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Abstract—We develop a theory of vector spaces spanned by
orbit-finite sets. Using this theory, we give a decision procedure
for equivalence of weighted register automata, which are the
common generalization of weighted automata and register au-
tomata for infinite alphabets. The algorithm runs in exponential
time, and in polynomial time for a fixed number of registers.
As a special case, we can decide, with the same complexity,
language equivalence for unambiguous register automata, which
improves previous results in three ways: (a) we allow for order
comparisons on atoms, and not just equality; (b) the complexity
is exponentially better; and (c) we allow automata with guessing.

I. INTRODUCTION

Weighted automata over a field were introduced in [17] by

Schützenberger. Such an automaton is defined in the same way

as a nondeterministic automaton, with a set Q of states and

an input alphabet Σ, except that instead of having subsets for

transitions, initial and final states, the automaton has weight

functions into the underlying field:

I : Q → F
︸ ︷︷ ︸

initial

δ : Q× Σ×Q → F
︸ ︷︷ ︸

transition

F : Q → F
︸ ︷︷ ︸

final

.

The weight of a run is obtained by multiplying the weights

along all transitions, the initial weight of the first state, and

the final weight of the last state. The automaton recognizes

a weighted language, which is the function L : Σ∗ → F that

maps a word to the sum of weights of all runs on that word.

Schützenberger proved that weighted automata can be min-

imized [17, Sec. B], which provides a polynomial time algo-

rithm for equivalence. In contrast, it is undecidable whether

some field element a ∈ F is achieved as the weight of some

word, already in the special case of weighted automata that

are probabilistic [15, Thm. 22]. Equivalence is undecidable for

weighted automata over semirings that are not fields, e.g. for

the min-plus semiring [12, Cor. 4.3].

One application of weighted automata (see [1] for other

ones) is a polynomial time algorithm for language equivalence

of unambiguous automata, i.e. nondeterministic finite automata

that have at most one accepting run for every word. The

algorithm is a simple reduction to equivalence of weighted

automata: a nondeterministic automaton can be viewed as a

weighted automaton over the field of rational numbers, such

that the weight of a word is the number of accepting runs. For

unambiguous automata, the number of accepting runs is either

zero or one, and hence two unambiguous automata accept

the same words if and only if the corresponding weighted

automata are equivalent.

In this paper, we generalize weighted automata to infinite

alphabets, motivated by the study of register automata, in

particular the equivalence problem for unambiguous register

automata [7], [8], [13]. The kinds of infinite alphabets that

we study are constructed using an infinite set A of atoms

(also called data values) which can only be accessed in very

limited ways; in the simplest case, they can only be compared

for equality. Register automata are like finite automata, except

that they additionally use finitely many registers to store atoms

that occurred in the word. This model was introduced by

Kaminski and Francez [10, Def. 1], under the name of finite

memory automata. This model has attracted much attention,

and is now one of the most widely studied infinite state

systems. The decidability landscape for register automata is

rather complex: for example, emptiness is decidable for non-

deterministic register automata [10, Thm. 1], but universality

is not [16, Thm 5.1]. More robust results can be achieved for

deterministic register automata, but at a considerable loss of

expressive power.

One of the numerous (unfortunately non-equivalent) variants

of register automata are unambiguous register automata, for

which language equivalence was shown in [13, Thm. 1] to

be decidable in 2EXPSPACE, and in EXPSPACE for a fixed

number of registers. These upper bounds were improved to

2EXPTIME and EXPTIME, respectively, in [7, Thm. 2]. None

of these proofs use weighted automata.

From the point of view of register automata, the main

contributions of this paper are:

1) We introduce a weighted version of register automata,

and we prove that their equivalence problem can be

solved in EXPTIME, and in polynomial time for a fixed

number of registers.

2) We show that our weighted automata have a robust

theory, in particular they can be described in several

different ways and admit canonical syntactic automata.

3) As an immediate application of our equivalence algo-

rithm for weighted automata, we show that the language

equivalence problem for unambiguous register automata

can be solved in the same complexity, improving expo-

nentially on prior work [7], [13].

4) In [7], [13], the equivalence algorithms work only for

automata which are non-guessing, in the sense that every
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pair (state, input letter) has finitely many outgoing transi-

tions. Without the non-guessing assumption, decidability

is only known in the case where one of the automata

has just a single register [13, Thm. 10]. Our algorithm

can be adapted so that it works for general unambiguous

automata, without the non-guessing assumption, with the

same complexity.

5) Apart from atoms with equality only, our algorithm for

weighted automata, and its applications to unambiguous

automata, also work for atoms equipped with a total

order. Previous algorithms for ordered atoms assume that

one of the automata has a single register [13, Thm. 2].

In our opinion, perhaps the most interesting aspect of this

paper is not the applications described above, but the theory

that is developed in order to obtain them. Our central objects

of study are vector spaces which are spanned by orbit-finite

set of vectors. A typical example is the vector space Lin(Ak),
which consists of finite linear combinations of k-tuples of

atoms. Such a vector space has two kinds of structure: we can

take linear combinations of vectors, and we can apply atom

automorphisms to them. A natural concept – which appears

in our equivalence algorithm for weighted automata – is the

equivariant subspaces, i.e. subsets of the vector space closed

under both linear combinations and atom automorphisms. Our

principal technical result is that for every k, there is a finite

(exponential in k) bound on the maximal length of chains

V1 ( V2 ( · · · ( Vn
︸ ︷︷ ︸

equivariant subspaces

⊆ Lin(Ak).

This bound is used in the equivalence algorithm for weighted

automata, but it also has many consequences for vector spaces

spanned by orbit-finite sets, e.g. their closure under Cartesian

products, tensor products and dual spaces. We hope that these

results can be used in future work, beyond applications to

unambiguous automata.

II. ORBIT-FINITE SETS

Our paper is based on the approach to register automata

that uses sets with atoms. The idea is to consider automata

where all components are closed under atom automorphisms,

and the states and input alphabets have finitely many elements

up to atom automorphisms. This more abstract view avoids

cumbersome notation for representing states and transitions of

register automata. We can also leverage existing results that

treat atoms with more structure than equality only, e.g. order.

Our notation is based on [3]. Fix a countably infinite

relational structure A, in the sense of model theory, i.e. an

underlying set equipped with some relations. Elements of this

fixed structure will be called atoms. In this paper we mostly

focus on two such structures:

• the equality atoms A = (N,=), and

• the ordered atoms A = (Q, <).

The main results of this paper, notably the finite length

property in Section IV, are proved for these atoms only, and

we leave other atoms as future work.

An atom automorphism is any bijection of the underlying

set of atoms which is consistent with all relations in A. For

the equality atoms this is any permutation of N; for the

ordered atoms, any order-preserving bijection on Q. In both

settings, the set of all atoms is orbit-finite, which means that it

has finitely many elements up to atom automorphisms. More

complicated sets constructed with atoms are also orbit-finite,

such as:

Ak
︸︷︷︸

k-tuples of atoms

A(k)
︸︷︷︸

non-repeating

k-tuples of atoms

(
A

k

)

︸︷︷︸

sets of k atoms

. (1)

To formally define “sets constructed with atoms” and the

orbit-finite restriction, we use the cumulative hierarchy from

set theory. The cumulative hierarchy (over atoms A) is indexed

by ordinal numbers, and defined as follows: on level 0 we find

the atoms, and on level indexed by an ordinal α > 0 we find

the atoms and every set which has all elements taken from

levels < α. For example, on level 1 we find every subset of

the atoms. Automorphisms π : A → A of the atoms act on

sets in the cumulative hierarchy in the expected way.

In the cumulative hierarchy one can encode data structures

such as tuples, words, relations, functions etc., using standard

set-theoretic machinery. Automorphisms π then act on tuples

as expected: π((x1, . . . , xn)) = (π(x1), . . . , π(xn)).
For a tuple of atoms ā ∈ A∗, an ā-automorphism is an atom

automorphism π such that π(ā) = ā. A tuple ā is said to

support an element x of the cumulative hierarchy if π(x) = x
for every ā-automorpism π. We say that an element x of the

cumulative hierarchy is finitely supported if it is supported by

some tuple of atoms in A∗. An element is called equivariant

if it is supported by the empty tuple. An equivariant set may

contain non-equivariant elements; e.g., the set of all atoms

is equivariant, but its elements are not. A set with atoms is

defined to be a set in the cumulative hierarchy which is finitely

supported and with each of its members (and their members,

and so on) finitely supported.

Sets with atoms provide a relaxed notion of finiteness, called

orbit-finiteness. We say that two sets with atoms x and y are in

the same ā-orbit if there is some ā-automorphism π such that

y = π(x). Being in the same ā-orbit is clearly an equivalence

relation; its equivalence classes are called ā-orbits. A set with

atoms x is called orbit-finite if there is some atom tuple ā
such that x is a finite union of ā-orbits.

Example 1.

• Over equality atoms, the set A of atoms is orbit-finite,

also for every k ∈ {1, 2, . . .} the sets A(k) and
(
A

k

)

from (1) are orbit-finite, with a single equivariant orbit

each. The set Ak is also orbit-finite, with the number of

equivariant orbits equal to the k-th Bell number.

• Over ordered atoms, the sets A and
(
A

k

)
have single

equivariant orbit each. The set A(k) is also orbit-finite,

with k! equivariant orbits; one of these orbits is the

increasing k-tuples of atoms. Each of these orbits is in

an equivariant bijection with
(
A

k

)
.
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• Over the ordered atoms, for every atom a ∈ A the set

A − {a} has two a-orbits: the open intervals (−∞; a)
and (a;∞).

• The set A∗ is not orbit-finite, neither for equality nor

for ordered atoms, as words of different length are

necessarily in distinct orbits. �

An atom structure A is called oligomorphic if for every

k, the set Ak is orbit-finite. For oligomorphic atoms, orbit-

finite sets behave well, e.g. they are closed under products

and finitely supported subsets [3, Lem. 3.24]. In this paper we

only consider oligomorphic atoms.

Orbit-finite sets can be represented in a finite way so that

they can be used as inputs for algorithms. Two examples of

such representations are set builder expressions [3, Sec. 4.1] or

the G-set representation [4, Sec. 8]. The reader does not need

to know these representations in detail; the important thing is

that they support basic operations such as products, Boolean

operations, or inclusion and membership checks.

III. WEIGHTED ORBIT-FINITE AUTOMATA

We now introduce the main model for this paper, an orbit-

finite generalization of weighted automata.

Definition III.1 (Weighted orbit-finite automaton) Fix an

oligomorphic atom structure A and a field F. A weighted orbit-

finite automaton consists of orbit-finite sets Q and Σ, called

the states and alphabet, and finitely supported functions

I : Q → F
︸ ︷︷ ︸

initial

δ : Q× Σ×Q → F
︸ ︷︷ ︸

transitions

F : Q → F
︸ ︷︷ ︸

final

.

Furthermore, we require the non-guessing condition:

(*) there are finitely many states with nonzero initial weight,

and also for every state q and input letter a, there are

finitely many states p such that the transition (q, a, p) has

nonzero weight.

Weights of runs and words is defined in the same way as for

the classical model of weighted automata with finitely many

states. The non-guessing condition ensures that each word has

finitely many runs; otherwise there could be difficulties in

summing up the weights of infinitely many runs.

Example 2. Consider any oligomorphic atoms A and the

field of rational numbers. We define a weighted orbit-finite

automaton which maps a word w ∈ A∗ to the number of

distinct atoms that appear in w. The states are

{⊥}
︸︷︷︸

initial weight 1

final weight 0

+ A
︸︷︷︸

initial weight 0

final weight 1

for some ⊥ 6∈ A. The transition weight is 1 for all triples

(⊥, a,⊥) (⊥, a, a) (a, b, a) for a 6= b ∈ A,

and 0 for all other triples. For every input word, all runs have

weight 0, except for the following runs, which have weight 1:

start in ⊥, stay there until the last occurrence of some atom

a, and then stay in state a until the end of the word. Since the

number of runs with weight 1 is the number of distinct atoms

a that appear in the word, the output of the automaton is the

number of distinct atoms.

This automaton is equivariant, in the sense that its state

space and all three weight functions are equivariant. �

Example 3. The automaton in the previous example is

a special case of a more general construction: counting

accepting runs of a nondeterministic automaton. Define a

nondeterministic orbit-finite automaton like a nondeterministic

finite automaton, except that all components (alphabet, states,

transitions, initial and finite sets) are required to be orbit-

finite sets, see [3, Def. 5.7]. To such an automaton one can

associate a weighted orbit-finite automaton (over the field of

rational numbers) as follows: the alphabet and states are the

same, and the remaining components are defined by replacing

“yes” with weight 1 and “no” with weight 0. This weighted

automaton maps a word to the number of accepting runs

of the nondeterministic automaton. The construction makes

sense only if the original nondeterministic automaton is non-

guessing in the sense that there are finitely many inputs

states, and for every pair (state, letter) there are finitely many

outgoing transitions. �

As mentioned in Section II, orbit-finite sets can be rep-

resented in a finite way. Therefore, weighted orbit-finite au-

tomata can also be represented in a finite way (assuming that

field elements can be represented in a finite way). This is

because (a) a finitely supported relation on an orbit-finite set

is also orbit-finite; and (b) a finitely supported function from

an orbit-finite set to any set is itself an orbit-finite set.

Example 4. A special case of weighted orbit-finite automata,

where the finite representation is easier to see, is a weighted

k-register automaton. This is a weighted orbit-finite automaton

where the input alphabet is finitely many disjoint copies of the

atoms, the states are finitely many copies of (A+ {⊥})k, and

all weight functions are equivariant. For equality and ordered

atoms, the weight functions can be finitely represented using

quantifier-free formulas, see [3, p. 6]. �

We now state the main result of this paper, which is an

algorithm for equivalence problem of weighted orbit-finite au-

tomata, assuming that the atom structure is either the equality

atoms or the ordered atoms. We do not know if the problem

is decidable for other atom structures.

Theorem III.2 Assume that the atoms are the equality atoms

(N,=) or the ordered atoms (Q, <). The equivalence problem

for equivariant1 weighted orbit-finite automata can be solved

in deterministic time

2poly(k) · nO(k)

where

1This theorem would also work for finitely supported automata, but the
notation for the complexity and orbit counts would be more involved.
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n is the orbit count, i.e. the number of equivariant orbits

in the disjoint union of the two state sets;

k is the atom dimension of the state spaces of the automata,

i.e. the smallest k such that every state in both automata

is supported by at most k atoms.

In particular, the equivalence problem is in EXPTIME, and

polynomial time when the atom dimension k is fixed.

A lower bound for the problem is PSPACE, which is the

complexity of language equivalence of deterministic register

automata. We do not know the exact complexity; it is worth

pointing out that for weighted finite automata there is an

equivalence algorithm in randomized polylogarithmic parallel

time [11, Sec. 3.2] that uses the Isolating Lemma.

We now present a proof strategy for the theorem, which

will be carried out in the next sections. The first observation is

that the equivalence problem reduces to the zeroness problem,

which asks whether a single weighted orbit-finite automaton

outputs zero for every word. The reduction is as follows: given

two equivariant weighted orbit-finite automata A1 and A2, we

create a new weighted orbit-finite automaton A1 −A2, which

is obtained by taking the disjoint union of A1 and A2, and

flipping the sign of the final weights in A2. The new automaton

maps all words to zero if and only if the original two automata

were equivalent. Also, in the reduction, the atom dimension

does not change, neither does the orbit count.

It remains to give an algorithm for zeroness of a single

equivariant weighted orbit-finite automaton, with states Q. Our

proof follows the same lines as Schützenberger’s algorithm.

Write LinQ for the set of finite linear combinations (over the

field F) of states, seen as a vector space with basis Q. For

an input word w, define its configuration to be the vector in

LinQ which maps a state q to the sum of pre-weights of all

runs over w that end in state q; the pre-weight of a run is

defined by multiplying the initial weight of the first state and

the weights of all transitions, without taking into account the

final weights. Thanks to condition (*) in Definition III.1, each

configuration is indeed a finite linear combination, since there

are finitely many runs with nonzero pre-weight. Consider the

chain

V0 ⊆ V1 ⊆ V2 ⊆ · · · ⊆ LinQ

where Vi is the subspace of LinQ that is spanned by the

configurations of words of length at most i. (We do not intend

to compute the subspaces in this chain, whatever that would

mean; the chain is only used in the analysis of the algorithm.)

Because the automaton is equivariant, one can easily see that

each subspace Vn is also equivariant.

In the finite-dimensional case studied by Schützenberger,

where Q was a finite set, we could conclude that the chain

must stabilize in a number of steps that is bounded by the

finite dimension of the vector space LinQ. In the orbit-finite

case, the vector space has infinite dimension, and thus it is not

clear why the chain should stabilize in finitely many steps.

Our main technical contribution is a proof that the chain

does indeed stabilize, and furthermore the time to stabilize is

consistent with the bounds in the statement of Theorem III.2.

This stabilization property is the subject of the next section,

and in the section after that we use the property to conclude

the proof of Theorem III.2.

IV. FINITE LENGTH PROPERTY

A standard result in linear algebra says that a vector

space has finite dimension if and only if it has finite length,

where the length is defined to be the longest chain of its

subspaces. Because of this easy correspondence the notion of

length is seldom explicitly applied to vector spaces, and it

becomes more important only in more general structures such

as modules over a ring. However, the situation becomes more

interesting for chains of equivariant subspaces. We define:

Definition IV.1 (Length) The length of an equivariant vector

space V , denoted length(V ), is the maximal length n of a

chain of proper inclusions on equivariant subspaces of V :

V1 ( V2 ( · · · ( Vn ( V.

If a maximal length does not exist, we say that V has infinite

length. An atom structure A has the finite length property if

for every number k, the vector space LinAk has finite length.

The finite length property easily implies oligomorphicity,

but we do not know if the converse implication holds. The

purpose of this section is to prove that both the equality atoms

(N,=) and the ordered atoms (Q, <) have the finite length

property (Lemmas IV.9 and IV.8). Furthermore, the length of

LinAk grows exponentially (and not worse) with k. The results

of this section apply to an arbitrary field F.

Definition IV.1 speaks of equivariant subspaces. At the end

of this section, we show that for the equality and ordered

atoms, allowing a fixed support would make no difference.

Example 5. Consider the equality atoms. The vector space

LinA has length 2, because it has exactly 3 equivariant

subspaces which form a chain of two proper inclusions:

{0} ( Span{a− b : a 6= b ∈ A}
︸ ︷︷ ︸

call this V

( LinA.

Equivalently, V is the vector space of all vectors where all

coefficients sum up to 0. Let us prove that there are no

other equivariant subspaces. Suppose that W is an equivariant

subspace which contains some nonzero vector

w = λ1a1 + · · ·+ λnan where λi ∈ F \ {0}. (2)

Since W is equivariant, it also contains the vector obtained

from w by replacing an with some fresh atom bn. By taking

the difference of these vectors and dividing by λn, we see that

W contains an − bn. By equivariance, W contains all vectors

of the form a− b for distinct atoms a, b, and thus V ⊆ W .

We now show that W is either V or the entire space LinA.

Indeed, suppose that W contains some w as in (2) that is

not in V . If n > 1 then we can subtract from w the vector

λ1 ·(a1−a2) ∈ V , which results in another vector that is in W

4



but not in V , with a smaller n. By repeating this process, we

see that W contains a vector of the form λ1a1 with λ1 6= 0,

and hence, by equivariance, it is the entire space. �

Definition IV.1 differs from the classical definition of length

in that we only consider equivariant subspaces. Some classical

properties of length easily transfer to our case. One may even

say that our definition is a special case of the classical one:

an equivariant vector space can be seen as a module over the

(non-commutative) group ring F[G], where F is the underlying

field and G is the automorphism group of A. To keep the

presentation elementary we do not pursue this correspondence,

but we remark that all properties of length which are valid for

modules over (non-commutative) rings, remain true for our

definition. For example, the following lemma has the same

proof (see Appendix A) as for the classical notion of length

of a module, (see e.g. [9, Prop. 4.12]), and works for arbitrary

oligomorphic atoms:

Lemma IV.2 For any equivariant spaces V ⊆ W , and

equivariant sets P , Q with their disjoint union P +Q:

(i) length(W ) = length(V ) + length(W/V );
(ii) length(Lin(P +Q)) = length(LinP ) + length(LinQ);

(iii) if there is an equivariant surjective function from P to Q
then length(LinQ) ≤ length(LinP ).

From this we infer that in Definition IV.1, we could have

equivalently talked about arbitrary equivariant orbit-finite set,

instead of just sets of the form Ak:

Corollary IV.3 For atoms with the finite length property,

LinQ has finite length for every equivariant orbit-finite Q.

Proof

An orbit-finite set is a finite disjoint union of single-orbit sets,

and for oligomorphic atoms every single-orbit set Q is an

image of a surjective function from Ak [5], for k the atom

dimension of Q. Hence, we can use the closure properties

from Lemma IV.2. �

The following lemma is the key step in proving the finite

length property for the equality and ordered atoms:

Lemma IV.4 Consider the ordered atoms A = (Q, <). For

every k, the length of Lin
(
A

k

)
is finite, and satisfies

length
(
Lin

(
A

k

))
≤ 1 + k · length

(
Lin

(
A

k−1

))
.

Proof

For any set α of 2k atoms:

a1 < b1 < · · · < ak < bk
︸ ︷︷ ︸

α

(3)

and for any I ⊆ k = {1, . . . , k}, define α⋊ I ∈
(
A

k

)
by:

α⋊ I = {ai | i 6∈ I} ∪ {bi | i ∈ I}.

In words, α ⋊ I picks either ai or bi from α according to I .

Define the cog (on α), να ∈ Lin
(
A

k

)
, to be the vector:

να =
∑

I⊆k

(−1)|I|(α⋊ I).

Notice that all cogs form a single orbit in Lin
(
A

k

)
.

Claim IV.5 Every nontrivial equivariant subspace V ⊆
Lin

(
A

k

)
contains a cog.

Proof

Pick any nonzero v ∈ V and pick α = {a1, . . . , ak} ∈
(
A

k

)
so

that v(α) 6= 0. Choose fresh atoms b1, . . . , bk to form a set as

in (3). For every i = 1, . . . , k, choose an atom automorphism

πi such that:

• πi(ai) = bi, and

• πi(aj) = aj and πi(bj) = bj for j 6= i.

Then put v0 = v and define v1, . . . , vk ∈ V by induction:

vi = vi−1 − πi(vi−1)

(π(vi−1) ∈ V since V is equivariant). It is easy to prove by

induction that vi(α) = v(α) for all i, and so in particular all

vi are nonzero. Also by straightforward induction, each vi has

the following properties:

• vi(β) is nonzero only if for each 1 ≤ j ≤ i, β contains

either aj or bj but not both,

• if β′ arises from such β by replacing aj with bj (or vice

versa) for exactly one j ≤ i, while keeping the other

components unchanged, then vi(β) + vi(β
′) = 0.

For i = k this implies that vk, divided by the scalar v(α), is

a cog. �

Claim IV.5 implies that Lin
(
A

k

)
has a unique least nontrivial

equivariant subspace: the one spanned by all cogs. We shall

now give an explicit description of that subspace.

A vector v ∈ Lin
(
A

k

)
is called balanced if for every set

S ∈
(

A

k−1

)
, and for every S-orbit I ⊆ A such that I ∩ S = ∅:

∑

a∈I v(S ∪ {a}) = 0. (4)

Note that if S = {a1, . . . , ak−1} where a1 < · · · < ak−1, then

S-orbits disjoint from S are exactly the k open intervals:

(−∞, a1), (a1, a2), . . . , (ak−2, ak−1), (ak−1,+∞). (5)

It is easy to check that balanced vectors form an equivariant

subspace of Lin
(
A

k

)
. We denote this space by B. An immediate

corollary of Claim IV.5 is that every cog is balanced.

We will show that B is the subspace generated by all

cogs. For this, it is enough to show that every balanced

vector is a linear combination of cogs. To this end, we will

prove that every balanced vector supported by some fixed

T = {a1, . . . , an} (that is, every vector in B ∩ Lin
(
T
k

)
) is a

linear combination of cogs supported by T (or, in short, cogs

over T ). We shall do this by calculating the (finite!) dimension

of the space B ∩ Lin
(
T
k

)
. But first, let us count the cogs:
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Claim IV.6 There are at least
(
n−k
k

)
linearly independent

cogs over T .

Proof

Call a set α as in (3) narrow if no element in T lies in between

ai and bi for any i. For a narrow α, the cog να will also be

called narrow.

There are exactly
(
n−k
k

)
narrow sets in T : choosing a narrow

set from the n-element set T amounts to choosing k elements

from an (n − k)-element set, and then viewing the chosen

elements as neighbouring pairs (ai, bi) in the narrow set.

All narrow cogs over T are linearly independent. To see

why, consider the componentwise partial order ⊑ on
(
T
k

)
:

(a1 < · · · < ak) ⊑ (a′1 < · · · < a′k) if ai ≤ a′i for all i.

Note that on narrow sets, the mapping:

a1 < b1 < · · · < ak < bk
︸ ︷︷ ︸

α

7→ a1 < · · · < ak
︸ ︷︷ ︸

α⋊∅

is injective, so ⊑ lifts to a partial order on the set of narrow

sets, and hence on the set of narrow cogs.

Assume that narrow cogs are linearly dependent, and so

there is some linear combination:
∑

α

pαν
α = 0 (6)

where the sum ranges over all narrow sets α in T , and pα ∈ F.

Note that this equation lives in the vector space Lin
(
T
k

)
.

Let α be a minimal (with respect to ⊑) narrow set such

that pα 6= 0. Notice that, for every α, να is the greatest

(with respect to ⊑) narrow cog in which α⋊ ∅ appears with a

nonzero coefficient. Since every narrow cog smaller than να

has coefficient zero on the left-hand side of (6), then α⋊∅ has

a nonzero coefficient in the sum of the left-hand side of (6),

which contradicts the equation in (6). �

The main technical result in the proof of the present lemma

is the following claim, which is proved in Appendix B.

Claim IV.7 B ∩ Lin
(
T
k

)
is of dimension at most

(
n−k
k

)
.

Claims IV.6 and IV.7 together imply that B is the space

generated by all cogs, and therefore – by Claim IV.5 – that it

is the smallest nontrivial equivariant subspace of Lin
(
A

k

)
.

To finish the proof of Lemma IV.4, for every i ∈ {1, . . . , k}
consider the equivariant linear map:

gi : Lin
(
A

k

)
→ Lin

(
A

k−1

)

defined by:

gi(v)(S) =
∑

a∈I v(S ∪ {a})

where I is the i’th orbit on the list (5). Tupling these functions

for all i we obtain an equivariant linear map:

g : Lin
(
A

k

)
→

(

Lin
(

A

k−1

))k

.

By definition, the kernel of g is B, so there is a subspace

embedding:

(

Lin
(
A

k

))

/B ⊆
(

Lin
(

A

k−1

))k

.

Note that B does not have any nontrivial equivariant sub-

spaces, so length(B) = 1. By Lemma IV.2(i) applied to

V = B and W = Lin
(
A

k

)
we thus obtain:

length
(
Lin

(
A

k

))
= 1 + length

((

Lin
(
A

k

))

/B
)

≤

≤ 1 + length

((

Lin
(

A

k−1

))k
)

= 1 + k · length
(
Lin

(
A

k−1

))

and conclude the proof of Lemma IV.4. �

The following is now easy:

Lemma IV.8 The ordered atoms A = (Q, <) have the finite

length property. For an equivariant orbit-finite set Q, the space

LinQ has length at most

(orbit count of Q) · (1 + atom dimension of Q)!

Proof

If Q has only one orbit, then it is an image of an equivariant

surjective function from
(
A

k

)
, where k is the atom dimension

of Q. By induction on k, using Lemma IV.4, we obtain

length
(
Lin

(
A

k

))
≤ (1 + k)! (7)

The lemma then follows by Lemma IV.2(iii).

Finally, the case of multi-orbit Q follows from

Lemma IV.2(ii). �

From this it is easy to deduce the finite length property for

equality atoms.

Lemma IV.9 The equality atoms A = (N,=) have the finite

length property. For an equivariant orbit-finite set Q, the space

LinQ has length at most

(orbit count of Q) · k! · (1 + k)!

where k is the atom dimension of Q.

Proof

The set A(k), a single-orbit set over equality atoms, can be

seen as an equivariant set over ordered atoms as well, with

k! disjoint orbits. Each of these orbits is equivariantly (over

ordered atoms) isomorphic to
(
A

k

)
. Lemma IV.8 then implies

that Lin
(
A(k)

)
has length at most k! · (1 + k)!.

Every single-orbit equivariant set Q is an image of an

equivariant surjective function from A(k), where k is the atom

dimension of Q; the lemma follows by Lemma IV.2(iii). The

case of multi-orbit Q follows from Lemma IV.2(ii). �

So far, we have bounded the lengths of chains of equivari-

ant subspaces. Lemma IV.10 below, proved in Appendix C,

extends these bounds to finitely supported chains. Here it is

important that all subspaces the chain are required to have the

same support.
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Lemma IV.10 Consider the equality or ordered atoms. Let

ā be a tuple of atoms. For every ā-supported orbit-finite set

Q, there is a finite upper bound on the length of chains of

ā-supported subspaces of LinQ.

V. THE EQUIVALENCE ALGORITHM

In this section, we use the finite length properties from

Section IV to complete the proof of Theorem III.2. We assume

that the atoms A are the equality or ordered atoms.

Lemma V.1 Let A1 and A2 be equivariant weighted orbit-

finite automata, and let n and k be as in Theorem III.2.

If the recognized weighted languages are different, then this

difference is witnessed by some input word of length at most

2poly(k) · n.

Proof

Let Q be the state space of the difference automaton A1−A2

as described in the reduction from equivalence to zeroness. For

an input word w ∈ Σ∗, let [w] ∈ LinQ be its corresponding

configuration in the difference automaton, and let Vi ⊆ LinQ
be the subspace that is spanned by configurations of input

words of length at most i. By Lemmas IV.9 and IV.8, we know

that the chain {Vi}i must stabilize in a number of steps that

is bounded as in the statement of the lemma. This means that

for every input word, its configuration is a linear combination

of configurations of short words; in particular the difference

automaton can produce a nonzero output if and only if it can

produce a nonzero output on a short input word. �

At this point, we could solve the equivalence problem by

guessing a short differentiating word, leading to a nondeter-

ministic algorithm for non-equivalence, with running time as

in the bound from Lemma V.1. We can, however, improve this

to get a deterministic algorithm, by using a reduction to the

equivalence problem for finite weighted automata. Short input

words necessarily use few atoms, and therefore the equivalence

problem boils down to testing equivalence for input words that

have few atoms. The latter problem is solved in the following

lemma.

Lemma V.2 Consider the following problem.

• Input. Two equivariant weighted orbit-finite automata

A1 and A2 and a number ℓ ∈ {1, 2, . . .};

• Question. Are the two automata equivalent on all input

words supported by at most ℓ atoms?

This problem can be solved in time polynomial in n ·ℓk, where

the parameters n and k are defined as in Theorem III.2.

Proof

Choose a tuple ā of ℓ atoms. Since the automata are equivari-

ant, they are equivalent on inputs with at most ℓ atoms if and

only if they are equivalent on inputs words supported by ā.

By equivariance and condition (*) from Definition III.1,

if a state q and an input letter σ are both supported by ā,

then the same is true for every state p such that (q, σ, p) is a

transition with nonzero weight. Therefore, when restricted to

input words that are supported by ā, both automata only use

states that are supported by ā. These observations motivate

the following definition: for i ∈ {1, 2}, let Ai,ā the weighted

automaton that is obtained from Ai by restricting the states

and alphabet to elements supported by ā, and restricting the

transitions and weight functions to the new alphabet and states.

These automata are finite, with size bounded by n · ℓk. The

lemma follows by applying the polynomial time algorithm for

equivalence of finite weighted automata. �

The above two lemmas complete the proof of Theorem III.2.

The algorithm for zeroness is simply the algorithm from

Lemma V.2, with ℓ being the bound from Lemma V.1.

VI. VECTOR SPACES WITH ATOMS

In this section, we study in more depth vector spaces that

are spanned by orbit-finite sets. Apart from their independent

interest, these results will be used in Section VII to minimize

weighted automata, and in Section VIII to decide equivalence

for unambiguous automata.

So far we have discussed vector spaces of the form LinQ,

where Q is an orbit-finite set. One could call these spaces

orbit-finite-dimensional, since they have an orbit-finite basis.

Although they are good enough to treat weighted orbit-finite

automata, such vector spaces are not very robust. The reason

is that extracting a basis uses choice, see [2, Thm. 1], and the

principle of choice fails for sets with atoms.

Example 6. Recall the vector space LinA that was discussed

in Example 5, and the subspace V that was spanned by

X = {a− b : a 6= b ∈ A}.

The set X is not a basis, since the vectors a− b and b− a (or

a−b, b−c and a−c) are linearly dependent. However, X is a

single equivariant orbit, so it does not have any nonempty

proper subset that is equivariant. Therefore, no equivariant

subset of X is a basis. In fact, V does not have any equivariant

basis, even if we allow bases that are not contained in X . It

does have, however, a finitely supported basis contained in X :

for any fixed atom a0 ∈ A, the set

{a0 − b : b ∈ A− {a0}}

is a basis. �

In the previous example, there was no equivariant basis, but

there was a finitely supported one. In the next example there

is no finitely supported basis at all.

Example 7. Consider the equality atoms and the space

Lin(A(2)). A vector in this space can be visualized as a

weighted directed finite graph, where vertices are atoms and

the weight of an edge (a, b) is the corresponding coefficient

in the vector. Consider the subspace of Lin(A(2)) spanned by

X = {(a, b)− (b, a) : a 6= b ∈ A}.

This subspace consists of graphs where for every pair of

vertices, the connecting edges in both directions have opposite
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weights. We claim that there is no finitely supported subset of

X that is a basis of this space. Indeed, suppose that Y ⊆ X is

a finitely supported basis. It is easy to see that for every two

distinct atoms a, b, the set Y must contain one of the vectors

(a, b)− (b, a) or (b, a)− (a, b).

If the atoms a, b are fresh (i.e. they do not belong to the least

support of Y ), by swapping these two atoms we map one of

the vectors to the other, hence both vectors must belong to Y .

However, the two vectors are linearly dependent and so Y is

not a basis. Using a similar argument one can show that the

subspace spanned by X does not have any finitely supported

basis, even if we allow bases that are not contained in X . �

The above example shows that vector spaces with an orbit-

finite basis are not closed under finitely supported subspaces.

The same issue appears with finitely supported quotients

(images of surjective linear maps). These issues will become

a problem in the next section, where we minimize weighted

orbit-finite automata, since minimization will require taking

subspaces and quotients. To deal with these issues, we propose

an obvious generalization: vector spaces that are spanned by

an orbit-finite set (which need not be independent).

Definition VI.1 (Orbit-finitely spanned vector space) Fix

a field F and an atom structure. A vector space with atoms

is a vector space such that the underlying set V is a set with

atoms, and the operations

+ : V × V → V
︸ ︷︷ ︸

binary addition

· : F× V → V
︸ ︷︷ ︸

scalar multiplication

are finitely supported. A vector space with atoms is called

orbit-finitely spanned if there is an orbit-finite subset of the

vector space which spans it.

As we have seen in Example 7, some orbit-finitely spanned

vector spaces do not have any orbit-finite basis. They do,

however, have finite length:

Lemma VI.2 For atoms with the finite length property, equiv-

ariant orbit-finitely spanned vector spaces have finite length.

Proof

Let V be spanned by an equivariant orbit-finite set Q, and let

f : LinQ → V

be the unique linear map which extends the inclusion of Q
in V . This is a surjective finitely supported linear map, so (by

Lemma IV.2(iii)) the length of V is not greater than the length

of LinQ, which is finite by the finite length property. �

Theorem VI.3 (Closure properties) Assume that the atoms

have the finite length property. Equivariant orbit-finitely

spanned vector spaces are closed under equivariant quotients,

equivariant subspaces, direct sums and tensor products.

Proof

Quotients and direct sums are immediate. For the tensor

product U ⊗ V , suppose U and V are spanned by Q and P .

Since LinQ ⊗ LinP is isomorphic to Lin(Q × P ), it follows

that U ⊗ V is spanned by Q× P , which is orbit-finite.

We are left with the subspaces. Suppose that V is equiv-

ariant and orbit-finitely spanned, and let U be an equivariant

subspace. For n ∈ {1, 2, . . .} define Un to be the subspace of

U that is spanned by vectors from U that are supported by at

most n atoms. This is a chain

U1 ⊆ U2 ⊆ · · ·

of equivariant vector spaces, and therefore by the finite length

property it stabilizes after finitely many steps. It remains to

show that every Un is orbit-finitely spanned. For every tuple

b̄ of n atoms, the vectors in V that are supported by b̄ form a

finite-dimensional vector space, and so they have a finite basis.

By closing this basis under atom automorphisms, we get an

orbit-finite spanning set for Un. �

Thanks to Lemma IV.10, in the equality and ordered atoms,

Lemma VI.2 and Theorem VI.3 hold also for orbit-finitely

spanned vector spaces that are not necessarily equivariant.

In the remainder of this section, we discuss another closure

property of orbit-finitely spanned vector spaces: if V is an

equivariant orbit-finitely spanned vector space, then the same

is true for its finitely supported dual, which is the vector

space of finitely supported linear maps from V to F. We will

prove closure under finitely supported duals for the equality

and ordered atoms, and we do not know if it holds for other

oligomorphic atoms.

Before considering finitely supported duals, we discuss a

slightly simpler vector space, namely the finitely supported

functions from some orbit-finite set to the underlying field.

Let Q be an orbit-finite set. Define

Q
fs
→ F

to be the set of finitely supported functions from Q to the field.

This set can be viewed as a vector space, with coordinate-wise

addition and scalar multiplication. We have

LinQ ⊆ Q
fs
→ F,

and the inclusion is strict when Q is infinite, as witnessed by

the function that returns 1 on all arguments.

Example 8. For the equality atoms, the space A
fs
→ F is

spanned by the functions

{fA} ∪ {fa : a ∈ A} (8)

where fA maps all atoms to 1, while fa maps a to 1 and

the remaining atoms to 0. Indeed, every function f : A → F

supported by an atom tuple ā can be presented as:

f = f(c)
︸︷︷︸

c is some fresh

atom not in ā

·fA +
∑

a∈ā

(f(a)− f(c)) · fa.
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The functions from (8) are linearly independent, and therefore

they form an orbit-finite basis of A
fs
→ F.

A similar result holds for the ordered atoms, except that

there the spanning set of functions is

{fA} ∪ {fa : a ∈ A} ∪ {f>a : a ∈ A}

where fA and fa are as before and f>a maps b to 1 precisely

if b > a. �

The above example shows that A
fs
→ F is orbit-finitely

spanned. This is true for every orbit-finite set, not just A:

Theorem VI.4 Assume the equality or the ordered atoms. If

Q is an orbit-finite set, then Q
fs
→ F is orbit-finitely spanned.

Proof

To simplify notation, we assume that Q is equivariant; this

implies the general case anyway, because every orbit-finite set

is contained in some equivariant orbit-finite set. Furthermore,

it is safe to assume that Q is a single-orbit set.

We need to exhibit an orbit-finite set Φ of finitely supported

functions, so that every finitely supported function f : Q → F

is a linear combination of functions from Φ. It is enough to

show this for the case where f is the characteristic function

of a finitely supported set R ⊆ Q, since such characteristic

functions are easily seen to span the space of all finitely

supported functions. So consider such a set R, supported by

some tuple ā of atoms. R is then a disjoint union of ā-orbits,

and it is enough to consider the case where R is a single

ā-orbit.

From here, the arguments for the equality and the ordered

atoms begin to differ.

For the case of ordered atoms, we know that Q is in

equivariant bijection with
(
A

k

)
for some number k, so it is

enough to deal with Q =
(
A

k

)
. Let R be the ā-orbit of some

r = {a1, . . . , ak} ∈
(
A

k

)
.

Each ai belongs to some ā-orbit of atoms. This orbit is an

interval, so it is equal to the orbit determined by at most two

atoms from ā. (One atom is enough if ai belongs to ā, or if

it is larger than (or smaller than) every atom in ā.) Picking

these atoms for each i = {1, . . . , k}, we obtain a tuple b̄ ⊆ ā
of at most 2k atoms, such that R is equal to the b̄-orbit of r.

As a consequence, R is supported by b̄.
As a result, we may take Φ to be the set of characteristic

functions of subsets of Q supported by at most 2k atoms.

Since k is fixed for a given Q, this is an orbit-finite set.

The argument for the equality atoms is only a little more

complicated. Here for Φ we take the set of characteristic

functions of subsets of Q supported by at most k atoms.

We know that Q is the image of an equivariant surjection

from A(k) for some number k, so it is enough to deal with

Q = A(k). Let R be the ā-orbit of some

r = (a1, . . . , ak) ∈ A(k).

We proceed by induction on the number of atoms in r that are

not in ā. If this number is zero, then R is the singleton of r

and the characteristic function of R is in Φ, so there is nothing

to do. If there are some atoms in r that not in ā, denote by

I ⊆ {1, . . . , k} the set of coordinates where these atoms occur

in r. Then an s ∈ A(k) belongs to R if and only if:

(i) s is equal to r on all coordinates apart from I ,

(ii) atom in s on coordinates from I do not belong to ā.

Let R̂ ⊆ Q be the set of tuples s that satisfy condition (i)

above; obviously R ⊆ R̂. Moreover, R̂ has a support of size

k− |I|, so χR̂, the characteristic function of R̂, belongs to Φ.

Let {r1, . . . , rn} be the set of all k-tuples in A(k) that can

be obtained from r by replacing some (not necessarily all,

but at least one) atoms on coordinates from I by some atoms

from ā. Let Ri be the ā-orbit of ri, for each i. The sets Ri

are pairwise disjoint, and their union is equal to the difference

R̂ \R, therefore there is a linear equation:

χR = χR̂ −
∑n

i=1 χRi
.

By the inductive assumption, each χRi
is a linear combination

of functions from Φ, which completes the proof. �

Corollary VI.5 Assume the equality or ordered atoms. If V
is an orbit-finitely spanned vector space, then the same is true

for its finitely supported dual.

Proof

If a vector space is spanned by an orbit-finite set Q, then

its finitely supported dual embeds into the space Q
fs
→ F,

which is orbit-finitely spanned by Theorem VI.4. The corollary

follows since orbit-finitely spanned vector spaces are closed

under subspaces. �

In contrast to the finite-dimensional case, orbit-finitely

spanned vector spaces are not isomorphic to their finitely

supported duals. Indeed, Example 8 shows that the finitely

supported dual of LinA is equivariantly isomorphic to the

space Lin(1 + A). There is no linear isomorphism between

them which is equivariant, or even finitely supported.

The following example shows that the restriction to equal-

ity or ordered atoms was important in Theorem VI.4. This

example hints on the difficulties one may encounter when

generalizing our theory to, say, arbitrary oligomorphic atom

structures.

Example 9. Consider the graph atoms [3, Section 7.3.1],

i.e. the case when the atoms structure A is the Rado graph.

For an atom tuple ā, define χā : A → F to be the characteristic

function of the common neighborhood of ā, i.e. the function

which maps an atom to 1 if it has an edge to all atoms in ā,

and otherwise maps the atom to 0. This is a finitely supported

function, so it belongs to A
fs
→ F. For n ∈ {1, 2, . . .}, let

Vn ⊆ A
fs
→ F

to be the subspace which is spanned by functions of the form

χā, where ā is a tuple of at most n atoms. We will show that

Vn ( Vn+1 for every n.
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Indeed, assume to the contrary a linear equation

χā =
∑n

i=1 pi · χb̄i

where all pi 6= 0 and where ā strictly larger than every b̄i.
Pick i such that b̄i is minimal in the equation, i.e. such that

b̄j 6⊆ b̄i for all j 6= i. Pick an atom c that is in the common

neighborhood of b̄i but not in the common neighborhood of ā
or any other b̄j; it exists by the universal property of the Rado

graph. Then χb̄i(c) = 1, χā(c) = 0 and χb̄j (c) = 0 for j 6= i,
therefore pi = 0, a contradiction.

It follows that the vector space A
fs
→ F does not have finite

length. We do not know if the problem is that: (a) the finite

length property fails; (b) the property of being orbit-finitely

spanned does not extend to dual spaces. �

VII. MINIMIZATION

Schützenberger’s original paper on weighted automata con-

tained a minimization procedure. We now describe a version

of that procedure in the orbit-finite setting using the theory of

orbit-finitely spanned vector spaces from Section VI.

Consider a weighted orbit-finite automaton A with states Q.

We assume that the automaton is reachable, in the following

sense: every vector in LinQ is a linear combination of config-

urations corresponding to input words. For a vector v ∈ LinQ,

define the weighted language of v to be the weighted language

recognized by the automaton obtained from A by setting the

initial map to v, i.e. the initial weight of a state is its coefficient

in the vector v. Define the syntactic congruence ∼ to be the

equivalence relation on LinQ which identifies two vectors if

the corresponding weighted languages are equal. It is not hard

to see that ∼ is closed under both linear combinations and

applying atom automorphisms, one can speak of an equivariant

quotient vector space (LinQ)/∼. Equivalently, this is the

quotient of the vector space LinQ under the subspace which

consists of vectors v whose corresponding weighted language

is 0 everywhere. This quotient space is orbit-finitely spanned

by the equivalence classes of states in Q.

In the finite dimensional case studied by Schützenberger,

a minimal automaton is obtained by choosing some basis for

this vector space, and using it as the state space of the minimal

automaton. This idea, however, will not work in the orbit-finite

setting, due to the difficulties with finding a basis that were

described in Examples 6 and 7.

Example 10. For the equality atoms and the field of rational

numbers, consider the weighted language L : A∗ → F:

L(w) =







1 if w = aba for some a 6= b ∈ A,

−1 if w = abb for some a 6= b ∈ A,

0 otherwise.

This is recognized by a weighted orbit-finite automaton where

the set of states Q is

{⊥}
︸︷︷︸

initial weight 1

final weight 0

+ A+ A(2)

︸ ︷︷ ︸

initial weight 0

final weight 0

+ {⊤}
︸︷︷︸

initial weight 0

final weight 1

and the transitions with nonzero weight are

(⊥, a, a), (a, b, (a, b)), ((a, b), a,⊤)
︸ ︷︷ ︸

weight 1

, ((a, b), b,⊤)
︸ ︷︷ ︸

weight -1

for every a 6= b ∈ A. For the syntactic congruence ∼, it is not

hard to see that (a, b) ∼ −(b, a) for every a 6= b. The quotient

space LinQ/∼ is:

Lin( {⊥,⊤}+ A ) ⊕ X,

where X is the space from Example 7. This space has no

finitely supported basis. �

This example shows that in the orbit-finite setting the

minimization procedure can leave the realm of weighted orbit-

finite automata. To overcome this issue, we use an alternative

model for weighted automata, which we call orbit-finitely

spanned automata. These are deterministic automata where

the state spaces are orbit-finitely spanned vector spaces and

all weight functions are linear maps.

Definition VII.1 (Orbit-finitely spanned automaton) An

orbit-finitely spanned automaton consists of:

1) an orbit-finite input alphabet Σ;

2) an orbit-finitely spanned vector space V ;

3) a finitely supported transition function

δ : V × Σ → V

such that v 7→ δ(v, a) is a linear map for every a ∈ Σ;

4) an initial vector v0 ∈ V ;

5) a finitely supported linear map F : V → F.

An orbit-finitely spanned automaton recognizes a weighted

language as expected: given an input word, it computes an

element of F by starting in the initial vector, then applying

the transition functions corresponding to the input letters, and

finally applying the final function F .

Theorem VII.2 The same weighted languages are recognized

by orbit-finitely spanned automata and weighted orbit-finite

automata.

The theorem is proved in Appendix D. It differs from an

analogous construction in the finite-dimensional setting in

one aspect: if one converts a weighted orbit-finite automaton

with states Q to an orbit-finitely spanned automaton in the

natural way, then the resulting vector space LinQ has an

orbit-finite basis. Not every orbit-finitely spanned automaton

arises this way though, because we do not require the vector

space to have an orbit-finite basis. A key step in the proof of

Theorem VII.2 is that every orbit-finitely spanned automaton

is equivalent to one whose state space has a basis.

The point of orbit-finitely spanned automata is that they

can be minimized. Define a homomorphism between orbit-

finitely spanned automata A and B to be a finitely supported

linear map from the state space of A to the state space of

B, which is consistent with the structure of the automata in
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the natural way, see [3, Sec. 6.2]. If A is an orbit-finitely

spanned automaton that is reachable (i.e. its vector space is

spanned by vectors that can be reached via input words), and

∼ is its syntactic congruence (defined in the same way as for

weighted orbit-finite automata), then there is a well defined

quotient automaton A/∼. The quotient automaton admits a

homomorphism from every reachable orbit-finitely spanned

automaton that recognizes the same weighted language as A.

Hence, the quotient automaton is unique up to isomorphism,

and can thus be called the minimal automaton.

We finish this section with a third perspective on weighted

languages, this time phrased in terms of monoids. Define an

orbit-finitely spanned monoid to be a monoid (M, ·, 1) where

the underlying set M is an orbit-finitely spanned vector space,

and the monoid operation is bi-linear (i.e. linear in each of the

two coordinates). We say that a weighted language L : Σ∗ → F

is recognized by such a monoid if the diagram

Σ∗

h
??⑧⑧⑧⑧⑧

L
//

M
F

��❄
❄❄

❄❄
❄

F

commutes for some finitely supported monoid homomorphism

h and some finitely supported linear map F . The following

result is somewhat unexpected, because in the non-weighted

setting, orbit-finite automata and orbit-finite monoids do not

recognize the same languages [3, Exercise 91].

Theorem VII.3 Orbit-finitely spanned monoids recognize the

same weighted languages as weighted orbit-finite automata

and orbit-finitely spanned automata.

Proof

From an orbit-finitely spanned monoid we can easily construct

an orbit-finitely spanned automaton, with the same underlying

vector space. For the converse direction, starting with a

weighted orbit-finite automaton with states Q, we build a

monoid out of finitely supported functions:

f : (Q×Q)
fs
→ F

such that for every p ∈ Q there are finitely many states q ∈ Q
such that f(p, q) 6= 0. By Theorem VI.4, this vector space is

orbit-finitely spanned. The monoid operation is defined by:

(f · g)(p, q) =
∑

r∈Q

f(p, r) · g(r, q),

with the sum being finite by the assumption on f . This

operation is finitely supported and bi-linear. The recognizing

homomorphism is built using the same construction as when

converting a nondeterministic automaton into a monoid. �

An advantage of the monoid approach is the symmetry

between reading the input word left-to-right and right-to-

left. In particular, the languages recognized by orbit-finitely

spanned monoids are easily seen to be closed under reversals;

this is harder to see for the remaining models.

VIII. APPLICATION TO UNAMBIGUOUS AUTOMATA

A classical application of weighted automata is a polyno-

mial time algorithm for language equivalence of unambiguous

finite automata, i.e., nondeterministic automata with at most

one accepting run for every input word. Two unambiguous

finite automata are equivalent (i.e. they recognize the same

language) if and only if they have the same number of

accepting runs for every input word (since the number of

accepting runs is zero or one). For every nondeterministic

finite automaton, one can easily construct in polynomial time

a weighted finite automaton which maps every input word to

the number of accepting runs of the nondeterministic finite

automaton; and therefore two unambiguous finite automata

are equivalent if and only if the corresponding weighted finite

automata are equivalent.

In this section, we show how this result can be lifted

from finite to orbit-finite automata. Consider first the case

of unambiguous orbit-finite automata which are non-guessing,

in the sense that they have finitely many initial states, and

for every state q and input letter σ, there are finitely many

transitions of the form (q, a, p). As explained in Example 3,

for such automata we can easily count runs using a weighted

orbit-finite automaton, and thus we can solve the language

equivalence problem in the same time as in Theorem III.2.

However, our techniques apply also to unambiguous orbit-

finite automata without the non-guessing restriction.

Theorem VIII.1 Assume that the atoms are either (N,=) or

(Q, <). The equivalence problem for equivariant2 unambigu-

ous register automata3, which are allowed to use guessing,

is in EXPTIME, and in polynomial time when the number of

registers is fixed.

This improves on previous work [13], [14] in that: (a) we

allow unrestricted guessing; (b) we allow ordered atoms and

not just equality atoms;and (c) we improve the previous upper

bounds of 2EXPSPACE for an unbounded number of registers

and EXPSPACE for a fixed number of registers.

The rest of this section is devoted to proving the above

theorem. The main observation is that an orbit-finitely spanned

automaton can count accepting runs for a nondeterministic

orbit-finite automaton, as stated in the following lemma.

Lemma VIII.2 Consider an equivariant nondeterministic

orbit-finite automaton A, which has finitely many accepting

runs for every input word. There is an equivariant orbit-finitely

spanned automaton B, over the field of rational numbers,

which outputs for every word the number of accepting runs

of A. Furthermore, the length of the vector space used by the

automaton B is at most

2poly(k) · nO(k). (9)

2As for Theorem III.2, this theorem would also work for finitely supported
automata, but the notation would become more involved.

3We state the theorem using unambiguous register automata, see [13,
Sect. 2] and not for general unambiguous orbit-finite automata, so that it
can be more easily compared to existing results in the literature.
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where k and n are as in Theorem III.2.

Proof

Let Σ be the input alphabet, and let Q be the state space of A.

Without loss of generality we assume that every state can reach

some accepting state; the remaining states can be eliminated

from the automaton without affecting the recognized language

or the numbers of accepting runs [3, Cor. 9.12].

For an input word w ∈ Σ∗, define its configuration

[w] ∈ Q
fs
→ F

to be the function which maps each state q to the number

of runs on w that begin in an initial state and end in state q.

The configuration produces only finite numbers, because there

cannot be a state q that can be reached via infinitely many runs

over the same input word w; otherwise we could append some

word to w and get infinitely many accepting runs. Define

V = Span{[w] : w ∈ Σ∗} ⊆ Q
fs
→ F

to be the subspace of Q
fs
→ F that is spanned by configurations.

Although the definition of V uses a spanning set that is not

necessarily orbit-finite (because Σ∗ is not orbit-finite), the

space V is orbit-finitely spanned, as an equivariant subspace

of an orbit-finitely spanned vector space, see Theorem VI.3.

We use V as the state space of a orbit-finitely spanned

automaton B. Let us first prove the length bound (9). It is

enough to prove the bound for the length of Q
fs
→ F, since

V is an equivariant subspace of it. To this end, note that the

set Q can be decomposed as a disjoint union of n single-orbit

sets with dimension at most k. Since

length((Q1+Q2)
fs
→F) = length(Q1

fs
→F) + length(Q2

fs
→F)

it is enough to show that every equivariant single-orbit set P
of atom dimension at most k satisfies

length(P
fs
→ F) ≤ 2poly(k).

Since P
fs
→ F embeds into A(k) fs

→ F, it is enough to show

that the length of the latter space is at most exponential in k.

This follows from the proof of Theorem VI.4.

We now describe the remaining structure of the orbit-finitely

spanned automaton. The initial state is the configuration [ε],
which maps initial states to 1 and non-initial states to 0. Let us

now define the transition functions. For an input letter σ ∈ Σ,

define a function δσ : V → V as follows
∑

i∈I

αi[wi] 7→
∑

i∈I

αi[wiσ].

We need to justify that this is well-defined. The potential

problem is that the same element of V might have several

decompositions as weighted sums of configurations, and the

output of δσ should not depend on the choice of decomposi-

tion. Consider an element of V with two decompositions:
∑

w∈W

αw[w] =
∑

w∈W

βw[w],

for some finite set W ⊆ Σ∗ of input words, and some

coefficients αw and βw in the field. We need to show that

δσ produces the same output for both decomposition, i.e.
∑

w∈W

αw[wσ] =
∑

w∈W

βw[wσ]. (10)

Both sides in (10) are functions from states to the field; and

hence to prove the equality we need to show that the functions

on both sides give the same output for every state q ∈ Q. Fix

q. Let P be the set of states p ∈ Q such that the automaton

has a transition (p, σ, q), and furthermore p appears in the

configuration of some w ∈ W with nonzero coefficient. An

important observation is that P is a finite set: because the

automaton A has finitely many accepting runs for every input

word, the set P contains finitely many states for every word

in W . For every word w ∈ W we have

[wσ](q) =
∑

p∈P

[w](p).

Therefore, to prove that both functions in the equality (10)

give the same value for state q, we need to show
∑

w∈W
p∈P

αw[w](p) =
∑

w∈W
p∈P

βw[w](p).

This equality is indeed true, because our assumption implies

a stronger equality, namely that for every p ∈ P we have
∑

w∈W

αw[w](p) =
∑

w∈W

βw[w](p).

The function δσ is clearly a linear map, and thus we can set

the transition function of the automaton to be δ(v, σ) = δσ(v).
The automaton is defined so that after reading an input word

w, its state is [w]. The final map simply takes a configuration

to the sum of all coefficients that are accepting states. This

concludes the proof of Lemma VIII.2. �

Proof (of Theorem VIII.1)

Consider two unambiguous register automata A1 and A2 for

which we want to decide equivalence. Apply Lemma VIII.2

to each one of them, yielding orbit-finitely spanned automata

B1 and B2. Using a product construction, we get another

orbit-finitely spanned automaton B that outputs zero for words

where the automata A1 and A2 agree, and nonzero for other

words. The length of the vector space in B is at most twice

the length of the vector spaces in B1 and B2, and hence it is

at most

2poly(k) · nO(k) (11)

where k is the maximal number of registers used by the

automata, and n is the sum of the numbers of control states. As

in the proof of Theorem III.2, we conclude that the automata

A1 and A2 are equivalent if and only if they are equivalent

using input words and runs that use a number of atoms as

bounded by (11), and the latter equivalence can be tested using

Schützenberger’s polynomial time algorithm for equivalence

on weighted finite automata. �
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APPENDIX A

PROOF OF LEMMA IV.2

For item (i), let g : W → W/V be the (equivariant) quotient

map. For the “≥” direction, for any chains:

V1 ( · · · ( Vn ( V (n proper inclusions)

U1 ( · · · ( Um ( W/V (m proper inclusions)

the chain

V1 ( · · · ( Vn ( V ⊆ g−1(U1) ( · · · ( g−1(Um) ( W

has n +m proper inclusions. For the “≤” direction, for any

chain of proper inclusions:

W1 ( · · · ( Wn ( W (12)

consider chains:

W1 ∩ V ⊆ · · · ⊆ Wn ∩ V ⊆ V (13)
−→g (W0) ⊆ · · · ⊆ −→g (Wn) ⊆ W/V. (14)

All these inclusions are not necessarily proper. However, if the

i-th inclusion in the first chain is an equality:

Wi ∩ V = Wi+1 ∩ V

then there is some v ∈ Wi+1 \ Wi such that v 6∈ V . Since

V is the kernel of g, the i-th inclusion in the second chain is

then proper:
−→g (Wi) (

−→g (Wi+1),

so the length of (12) does not exceed the sum of lengths of (13)

and (14).

For item (ii), apply item (i) to W = Lin(P +Q) and V =
LinP , noting that then W/V = LinQ.

For item (iii), assume an equivariant surjection q : P → Q,

let q̄ : LinP → LinQ be the unique linear extension of q, and

apply item (i) to W = P and V = ker(q̄), noting that then

W/V = LinQ.

APPENDIX B

PROOF OF CLAIM IV.7

Recall that a vector is in B iff it satisfies all the condi-

tions (4). Since we consider vectors in Lin
(
T
k

)
, only con-

ditions (4) with S ∈
(

T
k−1

)
matter. There are k ·

(
n

k−1

)

such conditions, and each of them takes the form of a linear

equation over
(
n
k

)
variables, with all coefficients equal to 1.

B ∩Lin
(
T
k

)
is therefore the null space of a 0-1 matrix with

(
n
k

)
columns and k ·

(
n

k−1

)
rows, where columns correspond to

subsets of T of size k, and rows correspond to conditions (4).

We will denote this matrix by M
n
k . By the rank-nullity

theorem, it is enough to prove that

rank(Mn
k ) ≥

(
n
k

)
−
(
n−k
k

)
.

The matrix M
n
k is naturally divided into k equally sized parts:

M
n
k =








0
M

n
k

1
M

n
k

...
k−1

M
n
k








(15)
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where each i
M

n
k stores conditions that concern the i-th orbits

in the order shown in (5). Each i
M

n
k has

(
n

k−1

)
rows and

(
n
k

)

columns. The precise definition of the matrix i
M

n
k is that:

• its columns are indexed by subsets R ∈
(
T
k

)
;

• its rows are indexed by subsets S ∈
(

T
k−1

)
;

• the entry (iMn
k)S,R is equal to 1 if R = S ∪ {a} for

some atom a ∈ T that is strictly greater than exactly i
atoms in R; and it is 0 otherwise.

We will look at these component matrices more closely now.

Let us begin with i = 0. Let a be the smallest atom in T .

Arrange both the columns and the rows of 0
M

n
k so that they

are lexicographically ordered. Then the first
(
n−1
k−1

)
columns

and the first
(
n−1
k−2

)
rows correspond to subsets of T that

contain a, and the remaining
(
n−1
k

)
columns and

(
n−1
k−1

)
rows

correspond to subsets that do not contain a. We thus identify

four parts of 0
M

n
k :

0
M

n
k =

[
A B
C D

]

. (16)

Notice that C is a square matrix.

Looking at the definition of 0
M

n
k , we get that:

• A and B are zero matrices;

• C is the identity matrix of order
(
n−1
k−1

)
,

• D is equal to the matrix 0
M

n−1
k .

Altogether we obtain:

0
M

n
k =

[
0 0

I
0
M

n−1
k

]

.

Now consider 0 < i < k. Still focusing on a the smallest atom

in T , arrange rows and columns of i
M

n
k as before to obtain

a decomposition as in (16). Looking at the definition of i
M

n
k ,

this time we get that:

• A is equal to the matrix i−1
M

n−1
k−1 ,

• B and C are zero matrices,

• D is equal to the matrix i
M

n−1
k .

Altogether we obtain:

i
M

n
k =

[
i−1

M
n−1
k−1 0

0
i
M

n−1
k

]

. (17)

Note that we applied the same arrangement of columns for all

i. Coming back to (15), we therefore obtain:

M
n
k =



















0 0

I
0
M

n−1
k

0
M

n−1
k−1 0

0
1
M

n−1
k

1
M

n−1
k−1 0

0
2
M

n−1
k

...
...

k−2
M

n−1
k−1 0

0
k−1

M
n−1
k



















Applying some rearrangement of rows, and removing some

zero rows, we obtain:

rank(Mn
k ) = rank




















0
M

n−1
k−1 0

1
M

n−1
k−1 0

...
...

k−2
M

n−1
k−1 0

I
0
M

n−1
k

0
1
M

n−1
k

0
2
M

n−1
k

...
...

0
k−1

M
n−1
k




















(18)

Now we use the general fact that

rank

[
A B
0 C

]

≥ rank(A) + rank(C)

to conclude

rank(Mn
k ) ≥ rank










0
M

n−1
k−1

1
M

n−1
k−1
...

k−2
M

n−1
k−1

I










+ rank








1
M

n−1
k

2
M

n−1
k
...

k−1
M

n−1
k







.

(19)

Thanks to the identity component, the first summand above

equals
(
n−1
k−1

)
. Let us now calculate the rank:

Rn
k = rank








1
M

n
k

2
M

n
k

...
k−1

M
n
k







.

This is similar to the matrix M
n
k , but without the 0’th

component. Use (17) again and rearrange rows to obtain:

Rn
k =rank


















0
M

n−1
k−1 0

1
M

n−1
k−1 0

...
...

k−2
M

n−1
k−1 0

0
1
M

n−1
k

0
2
M

n−1
k

...
...

0
k−1

M
n−1
k


















=rank(Mn−1
k−1)+Rn−1

k .

This entails

Rn
k =

∑n−1
m=k−1 rank(M

m
k−1).

Combining this with (19) we obtain:

rank(Mn
k )≥

(
n−1
k−1

)
+Rn−1

k =
(
n−1
k−1

)
+
∑n−2

m=k−1 rank(M
m
k−1).

(20)

There is also the base case rank(Mk
k) = 1 since the matrix

M
k
k has only one column (and k nonzero rows). Another base
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case is rank(Mn
1 ) = 1, since the matrix M

n
1 has only one

row (filled with n ones). Denote Sn
k = rank(Mn

k ) and pretend

that the inequality in (20) is an equality; we then obtain the

recurrence:

Sk
k = 1

Sn
1 = 1

Sn
k =

(
n−1
k−1

)
+
∑n−2

m=k−1 S
m
k−1 for n > k > 1.

The formula

Sn
k =

(
n
k

)
−
(
n−k
k

)

satisfies the recurrence. Indeed, calculate:
(
n−1
k−1

)
+
∑n−2

m=k−1

((
m

k−1

)
−
(
m−k+1
k−1

))

=

=
(
n−1
k−1

)
+
∑n−2

m=n−k

(
m

k−1

)
=

=
∑n−1

m=n−k

(
m

k−1

)
=

(
n
k

)
−
(
n−k
k

)
,

where the last equality follows from a repeated application of

Pascal’s rule:
(

m
k−1

)
+
(
m
k

)
=

(
m+1
k

)
.

This proves that Sn
k ≥

(
n
k

)
−

(
n−k
k

)
and completes the proof

of Claim IV.7.

APPENDIX C

PROOF OF LEMMA IV.10

Define the ā-length of a vector space to be the maximal

length of ā-supported subspaces. In the special case when ā
is the empty tuple, we get the notion of length from Defini-

tion IV.1. Every ā-supported orbit-finite set can be obtained,

using images under ā-supported functions and disjoint unions,

from ā-orbits contained in Ak. Since Lemma IV.2 holds, with

the same proof, for ā-length, it remains to show that the ā-

length is finite for LinQ when Q is a single ā-orbit contained

in Ak. We now split into two proofs, depending on whether

we deal with the equality or ordered atoms.

• Equality atoms. Choose some bijection

f : (A− ā)
︸ ︷︷ ︸

atoms that do

not appear in ā

→ A,

which is possible since both sets are countably infinite.

(Note that f cannot be finitely supported.) Let ℓ ∈
{1, . . . , k} be the number of coordinates that are not from

ā in some (equivalently, every) tuple from the ā-orbit Q.

We can lift f to an injective function (in fact, a bijection)

g : Q → A(ℓ),

which erases the coordinates that use atoms from ā and

applies f to the remaining coordinates. One can easily

see that

Lin g : LinQ → LinA(ℓ)

maps ā-supported subspaces of LinQ to equivariant sub-

spaces of LinA(ℓ), and preserves strict inclusions. There-

fore the ā-length of LinQ is at most the (equivariant)

length of LinA(ℓ), and the latter length is finite by

Lemma IV.9.

• Ordered atoms. Let the atoms in ā be

a1 < · · · < an.

For every i ∈ {0, 1, . . . , n}, consider the interval

Ai = {a : ai < a < ai+1},

where a0 is −∞ and an+1 is ∞. Choose some order-

preserving bijection

fi : Ai → A.

As in the previous item, let ℓ be the coordinates from Q
which avoid atoms from ā. By erasing the coordinates

which use atoms from ā, and applying the appropriate

functions fi to the remaining coordinates, we get an

injective function

g : Q → Aℓ.

Since the functions fi all have the same co-domain,

namely A, the image of the function will contain tuples

that are not necessarily strictly increasing. Nevertheless,

the linear lifting

g : LinQ → LinAℓ

maps ā-supported subspaces in LinQ to equivariant sub-

spaces in LinAℓ, and hence we obtain a finite bound on

ā-supported chains in LinQ.

APPENDIX D

EQUIVALENCE OF LINEAR AND WEIGHTED AUTOMATA

We begin with the easier inclusion.

Lemma D.1 For every weighted orbit-finite automaton W
there is an orbit-finitely spanned automaton L which recog-

nizes the same weighted language.

Proof

If Q are the states of W , then the vector space of L is LinQ,

and the transition function

δ : LinQ× A → LinQ

is defined so that for every input letter a ∈ Σ and states

q, p ∈ Q (which are basis vectors of the vector space LinQ),

the coefficient for state p in the vector δ(q, a) is the weight

of the transition (q, a, p). In other words, linear map δ( , a) is

defined by a Q×Q matrix where the coefficient in cell (q, p)
is the weight of the transition (q, a, p). Note how condition (*)

from Definition III.1 is used to ensure that the δ(q, a) is a well-

defined vector, in the sense that it has finitely many nonzero

coordinates. The initial vector of L consists of the initial

weights in W , and the final function is the linear extension of

the original final weight function. �
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Example 11. Recall the weighted orbit-finite automaton from

Example 10. We have already described the state space of the

corresponding orbit-finitely spanned automaton:

V = Lin( {⊥,⊤}+ A ) ⊕ X,

and we will now define the rest od it. We define the transition

function on the generators of the state space:

δ(⊥, a) = a δ(⊤, a) = 0 δ(a, b) = (a, b)− (b, a)

δ((a, b)− (b, a), c) =







⊤ if c = a,

−⊤ if c = b,

0 otherwise.

Formally, one has to show that δ is well-defined on X , i.e. it

satisfies δ((a, b)− (b, a), c) = −δ((b, a)− (a, b), c). Similarly

for the final function, we define it for generators:

F (⊥) = 0 F (⊤) = 1 F (a) = 0 F ((a, b)− (b, a)) = 0.

The initial vector is simply v0 = ⊥. This automaton accepts

the same language L and is in fact minimal. �

Call an orbit-finitely spanned automaton basic if its state

vector space has a basis. For a basic automaton an equivalent

weighted orbit-finite automaton can be easily produced, by

using the basis as the states. Therefore, to complete the proof

of Theorem VII.2, we prove the following:

Lemma D.2 For every orbit-finitely spanned automaton, there

is a basic one that recognizes the same weighted language.

Proof

Consider an orbit-finitely spanned automaton A with a state

space V is spanned by an orbit-finite set Q. Define a polyno-

mial orbit-finite set, see [6, Definition 1], to be any set which

is a finite disjoint union of sets of the form Ak. As for every

orbit-finite set, there exists a polynomial orbit-finite set P with

a surjective finitely supported function from P to Q. Extend

this function to surjective a linear map

h : LinP → V.

We will define a orbit-finitely spanned automaton B with

vector space LinP so that h becomes a homomorphism of

orbit-finitely spanned automata, that is: a finitely supported

linear map between the underlying vector spaces, which is

consistent with the initial states, transition functions and final

functions in the expected way, see [3, Sec. 6.2]. If two orbit-

finitely spanned automata are connected by a homomorphism,

then they recognize the same weighted language. Therefore, to

prove the lemma it remains to define the initial state, transition

function and final function in B so that h is a homomorphism.

For the initial state in B we choose some vector that is

mapped by h to the initial state of A, and for the final function

we use the composition of h and the final function of A. The

transition function is defined using the following claim.

Claim D.3 There is a finitely supported function γ which

makes the following diagram commute

P × Σ
γ

//

(h,id)

��

LinP

h

��
V × Σ

transition function of A
// V

Proof

Consider the composition of the following relations: the func-

tion (h, id), the transition function of A, and the inverse of h.

This is a finitely supported binary relation

R ⊆ (P × Σ)× LinP

such that every element of P × Σ is related with at least one

element of LinP (thanks to the surjectivity of h). By the Uni-

formization Lemma from [6, Lemma 20], there exists a finitely

supported function γ which is contained in R, thus proving

the lemma. It is worth pointing out that the Uniformization

Lemma changes supports: even if R is equivariant, it could be

the case that γ needs non-empty support. �

Extend, using linearity, the function γ from the claim to a

finitely supported function

γ̄ : LinP × Σ → LinP

which is a linear map for every fixed input letter; the resulting

function can then be used as the transition function for B.

The commuting diagram in the claim ensures that h is a

homomorphism. �
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