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Abstract—We develop a fixed-point extension of quantitative
equational logic and give semantics in one-bounded complete
quantitative algebras. Unlike previous related work about
fixed-points in metric spaces, we are working with the notion
of approximate equality rather than exact equality. The result
is a novel theory of fixed points which can not only provide
solutions to the traditional fixed-point equations but we can
also define the rate of convergence to the fixed point. We show
that such a theory is the quantitative analogue of a Conway
theory and also of an iteration theory; and it reflects the metric
coinduction principle. We study the Bellman equation for a
Markov decision process as an illustrative example.

1. Introduction

Quantitative equational logic was introduced in [1], [2] as
a way of generalizing the standard concept of equational
logic to encompass the concept of approximate equality.
Essentially, it allows one to use a logical framework to
perform metric reasoning. The present work is an extension
of that formalism to reason about fixed points of functions.
Fixed point theory is the mathematical way to understand
recursion and iteration [3], [4] and was extensively studied
in a partial order setting based ultimately on Kleene’s fixed
point theorem [5] or some other related fixed-point theorem
like the Knaester-Tarski theorem. In this paper we develop
the metric version of fixed point theory based on the Banach
fixed point theorem, which says that contractive functions
on a bounded complete metric space have unique fixed
points.

We follow the categorical axiomatization of fixed-point the-
ories by Simpson and Plotkin [6], which focusses on the
Conway theories developed independently by Bloom and
Esik [7] and by Hasegawa [8]. We develop an axiomatization
that satisfies quantitative analogues of their formulations. We
are also able to leverage the completeness proof from [1] to
obtain a completeness result in our case. We also give an
axiomatization of fixed-point operators and show how one
can reason about convergence and convergence rates. We
study the relation to a metric coinduction principle due to
Kozen [9], [10]: our axiomatization is the metric analogue
of Park induction and the Kozen coinduction principle is
the quantitative version of Scott induction, see [11] for a

comprehensive presentation of these. Finally we develop
an extended example: the Bellman equation for Markov
Decision Processes [12] which plays a central role in re-
inforcement learning [13].

We summarize very briefly the formalism introduced in [1],
[2]. The equality symbol = is annotated by a (small) real
number ε so that one can write approximate equality state-
ments of the form: s =ε t, where s, t are terms of some
theory. Intuitively, one thinks of this as meaning that s and
t are “within ε” of each other. The rules of quantitative
equational logic are analogous to the rules for ordinary
equational logic except for an infinitary “continuity” rule
that allows one to infer s =ε t from s =εi t where
the εi converge to ε from above. One can then introduce
quantitative algebras which are algebras that have metric
structure and in which all the operations are nonexpansive.
A completeness theorem is established and it is shown that
free algebras can be defined and one can relate theories to
monads on suitable categories of metric spaces. One of the
main examples given in [1] is related to spaces of probability
distributions with the Kantorovich metric.

The authors of [1] have used extended metrics: metrics that
can take on infinite values. We have used 1-bounded metrics
in this paper instead. From the topological point of view
these are the same: by using the standard transformation
d′(x, y) = d(x, y)/(1 + d(x, y)) one can transform the
extended metric d into a 1-bounded metric with the same
topology. Interestingly, under this transformation a contrac-
tive function in the 1-bounded sense becomes a function that
moves all points into the same connected component in the
extended metric sense.

There is a comprehensive study of iteration theories [7]
which develops a variety of examples including metric fixed
point theories. We will comment on this and other interesting
related work [9], [14] at the end of this paper. For now we
remark that other treatments of metric fixed-point theories
are based on the traditional notion of equality and hence do
not allow quantitative reasoning about convergence. There
are a number of examples from [1], such as barycentric al-
gebras, that cannot be done without the quantitative setting.
We also have new examples such as the combination of
probabilistic choice and nondeterminism.
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In order to carry out our program we are forced to keep
track not just of the fact that functions are contractive but
exactly how contractive they are and, furthermore, we need
to track this information for each input to the function. So
the traditional notion of arity needs to be enriched with
quantitative information that we call Banach patterns. The
details are, in some places, intricate but the intuition will
be, we hope, clear. We have not seen any related work that
keeps track of this kind of quantitative information.

2. Notation

In what follows we will often manipulate tuples of real num-
bers. These encode the contractiveness information that we
need in order to be able to define fixed points, and are useful
for managing sets of variables in complex terms.

If α = 〈α1, .., αn〉, β = 〈β1, .., βm〉 are tuples for n ≥ 1
and i ≤ n, let |α| = n and we use the following notations
α \ i = 〈α1, ..αi−1, αi+1, ..αn〉,
for x ∈ R, α[x/i] = 〈α1, ..αi−1, x, αi+1, ..αn〉 and
α[β/i] = 〈α1, ..αi−1, β1..βm, αi+1, ..αn〉.
If we have a tuple α, we denote its i-th component by
αi.

Let Un denote the set of all tuples α = 〈α1..αn〉 ∈ [0, 1]n

s.t.
∑

1≤i≤n

αi ≤ 1. And let U =
⋃
i≥0

Ui.

For arbitrary α, α1, . . . , αn, 〈λ1, .., λn〉 ∈ Un and r ≤ 1, we
define the following operations:

1) Scalar multiplication. rα = 〈rα1, . . . , rαn〉

2) Subconvex sum.
∑

i λiα
i = 〈

∑
i λiα

i
1, ..,

∑
i λnα

i
n〉

3) Contraction. For i < j, α[i < j] = (α \ j)[αi + αj/i].

4) Iteration. For i ≤ n s.t. αi < 1, µi.α = 1
1−αi (α \ i).

2.1. Banach patterns

In what follows we introduce the concept of Banach pattern
that will be used to characterize nonexpansive functions on
metric spaces. Recall that if (A, dA) and (B, dB) are metric
spaces, then f : (A, dA)n −→ (B, dB) is a nonexpansive
function if for arbitrary 〈a1, .., an〉, 〈b1, .., bn〉 ∈ An,

dB(f(a1..an), f(b1..bn)) ≤ max
i≤n

dA(ai, bi).

Definition 2.1. Let f : (A, dA)n −→ (B, dB) be a func-
tion between two metric spaces. f admits Banach pat-
terns if there exists a set θ ⊆fin Un such that for any
〈a1..an〉, 〈b1..bn〉 ∈ An,

dB(f(a1..an), f(b1..bn)) ≤ max
α∈θ

∑
i≤n

αid
A(ai, bi).

In this case, θ is a Banach pattern for f , and we write
f : n : θ.

Example 2.2. Let (M,d) be a 1-bounded metric space and
∆(M,d) the space of Borel probability distributions on
(M,d) metrized with the Kantorovich metric
Kd : ∆(M,d)2 −→ [0, 1].

Consider, for ε ∈ [0, 1], the barycentric operation on
∆(M,d), +ε : ∆(M,d)2 −→ ∆(M,d) defined for arbitrary
µ, ν ∈ ∆(M,d) by

µ+ε ν = εµ+ (1− ε)ν.

In [1] it has been demonstrated that for arbitrary
µ, µ′, ν, ν′ ∈ ∆(M,d),

Kd(µ+ε µ
′, ν +ε ν

′) ≤ εKd(µ, µ′) + (1− ε)Kd(ν, ν′),

hence, +ε has Banach pattern the singleton {〈ε, 1− ε〉}.

Example 2.3. For another example where the pattern is
not a singleton we consider the non-deterministic choice
function on ∆, ⊕ : ∆(M,d)2 −→ H(∆(M,d)), where
for a metric space X , HX denotes the space of compact
subsets equipped with the Hausdorff metric. The function
⊕ is nonexpansive in the Hausdorff metric defined for Kd,
[1]. Being nonexpansive in this sense, this function satisfies
for arbitrary µ, µ′, ν, ν′ ∈ ∆(M,d),

Kd(µ⊕ µ′, ν ⊕ ν′) ≤ max{Kd(µ, ν),Kd(µ′, ν′)}.

In this case the Banach pattern is not a singleton, but we
have ⊕ : 2 : {〈0, 1〉, 〈1, 0〉}.

Example 2.4. For a third example, we consider, the function

f : ∆(M,d)3 −→ ∆(M,d)

defined, for arbitrary µ, ν, η ∈ ∆(M,d) by

f(µ, ν, η) = (µ+ε ν)⊕ η,

for some ε ≤ 1. We note that for arbitrary µ, ν, η, µ′, ν′, η′ ∈
∆(M,d),

Kd(f(µ, ν, η), f(µ′, ν′, η′))

≤ max{εKd(µ, µ′) + (1− ε)Kd(ν, ν′),Kd(η, η′)},

and in this case we have f : 3 : {〈ε, 1− ε, 0〉, 〈0, 0, 1〉}.

Observe that a function f : (A, dA)n −→ (B, dB) is nonex-
pansive iff it admiths Banach patterns. Indeed, if f is nonex-
pansive, then {〈1, 0, ..0〉, 〈0, 1, 0.., 0〉, .., 〈0, .., 0, 1〉} ⊆ Un is
a Banach pattern for it, the one encoding exactly the non-
expansiveness property. And reverse, if f admits a Banach
pattern θ ⊆fin Un, then nonexpansivess derives from

max
α∈θ

∑
i≤n

αid
A(ai, bi) ≤ max

i≤n
dA(ai, bi).

However, often a Banach pattern brings more information
about the nonexpansiveness of a function.

We will add Banach patterns to the algebraic signatures
over the category of metric spaces when we will define
quantitative algebras with fixed points.



It is useful to define some operations on patterns, in addition
to the set theoretic operations. Let θ, θ1..θn ⊆ Un, λ ≤ 1
and 〈λ1, .., λn〉 ∈ Un.

1) Scalar multiplication. λθ = {λα | α ∈ θ} ⊆ Un.

2) Subconvex sum.
∑
i≤n

λiθ
i = {

∑
i≤n

λiα
i | αi ∈ θi}.

3) Contraction. θ[i < j] = {α[i < j] | α ∈ θ} ⊆ Un−1.

4) Composition. For ζ1..ζn ∈ Um,

θ ◦ 〈ζ1..ζn〉 = {
∑
i≤n

αiβ
i | α ∈ θ, βi ∈ ζi} ⊆ Um.

5) Fixed point. If for all α ∈ θ, αi < 1, let

µi.θ = {µi.α | α ∈ θ} ⊆ Un−1.

Whenever θ satisfies [∀α ∈ θ, αi < 1], we say that θ is
i-contractive and denote this by θ . i.

We also generalize the notation we introduced for tuples and
for θ ⊆ Un, ζ ⊆ Um and i ≤ n, let
θ \ i = {α \ i | α ∈ θ} ⊆ Un−1 and
θ[ζ/i] = {α[β/i] | α ∈ θ, β ∈ ζ} ⊆ Un+m−1.

3. Quantitative Equational Reasoning

In this section we recall the main concepts of quantitative
equational reasoning and quantitative algebras [1].

3.1. Quantitative Equational Theory

We start with a signature Ω, which is a set of function
symbols of finite arity (constants have arity 0). We write
f : n ∈ Ω for a function f of arity n ≥ 0.

Given a set X , let Ω̂X be the Ω-algebra generated by X ,
i.e., the set of all terms constructed on top of X by using the
functions in Ω. Note that this set comes already equipped
with the structure of an Ω-algebra.

For a set X of variables, one defines quantitative equations1

over Ω̂X , which have the form t =ε s for t, s ∈ Ω̂X and
ε ∈ R+. We use E(Ω̂X) to denote the set of quantitative
equations on Ω̂X .

Let J (Ω̂X) be the class of quantitative judgements on Ω̂X ,
which are constructions of the form

{si =εi ti | i ∈ I} ` s =ε t,

where I is a countable (possible empty) index set,
si, ti, s, t ∈ Ω̂X and εi, ε ∈ R+ for all i ∈ I .
If Γ ` φ ∈ J (Ω̂X), where Γ ⊆ E(Ω̂X) and φ ∈ E(Ω̂X),
we refer to the elements of Γ as the hypotheses and to φ as
the conclusion of the quantitative judgement.

1. In [1] quantitative equations are defined for ε ∈ Q+. We chose to
avoid this restriction here in order to get a simpler axiomatization. However,
all these developments work properly if we restrict to rational indices.

Definition 3.1 (Quantitative Equational Theory). Given a
signature Ω and a set X of variables, the deductive closure
of a set U of quantitative judgements on Ω̂X is the smallest
set U of quantitative judgements on Ω̂X such that U ⊆
U , and for arbitrary t, s ∈ Ω̂X , ε, ε′ ∈ R+, f : |I| ∈ Ω,
Γ,Θ ⊆ E(Ω̂X) and s = (si)i∈I , t = (ti)i∈I ⊆ Ω̂X and any
substitution σ

(Refl) ` t =0 t ∈ U ,
(Symm) {t =ε s} ` s =ε t ∈ U ,
(Triang) {t =ε u, u =ε′ s} ` t =ε+ε′ s ∈ U ,

(Max) {t =ε s} ` t =ε+ε′ s ∈ U , for all ε′ > 0 ,

(NExp) {ti =ε si | i ∈ I} ` f(t) =ε f(s) ∈ U ;

and U is closed under the following rules

(Cont)
Γ ` s =ε′ t for all ε′ > ε

Γ ` s =ε t
,

(Subst)
Γ ` t =ε s

σ(Γ) ` σ(t) =ε σ(t)
,

(Assumpt)
t =ε s ∈ Γ

Γ ` t =ε s
,

(Cut)
Θ ` t =ε s, Γ ` Θ

Γ ` t =ε s
.

where Γ ` Θ means that Γ ` φ for all φ ∈ Θ. A quantitative
equational theory of signature Ω over X is a set U of
quantitative judgements on Ω̂X such that

U = U .

Definition 3.2 (Quantitative Algebra). Given a signature Ω,
a quantitative algebra over Ω is a tuple A = (A,ΩA, dA),
where (A,ΩA) is an algebra of signature Ω, (A, d) is a
metric space and any f : |I| ∈ Ω is nonexpansive.

A homomorphism of quantitative algebras is a non-
expansive Ω-homomorphism (of Ω-algebras).

Given a quantitative algebra A = (A,ΩA, dA) of signature
Ω and a set X of variables, an assignment on A is a
function α : X −→ A. It can be canonically extended to
a homomorphism of Ω-algebras α : Ω̂X −→ A by defining,
for any f : |I| ∈ Ω and any (ti)i∈I ⊆ Ω̂X ,

α(f((ti)i∈I)) = fA((α(ti))i∈I).

We denote by Ω[X|A] the set of assignments on A.

Definition 3.3 (Satisfaction). Let A = (A,ΩA, dA) be an
Ω-quantitative algebra and {si =εi ti | i ∈ I} ` s =ε t a
quantitative judgement on Ω̂X . A satisfies this quantitative
judgement under the assignment α ∈ Ω[X|A], written

{si =εi ti | i ∈ I} |=A,α s =ε t,

if [∀i ∈ I, dA(α(ti), α(si)) ≤ εi] implies dA(α(s), α(t)) ≤
ε.



We say A satisfies the quantitative judgement, or it is a
model of the quantitative judgement, written

{si =εi ti | i ∈ I} |=A s =ε t,

if

∀α ∈ Ω[X|A], {si =εi ti | i ∈ I} |=A,α s =ε t.

Similarly, for a set of quantitative judgements (or a quanti-
tative equational theory) U , we say that A is a model of U
if A satisfies every element of U ; for simplifying notation
we denote this by A |= U . Let QA(U) denote the set of
models of U . If M is a set of Ω-quantitative algebras and
Γ ` φ ∈ J (Ω̂X), we write Γ |=M φ whenever Γ |=A φ
for all A ∈ M. In [1] the following completeness result is
established.

Theorem 3.4 (Completeness). Given a quantitative equa-
tional theory U over Ω̂X ,

Γ |=QA(U) φ iff Γ ` φ ∈ U .

3.2. Limits in quantitative theories

Although not explicit in [1], quantitative equational theories
have built in the mechanism for equational reasoning about
convergence: this will be useful to us.

Definition 3.5. In general, given a quantitative equational
theory U over Ω̂X , we say that a sequence (si)i≥1 ⊆ Ω̂X
is convergent in U if there exists s ∈ Ω̂X such that

∀ε > 0 ∃k ∀i ≥ k, ` si =ε s ∈ U .

We say that s is a limit of the sequence (si)i≥1.

It is easy to prove the following using (Triang), (Symm) and
(Cont).

Proposition 3.6. Let U be a quantitative equational theory
over Ω̂X . If the sequence (si)i≥1 ⊆ Ω̂X is convergent in
U and it has both s ∈ Ω̂X and t ∈ Ω̂X as limits, then

` s =0 t ∈ U .

This motivates us to denote the limit of the sequence (si)i≥1
by limi si.

We can construct convergent sequences of terms by applying
non-expansive functions to convergent sequences.

Lemma 3.7. Let U be a quantitative equational theory over
Ω̂X , f : n, g : m ∈ Ω̂X and (sk)k≥1 ⊆ Ω̂X be a convergent
sequence in U . Then for x ⊆ Xn and y ∈ Xm,
(1). (g(y[sk/j]))k≥1 is a convergent sequence in U and

` lim
k
g(y[sk/j]) =0 g(y[lim

k
sk/j]) ∈ U .

(2). (f(x[g(y[sk/j])/i]))k≥1 is convergent in U and

` lim
k
f(x[g(y[sk/j])/i]) =0 f(x[lim

k
g(y[sk/j])/i]) ∈ U .

Proof. (1). Let s = lim
k
sk. Hence, ∀ε > 0 ∃p ∀k ≥ p,

` sk =ε s ∈ U . Applying (NExp), we get that
∀ε > 0 ∃p ∀i ≥ p, ` g(y[sk/j]) =ε g(y[s/i]) ∈ U , i.e.,
` limk g(y[sk/j]) =0 g(y[limk sk/j]) ∈ U .
(2). After observing that f(x[g(y)/i]) is nonexpansive, we
conclude, as above, that (f(x[g(y[sk/j])/i]))k≥1 is conver-
gent in U . Next, we apply (1) and prove that
` limk f(x[g(y[sk/j])/i]) =0 f(x[g(y[s/j])/i]) ∈ U and
` f(x[limk g(y[sk/j])/i]) =0 f(x[g(y[s/j])/i]) ∈ U .
(Triang) concludes the proof.

These are easy proofs, the point of including them is to show
that standard facts about the continuity of nonexpansive
functions can be stated and proved within the framework
of quantitative equational logic.

4. Banach Quantitative Theories

In this section we identify a particular class of quantitative
equational theories that we will call Banach theories. Later
we will see that the Banach theories are the ones for which
we can define fixed-point operators.

A Banach signature Ω is a signature that assigns to each
function symbol f an arity n ∈ N and a Banach pattern
θ ∈ Un; we write f : n : θ. In particular, for constants
c ∈ Ω, we have that c : 0 : {〈0〉} ∈ Ω.

We extend the concept of Banach pattern from the elements
of a Banach signature Ω to all the terms of Ω̂X by defining,
for arbitrary f(x) ∈ Ω̂X with x ∈ Xn and f : n : θ; and
any g1(y), . . . , gn(y) ∈ Ω̂X with y ∈ Xm and gi : m : ζi
for i ≤ n, the following Banach patterns for contraction and
term composition.

1) If i < j ≤ n and h(x \ j) = f(x[xi/j]), then

h : n− 1 : θ[i < j].

2) If h(y) = f(g1(y), .., gn(y)), then

h : m : θ ◦ 〈ζ1..ζn〉.

With this definition, we will write t : n : θ ∈ Ω̂X to describe
any n-ary term with Banach pattern θ that can be defined
in Ω̂X . If, in addition θ . i, we write

f : n : θ . i ∈ Ω̂X.

The reader might usefully think of these definitions first in
the case where the Banach patterns are all singletons, in
which case these formulas can be seen as a quantitative
analogue of how composition would be defined in operads
(multicategories).

Definition 4.1 (Banach closure). Consider a quantitative
equational theory U over a set X of variables and a Banach
signature Ω. The Banach closure of U is the smallest quan-
titative equational theory UB that contains U together with
the axiom

(1-bound) ` x =1 y ,



and it is closed under the following rule stated for arbitrary
εi ≤ 0 for i ≤ n.

(Banach)
f : n : θ ∈ Ω

{xi =εi yi | i ≤ n} ` f(x1 . . . xn) =δ f(y1 . . . yn)
,

where δ = max
α∈θ

∑
i≤n

αiεi.

Definition 4.2 (Banach theory). A quantitative equational
theory U over Ω̂X is a Banach theory if Ω is a Banach
signature and

U = UB .

The following two results guarantee that the way we defined
the patterns for composition and contraction respects the
Banach rule.

Lemma 4.3. Let U be a Banach theory over Ω̂X and t : n :
θ ∈ Ω̂X . Then, for arbitrary εi ≥ 0 for i ≤ n,

{xi =εi yi | i ≤ n} ` t(x1 . . . xn) =δ t(y1 . . . yn) ∈ U ,

where δ = max
α∈θ

∑
i≤n

αiεi.

Corollary 4.4. Let U be a Banach theory over Ω̂X and
A = (A,Ω, d) ∈ QA(U). Then, for any term t : n : θ ∈ Ω̂X
and any a, b ∈ An,

d(tA(a), tA(b)) ≤ max
α∈θ

∑
i≤n

αid(ai, bi).

5. Quantitative Fixed-Point Judgements

In this section we show how one can add fixed-point op-
erators, which are essentially second-order constructions, to
any Banach theory.

Definition 5.1. Let Ω be a Banach signature and X a set of
variables. The fixed-point extension of Ω̂X is the set

Ω̂µX =
⋃
i≥0

Ωi,

where Ωi is defined inductively on i ≥ 0 as follows:
Ω0 = Ω̂X,
Ωk+1 = {µi.f : (n− 1) : µi.θ | f : n : θ . i ∈ Ωk}.

Let J (Ω̂µX) be the set of judgements on Ω̂µX , i.e., judge-
ments involving quantitative equations between terms in
Ω̂µX . In this way we can speak of quantitative equational
theories over Ω̂µX , respecting the requirements of Defini-
tion 3.1.

Definition 5.2 (Fixed-point extension of Banach theory).
Given a Banach theory U over Ω̂X , its fixed-point exten-
sion Uµ is the smallest quantitative equational theory over

Ω̂µX that contains U and it is closed under the fixed-
point approximation rule (Approx) stated below for arbitrary
t, u ∈ Ω̂µX , s ∈ (Ω̂µX)n, and ε ≥ 0.

(Approx)
t : n : θ . i ∈ Ω̂µX

u =ε t(s[u/i]) ` u = ε
1−a

(µi.t)(s \ i)
,

where a = max{αi | α ∈ θ}.

Note that since t : n : θ . i, a < 1.

When we take a fixed point, the resulting function of the
remaining arguments may not permit further fixed point
operations to be performed. The Banach patterns allows us
to track exactly when we can and cannot take further fixed
points.

Notation. To simplify the presentation in what follows, it
is useful to adopt a syntactic convention that will allow us
to focus on certain variables in terms with many variables,
while treating the rest of them as parameters. If f(x) ∈ Ω̂µX
is a function of arity n with free variables x = 〈x1..xn〉,
and we need to focus on its i-th variable xi, we write fLxiM.
For instance if s ∈ Ω̂µX , fLsM denotes f(x[s/i]). Similarly,
if the focus is on two variables, say xi, xj for i < j ≤ n, we
write fLxi, xjM. We will use this notation in what follows
any time there is no danger of confusion. It will allow us to
avoid carrying extra variables around in the syntax.

Given a Banach signature Ω and a set X of variables, the
concept of iteration of a function on its i-th variables, i ≤ n,
can be introduced for an arbitrary function f : n ∈ Ω̂µX .
Let x = 〈x1 . . . xn〉 ∈ Xn and s ∈ Ω̂µX . We define:

[f ]1i (x[s/i]) = f(x[s/i]),

[f ]k+1
i (x[s/i]) = f(x[[f ]ki (x[s/i])/i]).

With the previous notation, we can denote the k-th iteration
on the i-th variable of f on s by [f ]ki LsM.

We conclude this section with two results regarding fixed-
point quantitative theories. The theorem below encodes, in
terms of quantitative equational logic, the fact that in a
Banach theory (we will see later that they are interpreted
in 1-bounded complete metric spaces) the sequence of it-
erations of a function f on its i-th contractive variable,
where the function is contractive, is a Cauchy sequence that
has as limit µi.f . Moreover, and here is the novelty that
quantitative setting provides, we can monitor ”the speed” of
the convergence, and this provides us a powerful tool for
building approximation theories.

Theorem 5.3 (Banach). Let U be a Banach theory over Ω̂X
and f : n : θ . i ∈ Ω̂µX . Let a = max{αi | α ∈ θ}. We
focus on the i-th variable of f , denoted fLxiM. Then,
(1). y =ε z ` [f ]ki LyM =εak [f ]ki LzM ∈ Uµ;
(2). y =ε fLyM ` [f ]ki LyM =

εak 1−al
1−a

[f ]k+li LyM ∈ Uµ;

and for any s ∈ Ω̂µX and any t ∈ (Ω̂µX)n,



(3). ∀ε > 0 ∃k ∀m ` [f ]ki (t[s/i]) =ε [f ]k+mi (t[s/i]) ∈ Uµ;
(4). ∀ε > 0 ∃k ∀m ` [f ]k+mi (t[s/i]) =ε µi.f(t \ i) ∈ Uµ.

Proof. A consequence of the (Banach) rule is that
y =ε z ` fLyM =εa fLzM ∈ Uµ. We apply this repeatedly to
get (1) and use (Triang) to get (2).
To prove (3), we start from ` y =1 fLyM ∈ Uµ which we get
from (1-bound) and apply (2) observing that since a < 1,
ak 1−al

1−a can be made arbitrarly small for any l by choosing
a sufficiently large k.
For (4) we first observe that from (3) we get that ∀ε > 0
∃k ∀m, ` [f ]k+mi (t[s/i]) =ε(1−a) [f ]k+m+1

i (t[s/i]) ∈
Uµ. We use this in (Approx) instantiated with u =
[f ]k+mi (t[s/i]) and ε = ε

1−a and we get (4).

We can talk about convergent sequences in Ω̂µX , in the
same way that we discussed them in quantitative algebras.
Note that the previous theorem provides an important limit
argument: namely the fixed point is obtained as the limit
of the iterates. This is, of course, how the Banach fixed-
point theorem is supposed to work. These results show
how Banach-style reasoning is internalized in quantitative
logic.

Corollary 5.4. Let U be a Banach theory over Ω̂X and
f : n : θ . i ∈ Ω̂µX . Then for any t ∈ (Ω̂µX)n and any
s ∈ Ω̂µX , ([f ]ki (t[s/i]))k≥1 is a convergent sequence in Uµ
and moreover,

` lim
k

[f ]ki (t[s/i]) =0 µi.f(t \ i) ∈ Uµ.

The next theorem shows that µi.f is indeed the unique
parametric fixed point of f in its i-th variable.

Theorem 5.5 (Parametric fixed-point). Let U be a Banach
theory over Ω̂X and f : n : θ . i ∈ Ω̂µX . Then, for any
s ∈ Ω̂µX and any t ∈ (Ω̂µX)n,
(1). ` µi.f(t \ i) =0 f(t[µi.f(t \ i)/i]) ∈ Uµ;
(2). s =0 f(t[s/i]) ` s =0 µi.f(t \ i) ∈ Uµ.

Proof. Let a = max{αi | α ∈ θ}.
(1). From Theorem 5.3 (4), ∀ε > 0 ∃k ∀m,
` [f ]k+m−1i (t[s/i]) = ε

2a
µi.f(t \ i) ∈ Uµ. And applying

Theorem 5.3 (1) to it we get
` [f ]k+mi (t[s/i]) = ε

2
f(t[µi.f(t \ i)/i]) ∈ Uµ.

On the other hand, Theoren 5.3 (4) also guarantees that
` [f ]k+mi (t[s/i]) = ε

2
µi.f(t \ i) ∈ Uµ.

We apply (Triang) to the previous two equations and get
that for any ε > 0,
` µi.f(t \ i) =ε f(t[µi.f(t \ i)/i]) ∈ Uµ. Now (Cont)
concludes the proof.
(2). Now we instantiate (Approx) with u = s and ε = 0.

5.1. Semantics of fixed-point judgements

The fixed-point quantitative theories will be interpreted
on quantitative algebras over 1-bounded complete metric
spaces.

Let Ω be a Banach signature and C(Ω) the category of
Ω-quantitative algebras over 1-bounded complete metric
spaces. If U is a quantitative equational theory over Ω̂X ,
let C(U) denote the class of models of U in C(Ω).

Let A = (A,Ω, d) ∈ C(Ω), f : An −→ A, a ∈ A and i ≤ n.
We define the sequence of iterations of f on a for its i-th
variable, which is the family of functions [f ]ki : An−1 −→ A
for k ∈ N, inductively as follows, where x = 〈x1..xn〉 is a
sequence of variables

[f ]1i (x \ i) = f(x[a/i]),

[f ]k+1
i (x \ i) = f(x[[f ]ki (x \ i)/i]).

We know from Banach’s fixed-point theorem [15] that if f
is contractive in its i-th variable, then the sequence ([f ]ki )
is Cauchy and has a unique limit, which can be achieved
by iterating f on any element of A. Let f∗i : An−1 −→ A
denote this limit; this is a function of the remaining n −
1 paramemeters and gives the fixed point in the iterated
position.

We will use this fact to interpret any fixed-point term in A.
Suppose that t : n : θ . i ∈ Ω̂µX . Then, tA : An −→ A
is max{αi | α ∈ θ}-contractive in its i-th variable. Hence,
applying Banach Theorem we have that there exists

[tA]∗i : An−1 −→ A.

We use this to interpret µi.t in A by defining

(µi.t)A = [tA]∗i .

In this way, all the terms in Ω̂µX can be interpreted in
A. And this allows us to interpret any quantitative equation
and any quantitative judgement by canonically extending the
usual definition as follows.

Given an assignment ι ∈ Ω[X|A] and a tuple z = 〈z1..zn〉 ∈
Xn, let ι(z) = 〈ι(z1)..ι(zn)〉. With this notation, we extend
ι canonically, from Ω̂X to Ω̂µX , by letting for any µi.t(z \
i) ∈ Ω̂µX ,

ι(µi.t(z \ i)) = [tA]∗i (ι(z \ i)).

Definition 5.6 (Satisfaction for fixed-point judgements).
Let Ω be a Banach signature and A ∈ C(Ω). Let

{si =εi ti | i ∈ I} ` s =ε t ∈ J (Ω̂µX).

Then, for ι ∈ Ω[X|A], we write

{si =εi ti | i ∈ I} |=A,ι s =ε t,

if [∀i ∈ I, dA(ι(ti), ι(si)) ≤ εi] implies dA(ι(s), ι(t)) ≤ ε.
Similarly, for any Γ ` φ ∈ J (Ω̂µX),

Γ |=A φ iff ∀ι ∈ Ω[X|A], Γ |=A,ι φ

and for a set M ⊆ C(Ω),

Γ |=M φ iff ∀A ∈M, Γ |=A φ.



The next theorem states that for a Banach theory the set of
its models coincides with the set of models of its fixed-point
extension.

Theorem 5.7. Let U be a Banach theory over Ω̂X and Uµ
its fixed-point extension. Then, for any A ∈ C(Ω),

A |= U iff A |= Uµ.

Proof. The right-to-left implication follows from U ⊆ Uµ.
We prove the left-to-right implication as follows. It is suffi-
cient to demonstrate that any A ∈ C(Ω) satisfies (Approx).
Let f : n : θ . i ∈ Ω̂µX and a = max{αi | α ∈ θ}. We
need to prove that for any t ∈ (Ω̂µX)n, any s ∈ Ω̂µX and
any ε ≥ 0, s =ε f(t[s/i]) |=A s = ε

1−a
µi.f(t \ i).

Let ι ∈ Ω[X|A] and let σ = ι(s) and τ = ι(t).
Suppose that d(σ, f(τ [σ/i])) ≤ ε. Let m = µi.f(τ \ i).
Then, m = f(τ [m/i]). We have
d(σ,m) ≤ d(σ, f(τ [σ/i])) + d(f(τ [σ/i]),m)
= d(σ, f(τ [σ/i])) + d(f(τ [σ/i]), f(τ [m/i]))
≤ ε+ ad(σ,m). Hence, d(σ,m) ≤ ε

1−a implying that
s =ε f(t[s/i]) |=A,ι s = ε

1−a
µi.f(t \ i). This concludes the

proof.

Hence, the class of models of U and of Uµ coincide in the
category of 1-bounded complete metric spaces.

Remark 5.8. Note that all the terms in Ω̂µX are nonex-
pansive in all their variables and with well-defined Banach
patterns. Consequently, we can think of theses terms as ele-
ments of a larger Banach signature Ω̂µ that contains all the
terms as function symbols, and this is a ”legal” quantitative
algebra signature. Similarly, one can think of the fixed-point
extension Uµ of a quantitative equational theory U over a
Banach signature as a quantitative equational theory over
the signature Ω̂µX as originally defined in [1].

This remark together with the result of Theorem 5.7 al-
lows us to conclude this section with a completeness re-
sult.

Theorem 5.9 (Completeness for fixed-point theories). Let
U be a Banach theory over Ω̂X and Uµ its fixed-point
extension. Then for any fixed-point quantitative judgement
Γ ` φ ∈ J (Ω̂µX),

Γ |=C(U) φ iff Γ ` φ ∈ Uµ.

Proof. Following the Remark 5.8, Ω̂µ is a Banach signature
and Uµ is a quantitative equational theory over Ω̂µX . From
the completeness result for quantitative algebras, stated
in 3.4 and proven in [1], we get that

Γ |=C(Uµ) φ iff Γ ` φ ∈ Uµ.

Applying Theorem 5.7, which asserts that C(U) = C(Uµ),
we conclude the proof.

6. Quantitative Fixed-Point Theories

In this section we investigate the relation between the
fixed-point extension of Banach theories and the traditional
concepts of Conway theories and iteration theories [6],
[7].

Notation. In what follows, for a term f : n : θ . i and
a sequence x = 〈x1..xn〉 of variables, we will also use the
usual variable-binding fixed-point syntax and write µxi.f(x)
to denote µi.f(x \ i). This notation allows us to present a
series of results in a more familiar format.

6.1. Quantitative Conway theories

The Conway theories [6], [7], are defined by two properties
Dinaturality and Diagonal property. We prove here that
quantitative versions of these can be proven in any fixed-
point Banach theory.

Lemma 6.1. Let U be a Banach theory over Ω̂X and let
f : p : θ . i, g : q : ζ . j ∈ Ω̂µX . We focus on the i-th
variable of f , fLxiM and on the j-th variable of g, gLyjM.
Then, for any s ∈ Ω̂µX we have that ∀ε > 0 ∃n ∀m,

` [fLgLyjMM]n+mi+j−1(s) =ε fL[gLfLxiMM]n+mi+j−1(s)M ∈ Uµ.

Proof. Let a = max{αi | α ∈ θ}, b = max{βj | β ∈ ζ}.
From (1-bound) we have ` s =1 fLsM ∈ Uµ and applying
(Banach) to this, we conclude ` gLsM =b gLfLsMM ∈ Uµ.
We again apply (Banach) to this last equation and get
` fLgLsMM =ab fLgLfLsMMM ∈ Uµ. Hence,
` [fLgLyjMM]1i+j−1(s) =ab fL[gLfLxiMM]1i+j−1(s)M ∈ Uµ.
Repeating these steps we obtain
` [fLgLyjMM]ni+j−1(s) =(ab)n fL[gLfLxiMM]ni+j−1(s)M ∈ Uµ.
Since ab < 1, we can make (ab)n as small as we want.

This lemma allows us to prove a quantitative version of the
Dinaturality property [6].

Theorem 6.2 (Quantitative Dinaturality). Let U be a Ba-
nach theory over Ω̂X and f : n : θ, g : m : ζ ∈ Ω̂µX such
that θ[ζ/i] and ζ[θ/j] are i + j − 1-contractive. We focus
on the i-th variable of f , fLxiM, and on j-th variable of g,
gLyjM. Then,

` µyj .fLgLyjMM =0 fLµxi.gLfLxiMMM ∈ Uµ.

Proof. Let a = max{αi | α ∈ θ}.
By using Lemma 6.1 and Theorem 5.3 (4) together, we ob-
tain ∀ε > 0 ∃n ∀m such that the following three statements
are satisfied.
` [fLgLyjMM]n+mi+j−1(s) = ε

3
fL[gLfLxiMM]n+mi+j−1(s)M ∈ Uµ,

` [fLgLyjMM]m+n
i+j−1(s) = ε

3
µyj .fLgLyjMM ∈ Uµ and

` [gLfLxiMM]m+n
i+j−1(s) = ε

3a
µxi.gLfLxiMM ∈ Uµ.

The last one implies
` fL[gLfLxiMM]m+n

i+j−1(s)M = ε
3
fLµxi.gLfLxiMMM ∈ Uµ.



Using this one and the first two with (Triang) we conclude
that for any ε > 0,

` µyj .fLgLyjMM =ε fLµxi.gLfLxiMMM ∈ Uµ.

Now we apply (Cont) and complete the proof.

This type of “ε/3-argument” is common in analysis.

With these results in hand we can proceed and prove a
quantitative version of the diagonal property for fixed-point
theories.

Theorem 6.3 (Quantitative Diagonal property). Let U be
a Banach theory over Ω̂X and f : n : θ ∈ Ω̂µX . Suppose
there exists i < j ≤ n s.t. for any α ∈ θ, αi + αj < 1. We
focus on the i-th and j-th variables of f , fLxi, xjM. Then,

` µxi.fLxi, xiM =0 µxj .µxi.fLxi, xjM ∈ Uµ.

Proof. Let s = µxi.fLxi, xiM and tLxiM = µxj .fLxi, xjM.
Theorem 5.5 (1) guarantees that
` s =0 tLs, sM ∈ Uµ and ` tLxiM =0 fLxi, tLxiMM ∈ Uµ.
Let a = max{αi, αj | α ∈ θ}. Then applying (Banach),
xi =ε s ` fLxi, tLxiMM =aε fLs, tLxiMM ∈ Uµ and
tLxiM =δ s ` fLs, tLxiMM =aδ fLs, sM ∈ Uµ. We apply
(Triang) and obtain
{xi =ε s, tLxiM =δ s} ` fLxi, tLxiMM =a(ε+δ) fLs, sM ∈ Uµ.
Now if we instantiate this with xi = s, we get
tLsM =δ s ` fLs, tLsMM =aδ fLs, sM ∈ Uµ. We already know
that
` s =0 tLs, sM ∈ Uµ and ` tLxiM =0 fLxi, tLxiMM ∈ Uµ.
Combining these three, we obtain
tLsM =δ s ` tLsM =aδ s ∈ Uµ. By applying this repeatedly
and eventually using (Cont), we obtain

` tLsM =0 s ∈ Uµ,

which is the desired result.

Theorems 6.2 and 6.3 establish that the fixed-point extension
of any Banach theory is a Conway theory, in the sense of
[6].

6.2. Quantitative Iteration Theories

In this subsection we show that the fixed-point Banach
theories are not only Conway theories, but they are iteration
theories in the sense of [6]; meaning that, in addition to
quantitative dinaturality and the quantitative diagonal prop-
erty, they also satisfy a quantitative version of the amalga-
mation property.

Lemma 6.4. Let U be a Banach theory over Ω̂X and f :
n : θ, g : m : ζ ∈ Ω̂µX such that there exist i < j ≤ n and
u < v ≤ m with ai(1 − bv) + bu < 1 and ai + 2ajbv < 1,
where ai = max{αi | α ∈ θ}, aj = max{αj | α ∈ θ},
bu = max{βu | β ∈ ζ} and bv = max{βv | β ∈ ζ}.
We focus on the variables i and j in f , fLxi, xjM and on
variables u and v in g, gLyu, yvM. Then,

` µx.fLx, µy.gLx, yMM =0 µx.µy.fLx, gLx, yMM ∈ Uµ.

Proof. The inequalities ai(1−bv)+bu < 1 and ai+2ajbv <
1 guarantee that the fixed-points are properly defined.

Observe now that by repeatedly applying 3.7
(2) we can prove that for any two sequences
(sk)k≥1 ⊆ Ω̂µX and (tr)r≥1 ⊆ Ω̂µX convergent in Uµ,
(limr fLsk, gLsk, trMM)k≥1 and (fLsk, lim

r
gLsk, trMM)k≥1 are

convergent in Uµ and moreover,

` lim
k
fLsk, lim

r
gLsk, trMM =0 lim

k
(lim
r
fLsk, gLsk, trMM) ∈ Uµ.

Applying this in the context of Corollary 5.4, we get the
desired result.

With the result of the previous lemma, we are ready to state
the quantitative amalgamation theorem.

Theorem 6.5 (Quantitative amalgamation). Let U be a
Banach theory over Ω̂X and let fi : n : θi ∈ Ω̂µX for
i ≤ n be a family of functions such that for any i 6= j and
any αi ∈ θi and αj ∈ θj ,∑

k≤n

αik =
∑
k≤n

αjk = α < 1.

Suppose there exists g : 1 : {〈α〉} ∈ Ω̂µX s.t. for all i ≤ n,

` fi(x..x) =0 g(x) ∈ Uµ.

If there exists s1, .., sn ∈ Ω̂µX s.t. for all i ≤ n,

` si =0 fi(s1..sn) ∈ Uµ,

then for all i ≤ n,

` si =0 µx.g(x) ∈ Uµ.

Proof. We only sketch the proof for the case n = 2 that is
simpler to present. The general case is proven in the same
way, but one needs to keep track of more indices.

From the hypothesis,
` s1 =0 f(s1, s2) ∈ Uµ and ` s2 = f2(s1, s2) ∈ Uµ.
Let t denote µx.g(x). From Theorem 5.5 we know that
` t =0 g(t) ∈ Uµ.
We will prove that for any i, ` si =0 t ∈ Uµ.

Let φ1(x2) = µx1.f1(x1, x2) and φ2(x1) = µx2.f2(x1, x2).
From the hypothesis we have ` φ1(s2) =0 s1 ∈ Uµ and
` φ2(s1) =0 s2 ∈ Uµ. Consequently, ` s1 = φ1(φ2(s1)) ∈
Uµ. Applying Theorem 5.5, we get then
` s1 =0 µz.φ1(φ2(z)) ∈ Uµ. By extending φ2 we get
further ` s1 =0 µz.φ1(µx2.f2(z, x2)) ∈ Uµ, and after
extending φ1 we get
` s1 =0 µz.µx1.f1(x1, µx2.f2(z, x2)) ∈ Uµ. We use the
quantitative diagonal property and get
` s1 =0 µv.f1(v, µx2.f2(v, x2)) ∈ Uµ. Now we apply
Lemma 6.4 to obtain
` s1 =0 µv.µx2.f1(v, f2(v, x2)) ∈ Uµ.
Lemma 6.4 also gives us2

2. The same sequence of operations can be used n times if the arity of
f is n and get a fixed-point as the one we get here.



` s1 =0 µw.f1(w, f2(w,w)) ∈ Uµ.
From the hypothesis we know that ` t =0 f1(t, t) ∈ Uµ and
` t =0 f2(t, t) ∈ Uµ. Hence, ` t =0 f1(t, f2(t, t)) ∈ Uµ.
Next Theorem 5.5 guarantees that
` t =0 µw.f1(w, f2(w,w)) ∈ Uµ. Combining this with
the previous fixed-point description that we derived for
s1, we get ` s1 =0 t ∈ Uµ. Similarly one can prove
` s2 =0 t ∈ Uµ.

Note that all three theorems have a top-level statement
that is stated in terms of exact equality but the proofs
use approximate equality. In the amalgamation proof the
approximate reasoning is isolated into Lemma 6.4. In addi-
tion to Theorems 6.2 and 6.3, Theorem 6.5 guarantees that
any fixed-point extension of a Banach theory is an iteration
theory as defined in [6].

7. The metric coinduction principle

In this section we will investigate the relation of these
theories with a very interesting and useful coinduction prin-
ciple proposed by Kozen in [9], [10]. We will demonstrate
that the metric coinduction principle can be proven within
any Banach fixed-point theorem and that this principle is
equivalent to our rule (Approx). That being said, however,
if we restrict ourselves to finitary proofs, we suspect that
the metric coinduction principle is more powerful.

The context in which the metric coinduction principle is
stated in [9], [10] is a bit more liberal than the syntax of
fixed-point Banach theories, as it involves the concept of
closed predicate, defined as a predicate whose extension is
a closed set in any bounded complete metric space. For this
reason, we will work in this section at a metalevel, where
semantics concepts, i.e. metric and topological concepts, are
used together with the syntax of Banach theories.

Consider a Banach theory U over Ω̂X and its fixed-point
extension Uµ. A closed predicate in this context is any
predicate P whose extension, when interpreted in any model
in C(U), is a closed set in the open-ball topology induced by
the metric. In this setting, the metric coinduction principle
for the closed predicate P is stated as follows, for any
map f : n : θ . i ∈ Ω̂µX , any y ∈ Xn and an arbitrary
t ∈ Ω̂µX .

(MCoind)
` P (t) P (x) ` P (f(y[x/i]))

` P (µi.f(y))
.

Given a Banach theory U over Ω̂X , let UM be the smallest
extension of U over Ω̂µX that is closed under the metric
coinduction principle (MCoind) - we call it the coinductive
extension of U .

The next two theorems will relate UM and Uµ.

Theorem 7.1. Let U be a Banach theory over Ω̂X , and let
UM and Uµ be its coinductive extension and fixed-point
extension respectively. Then

Uµ ⊆ UM .

Proof. To prove this result it is sufficient to show that UM
is closed under the rule (Approx).

For simplicity, we focus on the i-th variable of f , fLxiM and
let a = max{αi | α ∈ θ}.

Consider the predicate

R(y) = ∀x.(x =ε fLxM ` x = ε
1−a

y ∈ UM ).

and let Bε(x) = {z ∈ Ω̂µX | ` x =ε z}, which is
interpreted in any model as the ε-closed ball centred at x.
Then we can characterize R as follows

R(y) = ∀x(fLxM ∈ Bε(x)⇒ y ∈ B ε
1−a

(x) )

= y ∈
⋂

z∈{x| fLxM∈Bε(x)}

B ε
1−a (x)

.

Hence, R is a closed predicate and we can use it to instan-
tiate (MCoind) and conclude that UM is closed under the
rule

` R(t) R(x) ` R(fLxM)
` R(µx.fLxM)

.

We prove now that for any x, R(x) ` R(fLxM) ∈ UM which
is equivalent to proving that

∀z[∀x(x =ε fLxM ` x = ε
1−a

z) ∈ UM

⇒ ∀x(x =ε fLxM ` x = ε
1−a

fLxM) ∈ UM ].

Suppose that for any x, x =ε fLxM ` x = ε
1−a

z ∈ UM .
Since f is contractive, (Banach) guarantees that
x =ε y ` fLxM =aε fLyM ∈ UM . Hence,
x =ε fLxM ` fLxM =ε a

1−a
fLzM ∈ UM . Next (Triang) proofs

x =ε fLxM ` x = ε
1−a

fLzM ∈ UM , hence for any x, R(x) `
R(fLxM) ∈ UM .

Now it is not difficult to notice that x =ε fLxM ` x =ε a
n

1−a
[f ]ni LsM - Theorem 5.3. So, since (1-bound) guarantees that
for any s ∈ Ω̂µX , ` s =1 fLsM ∈ UM , we get that the
sequence ([f ]ki LsM)k≥1 is convergent in UM and its limit t
is such that ` R(t) ∈ UM .

Hence both hypothesis of (MCoind) for R are satisfied,
meaning that its conclusion has to be true, which is

` R(µi.f) ∈ UM ,

but this is exactly (Approx).

The next theorem says that whenever we have a closed
predicate, any consequences proved using (Mcoind) with
this predicate can be proved in Uµ.

Theorem 7.2. Let U be a Banach theory over Ω̂X , let Uµ
be its fixed-point extension and let P be a closed predicate.
Then any consequences of P obtained using (Mcoind) can
be established in Uµ.



Proof. Let P be a closed predicate. Then it must be the
complement of an open predicate B, i.e.,

P = Bc.

Let

Bε(x) = {y ∈ Ω̂µX | ` x =δ y ∈ Uµ for some δ < ε},

be the x-centred open ball of radius ε > 0. These sets for a
base in the open ball topology, hence there must exist a set
I of indices and a set of I-indexed terms si ∈ Ω̂µX such
that

B =
⋃
i∈I

Bεi(si).

Consequently,
P =

⋂
i∈I

Bcεi(si).

Now we have

Bcε (x) = {y |` x =δ y ∈ Uµ ⇒ δ ≥ ε}.

Hence,

P = {y | ∀i ∈ I,` si =δ y ∈ Uµ ⇒ δ ≥ εi}.

Hence we can define any closed predicate P as

P (x) = ∀i ∈ I(` si =δ x ∈ Uµ ⇒ δ ≥ εi).

Now we prove that Uµ is closed under (MCoind) for P .
Suppose that for some s ∈ Ω̂µX , ` P (s) ∈ Uµ, and that
P (x) ` P (fLxM) ∈ Uµ. The second one means

∀x[∀i(` x =δ si ∈ Uµ ⇒ δ ≥ εi)

⇒ ∀i(` fLx =δ si ∈ Uµ ⇒ δ ≥ εi)].

Iterating this over

∀i ∈ I(` si =δ s ∈ Uµ ⇒ δ ≥ εi),

which is an equivalent statement for ` P (s) ∈ Uµ, we get

∀k ∀i [` [f ]ki LsM =δ si ⇒ δ ≥ εi](∗).

We need to prove that

∀i[` si =δ µx.fLxM⇒ δ ≥ εi].

Suppose this is not the case and there exists some j ∈ I so
that for some r > 0,

` µx.fLxM =r sj ∈ Uµ ∧ r < εj .

We know from Corollary 5.4 that for any 0 < p < εj − r
there exists some k s.t.

` µx.fLxM =εj−r−p [f ]ki LsjM ∈ Uµ.

Finally (Triang) gives us

` [f ]ki LsjM =εj−p sj ∈ Uµ,

but this contradicts the statement (∗) above since εj−p < εj .

The results stated in Theorems 7.1 and 7.2 show that
the metric coinduction principle, despite its more semantic
flavour and its quantification over all closed predicates,
has the same power as our fixed point Banach theories.
However, it is often easier to use and is a very attractive
proof principle.

8. Markov Decision Processes and the Bellman
equation

Markov decision processes [12] are a well known formalism
used in operations research and extensively in reinforcement
learning [13]. The Bellman equation is perhaps the most
common application of the Banach fixed-point theorem.
This section is an extended example showing how one can
reason about the Bellman equation in our setting. Indeed this
research project began from a desire to treat the Bellman
equation as an example within the quantitative equational
logic framework before we developed the general theory
reported here.

8.1. Markov decision processes

Definition 8.1. A Markov decision process is a tuple

M = (S,A, (P a)a∈A, (R
a)a∈A)

where

• S is a finite set of states; let ∆S represent the set of
probability distributions on S.

• A is a finite set of actions; let ∆A represent the set of
probability distributions on A.

• For each a ∈ A, P a : S −→ ∆(S) are the labelled
probabilistic transitions.

• For each a ∈ A, Ra : S −→ [0, 1] is the reward
function.

One can think of these as transition systems where an ex-
ternal agent controls the system choosing actions according
to some policy. The system responds by changing state
according to the transition function and returning a reward.
The reward is accumulated, with a multiplicative discount
factor, and the goal of reinforcement learning is to find the
best policy for optimizing the reward.

The effectiveness of a particular policy is captured by what
are called value functions which summarize the aggregated
discounted rewards associated with a policy. Mathemati-
cally, value functions are elements of the space V = [0, 1]S ;
this is a metric space endowed with the metric

d(f, g) = max
s∈S
|f(s)− g(s)|.

A policy is a map π : S −→ ∆A that associates to each state
a probability distribution over the actions. Let Π denote the
set of policies for M. For arbitrary a ∈ A we write â for



the constant policy that associates to any state the Dirac
distribution concentrated at a.

For an arbitrary policy π ∈ Π, the expected immediate
reward of π is the value function Rπ ∈ V defined for
arbitrary s ∈ S, by

Rπ(s) =
∑
a∈A

π(s)(a)Ra(s).

Given a policy π ∈ Π and a discount factor γ ∈ (0, 1), the
Bellman operator of π is the operator Tπ : V −→ V defined
for arbitrary f ∈ V and s ∈ S as follows

Tπ(f)(s) = (1−γ)Rπ(s)+γ
∑
a∈A

∑
s′∈S

π(s)(a)P a(s)(s′)f(s′)

The Bellman equation for the policy π ∈ Π and discount
factor γ ∈ (0, 1) is the following fixed point equation over
V

X = Tπ(X).

The discount factor makes this operator contractive and thus
has a unique fixed point: this is the value function of the
policy π.

8.2. Reward Barycentric Algebra

Assumptions For the rest of this section, we assume a fixed
Markov decision process M = (S,A, (P a)a∈A, (R

a)a∈A)
and a fixed discount factor γ ∈ (0, 1).

We develop a particular Banach theory, designed for solving
the Bellman equation forM and γ. Its signature extends the
barycentric signature and the theory extends the quantitative
barycentric theory developed in [1]. The models of our
theory will be called reward barycentric algebras (RBA), and
will be a specialised class of barycentric algebras, as defined
in [1], devised with additional algebraic structure.

Signature. Consider the Banach signature Σ containing the
following basic operators.

• For each ε ∈ [0, 1], +ε : 2 : {〈ε, 1− ε〉} ∈ Σ;

• For each π ∈ Π, 〈π〉 : 1 : {〈1〉} ∈ Σ;

• For each π ∈ Π, |π| : 1 : {〈γ〉} ∈ Σ.

Consider now the Banach theory B over Σ̂X axiomatized
by the following two sets of axioms

Barycentric axioms:
for arbitrary ε, ε′ ∈ [0, 1], p, q ∈ R+, x, x′, y, y′ ∈ X

(B1) ` x+1 x
′ =0 x

(B2) ` x+ε x =0 x

(SC) ` x+ε x
′ =0 x

′ +1−ε x

(SA) ` (x+ε x
′) +ε′ y =0 x+εε′ (x′ + ε′−εε′

1−εε′
y) for εε′ < 1

(BA) {x =p x
′, y =q y

′} ` x+ε x
′ =εp+(1−ε)q y +ε y

′

Reward axioms:
for arbitrary π, π′ ∈ Π, ε ∈ [0, 1] and x, y ∈ X

(R1) ` 〈επ + (1− ε)π′〉x =0 〈π〉x+ε 〈π′〉x

(R2) ` |επ + (1− ε)π′|x =0 |π|x+ε |π′|x

(R3) x =ε y ` |π|x =γε |π|y

Algebra of value functions. The space (V, d) of value
functions of M is a 1-bounded complete metric space and
has a natural σ-algebra of Borel sets. We interpret the basic
functions in Σ, for arbitrary f, g ∈ V , π ∈ Π and s ∈ S as
follows

• (f +ε g)V = εfV + (1− ε)gV

• (〈π〉f)V(s) =
∑
a∈A

π(s)(a)
∑
s′∈S

P a(s)(s′)fV(s′)

• (|π|f)V = (1− γ)Rπ + γfV

It is not difficult to verify that the functions have indeed the
expected Banach patterns, hence V with the previous inter-
pretation is indeed an algebra of the right form. Consider
now Σ̂µX the fixed-point extension of Σ̂X .

For simplicity, in what follows we denote the interpretation
of any t ∈ Σ̂µX in V by JtK. We can now prove that V
satisfies indeed the axioms of B.

Theorem 8.2. The space V of value functions of M is a
model for B, V |= B.

Proof. The fact that the Barycentric axioms are satisfied by
V is already proven in [1]. We prove here the soundness of
the reward axioms.

(R1): for any t ∈ Σ̂µX ,
J〈επ + (1− ε)π′〉tK(s)
=

∑
a∈A

(επ(s)(a) + (1− ε)π′(s)(a))
∑
s′∈S

P a(s)(s′)JtK(s′)

= ε
∑
a∈A

π(s)(a)
∑
s′∈S

P a(s)(s′)JtK(s′)+

+(1− ε)
∑
a∈A

π′(s)(a)
∑
s′∈S

P a(s)(s′)JtK(s′)

= εJ〈π〉tK(s) + (1− ε)J〈π′〉tK(s)
= J〈π〉t+ε 〈π′〉tK(s).

(R2): for any t ∈ Σ̂µX ,
J|επ + (1− ε)π′|tK(s) =
= (1− γ)Rεπ+(1−ε)π′(s) + γJtK(s)
= (1− γ)

∑
a∈A

Ra(s)(επ + (1− ε)π′)(s)(a) + γJtK(s)

= ε((1− γ)
∑
a∈A

Ra(s)π(s)(a) + γJtK(s))+

+(1− ε)((1− γ)
∑
a∈A

Ra(s)π′(s)(a) + γJtK(s))

= J|π|t+ε |π′|tK(s).

(R3): for any t, t′ ∈ Σ̂µX ,
|J|π|tK(s)− J|π|t′K(s)|



= |(1− γ)Rπ(s) + γJtK(s)− (1− γ)Rπ(s)− γJt′K(s)|
= γ|JtK(s)− Jt′K(s)|.

8.3. Solving the Bellman equation iteratively

We define now, for any π ∈ Π a derived operator Oπ in-
ductively on the structure of the policy π as follows.

• For a ∈ A, Oât = |â|〈â〉t.

• For π, π′ ∈ Π and ε ∈ [0, 1],

Oεπ+(1−ε)π′t = Oπ +ε O
π′ .

Since all the distributions with finite support can be repre-
sented as convex combinations of Dirac distributions, any
policy can be represented by a term with appropriately
nested +ε operators on top of constant policies. Hence the
definition of Oπ is complete.

The following theorem states that Oπ is the syntactic coun-
terpart of the Bellman operator Tπ.

Theorem 8.3. For any π ∈ Π and any t ∈ Σ̂µX ,

JOπtK = TπJtK.

Proof. We prove this inductively on the structure of π ∈ Π.
Let s ∈ S.

For π = â, a ∈ A,
JOâtK(s) = J|â〈â〉tK(s)
= (1− γ)Ra(s) + γJ〈â〉tK(s)
= (1− γ)Ra(s) + γ

∑
s′∈S P

a(s)(s′)JtK(s′) = T âJtK(s).
For επ + (1 − ε)π′ under the inductive hypothesis for Oπt
and Oπ

′
t. We have

JOεπ+(1−ε)π′tK(s) = JOπt+ε O
π′tK(s)

= εJOπtK(s) + (1− ε)JOπ′tK(s)
= εTπJtK(s) + (1− ε)Tπ′JtK(s)
= ε

∑
a∈A π(s)(a)[(1− γ)Ra(s)+

γ
∑

s′∈S P
a(s)(s′)JtK(s′)]+

+(1− ε)
∑

a∈A π
′(s)(a)[(1− γ)Ra(s)+

+γ
∑

s′∈S P
a(s)(s′)JtK(s′)]

=
∑

a∈A(επ(s) + (1− ε)π′(s))(a)[(1− γ)Ra(s)+

+γ
∑

s′∈S P
a(s)(s′)JtK(s′)] = T επ+(1−ε)π′JtK(s).

Next we verify that Oπ has Banach pattern {〈γ〉}.

Lemma 8.4. For any π ∈ Π,

Oπ : 1 : {〈γ〉} ∈ Σ̂µ.

Proof. We prove, inductively on the structure of π, that
x =ε y ` Oπx =γε O

πy ∈ B.
For π = â, (NExp) for 〈â〉 gives us
x =ε y ` 〈â〉x =ε 〈â〉y ∈ B and instantiating (R2),
〈â〉x =ε 〈â〉y ` |â|〈â〉x =εγ |â|〈â〉y ∈ B,
hence, x =ε y ` |â|〈â〉x =εγ |â|〈â〉y ∈ B.
For επ + (1− ε)π′, consider the inductive hypotheses

x =ε y ` Oπx =εγ O
πy ∈ B and

x =ε y ` Oπ
′
x =εγ O

π′y ∈ B. (NExp) of +ε gives

{Oπx =εγ O
πy,Oπ

′
x =εγ O

π′y} `

` Oπx+ε O
π′x =γε O

πy +ε O
π′y ∈ B.

Hence, x =ε y ` Oπx+ε O
π′x =γε O

πy +ε O
π′y ∈ B

i.e., x =ε y ` Oεπ+(1−ε)π′x =γε O
επ+(1−ε)π′y ∈ B.

Since our working hypothesis is that γ < 1, the previous
lemma ensures that in the fixed-point extension of B, which
is Bµ, we have judgements involving µx.Oπx. We use this
to show how the Bellman equation can be solved.

Recall that [Oπ]k1(s) represents the k-th iteration of Oπ on
s. Since Oπ has only one variable, we drop the lower index
1 and write [Oπ]k(s) for the k-th iteration on s.

The next theorem is a direct consequence of the Corollary
5.4 and Theorem 8.3.

Theorem 8.5 (Bellman equation). For any π ∈ Π and any
s ∈ Σ̂µX , the sequence ([Oπ]k(s))k≥1 is convergent in Bµ
and its limit is µx.Oπx, i.e., ∀ε > 0 ∃n ∀m,

` [Oπ]m+n(s) =ε µx.O
πx.

Moreover, Jµx.OπxK is the unique solution of Bellman
equation

X = TπX.

Note that the fixed-point Banach theory Bµ gives us not
only the solution to Bellman equation, but the apparatus for
controlling ”the speed” of convergence of the iteration se-
quence to the solution of Bellman equation. In this way, we
can build an approximation theory directly inside Bµ.

9. Conclusions and related work

We have developed a quantitative fixed point theory extend-
ing the quantitative equational logic of [1] by introducing
fixed point operators and appropriate axioms. The key in-
gredients needed were the Banach patterns that capture the
contractiveness of functions in their different arguments. We
were able to mimic, in this setting, the standard iteration
theories as described in [7] and [6]. We also developed an
extended example showing that the notion of Bellman equa-
tions, which are the centrepiece of reinforcement learning,
can be described in our framework.

A very general and interesting categorical treatment of
iteration comes from the theory of traced monoidal cate-
gories [16]. Recent work by Goncharov and Schröder [14]
develops the notion of guarded traced categories which, like
our Banach patterns, controls when traces can be taken. The
monumental treatise of Bloom and Esik [7] also gives a very
general treatment of iteration and mentions fixed points in
metric spaces as an example. However, these theories are all
in the traditional setting of equational logic and do not have
the quantitative notions that we have here with approximate



equality. Thus, for example, we can discuss the geometric
rate of convergence in value iteration.

A very interesting formulation of the coinduction principle
due to Dexter Kozen [9], [10] is closely related to our
rule for reasoning about fixed points. It is equivalent in
power to our fixed-point approximation axiom, as we have
argued. However his rule is very flexible and probably more
convenient to use in various situations. It would certainly
make an interesting variation to our formulation. We did
consider both alternatives when we were developing our
framework and at the moment we do not see a compelling
reason to choose one over the other. This is definitely a topic
which should be explored further.

While the fixed-point theory in this paper is infinitary, it
would be interesting, as well as potentially useful, to develop
a finitary version of it, and in this context, the Kozen
principle of coinduction may be more powerful.

We have developed an example showing that some nontrivial
situations can be modelled and reasoned about in our frame-
work. Of course, whatever we have shown about Bellman
equations has been long known, but it does show the po-
tential power of the framework. In recent work Amortila et
al. [17] have proven convergence, using coupling techniques,
of a variety of more recent reinforcement learning algo-
rithms. It would be fascinating to see if the present frame-
work could help to organize and reason about situations
where the convergence has not yet been established.

References

[1] R. Mardare, P. Panangaden, and G. Plotkin, “Quantitative algebraic
reasoning,” in Proceedings of the 31st Annual ACM-IEEE Symposium
on Logic in Computer Science, 2016, pp. 700–709.

[2] ——, “On the axiomatizability of quantitative algebras,” in Proceed-
ings of the 32nd Annual ACM-IEEE Symposium on Logic in Computer
Science, 2017.

[3] D. Scott and J. W. D. Bakker, “A theory of programs,” unpublished
notes, IBM Seminar, Vienna.

[4] J. W. D. Bakker, Recursive procedures, ser. Mathematical Centre
Tracts. Mathematisch Centrum, Amsterdam, 1971, no. 24.

[5] S. C. Kleene, Introduction to metamathematics. North-Holland,
Amsterdam, 1952.

[6] A. Simpson and G. Plotkin, “Complete axioms for categorical fixed-
point operators,” in Proceedings of the 15th Annual IEEE Symposium
on Logic in Computer Science (LICS 2000). IEEE, Jun. 2000, pp.
30–41.
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