏

i Ui) ⊆ CY .

Then f(
∏

i Ui) ⊆ CY , where Ui is the Scott-closure of Ui in Xi.

Lemma 77. Let ⊳e1
X1,A

and ⊳
e2
X2,A

be two logical relations and · ⊢ M : A a term. Assume that g : X1 .→X2 is a morphism,

such that v ⊳
e1
X1,A

V implies g � v ∈ S(⊳e2
X2,A

;V), for any V ∈ Val(M). If m ∈ S(⊳e1
X1,A

;M), then g � m ∈ S(⊳e2
X2,A

;M).

Proof. By Lemma 76, it suffices to show that

(

g �
∑

π∈F

P (π)vπ

)

∈ S(⊳e2
X2,A

;M)

for any choice of finite F ⊆ TPaths(M) and morphisms vπ with vπ ⊳
e1
X1,A

Vπ. We have

g �
∑

π∈F

P (π)vπ =
∑

π∈F

P (π)(g � vπ),

where the equality follows by linearity of (g � −). Next, for each vπ, by assumption g � vπ ∈ S(⊳e2
X2,A

;Vπ). Therefore by

applying Lemma 75, it follows g � vπ ∈ {v′ | v′ ⊳e2
X2,A

Vπ} ∪ {0}. Now, consider the function

∑

π∈F

P (π)(−) :
∏

|F |

DCPOM(1, X2) → DCPOM(1, X2).

This function is continuous, so by Lemma 76 again, it suffices to show that

∑

π∈F

P (π)m′
π =

∑

π∈F
m′

π 6=0

P (π)m′
π ∈ S(⊳e2

X2,A
;M),

where either m′
π = 0 or m′

π ⊳
e2
X2,A

Vπ for each π ∈ F . Since the summands where m′
π = 0 do not affect the sum, it suffices

to show that this is true under the assumption that m′
π ⊳

e2
X2,A

Vπ. But this is true by definition of S(⊳e2
X2,A

;M).

Next, we define important closure relations which we use for terms.

Definition 78. If ⊳e
X,A∈ ValRel(X,A, e), let ⊳

e
X,A ⊆ DCPOM(1, X)× Prog(A) be the relation defined by

m ⊳
e
X,A M iff m ∈ S(⊳e

X,A;M).

Lemma 79. For any term · ⊢ M : A and ⊳
e
X,A∈ ValRel(X,A, e), the set (−) ⊳

e
X,A M is a Scott-closed subset of

DCPOM(1, X).

Proof. This follows immediately by definition, because S(⊳e
X,A;M) is Scott-closed.

Lemma 80. Let C be a Scott-closed subset of a dcpo X . Let W
def
= {δx | x ∈ C} ⊆ MX and let W be the Scott-closure of

W in MX. Then, δy ∈ W iff y ∈ C.

Proof. The “if” direction is straightforward. The “only if” direction is trivial when C = X . We now prove the case that C
is a proper subset of X , and let U be the complement of C. Hence U is a nonempty Scott open subset of X . Let us assume

that δy ∈ W but y ∈ U , then we know that [U > 0]
def
= {ν ∈ MX | ν(U) > 0} is a Scott open subset of MX containing δy ,

hence we would have that [U > 0] ∩W 6= ∅ since by assumption δy ∈ W . However, this is impossible since for any x ∈ C,

δx(U) = 0.

Lemma 81. Let X be a dcpo, let v ∈ TD(1, X) and let V be a value. Then v ⊳
e
X,A V iff v ⊳

e
X,A V.

Proof. The left-to-right direction follows immediately by Lemma 75. For the other direction, we first observe that since

v ∈ TD(1, X), then v 6= 0. Therefore by Lemma 75, it follows v ∈ {w | w ⊳
e
X,A V } and then by Lemma 80 we complete

the proof.

Lemma 82. For any value · ⊢ V : A and ⊳
e
X,A∈ ValRel(X,A, e), if m ⊳

e
X,A V then e � m ≤ JV K.

Proof. We know m ∈ S(⊳e
X,A;V) = {v | v ⊳

e
X,A V } ∪{0} and clearly e�m ≤ JV K is equivalent to (e�m) ∈ ↓ JV K, which

is a Scott-closed subset. If m = 0, then the statement is obviously true. So, assume that m ∈ {v | v ⊳
e
X,A V } . Composition

with e is a Scott-continuous function and therefore using Lemma 76, to finish the proof it suffices to show e � v ≤ JV K for

each choice of v ⊳
e
X,A V . But this is true by assumption on ⊳

e
X,A.

C. Categories of Logical Relations

Definition 83. For any type A, we define a category R(A) where:

• Each object is a triple (X, eX ,⊳X), where X is a dcpo, eX : X .→JAK is a morphism in PDe and ⊳X∈ ValRel(X,A, eX).
• A morphism f : (X, eX ,⊳X) → (Y, eY ,⊳Y) is a morphism f : X .→ Y in PDe, which satisfies the three additional

conditions:

– If v ⊳X V, then f � v ⊳Y V.
– If v ⊳Y V, then fp � v ⊳X V.
– eX = eY � f.

• Composition and identities coincide with those in PDe.

Lemma 84. For every type A, the category R(A) is indeed well-defined.

Proof. We have to show that id : (X, eX ,⊳X) → (X, eX ,⊳X) is indeed a morphism in R(A). This follows from Lemma

81. Next, we have to show that if f : (X, eX ,⊳X) → (Y, eY ,⊳Y) and g : (Y, eY ,⊳Y) → (Z, eZ ,⊳Z), then we also have

g � f : (X, eX ,⊳X) → (Z, eZ ,⊳Z). But this follows by Lemma 77.

Lemma 85. Let · ⊢ M : A be a term and let g : (X, eX ,⊳X) → (Y, eY ,⊳Y) be a morphism in R(A). If m ⊳X M then

g � m ⊳Y M . Moreover, if n ⊳Y N, then gp � n ⊳X N.

Proof. This follows immediately by Lemma 77.

Definition 86. For every type A, we define the obvious forgetful functor UA : R(A) → PDe by

UA(X, e,⊳) = X

UA(f) = f.

Proposition 87. For each type A, the category R(A) has an initial object and all ω-colimits. Furthermore, the forgetful functor

UA : R(A) → PDe preserves and reflects ω-colimits (and also the initial objects).

Proof. We begin with the initial object.

Initial object: For any dcpo’s X and Y , we write 0X,Y : X .→ Y for the zero morphism in PD. Notice that 0∅,X is an

embedding with projection counterpart given by 0X,∅.
The object (∅, 0∅,JAK, ∅) is initial in R(A). Indeed, let (X, eX ,⊳X) be any other object of R(A). It suffices to show that

0∅,X : (∅, 0∅,JAK, ∅) → (X, eX ,⊳X) is a morphism in R(A), because if it exists, then it is clearly unique. The first and third

conditions of Definition 83 are trivially satisfied. The second condition is also satisfied, because 0p
∅,X

� v = 01,∅, which is

the least (and only) element in DCPOM(1,∅) and this element is contained in every relation ⊳Y , including ∅.

The diagram: For the rest of the proof, let D : ω → R(A) be an ω-diagram in R(A). Let D(i) = (Xi, ei,⊳i) and let

D(i ≤ j) = fi,j .

Construction of the colimiting object: Consider the ω-diagram UD in PDe. This category has all ω-colimits, so let

τ : UD ⇒ Xω be its colimiting cocone. Next, consider the cocone ǫ : UD ⇒ JAK defined by ǫi
def
= ei : Xi .→ JAK. Let

eω : Xω .→ JAK be the unique cocone morphism eω : τ → ǫ induced by the colimit τ in PDe. We now define a relation

⊳ω∈ ValRel(Xω , A, eω) by:

v ⊳ω V iff ∀k ∈ N. τpk � v ⊳k V.

We have to show that ⊳ω∈ ValRel(Xω , A, eω), as claimed above. We begin with downwards-closure. Assume v ⊳ω V and

that v′ ≤ v in TD(1, Xω). Then, ∀k ∈ N. τpk � v ⊳k V and therefore τpk � v′ ⊳k V , because (− ⊳k V) is downwards-closed

and so by definition v′ ⊳ω V, as required.

Next, we show that (− ⊳ω V) preserves directed suprema and is therefore Scott-closed in TD(1, Xω). Assume that {vd}d∈D

is a directed set, such that vd ⊳ω V for each d ∈ D. Therefore, ∀k ∈ N. ∀d ∈ D. τpk � vd ⊳k V. Scott-closure of (− ⊳k V)
implies that τpk � (supd∈D vd) = supd∈D τpk � vd ⊳k V holds for all k ∈ N. Therefore, by definition supd∈D vd ⊳ω V.

We also have to show that if v ⊳ω V , then eω � v ≤ JV K. If v ⊳ω V , then ∀k ∈ N. τpk � v ⊳k V and so by Lemma 82 we

get ek � τpk � v ≤ JV K. But ek � τpk � v = eω � τk � τpk � v. The limit-colimit coincidence theorem in the category PD, shows

that this forms an increasing sequence and that

JV K ≥ sup
k∈N

eω � τk � τpk � v = eω �

(

sup
k∈N

τk � τpk

)

� v = eω � id � v = eω � v,

as required. We will show that the object (Xω, eω,⊳ω) is the colimiting object of D in R(A). Before we can do this, we first

have to construct the colimiting cocone in R(A).

Construction of the colimiting cocone: We show that τ : D ⇒ Xω is a cocone in R(A). The commutativity requirements

are clearly satisfied, so it suffices to show that each τi : Xi .→Xω is a morphism τi : (Xi, ei,⊳i) → (Xω, eω,⊳ω) in R(A).
Towards that end, assume that v ⊳i V . We have to show that τi � v ⊳ω V , but by Lemma 81, it suffices to show that

τi � v ⊳ω V 7. Showing this is equivalent to showing that ∀k ∈ N. τpk � τi � v ⊳k V. For any k ≥ i, we get:

τpk � τi � v = τpk � τk � fi,k � v = fi,k � v ⊳k V

because fi,k is a morphism fi,k : (Xi, ei,⊳i) → (Xk, ek,⊳k) and v ⊳i V by assumption. For any k < i, we get:

τpk � τi � v = fp
k,i

� τpi � τi � v = fp
k,i

� v ⊳k V

because fk,i is a morphism fk,i : (Xk, ek,⊳k) → (Xi, ei,⊳i) and v ⊳i V by assumption (and Lemma 85).

To show that τi : (Xi, ei,⊳i) → (Xω, eω,⊳ω) is a morphism, we have to show that if v ⊳ω V, then also τpi � v ⊳i V. But

this is true by definition of ⊳ω .
Finally we have to show that ei = eω � τi. But this is true by construction of eω.

Therefore, τ : D ⇒ (Xω, eω,⊳ω) is indeed a cocone of D in R(A).
Couniversality of the cocone: For the rest of the proof, assume that α : D ⇒ (Y, ey,⊳Y) is some other cocone of D in

R(A). Next, consider the cocone Uα in PDe and let a : Xω .→ Y be the unique cocone morphism a : Uτ → Uα induced by

the colimit in PDe. By the limit-colimit coincidence theorem in PD, we get

a = a � id = a � sup
i∈N

τi � τpi = sup
i∈N

a � τi � τpi = sup
i∈N

αi � τpi

We will show that a : (Xω, eω,⊳ω) → (Y, eY ,⊳Y) is a morphism in R(A). Towards this end, assume that v ⊳ω V . Then

∀k ∈ N. τpk � v ⊳k V and therefore αk � τpk � v ⊳Y V, because by assumption αk : (Xk, ek,⊳k) → (Y, ey,⊳Y). Since

(− ⊳Y V) is closed under suprema, it follows

sup
k∈N

αk � τpk � v =

(

sup
k∈N

αk � τpk

)

� v = a � v ⊳Y V,

which shows that a satisfies one of the requirements for being a morphism in R(A).
For the second requirement, assume that v ⊳Y V. Then, ∀k ∈ N. αp

k
� v ⊳k V , by assumption on αk. The same argument

shows that ∀k ∈ N. τk � αp
k

� v ⊳ω V , because τk is also a morphism in the category. Since (− ⊳ω V) is closed under

suprema, we get:

sup
k∈N

τk � αp
k

� v = sup
k∈N

τk � τpk � ap � v =

(

sup
k∈N

τk � τpk

)

� ap � v = ap � v ⊳ω V

as required.

For the third requirement, we have to show that eω = eY � a. By assumption on the cone α : D ⇒ (Y, eY ,⊳Y), we have

that ∀i ∈ N. ei = eY � αi and by construction of a, we know αi = a � τi. Therefore ∀i ∈ N. ei = eY � a � τi. However,

eω is by construction the unique morphism in PDe, such that ∀i. ei = eω � τi, which shows that eω = eY � a, as required.

Therefore, we have shown that a : (Xω, eω,⊳ω) → (Y, eY ,⊳Y) is indeed a morphism in R(A).
That a : τ → α is the unique cocone morphism is now obvious, because if a′ : τ → α is another one, then Ua and Ua′ are

both cocone morphisms between Uτ and Uα in PDe and therefore a = Ua = Ua′ = a′. Therefore, τ : D ⇒ (Xω , eω,⊳ω)
is indeed the colimiting cocone of D in R(A), which shows that R(A) has all ω-colimits.

UA preserves ω-colimits: Assume that the cocone α : D ⇒ (Y, ey,⊳Y) from above is colimiting in R(A). But, we know

that τ : D ⇒ (Xω, eω,⊳ω) is also a colimiting cocone of D. Therefore, there exists a unique cocone isomorphism i : τ → α.
Then, Ui : Uτ → Uα is a cocone isomorphism in PDe. However, by construction, Uτ is a colimiting cocone of UD in PDe

and therefore so is Uα.

UA reflects ω-colimits: Assume that the cocone α : D ⇒ (Y, ey,⊳Y) from above is such that Uα : UD ⇒ Y is

colimiting in PDe. Then the morphism a : Xω .→ Y from above is an isomorphism in PDe. We have already shown that

a : (Xω, eω,⊳ω) → (Y, eY ,⊳Y) is a morphism in R(A). Thus, to finish the proof, it suffices to show that a−1 is a morphism

in R(A) in the opposite direction. But this is obviously true, because a−1 = ap and (a−1)p = a and we have shown above

that these morphisms satisfy the logical requirements and clearly eY = eω � a−1.

Next, we introduce important relation constructors and some new notation.

Notation 88. Given morphisms mi : 1 .→Xi, for i ∈ {1, . . . , n}, we define

〈〈m1, . . . ,mn〉〉
def
= (m1

.
× · · ·

.
×mn) � J 〈id1, . . . , id1〉 : 1 .→X1 × · · · ×Xn.

7Note that τi � v is a morphism of TD, because v is one and because τi ∈ PDe which is a subcategory of TD.

Notation 89. Given morphisms x : 1 .→X and f : 1 .→ [X .→ Y] in DCPOM, let f [x] : 1 .→ Y be the morphism defined by

f [x]
def
= ǫ � (f

.
× x) � J 〈id1, id1〉.

Definition 90 (Relation Constructions). We define relation constructors:

• If ⊳e1
X1,A1

∈ ValRel(X1, A1, e1) and ⊳
e2
X2,A2

∈ ValRel(X2, A2, e2), define

(⊳e1
X1,A1

+ ⊳
e2
X2,A2

) ∈ ValRel(X1 +X2, A1 +A2, e1
.
+ e2) by:

J ini � v (⊳e1
X1,A1

+ ⊳
e2
X2,A2

) iniV iff v ⊳
ei
Xi,Ai

V (for i ∈ {1, 2}).

• If ⊳e1
X1,A1

∈ ValRel(X1, A1, e1) and ⊳
e2
X2,A2

∈ ValRel(X2, A2, e2), define

(⊳e1
X1,A1

× ⊳
e2
X2,A2

) ∈ ValRel(X1 ×X2, A1 ×A2, e1
.
× e2) by:

〈〈v1, v2〉〉 (⊳
e1
X1,A1

× ⊳
e2
X2,A2

) (V1, V2) iff v1 ⊳
e1
X1,A1

V1 and v2 ⊳
e2
X2,A2

V2.

• If ⊳e1
X1,A1

∈ ValRel(X1, A1, e1) and ⊳
e2
X2,A2

∈ ValRel(X2, A2, e2), define

(⊳e1
X1,A1

→ ⊳
e2
X2,A2

) ∈ ValRel([X1 .→X2], A1 → A2,J [ep1 .→ e2]) by:

f (⊳e1
X1,A1

→ ⊳
e2
X2,A2

) λx.M iff J [ep1 .→ e2] � f ≤ Jλx.MK and ∀(v ⊳
e1
X1,A1

V). f [v] ⊳e2
X2,A2

(λx.M)V.

Lemma 91. The assignments in Definition 90 are indeed well-defined.

Proof. Straightforward verification.

Next, a simple lemma that we use later.

Lemma 92. Assume we are given morphisms f : 1 .→ [C .→D], h : A .→ C, g : D .→B and v : 1 .→A. Then

(J [h .→ g] � f)[v] = g � f [h � v].

Proof.

(J [h .→ g] � f)[v] = ǫ � ((J [h .→ g] � f)
.
× v) � J 〈id, id〉 (Definition)

= ǫ � (J [h .→ g]
.
× id) � (f

.
× v) � J 〈id, id〉

= ǫ � (J [id .→ g]
.
× id) � (J [h .→ id]

.
× id) � (f

.
× v) � J 〈id, id〉

= g � ǫ � (J [h .→ id]
.
× id) � (f

.
× v) � J 〈id, id〉 (Naturality of ǫ)

= g � ǫ � (id
.
× h) � (f

.
× v) � J 〈id, id〉 (Parameterised adjunction [44, pp.102])

= g � f [h � v] (Definition)

Notation 93. Throughout the rest of the paper we shall write (− .→e −)
def
= [− .→−]Je : PDe × PDe → PDe. That is, we

just introduce a more concise notation for the functor [− .→−]Je from Proposition 62.

The next definition is crucial. Given two logical relations, it is used to define the product, coproduct and function space

logical relations. Moreover, this is done in a functorial sense on the categories R(A).

Definition 94. Let A and B be types. We define covariant functors in the following way (recall Definition 90):

1) ×A,B : R(A)×R(B) → R(A×B) by

(X, eX ,⊳X)×A,B (Y, eY ,⊳Y)
def
= (X × Y, eX

.
×e eY ,⊳X × ⊳Y)

f ×A,B g
def
= f

.
×e g

2) +A,B : R(A)×R(B) → R(A+B) by

(X, eX ,⊳X) +A,B (Y, eY ,⊳Y)
def
= (X + Y, eX

.
+e eY ,⊳X + ⊳Y)

f +A,B g
def
= f

.
+e g

3) →A,B : R(A)×R(B) → R(A → B) by

(X, eX ,⊳X) →A,B (Y, eY ,⊳Y)
def
= ([X .→ Y], eX

.→e eY ,⊳X→⊳Y)

f →A,B g
def
= f .→e g

Proposition 95. Each of the functors from Definition 94 is well-defined.

Proof. We will show the case for function types which is the most complicated. The other cases follow by a straightforward

verification using similar arguments.

Function types: Let

f1 : (X1, e
X
1 ,⊳X

1) → (Y1, e
Y
1 ,⊳

Y
1)

f2 : (X2, e
X
2 ,⊳X

2) → (Y2, e
Y
2 ,⊳

Y
2)

We have to show

f1
.→e f2 : (X1

.→e X2, e
X
1

.→e e
X
2 ,⊳X

1 →⊳
X
2) → (Y1

.→e Y2, e
Y
1

.→e e
Y
2 ,⊳

Y
1 →⊳

Y
2)

is a morphism in R(A → B).
First, we show that f1

.→e f2 respects the embedding component. Indeed:

eX1
.→e e

X
2 = (eY1 � f1)

.→e (e
Y
2 � f2) = (eY1

.→e e
Y
2) � (f1

.→e f2).

Next, assume that v (⊳X
1 →⊳

X
2) V . Assume further that v′ ⊳Y

1 V ′. Then, clearly fp
1

�v′ ⊳X
1 V ′. If fp

1
�v′ = 0, then it trivially

follows that v[fp
1

� v′] = 0 ⊳
X
2 V V ′. Otherwise, fp

1
� v′ ∈ TD and so fp

1
� v′ ⊳X

1 V ′ and therefore v[fp
1

� v′] ⊳X
2 V V ′. In

all cases, v[fp
1 � v′] ⊳X

2 V V ′ and therefore f2 � v[fp
1 � v′] ⊳Y

2 V V ′. But then, by Lemma 92 we have:

f2 � v[fp
1 � v′] = (J [fp

1
.→ f2] � v)[v′] = ((f1

.→e f2) � v)[v′] ⊳Y
2 V V ′.

Furthemore

(eY1
.→e e

Y
2) � (f1

.→e f2) � v = (eX1
.→e e

X
2) � v ≤ JV K

and therefore by definition (f1
.→e f2) � v (⊳Y

1 →⊳
Y
2) V and therefore also (f1

.→e f2) � v (⊳Y
1 →⊳

Y
2) V , as required.

For the other direction, assume that v (⊳Y
1 →⊳

Y
2) V . Assume further that v′ ⊳X

1 V ′. Then, clearly f1 � v′ ⊳Y
1 V ′. If

f1 � v′ = 0, then it trivially follows that v[f1 � v′] = 0 ⊳
Y
2 V V ′. Otherwise, f1 � v′ ∈ TD and so f1 � v′ ⊳Y

1 V ′ and therefore

v[f1 � v′] ⊳Y
2 V V ′. In all cases, v[f1 � v′] ⊳Y

2 V V ′ and therefore fp
2 � v[f1 � v′] ⊳X

2 V V ′. But then, by Lemma 92 we have:

fp
2 � v[f1 � v′] = (J [f1 .→ fp

2] � v)[v′] = ((f1
.→e f2)

p � v)[v′] ⊳X
2 V V ′.

Furthemore

(eX1
.→e e

X
2) � (f1

.→e f2)
p � v = J [(eX1)p .→ eX2] � J [f1 .→ fp

2] � v

= J [(f1 � (eX1)p) .→ (eX2 � fp
2)] � v

≤ J [(f1 � (eX1)p) .→ eY2] � v

≤ J [(eY1)
p .→ eY2] � v

≤ JV K.

If (f1
.→e f2)

p � v ∈ TD, then (f1
.→e f2)

p � v (⊳X
1 →⊳

X
2) V by definition. Otherwise, (f1

.→e f2)
p � v = 0 and then trivially

(f1
.→e f2)

p � v = 0 (⊳X
1 →⊳

X
2) V . Therefore, in all cases (f1

.→e f2)
p � v (⊳X

1 →⊳
X
2) V , as required.

Therefore, the functor →A,B is indeed well-defined.

Observe that Definition 94 lifts the functors that we use to interpret our types in the category DCPOM to the categories

R(A). Next, we show that the functors we just defined are also suitable for forming (parameterised) initial algebras.

Proposition 96. For ⋆ ∈ {×,+,→}, for all types A and B, the functor ⋆A,B : R(A)×R(B) → R(A⋆B) is ω-cocontinuous

and the following diagram:

R(A)×R(B) R(A ⋆ B)
⋆A,B

PDe ×PDe PDe.
⋆e

UA⋆BUA × UB

commutes.

Proof. Commutativity of the diagram is immediate from the definitions. To see ω-cocontinuity, let D be an ω-diagram in

R(A)×R(B) and let τ be its colimiting cocone. Because the functors UA, UB and
.
⋆e are ω-cocontinuous, it follows that :

(
.
⋆e ◦ U

A × UB)τ is colimiting in PDe

=⇒ (UA⋆B ◦ ⋆A,B)τ is colimiting in PDe (Commutativity of the above diagram)

=⇒ ⋆A,Bτ is colimiting in R(A ⋆ B) (U reflects ω-colimits)

which shows that ⋆A,B is ω-cocontinuous.

Next, we establish an isomorphism between the categories R(µX.A) and R(A[µX.A/X]).

Definition 97. We define constructors for folding and unfolding logical relations as follows:

• If ⊳e
X,A[µY.A/Y]∈ ValRel(X,A[µY.A/Y], e), define

(IµY.A ⊳
e
X,A[µY.A/Y]) ∈ ValRel(X,µY.A, fold � e) by:

v (IµY.A ⊳
e
X,A[µY.A/Y]) fold V iff v ⊳

e
X,A[µY.A/Y] V.

• If ⊳e
X,µY.A∈ ValRel(X,µY.A, e), define

(EµY.A
⊳

e
X,µY.A) ∈ ValRel(X,A[µY.A/Y], unfold � e) by:

v (EµY.A
⊳

e
X,µY.A)) V iff v ⊳

e
X,µY.A fold V.

Proposition 98. The above assignments are indeed well-defined.

Proof. Straightforward verification.

Proposition 99. For every type · ⊢ µX.A, we have an isomorphism of categories

I
µX.A : R(A[µX.A/X]) ∼= R(µX.A) : EµX.A,

where the functors are defined by

I
µX.A : R(A[µX.A/X]) → R(µX.A) E

µX.A : R(µX.A) → R(A[µX.A/X])

I
µX.A(Y, e,⊳) = (Y, fold � e, IµX.A

⊳) E
µX.A(Y, e,⊳) = (Y, unfold � e,EµX.A

⊳)

I
µX.A(f) = f E

µX.A(f) = f

Proof. The proof is essentially the same as [49, Lemma 7.23], with one extra proof obligation, namely we have to show that

our functorial assignments respect the embedding components. But this is obviously true.

This finishes the categorical development of the categories R(A).

D. Augmented Interpretation of Types

We have now established sufficient categorical structure in order to construct parameterised initial algebras in the categories

R(A). Furthermore, we have sufficient structure to also define an augmented interpretation of types in these categories. The

main idea behind providing the augmented interpretation is to show how to pick out the logical relations we need from all

those that exist in the categories R(A).

Notation 100. Given any type context Θ = X1, . . . , Xn and closed types · ⊢ Ci with i ∈ {1, . . . , n}, we shall write ~C for

C1, . . . , Cn and we also write [~C/Θ] for [C1/X1, . . . , Cn/Xn].

Definition 101. For any type Θ ⊢ A and closed types ~C, we define their augmented interpretation to be the functor

‖Θ ⊢ A‖
~C : R(C1)× · · · ×R(Cn) → R(A[~C/Θ])

defined by induction on the derivation of Θ ⊢ A:

‖Θ ⊢ Θi‖
~C := Πi

‖Θ ⊢ A ⋆ B‖
~C := ⋆A[~C/Θ],B[~C/Θ] ◦ 〈‖Θ ⊢ A‖

~C , ‖Θ ⊢ B‖
~C〉 (for ⋆ ∈ {+,×,→})

‖Θ ⊢ µX.A‖
~C :=

(

I
µX.A[~C/Θ] ◦ ‖Θ, X ⊢ A‖

~C,µX.A[~C/Θ]
)♯

,

where the (−)♯ operation is from Definition 43.

Proposition 102. Each functor ‖Θ ⊢ A‖
~C is well-defined and ω-cocontinuous. Moreover, the following diagram:

R(C1)× · · · ×R(Cn) R(A[~C/Θ])
‖Θ ⊢ A‖

~C

PDe × · · · ×PDe PDe
JΘ ⊢ AK

UA[~C/Θ]UC1 × · · · × UCn

commutes.

Proof. The proof is essentially the same as [49, Proposition 7.26].

Next, a corollary which shows that parameterised initial algebras for our type expressions are constructed in the same way

in both categories.

Corollary 103. The 2-categorical diagram:

R(C1)× · · · ×R(Cn) R(A[~C/Θ])ι

PDe × · · · ×PDe PDe

JΘ, X ⊢ AK ◦ 〈Id, JΘ ⊢ µX.AK〉

ι

‖Θ ⊢ µX.A‖
~C

JΘ ⊢ µX.AK

UA[~C/Θ]UC1 × · · · × UCn

I
µX.A[~C/Θ] ◦ ‖Θ, X ⊢ A‖

~C,µX.A[~C/Θ] ◦ 〈Id, ‖Θ ⊢ µX.A‖
~C 〉

commutes, where ι is the parameterised initial algebra isomorphism (see Definition 43).

Proof. The proof is the same as [49, Corollary 7.27].

Proposition 102 shows that the first component of the augmented interpretation coincides with the standard interpretation.

This is true for all types, including open ones. In the special case for closed types, let ‖A‖
def
= ‖· ⊢ A‖·(∗), where ∗ is the

unique object of the terminal category 1 = R(A)0. Proposition 102 therefore shows that U‖A‖ = JAK, which means that ‖A‖
has the form ‖A‖ = (JAK, e,⊳), where e : JAK .→ JAK is some embedding. Next, we show that e = id. In order to do this,

we prove a stronger proposition first. We show that the action of the functor ‖Θ ⊢ A‖
~C on the embedding component is also

completely determined by the action of JΘ ⊢ AK on embeddings.

Proposition 104. For every functor ‖Θ ⊢ A‖
~C and objects (Xi, ei,⊳i) with i ∈ {1, . . . , n}, we have:

πe

(

‖Θ ⊢ A‖
~C ((X1, e1,⊳1), . . . , (Xn, en,⊳n))

)

= JΘ ⊢ AK(e1, . . . , en),

where for an object (Z, eZ ,⊳Z) in any category R(B), we define πe(Z, eZ ,⊳Z) = eZ .

Proof. By induction on the derivation of Θ ⊢ A.
Case Θi : This is obviously true.
Case A = A1 ⋆ A2, for ⋆ ∈ {×,+,→}: The statement follows easily by induction and the fact that for every pair of

objects (Y, eY ,⊳Y) and (Z, eZ ,⊳Z) we have

πe

(

(Y, eY ,⊳Y) ⋆
A1,A2 (Z, eZ ,⊳Z)

)

= eY
.
⋆e eZ

which follows by definition of the relevant functors.

Case µX.A: First we introduce some abbreviations to simplify notation. We define:

• T
def
= ‖Θ, X ⊢ A‖

~C,µX.A[~C/Θ].

• H
def
= JΘ, X ⊢ AK.

• I
def
=
I
µX.A[~C/Θ].

•
»

(X, e,⊳)
def
= ((X1, e1,⊳1), . . . , (Xn, en,⊳n)).

•
#»

X
def
= (X1, . . . , Xn).

•
#»e

def
= (e1, . . . , en).

Now, let (Y, eY ,⊳Y)
def
= (I ◦ T)♯

»

(X, e,⊳). To finish the proof, we have to show that H♯(#»e) = eY . From Proposition 102

we know that Y = H♯(
#»

X). From Corollary 103, we have a parameterised initial algebra isomorphism

ι : IT
(

»

(X, e,⊳), (H♯ #»

X, eY ,⊳Y)
)

→ (H♯ #»

X, eY ,⊳Y) (9)

which is also a parameterised initial algebra isomorphism

ι : H
(

#»

X,H♯ #»

X
)

→ H♯ #»

X (10)

in PDe. By the induction hypothesis for T and H and Proposition 102, we get

T
(

»

(X, e,⊳), (H♯ #»

X, eY ,⊳Y)
)

=
(

H(
#»

X,H♯ #»

X), H(#»e , eY),◭
)

,

where ◭ is some (unimportant) logical relation. Therefore by (9) and definition of I, we get that

ι :
(

H(
#»

X,H♯ #»

X), fold � H(#»e , eY), I ◭
)

→ (H♯ #»

X, eY ,⊳Y) (11)

is an isomorphism with the indicated type. This means that in the category PDe, we have:

fold � H(#»e , eY) = eY � ι (12)

where we already know that ι = ιX1,...,Xn
is the parameterised initial algebra in PDe of H . But, by definition, so is fold and

in fact fold = ιJC1K,...,JCnK. However, H♯ #»e is the unique morphism, such that

ιJC1K,...,JCnK � H(#»e ,H♯ #»e) = H♯ #»e � ιX1,...Xn

which is the universal property of a parameterised initial algebra (see [49, Remark 4.6]) and therefore by equation (12) it

follows that eY = H♯ #»e , as required.

Corollary 105. For every closed type A, we have ‖A‖ = (JAK, idJAK,⊳A) for some logical relation ⊳A .

Proof. We already know that the first component is JAK. For the second component, the previous proposition shows that

πe‖A‖ = πe‖· ⊢ A‖·(∗) = J· ⊢ AK(id∗) = idJAK, where ∗ denotes the empty tuple of objects and id∗ the empty tuple of

embeddings.

Finally, we want to show that the third component of ‖A‖ is the logical relation that we need to carry out the adequacy

proof. For this, we have to prove a substitution lemma first.

Lemma 106 (Substitution). For any types Θ, X ⊢ A and Θ ⊢ B and closed types C1, . . . , Cn, we have:

‖Θ ⊢ A[B/X]‖
~C = ‖Θ, X ⊢ A‖

~C,B[~C/Θ] ◦ 〈Id, ‖Θ ⊢ B‖
~C〉.

Proof. The proof is the same as [49, Lemma 7.30].

For each type A, we have now provided an augmented interpretation ‖A‖ of A in the category R(A). The interpretation ‖−‖
satisfies all the fundamental properties of J−K, as we have now shown. It should now be clear that this augmented interpretation

is true to its name, because it carries strictly more information compared to the standard interpretation of types. The additional

information that ‖A‖ carries is precisely the logical relation that we need at type A, as we show in the next subsection.

E. Existence of the Logical Relations

We can now show that the logical relations we need for the adequacy proof exist.

Theorem 107. For each closed type A, there exist formal approximation relations:

⊳A ⊆ TD(1, JAK)×Val(A)

⊳A ⊆ DCPOM(1, JAK)× Prog(A)

which satisfy the following properties:

(A1) J ini � v ⊳A1+A2
iniV iff v ⊳Ai

V , where i ∈ {1, 2}.

(A2) 〈〈v1, v2〉〉 ⊳A1×A2
(V1, V2) iff v1 ⊳A1

V1 and v2 ⊳A2
V2.

(A3) f ⊳A→B λx.M iff f ≤ Jλx.MK and ∀(v ⊳A V). f [v] ⊳B (λx.M)V.

(A4) v ⊳µX.A fold V iff unfold � v ⊳A[µX.A/X] V .

(B) m ⊳A M iff m ∈ S(⊳A;M), where S(⊳A;M) is the Scott-closure in DCPOM(1, JAK) of the set

S0(⊳A;M)
def
=

{

∑

π∈F

P (π)vπ | F ⊆ TPaths(M), F is finite and vπ ⊳A Vπ for each π ∈ F

}

(see Definition 72).

(C1) If v ⊳A V , then v ≤ JV K.

(C2) (− ⊳A V) is a Scott-closed subset of TD(1, JAK).

(C3) If m ⊳A M , then m ≤ JMK.

(C4) (− ⊳A M) is a Scott-closed subset of DCPOM(1, JAK).

(C5) If v ∈ TD(1, JAK) and V is a value, then v ⊳A V iff v ⊳A V.

Proof. Consider the object ‖A‖ ∈ R(A). We have already shown that ‖A‖ = (JAK, idJAK,⊳A) for some logical relation

⊳A∈ ValRel(JAK, A, idJAK). We now show that ⊳A satisfies the required properties. Notice that the embedding components

are just identities.

Property (B) is satisfied by construction (Definition 78). Properties (C1) and (C2) are also satisfied by construction (Definition

70). Property (C4) is satisfied by construction and property (B). Property (C3) is satisfied, because if m ⊳A M , then by Corollary

67 and property (C1) it follows that S0(⊳A;M) ⊆ ↓ JMK. The latter set is Scott-closed and therefore m ∈ S(⊳A;M) ⊆ ↓ JMK,
as required. Property (C5) is satisfied by Lemma 81.

Properties (A1), (A2) and (A3) are satisfied, because for ⋆ ∈ {+,×,→}, we have that ⊳A⋆B=⊳A ⋆ ⊳B and then by

Definition 90.

To show that property (A4) is also satisfied, we reason as follows. Consider the isomorphism

unfoldµX.A : JµX.AK ∼= JX ⊢ AKJµX.AK = JA[µX.A/X]K : foldµX.A

from Definition 51. By Corollary 103 and Lemma 106 (when Θ = ·) it follows that this isomorphism lifts to an isomorphism

unfoldµX.A : ‖µX.A‖ ∼= I
µX.A

(

‖X ⊢ A‖µX.A (‖µX.A‖)
)

= I
µX.A (‖A[µX.A/X]‖) : foldµX.A

in the category R(µX.A). Expanding definitions, this means we have an isomorphism

unfoldµX.A : (JµX.AK, id,⊳µX.A) = ‖µX.A‖

∼= I
µX.A (‖A[µX.A/X]‖)

= (JA[µX.A/X]K, foldµX.A, I
µX.A

⊳A[µX.A/X]) : foldµX.A

(13)

in the category R(µX.A). The notion of morphism in this category (Definition 83), construction of I (Definition 97) and

property (C5) allow us to conclude that property (A4) is satisfied. Indeed:

v ⊳µX.A fold V

=⇒ unfoldµX.A � v (IµX.A
⊳A[µX.A/X]) fold V

=⇒ unfoldµX.A � v ⊳A[µX.A/X] V

and for the other direction of (A4):

unfoldµX.A � v ⊳A[µX.A/X] V

=⇒ unfoldµX.A � v (IµX.A
⊳A[µX.A/X]) fold V

=⇒ v = foldµX.A � unfoldµX.A � v ⊳µX.A fold V.

F. Closure Properties of the Logical Relations

Here we establish some important closure properties of the relations ⊳A from Theorem 107.

Lemma 108. Let · ⊢ M : A be a term and let F be some finite index set. Assume that we are given morphisms mi and terms

Mi such that mi ⊳A Mi for i ∈ F . Assume further that for each i ∈ F , we are given a reduction path πi ∈ Paths(M,Mi),
such that all paths πi are distinct. Then

∑

i∈F

P (πi)mi ⊳A M.

Proof. By assumption, for every i ∈ F , we know that mi ∈ S(⊳A;Mi). Next, consider the function

g
def
=
∑

i∈F

P (πi)(−) :
∏

|F |

DCPOM(1, JAK) → DCPOM(1, JAK).

This function is Scott continuous and therefore by Lemma 76, it suffices to show that g(
∏

i si) ∈ S(⊳A;M) for any choice

of si ∈ S0(⊳A;Mi). Next, for every i ∈ F , let

si =

(

∑

π∈Fi

P (π)vπ

)

∈ S0(⊳A;Mi)

where Fi ⊆ TPaths(Mi) is a finite subset and such that vπ ⊳A Vπ, for each π ∈ Fi. Then, we have

g

(

∏

i

si

)

=
∑

i∈F

P (πi)

(

∑

π∈Fi

P (π)vπ

)

=
∑

i∈F

∑

π∈Fi

(P (πi) · P (π)) vπ

=
∑

i∈F

∑

π∈Fi

P (πiπ)vπ

∈ S0(⊳A;M),

where πiπ ∈ Paths(M,Vπ) is the path constructed by concatenating the path πi to π.

Lemma 109. If m ⊳A M and n ⊳A N, then p ·m+ (1− p) · n ⊳A M orp N.

Proof. This is just a special case of Lemma 108.

Lemma 110. For i ∈ {1, 2} : if m ⊳Ai
M , then J ini � m ⊳A1+A2

iniM.

Proof. Assume, without loss of generality, that i = 1. By definition we know that m ∈ S(⊳A1
;M) = S0(⊳A1

;M) . By

Lemma 76, it suffices to show

J in1 �
∑

π∈F

P (π)vπ ∈ S(⊳A1+A2
; in1M)

for any
∑

π∈F P (π)vπ ∈ S0(⊳A1
;M). Since (J in1 � −) is linear, we see

J in1 �
∑

π∈F

P (π)vπ =
∑

π∈F

P (π)(J in1 � vπ) =
∑

π∈F

P (in1(π))(J in1 � vπ) ∈ S(⊳A1+A2
; in1M),

where in1(π) ∈ Paths(in1M, in1Vπ) is the path constructed by reducing in1M to in1Vπ, as specified by π. The membership

relation is satisfied because by assumption vπ ⊳A1
Vπ and then by Theorem 107 (A1).

Lemma 111. Let m ⊳A1+A2
M . Next, assume that for k ∈ {1, 2} we have terms xk : Ak ⊢ Nk : B and morphisms

nk : JAkK .→ JBK, such that for every vk ⊳Ak
Vk, it is the case that nk � vk ⊳B Nk[Vk/xk]. Then

[n1, n2] � m ⊳B case M of in1x1 ⇒ N1 | in2x2 ⇒ N2.

Proof. For brevity, let C be the term C
def
= (case M of in1x1 ⇒ N1 | in2x2 ⇒ N2). Next, consider the function

([n1, n2] � −) : DCPOM(1, JA1 +A2K) → DCPOM(1, JBK).

This function is Scott continuous. By Lemma 76, to complete the proof it suffices to show that [n1, n2] � m′
⊳B C for any

m′ ∈ S0(⊳A1+A2
;M). Towards that end, let

m′ =
∑

π∈F

P (π)vπ ,

where F is finite and where vπ ⊳A1+A2
Vπ , for each π ∈ F. Let F1 ⊆ F be the set of paths π such that Vπ = in1V

′
π for

some V ′
π and let F2 = F −F1. Then by Theorem 107 (A1), for each π ∈ F1, it follows that Vπ = in1V

′
π and vπ = J in1 � v′π

and v′π ⊳A1
V ′
π . Similarly, for each π ∈ F2, it follows that Vπ = in2V

′
π and vπ = J in2 � v′π and v′π ⊳A2

V ′
π. Therefore, we

get:

[n1, n2] � m′ = [n1, n2] �

((

∑

π∈F1

P (π)(J in1 � v′π)

)

+

(

∑

π∈F2

P (π)(J in2 � v′π)

))

=

(

∑

π∈F1

P (π)(n1 � v′π)

)

+

(

∑

π∈F2

P (π)(n2 � v′π)

)

In the above sums, by assumption, we know that n1�v′π ⊳B N1[V
′
π/x1], for each π ∈ F1 and similarly n2�v′π ⊳B N2[V

′
π/x2],

for each π ∈ F2. Next, consider the function

((

∑

π∈F1

P (π)(−)

)

+

(

∑

π∈F2

P (π)(−)

))

: DCPOM(1, JBK)|F1| ×DCPOM(1, JBK)|F2| → DCPOM(1, JBK).

This function is Scott-continuous and by Lemma 76, to complete the proof it suffices to show that

(

∑

π∈F1

P (π)(nπ
1)

)

+

(

∑

π∈F2

P (π)(nπ
2)

)

⊳B C,

where nπ
1 ∈ S0(⊳B;N1[V

′
π/x1]) for π ∈ F1 and nπ

2 ∈ S0(⊳B;N2[V
′
π/x2]) for π ∈ F2 are taken to be arbitrary. Towards this

end, let

nπ
1 =

∑

π′∈Fπ
1

P (π′)vπ′ ∈ S0(⊳B;N1[V
′
π/x1])

nπ
2 =

∑

π′∈Fπ
2

P (π′)vπ′ ∈ S0(⊳B;N2[V
′
π/x2])

where Fπ
k is finite and where vπ′ ⊳B Vπ′ , for every π′ ∈ Fπ

k and where k ∈ {1, 2}. Then, we get

(

∑

π∈F1

P (π)(nπ
1)

)

+

(

∑

π∈F2

P (π)(nπ
2)

)

=

=

∑

π∈F1

∑

π′∈Fπ
1

P (π)P (π′)vπ′

+

∑

π∈F2

∑

π′∈Fπ
2

P (π)P (π′)vπ′

=

∑

π∈F1

∑

π′∈Fπ
1

P (case1(π, π
′))vπ′

+

∑

π∈F2

∑

π′∈Fπ
2

P (case2(π, π
′))vπ′

∈ S0(⊳B;C) ⊆ S(⊳B;C),

where case1(π, π
′) ∈ Paths(C, Vπ′) is the path obtained by reducing C to Cπ

def
= (case in1V

′
π of in1x1 ⇒ N1 | in2x2 ⇒ N2)

as specified by π, then performing the beta reduction Cπ
1
−→ N1[V

′
π/x1] and then reducing N1[V

′
π/x1] to Vπ′ as specified by

π′. Similarly for case2(π, π
′). The last sum is now by definition in S0(⊳B;C).

Lemma 112. If m1 ⊳A1
M1 and m2 ⊳A2

M2 then 〈〈m1,m2〉〉 ⊳A1×A2
(M1,M2).

Proof. The map 〈〈−,−〉〉 : DCPOM(1, JA1K)×DCPOM(1, JA2K) → DCPOM(1, JA1 ×A2K) is Scott-continuous in both

arguments and therefore by Lemma 76, to complete the proof it suffices to show that 〈〈m′
1,m

′
2〉〉 ⊳A1×A2

(M1,M2) for any

m′
1 ∈ S0(⊳A1

;M1) and m′
2 ∈ S0(⊳A2

;M2).

Now, take m′
1 =

∑

π1∈F1
P (π1)vπ1

∈ S0(⊳A1
;M1) and m′

2 =
∑

π2∈F2
P (π2)vπ2

∈ S0(⊳A2
;M2), where F1 and F2 are

finite sets, and where vπ1
⊳A1

Vπ1
for each π1 ∈ F1 and where vπ2

⊳A2
Vπ2

for each π2 ∈ F2. We then have:

〈〈m′
1,m

′
2〉〉 = 〈〈

∑

π1∈F1

P (π1)vπ1
,
∑

π2∈F2

P (π2)vπ2
〉〉 (14)

=
∑

π1∈F1

∑

π2∈F2

P (π1)P (π2)〈〈vπ1
, vπ2

〉〉 (15)

=
∑

π1∈F1

∑

π2∈F2

P (pair(π1, π2))〈〈vπ1
, vπ2

〉〉 (16)

⊳A1×A2
(M1,M2). (17)

Equation 14 holds by definition. Equation 15 is true since the function 〈〈−,−〉〉 defined above is linear in each component by

Lemma 38 Item 3. In Equation 16 pair(π1, π2) ∈ Paths((M1,M2), (Vπ1
, Vπ2

)) is the path which first reduces (M1,M2) to

(Vπ1
,M2) as specified by π1 and then reduces (Vπ1

,M2) to (Vπ1
, Vπ2

) as specified by π2 and it is easy to see that Equation

16 holds. Finally 17 holds, because vπ1
⊳A1

Vπ1
and vπ2

⊳A2
Vπ2

by assumption and then by Theorem 107 (A2) we have

that 〈〈vπ1
, vπ2

〉〉 ⊳(A1,A2) (Vπ1
, Vπ2

).

Lemma 113. If m ⊳A1×A2
M then J πi � m ⊳Ai

πiM , for i ∈ {1, 2}.

Proof. Without loss of generality, we will show the statement for the first projection. In order to avoid notational confusion,

we will write pr1 for π1 for the projection on the first component in this lemma. We shall use π to range over paths, as in

the other lemmas.

Using Lemma 76, to complete the proof it suffices to show that

J pr1 � m′
⊳A1

pr1M

for any m′ ∈ S0(⊳A1×A2
;M). Towards this end, let

m′ =
∑

π∈F

P (π)vπ ∈ S0(⊳A1×A2
;M),

where F ⊆ TPaths(M) is finite and where vπ ⊳A1×A2
Vπ for every π ∈ F . Using Theorem 107 (A2), we see that it must

be the case

vπ = 〈〈v1π, v
2
π〉〉 and Vπ = (V 1

π , V
2
π) and v1π ⊳A1

V 1
π and v2π ⊳A2

V 2
π .

Therefore, we have

J pr1 � m′ = J pr1 �
∑

π∈F

P (π)vπ

= J pr1 �
∑

π∈F

P (π)〈〈v1π, v
2
π〉〉

=
∑

π∈F

P (π)(J pr1 � 〈〈v1π , v
2
π〉〉)

=
∑

π∈F

P (π)v1π

=
∑

π∈F

P (pr1(π))v
1
π

⊳A1
pr1M,

where pr1(π) ∈ Paths(pr1M,V 1
π) is the path that reduces pr1M to pr1(V

1
π , V

2
π) as specified by π and then finally performs

the reduction pr1(V
1
π , V

2
π)

1
−→ V 1

π .

Lemma 114. If m ⊳µX.A M then unfold � m ⊳A[µX.A/X] unfold M.

Proof. By Lemma 76, to complete the proof it suffices to show that

unfold � m′ ∈ S(⊳A[µX.A/X]; unfold M)

for any m′ ∈ S0(⊳µX.A;M). Towards this end, let

m′ =
∑

π∈F

P (π)vπ ∈ S0(⊳µX.A;M)

for some finite F ⊆ TPaths(M) and where vπ ⊳µX.A Vπ = fold V ′
π for each π ∈ F . Then we have

unfold � m′ =
∑

π∈F

P (π)(unfold � vπ)

=
∑

π∈F

P (unfold(π))(unfold � vπ)

∈ S0(⊳A[µX.A/X]; unfold M),

where unfold(π) ∈ Paths(unfold M,V ′
π) is the path that reduces unfold M to unfold fold V ′

π as specified by π and then

finally performs the reduction unfold fold V ′
π

1
−→ V ′

π . This last sum satisfies the membership relation, because we know that

vπ ⊳µX.A Vπ = fold V ′
π and then by Theorem 107 (A4) we see that unfold � vπ ⊳A[µX.A/X] V

′
π, as required.

Lemma 115. If m ⊳A[µX.A/X] M then fold � m ⊳µX.A fold M.

Proof. The function

(fold � −) : DCPOM(1, JA[µX.A/X]K) → DCPOM(1, JµX.AK)

is Scott-continuous and therefore by Lemma 76, to complete the proof it suffices to show that

fold � m′ ∈ S(⊳µX.A; fold M)

for each m′ ∈ S0(⊳A[µX.A/X];M). Towards this end, assume that

m′ =
∑

π∈F

P (π)vπ ∈ S0(⊳A[µX.A/X];M),

where F ⊆ TPaths(M) is finite and for each π ∈ F we have vπ ⊳A[µX.A/X] Vπ. Therefore, by Theorem 107 (A4) we

conclude that fold � vπ ⊳µX.A fold Vπ, for each π ∈ F. Now we finish the proof with the following derivation:

fold � m′ = fold �
∑

π∈F

P (π)vπ

=
∑

π∈F

P (π)(fold � vπ)

=
∑

π∈F

P (fold(π))(fold � vπ)

∈ S0(⊳µX.A; fold M) ⊆ S(⊳µX.A; fold M),

where fold(π) ∈ Paths(fold M, fold Vπ) is the path that reduces fold M to fold Vπ as specified by π.

Lemma 116. If m ⊳A→B M and n ⊳A N, then m[n] ⊳B MN.

Proof. Consider the function g : DCPOM(1, JA → BK)×DCPOM(1, JAK) → DCPOM(1, JBK) defined by g(x, y) = x[y]
(see Notation 89). This function is Scott continuous and linear in both arguments. By Lemma 76, to complete the proof it

suffices to show that m′[n′] ⊳B MN for any m′ ∈ S0(⊳A→B;M) and n′ ∈ S0(⊳A;N). Towards that end, let

m′ =
∑

π∈F

P (π)vπ ∈ S0(⊳A→B;M)

n′ =
∑

π′∈F ′

P (π′)vπ′ ∈ S0(⊳A;N)

with vπ ⊳A→B Vπ and vπ′ ⊳A Vπ′ . Then by Theorem 107 (A3) we have that vπ[vπ′] ⊳B VπVπ′ and

m′[n′] =
∑

π∈F

∑

π′∈F ′

(P (π) · P (π′)) vπ[vπ′]

=
∑

(π,π′)∈F×F ′

P (app(π, π′))vπ[vπ′]

⊳B MN (Lemma 108)

where app(π, π′) ∈ Paths(MN,VπVπ′) is the path where we first reduce MN to VπN in the same way as in π and then we

reduce VπN to VπVπ′ in the same way as in π′. Note: in the above sum VπVπ′ is not a value, so Lemma 108 is crucial.

G. Fundamental Lemma and Strong Adequacy

We may now prove the Fundamental Lemma which then easily implies our adequacy result.

Lemma 117 (Fundamental). Let x1 : A1, . . . , xn : An ⊢ M : B be a term. Assume further we are given a collection of

morphisms vi and values Vi, such that vi ⊳Ai
Vi for i ∈ {1, . . . , n}. Then:

JMK � 〈〈 ~v 〉〉 ⊳B M [~V /~x].

Proof. By induction on the derivation of the term M .

For the case of lambda abstractions, we reason as follows. Let us assume that the term of the induction hypothesis is

x1 : A1, . . . , xn : An, y : A ⊢ M : B.

Let us write l
def
= Jλy.MK � 〈〈 ~v 〉〉 and R

def
= λy.M [~V /~x]. Observe that l ∈ TD and therefore by Theorem 107 (C5), we may

equivalently show that

l ⊳A→B R.

By Theorem 107 (A3), this is in turn equivalent to showing that

l ≤ JRK and ∀(w ⊳A W). l[w] ⊳B RW.

The inequality is satisfied, because

l = Jλy.MK � 〈〈 ~v 〉〉

≤ Jλy.MK � 〈〈 ~JV K 〉〉 (Theorem 107 (C1))

= JRK. (Lemma 53)

For the other requirement, assuming that w ⊳A W , we reason as follows

l[w] = (Jλy.MK � 〈〈 ~v 〉〉)[w] (Definition)

= ǫ � (Jλy.MK
.
× id) � 〈〈~v, w〉〉

= ǫ � (J λ(JMK)
.
× id) � 〈〈~v, w〉〉 (Definition)

= λ−1(λ(JMK)) � 〈〈~v, w〉〉 (Property of adjunction (5))

= JMK � 〈〈~v, w〉〉

⊳B M [~V /~x,W/y]. (Induction Hypothesis)

Finally, observe that RW = (λy.M [~V /~x])W
1
−→ M [~V /~x,W/y], i.e. RW beta-reduces to M [~V /~x,W/y]. Therefore by Lemma

108 it follows that

l[w] ⊳B RW,

as required.

The case for variables follows immediately by expanding definitions and Theorem 107 (C5).

All other cases follow by straightforward induction using closure Lemmas 109 – 116.

Adequacy now follows as a corollary of this lemma.

Theorem 118 (Strong Adequacy). For any closed term · ⊢ M : A, we have

JMK =
∑

V ∈Val(M)

P (M −→∗ V)JV K.

Proof. Let

u
def
=

∑

V ∈Val(M)

P (M −→∗ V)JV K.

From Corollary 67, we know that JMK ≥ u. To finish the proof, we have to show the converse inequality. Next, observe that

S0(⊳A;M) ⊆ ↓ u, which follows from Theorem 107 (C1). To see this, we reason as follows. Taking an arbitrary element of

S0(⊳A;M) as in Theorem 107 (B):
∑

π∈F

P (π)vπ ≤
∑

π∈F

P (π)JVπK (Theorem 107 (C1))

=
∑

V ∈∪{Vπ|π∈F}

∑

π∈F
Vπ=V

P (π)

JV K

≤
∑

V ∈∪{Vπ|π∈F}

∑

π∈Paths(M,V)

P (π)

 JV K

=
∑

V ∈∪{Vπ|π∈F}

P (M −→∗ V)JV K

≤
∑

V ∈Val(M)

P (M −→∗ V)JV K.

The set ↓u is Scott-closed and therefore S(⊳A;M) ⊆ ↓u. By Lemma 117, we know that JMK ⊳A M. By definition of

⊳A it follows JMK ∈ S(⊳A;M) and therefore JMK ≤ u, thus finishing the proof.

	I Introduction
	I-A Our contributions
	I-B Related work

	II Syntax and Operational Semantics
	II-A The Types of PFPC
	II-B The Terms of PFPC
	II-C The Reduction Rules of PFPC
	II-D Recursion and Asymptotic Behaviour of Reduction

	III Commutative Monads for Probability
	III-A Domain-theoretic and Topological Preliminaries
	III-B A Commutative Monad for Probability
	III-C Dcpo-completion versus D-completion
	III-D A uniform construction
	III-E Continuous Kegelspitzen and M-algebras

	IV Categorical Model
	IV-1 Coproducts
	IV-2 Symmetric monoidal structure
	IV-3 The left adjoint J
	IV-4 Kleisli Exponential
	IV-5 Enrichment Structure
	IV-6 Important Subcategories
	IV-7 Solving Recursive Domain Equations

	V Denotational Semantics
	V-A Interpretation of Types
	V-B Interpretation of Terms
	V-C Soundness and Computational Adequacy

	References
	Appendix A: Monads, commutativity and M-algebras
	Appendix B: Solving Recursive Domain Equations in DCPOM
	Appendix C: Products, coproducts and Kleisli composition preserve barycentric sums of functions
	Appendix D: Proof of Strong Adequacy
	D-A Overview of the Proof Strategy
	D-B Logical Relations
	D-C Categories of Logical Relations
	D-D Augmented Interpretation of Types
	D-E Existence of the Logical Relations
	D-F Closure Properties of the Logical Relations
	D-G Fundamental Lemma and Strong Adequacy

