
Internal ∞-Categorical Models of Dependent Type
Theory

Towards 2LTT Eating HoTT

Nicolai Kraus
University of Nottingham

Abstract—Using dependent type theory to formalise the syntax
of dependent type theory is a very active topic of study and goes
under the name of “type theory eating itself” or “type theory
in type theory.” Most approaches are at least loosely based on
Dybjer’s categories with families (CwF’s) and come with a type
Con of contexts, a type family Ty indexed over it modelling types,
and so on. This works well in versions of type theory where
the principle of unique identity proofs (UIP) holds. In homotopy
type theory (HoTT) however, it is a long-standing and frequently
discussed open problem whether the type theory “eats itself” and
can serve as its own interpreter. The fundamental underlying
difficulty seems to be that categories are not suitable to capture
a type theory in the absence of UIP.

In this paper, we develop a notion of ∞-categories with
families (∞-CwF’s). The approach to higher categories used
relies on the previously suggested semi-Segal types, with a new
construction of identity substitutions that allow for both univalent
and non-univalent variations. The type-theoretic universe as well
as the internalised (set-level) syntax are models, although it
remains a conjecture that the latter is initial. To circumvent the
known unsolved problem of constructing semisimplicial types,
the definition is presented in two-level type theory (2LTT).

Apart from introducing ∞-CwF’s, the paper explains the
shortcomings of 1-categories in type theory without UIP as well as
the difficulties of and approaches to internal higher-dimensional
categories.

I. INTRODUCTION: FORMALISING TYPE THEORY

Dependent type theory in the style of Martin-Löf forms
the foundation of various dependently typed programming
languages and proof assistants, such as Agda, Coq, Epigram,
Idris, and Lean. Numerous variations of type theory have
been considered, and models are studied in order to better
understand the properties of these theories. Even the study and
formalisation of models of type theory in type theory itself is
an active field of research, involving various different models
such as the setoid model implemented by Palmgren [5] and
others, parametric models of type theory (Bernady et al. [6]),
or an implementation of the groupoid interpretation (Sozeau
and Tabareau [7]) by Hofmann and Streicher [8].

The author was supported by the Royal Society, grant
No. URF\R1\191055, and the European Union, co-financed by the European
Social Fund (EFOP-3.6.2-16-2017-00013, Thematic Fundamental Research
Collaborations, Grounding Innovation in Informatics and Infocommunication)

In particular formalisations of the syntax of type theory, i.e.
the syntactic model or term model, have received significant
attention. Statements of the form “type theory should be able
to handle its own meta-theory” are often made (e.g. the very
first sentence by Abel et al. [9]), which refers to formalising
the (intended) initial model of type theory.1

Altenkirch and Kaposi [3] call this simply type theory in
type theory. To avoid confusion, we refer to the type theory
in which these models are implemented as the host theory,
and the structure that get implemented as the object theory
or simply the model. The expression “type theory eats itself”
for this concept was suggested by Chapman [16], inspired by
Danielsson [17] and others. Other recent work on the same
goal with various techniques includes the studies by Escardó
and Xu [18], the PhD thesis by Kaposi [19], the work by
Gylterud, Lumsdaine, and Palmgren [20], and the presentation
by Buchholtz [21].

The closely related idea to formalise the notion of a model
of dependent type theory inside dependent type theory itself
goes back at least to Dybjer’s internal type theory via cat-
egories with families, often just referred to as CwF’s [22]
(see also formulation by Awodey [23]). Formalisations of
various models have since then been pursued many times; a
careful comparison of different definitions of models inside
type theory has been given by Ahrens et al. [24], [25]. A
category with families consists of a category with a terminal
object, a presheaf of families on it, and a context extension
operation. The objects of the category are usually denoted by
Con (“contexts”) and the morphisms by Sub (“substitutions”
or “context morphisms”). Many presentations further split the
presheaf into two functors Ty and Tm , with the idea being
that Ty gives the types in a context and Tm the terms of a
type. The terminal object represents the empty context.

CwF’s can easily be presented as a generalised algebraic
theory (GAT) as introduced by Cartmell [26], [27]. A GAT
consists of sorts, operations, and equations. In the case of

1It is often seen as type-theoretic folklore that the initial model of a
type theory coincides with the syntax, i.e. that the syntactic model is initial.
While a proof for the calculus of constructions has been known for a while
(cf. Streicher’s work [10]), precise and formalised proofs for intensional
Martin-Löf type theory became available only recently (cf. the talks presenting
work by de Boer, Brunerie, Lumsdaine, and Mörtberg [11]–[14] as well as
the licanciate thesis by de Boer [15].978-1-6654-4895-6/21/$31.00 ©2021 IEEE

a semicategory of contexts and substitutions:

Con : U (1)
Sub : Con→ Con→ U (2)
� : Sub Θ ∆→ Sub Γ Θ→ Sub Γ ∆ (3)

assoc : (σ � δ) � ν = σ � (δ � ν) (4)

identity morphisms as identity substitutions:

id : Sub Γ Γ (5)
idl : id � σ = σ (6)
idr : σ � id = σ (7)

a terminal oject as empty context:

• : Con (8)
ε : Sub Γ • (9)
•η : ∀(σ : Sub Γ •). σ = ε (10)

a presheaf of types:

Ty : Con→ U (11)

[]T : Ty ∆→ Sub Γ ∆→ Ty Γ (12)

[id]T : A[id]T = A (13)

[�]T : A[σ � δ]T = A[σ]T[δ]T (14)

a (covariant) presheaf representing terms:

Tm : (Γ : Con)→ Ty Γ→ U (15)

[]t : Tm ∆A→ (σ : Sub Γ ∆)→ Tm Γ (A[σ]T) (16)

[id]t : t[id]t = t over [id]T (17)

[�]t : t[σ � δ]t = t[σ]t[δ]t over [�]T (18)

context extension, modelled by representability:

. : (Γ : Con)→ Ty Γ→ Con (19)
p : Sub (Γ . A) Γ (20)

q : Tm (Γ . A) (A[p]T) (21)

, : (σ : Sub Γ ∆)→ Tm Γ (A[σ]T)→ Sub Γ (∆ . A)
(22)

.β1 : p � (σ, t) = σ (23)

.β2 : q[σ, t]t = t over [�]T and .β1 (24)

.η : (p, q) = id (25)

, � : (σ, t) � ν = (σ � ν, t[ν]t) over [�]T (26)

Fig. 1: The formulation of a category with families (CwF)
as a generalised algebraic theory (GAT), as given by Kaposi
and others [1], [2]. Presentation-wise, it slightly differs from
(but is equivalent to) the similar suggestion by Altenkirch
and Kaposi [3]. Above, the components are reordered and
regrouped to make the connection to CwF’s more visible. Over
refers to substitution (a.k.a. transport) in the terminology of
the HoTT book [4, Chp. 2.3]. Implicit arguments are omitted.
U is a universe at any level.

CwF’s, the sorts are contexts, substitutions, types, and terms.
Examples for operations are composition of substitutions,
identity substitutions, and context extension. The equalities
include the associativity law for composition, identity laws,
laws expressing that types and terms form functors, and so
on. In type theory, sorts can be represented as types and type
families. This includes a type Con : U for contexts and families
Sub : Con → Con → U as well as Ty : Con → U for
substitutions and types.2 Operations are functions with sorts
as codomains. For example, given a type A : Ty ∆ and a
substitution σ : Sub Γ ∆, we need an operation (often written
as []) which gives us a new type A[σ] : Ty Γ. Equalities are
stated using Martin-Löf’s identity type, also known as equality
type, path type, or identification type, denoted by a = b.3 As an
example, we need an equality of the form (A[σ])[τ] = A[σ�τ].
A full presentation of type theory in this form, similar to
the one developed by Altenkirch and Kaposi [3], is shown
in Fig. 1.4 If one works in a type theory that has quotient
inductive-inductive [28] or higher inductive-inductive types
[29], then defining a CwF as a GAT automatically gives a
formalisation of the initial model (the intended syntax).

Besides the initial model, a very important interpretation
is the standard model (see e.g. the work by Altenkirch and
Kaposi [3] and Coquand et al. [30]), sometimes known as
the meta-circular interpretation. It is based on the observation
that the category of [small] types can be equipped with the
structure of a CwF in a canonical way. In detail, contexts
and substitutions in the standard model are [small] types and
functions of the host theory, types of the model are dependent
types of the host theory, and terms are dependent functions.

We have a morphism of models from the initial model to any
other model, and in particular to the standard model. There-
fore, anything we do in the syntax (the object theory) can be
interpreted as a construction in the host theory. Shulman [31]
argues that we should expect this to be possible if type theory
is to be seen as a general purpose programming language,
as any such language should be able to implement its own
interpreter or compiler. This motivates the formulation of the
following somewhat vague task:

General Problem: In a (given specific version of)
dependent type theory, define the notion of model such
that both the initial model and the standard model can
be constructed, and such that the initial model can
reasonably be viewed as syntax.

2U is a universe. We omit universe indices everywhere and implicitly use
universe polymorphism.

3At this point, it is important to emphasis the difference between the internal
equality type a = b and the meta-theoretic judgmental equality, also known
as definitional equality, written as a ≡ b.

4Regarding notation: In the host theory, we use Agda-style notation for de-
pendent function types and write (x : A)→ B x instead of Π(x : A).B(x).
Dependent pair types are denoted as Σ(x : A).B(x). We reserve the symbol
◦ for function composition in the host theory and denote composition of
substitutions (context morphisms) in the model by �. Implicit arguments in
the host theory are denoted by {x : A}, but they are completely omitted in
Fig. 1 for readability.

It seems difficult, but also slightly besides the point, to make
the above General Problem completely precise to exclude
trivial solutions; a satisfactory solution is something of the
category “we know it when we see it”. The expectation is that
a model should allow at least the constructions listed in Fig. 1,
i.e. each component of that figure should be definable. An
(algebraic) definition of a model will give rise to the definitions
of model morphism and thus initiality in a canonical way. Since
we don’t want the initial model to be trivial, the notion of
model should contain base types; these are omitted in Fig. 1
(and in most parts of the current paper) for simplicity, but easy
to add, cf. [3].

The most interesting question is arguable what it means
that the initial model can be viewed as syntax. Note that the
equality type of the host theory plays the role of definition-
al/judgmental equality in the (initial) model. Therefore, we
expect that the equality of the initial model is proof-irrelevant,
i.e. Con, Sub, Ty, Tm are (homotopy) sets in the terminology
of homotopy type theory (but see footnote Footnote 6).

If we want to model an intensional type theory (which is
the primary case of interest here), it is further desirable that
the equality in the initial model is decidable, corresponding
to decidable type checking. This means for example that, for
Γ : Con, we have

(AB : Ty Γ)→ (A = B) + ¬(A = B). (27)

If we instead model extensional Martin-Löf type theory, we
cannot expect this (cf. Clairambault and Dybjer’s work [32]),
but the requirement of proof-irrelevance remains.

In intensional dependent type theory with the axiom of
unique identity proofs (UIP), i.e. the assumption that all
equalities are proof-irrelevant, and quotient inductive-inductive
types [28], a solution to the problem has been given by
Altenkirch and Kaposi. They construct the initial model with
the standard interpretation [3] and show that the initial model
has decidable equality [33].

We are interested in settings where UIP is not assumed,
which makes the problem much harder. In particular, it is a
long-standing open problem whether homotopy type theory
(HoTT) [4], which rejects UIP, is able to handle its own
meta-theory. The question was first raised by Shulman [31]
and has since then been discussed very actively, in particular
by Escardó and Xu [18], Gylterud, Lumsdaine, and Palm-
gren [20], Buchholtz [21], and Altenkirch [34]. Progress in
the setting without UIP has also been made by Abel, Öhman,
and Vezzosi [9]. The core task, as described by the General
Problem above, is still unsolved.

If we define a CwF in homotopy type theory to consist of
the components in Fig. 1, maybe with additional base types,
universes, or Π- and Σ-types as suggested for example by
Kaposi, Huber, and Sattler [2], we have to decide how we
react to the absence of UIP. If we simply ignore it, the equality
types will not be well-behaved and expected properties will
not hold, a very common phenomenon in homotopy type
theory. In particular, the initial model will not have proof-
irrelevant (or even decidable) equality, making it unsuitable

as “syntax” in any form. Phrased differently, the expected
quotiented term model will not be initial. The typical strategy
to address this problem is to explicitly include a condition
which ensures that all involved types are truncated at a certain
level (i.e. that equality has to be irrelevant at some level).
As a prominent example, the notion of category considered
by Ahrens, Kapulkin, and Shulman [35] requires morphisms
to form a set to ensure well-behavedness. Unfortunately, this
would not be a satisfactory solution in our situation. Since
univalent universes in homotopy type theory are provably not
set-truncated [4, Ex. 3.1.9], any such truncatedness assumption
would mean that the standard “model” will cease to be a
model.

The fundamental underlying issue is that (ordinary) cate-
gories are not suitable to talk about non-truncated structures
internally in homotopy type theory or other versions of depen-
dent type theory without UIP. The laws of category theory,
such as associativity or identity laws, are not appropriately
modelled by the internal equality type. In fact, equalities in
a theory without UIP are data rather than properties. Thus,
an internal equality expressing associativity is much more
similar to an isomorphism in a bicategory than a law in a
(1-)category. Being even more precise, we should say that an
equality behaves like an isomorphism in an (∞, 1)-category
(for simplicity called ∞-category; a survey has been given
by Bergner [36]), as higher equalities of any levels will be
possibly non-trivial data [37].

This motivates the current paper. We define the notion of a
model of type theory using ∞-categories rather than ordinary
categories. In a nutshell, doing so corresponds to adding all
higher coherences which are missing from Fig. 1, turning it
into an ∞-category with families. The main difficulty is that
∞-CwF’s need an infinite tower of data, and this data needs to
be organised appropriately. It is in particular unknown whether
this structure can be represented in the version of homotopy
type theory developed in the standard reference, the “HoTT
book” [4]. To circumvent this problem, we work in a two-level
type theory [38], [39] which makes the construction possible.
This nevertheless has significant implications for “ordinary”
homotopy type theory, where all finite special cases can be
expressed. Therefore, our construction automatically gives a
definition in HoTT of (2, 1)-CwF’s, (3, 1)-CwF’s, and more
generally (n, 1)-CwF’s for any externally fixed natural number
n. This already strongly generalises ordinary CwF’s, which are
merely (1, 1)-CwF’s in this scheme.

The specific approach to ∞-categories that we work with
is based on the semi-Segal types suggested independently
by Capriotti [40] and Schreiber [41], further studied by the
current author in joint work with Capriotti [42] as well as with
Annenkov, Capriotti, and Sattler [39]. While this approach
immediately gives a definition of an ∞-semicategory, adding
the identities in a well-behaved manner is trickier than one
might expect. All the authors of the work mentioned above
use identities which have univalence built-in. This is natural
in homotopy type theory, but not necessarily desirable when
considering models since we would not expect the syntactic

model to be univalent (and even if we do, previous for-
malisations of the syntax are not univalent and would not
be captured by a formulation that requires univalence). We
therefore introduce a new definition of identities, namely
idempotent equivalences. We prove that our identity structure
is unique (i.e. a propositional property rather than data) and
therefore automatically fully coherent. A further propositional
property expressing univalence can be added optionally on top.

Related work: The original connection between higher
categories (in the form of spaces) and type theory, discovered
by Awodey and Warren [43] and by Voevodsky (see the
presentation by Kapulkin and Lumsdain [44]), marks the
beginning of the study of homotopy type theory and univalent
foundations. While Voevodsky’s model of the univalence ax-
iom uses simplicial structures, the superficial similarity to the
work in this paper may be somewhat misleading; in fact, the
motivation for the appearance of higher categories is reversed.
Voevodsky’s simplicial set model uses higher categories in
order to model the equality type of the type theory that is
modelled, while we are using higher categories because the
host theory is unsuitable for working with ordinary categories.
While Kapulkin and Lumsdaine [44] define one particular
model, the current paper defines a type (“classifier”) of mod-
els. Similarly, Barras, Coquand, and Huber [45] construct
a (concrete) model interpreting types as semisimplicial sets.
Boulier [46] and other authors discuss and formalise various
models assuming UIP locally or globally. Abel, Öhman, and
Vezzosi [9] formalise the syntax in a type theory without
UIP, but their induced notion of model includes non-well-
typed components which are not present in a type-theoretic
universe; thus, the standard interpretation is not a model, and
the current author did not manage to use their approach for
a solution of the General Problem discussed above. Complete
semi-Segal types are a known approach to univalent ∞-
categories [39], [40], [42], and the current paper uses a
variation of those in order to avoid completeness/univalence.
Nguyen and Uemura [47] propose the development of ∞-
type theories, where definitional equalities are replaced by
homotopies; although their proposal is not worked out in full
at the time of writing, we speculate that our ∞-CwF’s are
in principle general enough to also be a suitable notion of
model for ∞-type theories. Capriotti and Sattler [48] build an
interpretation based on Segal types for a specific type theory
and prove the equivalence between the initiality and induction
principle for higher inductive-inductive types.

Overview of the paper: Section II discusses the formali-
sation of 1-categorical models, in the form of CwF’s, in a
type theory with UIP. This approach does not work anymore
when UIP is dropped, as several examples break. For our
higher-categorical approach, we want to use semisimplicial
types to construct semi-Segal types with a new notion of
identity, introduced in Section III. The heart of the paper is
Section IV, where we develop enough internal ∞-category
theory in order to define ∞-CwF’s. In Section V, we will see
that all the examples that were broken without UIP work when
using∞-CwF’s. In Section VI, we discuss open problems and

conjectures, and conclude.
Specification of the host type theory: We work in dependent

type theory (the “host theory”) with Σ- and Π-types satisfy-
ing their respective judgmental η-rule, and with a hierarchy
of universes. We always assume function extensionality. In
Section II, we assume that the host theory satisfies UIP in
order to discuss the standard approaches and why they fail
without UIP. From Section III on, we drop this assumption and
work in homotopy type theory with all definitions and features
introduced in the “HoTT book” [4]. In particular, we use
the notions of proposition (−1 -type), set (0 -type) and more
generally n-type, as well as the path over notation expressing
substitution/transport (a =p b means subst(p, a) = b).

From Section III on, we assume that the host theory is
equipped with a second kind of equality type, turning it into
a two-level type theory. A very brief introduction is given in
Section III-A, but all ideas of the current paper should be
understandable without knowledge of two-level type theory as
it behaves essentially like “ordinary” Martin-Löf type theory.
For details, we refer to [39].

Agda formalisation: The discussed identities via idempotent
equivalences, which turn an ∞-semicategory into an ∞-
category, are a small part of the paper but represent a core idea
for the construction of ∞-CwF’s. The idea and all proofs can
be formulated in a very simple setting that can be formalised
without having to refer to 2LTT. An Agda implementation is
available on GitHub.5

II. CWF’S: 1-CATEGORICAL MODELS OF DEPENDENT
TYPE THEORY

A. Motivation and categorical definition

In order to define higher- or ∞-categorical internal models
of type theory, we need to find a suitable one-dimensional
formulation which can serve as a starting point for general-
isations. In the current section, we therefore want to work
with types that do not possess non-trivial higher structure. This
means that all types in this section are assumed to satisfy the
principle of unique identity proofs (UIP), i.e. are (homotopy)
sets.

In the introduction we have seen Fig. 1, due to Kaposi and
others [1], [2], which presents the components of type theory
as a generalised algebraic theory. In detail, a model of type
theory according to Fig. 1 consists of four types and type
families (Con, Ty, Sub, Tm), together with ten terms that
inhabit the four type families in various ways, and together
with twelve equations. The original work by Altenkirch and
Kaposi [3] (as well as [1], [2]) contains additional components
for various type formers. These and the twenty-six components
of Fig. 1 are then viewed as signatures and constructors of
a quotient inductive-inductive type (QIIT) which defines the
initial model (the “syntax”). In the current paper, we are
interested in models in general, not only the initial such model.
Moreover, the initial model of Fig. 1 is rather uninteresting

5https://github.com/nicolaikraus/idempotentEquivalences; and as html:
nicolaikraus.github.io/docs/html-idempotentequivalences/Identities.html

https://github.com/nicolaikraus/idempotentEquivalences
https://nicolaikraus.github.io/docs/html-idempotentequivalences/Identities.html

since we have not added base types, meaning that the initial
model has only the empty context and no types.

A more compact description of a model of type theory
is given by the categorical formulation of a CwF [22]. Be-
fore stating its definition, let us recall the following basic
categorical constructions. Let D be a category and F be a
functor from D to the category Set of sets and functions. The
category of elements is denoted by

∫
D F . Its objects are the

pairs {(d, x) | d ∈ D0, x ∈ F (d)} and a morphism from (d, x)
to (e, y) is a morphism f ∈ D1(d, e) such that F (f)(x) = y.
For d ∈ D0, the slice category D/d has as objects those
morphisms of D which have d as codomain, while morphisms
are those of D which make the evident triangle commute.
Finally, the functor F is represented by d ∈ D0 if F is
naturally isomorphic to D1(d,). By the Yoneda lemma, this
is equivalent to having an element x ∈ F (d) such that (d, x)
is initial in

∫
D F . We follow standard terminology and call d

the representing object and x universal element.

Definition 1 (CwF). A category with families (CwF) is given
by:

(i) a category C with a terminal object,
(ii) a presheaf Ty : Cop → Set; we will write A[σ]T instead

of Ty(σ)(A);
(iii) a functor Tm :

(∫
Cop Ty

)
→ Set; for t ∈ Tm(Γ, A), we

will write t[σ]t instead of Tm(σ)(t),
(iv) and, for every ∆ ∈ C0 and A ∈ Ty(∆), an object ∆ .

A together with a morphism pA : C1(∆ . A,∆) which
represents the functor

(C/∆)op → Set (28)

(Γ, σ) 7→ Tm(Γ, A[σ]T). (29)

Fig. 1 can be seen as a direct implementation of Definition 1
in type theory. The correspondence is made clear by the sub-
headlines in the figure.

B. Examples

The literature covers many examples for CwF’s. For us, the
following standard and well-known examples are particularly
interesting:

Example 2 (syntax/initial model). In a version of type theory
with quotient inductive-inductive types (QIITs) [28], [49], we
can read Fig. 1 directly as a QIIT signature. There is an implied
notion of model morphism, and the QIIT is automatically the
initial such model. This is how the construction is presented by
Altenkirch and Kaposi [3], and we refer to their construction
as the syntax QIIT. The initial CwF without base types consists
of only the empty context, but they demonstrate that it is easy
to add further components: Unit, Bool, Σ- and Π-types as well
as a “universe” (U,El).

Kaposi and Altenkirch [33] further show that the syntax
QIIT has decidable equality. This is important if we want to
view the initial model as formalised syntax, and from this point
of view, the internal equality type plays the role of the meta-
theoretic definitional equality, which in most type theories is
required to be decidable.

Example 3 (standard model). The standard model is the CwF
of types and functions: each expression in Fig. 1 is interpreted
by its canonical “semantic counterpart”. We need a fixed
[small] universe U to define this internally. Then, the standard
model is given by:

Con :≡ U (30)
Sub Γ ∆ :≡ Γ→ ∆ (31)
δ � σ :≡ δ ◦ σ (32)
id :≡ λx.x (33)
• :≡ Unit (34)
Ty Γ :≡ Γ→ U (35)

A[σ]T :≡ A ◦ σ (36)

Tm ΓA :≡ Π(x : Γ).(Ax) (37)
t[σ]t :≡ t ◦ σ (38)
Γ . A :≡ Σ(x : Γ).(Ax) (39)
p :≡ proj1 (40)
q :≡ proj2 (41)
(σ, t) :≡ λx.(σ x, t x) (42)

. . .

Several authors (see e.g. [3], [18]) have noticed that all equa-
tions in this model hold definitionally (i.e. by refl): function
composition is definitionally associative (assuming η for Π-
types), and so on. This will play a role later in the current
paper.

Example 4 (modelling an axiom). Assume we are given a
set-CwF C. This model may have additional types and type
formers such as Π-types and universes. We now may want a
model where a global assumption is satisfied, i.e. the axiom
of function extensionality. Such a model can be created by
fixing the context Γ0 to contain a term which witnesses
function extensionality, and constructing the slice C/Γ0. As
usual, contexts of C/Γ0 are pairs (∆ : Con, δ : Sub ∆ Γ0),
and a morphism between (∆, δ) and (Φ, ϕ) is a pair (f :
Sub ∆ Φ, e : δ = ϕ � f). The other components of the new
model are those given by C.

The above examples work very well in a type theory where
every type satisfies UIP. If we drop this assumption, be it
because we want to be more general or other assumptions
would be inconsistent with UIP (such as the univalence
axiom/principle), we have to choose whether we adapt the
definition of a CwF. The first canonical possibility is to keep
the previous definition, which leads to what we call a wild
CwF:

Definition 5 (wild CwF). A wild CwF is a 26-tuple
(Con,Sub, . . .) of all the components in Fig. 1.

The other canonical possibility is to simply require that all
the involved types satisfy UIP, i.e. are sets; this leads to the
definition of a set-CwF:

Definition 6 (set-CwF). A set-CwF is a wild CwF together
with the following four components:

conset : isSet(Con) (43)
tyset : (Γ : Con)→ isSet(Ty Γ) (44)
subset : (Γ ∆ : Con)→ isSet(Sub Γ ∆) (45)
tmset : (Γ : Con)→ (A : Ty Γ)→ isSet(Tm ΓA) (46)

Unfortunately, neither suggestion is satisfactory with the
General Problem (cf. the introduction) in mind. Without UIP,
the [lowest or higher] universe U is not necessarily a set
anymore, and even provably not a set in HoTT. Thus, the
standard model Example 3 is not a set-CwF.

While the standard model is a wild CwF, the remaining two
examples break in the absence of UIP. Altenkirch and Kaposi’s
syntax QIIT (Example 2) is a wild CwF and remains a valid
example, but is not the initial wild CwF. For example, the
(higher) equality idlid = idrid holds in the syntax QIIT, but
there is no way to prove it from the components in Fig. 1
(assuming the type theory has base types). The situation is
even worse for the slice model (Example 4), which cannot even
be constructed. Both constructions fail for the same underlying
problem, namely coherence data that is missing from the
definition of a wild CwF. For the initiality, we have discussed
above that at least a datum that gives us idl(id) = idr(id) would
be needed, and for the slice construction, “MacLane’s pen-
tagon coherence” is missing. Unsurprisingly, naı̈vely adding
these to the definition of a wild CwF creates the need to add
even more data, and so on. The approach advocated in this
paper, i.e. the use of ∞-categories, amounts to adding all this
data.

Section summary. Dybjer’s notion of a model of
type theory, a category with families (CwF), can be
represented as a generalised algebraic theory and im-
plemented in dependent type theory. The most impor-
tant examples of models are the initial model, which
one expects to coincide with an internal representation
of the syntax, and the standard model of types and
functions, which provides the “obvious semantics”.
Both models have been studied and work well in a type
theory with UIP. Without UIP, neither the unmodified
definition of a CwF nor the definition extended with
the requirement that all involved types satisfy UIP is
satisfactory.

III. INTERNAL ∞-DIMENSIONAL CATEGORIES

Definition 5 defines a wild CwF to be a tuple with 26
components. Even more extreme, Definition 6 defines a set-
CwF to consist of 30 components. While this is tedious to
write these down in type theory, expressing such a definition
is entirely straightforward to simply by listing the components.
Formally, a CwF is an element of a nested Σ-type or, if
supported by the type theory, a record type (we view records
as syntactic sugar for nested Σ-types).

However, what happens if we want to define a structure to
consist of not only 30, but infinitely many components? Often,
this can be encoded in a finite way. To give a trivial example,
an infinite sequence of elements of a type A is simply given
as the function type N → A (or as a coinductive type of
streams [50]).

A non-trivial example for a structure with infinitely many
components are semisimplicial types [51], [52], and these are

important for the approach to ∞-categories that we chose in
this paper. It is a long-standing open problem whether they
can be defined in homotopy type theory. Therefore, we work
in two-level type theory (2LTT [38], [39], [53]), an extension
of HoTT which allows us to work with semisimplicial types
and similar structures.

In order to understand the later ideas of this paper, semisim-
plicial types are important. Therefore, we first briefly recall
what they are. Two-level type theory is more of a technical
framework which is required to perform the constructions in
full generality, but it is not crucial in order to understand the
ideas; a brief explanation is given below and, for details, we
refer to [39].

A. Semisimplicial Types

A semisimplicial type of dimension 2 is a tuple
(A0, A1, A2) of types and type families as follows:

A0 : U (47)
A1 : A0 → A0 → U (48)
A2 : {x0 x1 x2 : A0} → (A1 x0 x1)→

(A1 x1 x2)→ (A1 x0 x2)→ U (49)

We think of A0 as a type of points or vertices, of A1 x0 x1
as lines, of A2 with three lines as arguments as a type of
triangle fillers, and it is (at least on an intuitive level) clear
what a semisimplicial type of dimension 3 (extend the above
with a family A3 of tetrahedron fillers) would be, and so on.

Meta-theoretically (and in 2LTT), the semisimplicial type
(A0, A1, A2) represents a type-valued presheaf on the index
category

[0] [1] [2] (50)

which is given by

A0 Σ(x0 x1 : A0).A1 x0 x1

Σ(x0 x1 x2 : A0).
Σ(x01 : A1 x0 x1).
Σ(x12 : A1 x1 x2).
Σ(x02 : A1 x0 x2).
A2 x01 x12 x02

(51)
The morphism part of this presheaf (i.e. the functions in (51))
are simply projections. It works out such that the usual functor
laws hold definitionally thanks to η for Σ-types. This style
of presentations of structure as type families described by an
index category are known since at least Makkai’s FOLDS [54].

A “full” semisimplicial type is a presheaf on the simplex
category without degeneracies, ∆+, of which (50) is an initial
segment. 2LTT is a version of type theory where this can be
expressed. The main idea of 2LTT that we need to keep in
mind for the rest of this paper is that it has a strict layer on
top of “normal HoTT”. The strict layer contains strict natural
numbers Ns as well as strict equality (=s), and more generally
contains constructions that would usually only work in the
meta-theory; e.g. a number n : Ns behaves like an externally
fixed natural number (a numeral), and strict equality plays the
role of judgmental/definitional equality (at least from the point

of view of “normal HoTT”). For clarity, we refer to types in
“normal HoTT” as fibrant and types in the strict layer as strict.

Strict equality allows us to talk about strict categories, strict
functors, and strict natural transformations. A natural example
of a strict category is the universe. The strict category ∆+ has
n : Ns as objects, and a morphism from m to n is an injective
and monotone function Finm → Finn. Semisimplicial types
are strict functors satisfying the so-called Reedy fibrancy [55]
condition which essentially says that the functor can be
described by type families as in (51). In a similar fashion, it is
possible to define a family of semisimplicial types indexed by
another semisimplicial type, which can also be described as a
semisimplicial type over a semisimplicial type or a displayed
semisimplicial type:

Definition 7 (semisimplicial type in 2LTT [39]). A semisim-
plicial type is a strict Reedy fibrant functor A : ∆op

+
RF
=⇒ U . A

semisimplicial type B over A is a strict natural transformation
from B to A that is also a Reedy fibration.

Intuitively, Definition 7 describes a semisimplicial type as
an infinite tuple (A0, A1, . . .), and a semisimplicial type over
it as a sequence (B0, B1, . . .) with B0 : A0 → U , B1 : (x0 x1 :
A0)→ B0 x0 → B0 x1 → U , and so on.

B. Contexts and substitutions, first part: semi-Segal types

Segal spaces (Rezk [56]), also called Rezk spaces, are a
model for higher categories. Translating Rezk’s Segal condi-
tion to type theory is straightforward and has been presented
previously by Capriotti [40] and others, but note that the
degeneracies are missing. We briefly sketch the definition as
presented in [39], [40].

On the strict level, and for n : Ns, we have the repre-
sentable functor ∆[n]. It can be viewed as the n-dimensional
tetrahedron. A trivial application of the Yoneda lemma shows
that, given a semisimplicial type A, the type of natural
transformations ∆[n] → A is strictly isomorphic to the total
space of An (a collection of n+ 1 points in A0,

(
n+1
2

)
lines,

and so on). Given another number k : Ns, the horn Λk[n]
is the semisimplicial set obtained from the representable ∆[n]
by removing the identity morphism on Finn and the monotone
injection Finn−1 → Finn which does not have k in its image.
There is an obvious inclusion Λk[n] ↪→ ∆[n] that is used in
the following definition:

Definition 8 (Segal condition [39], [56]). A semisimplicial
type A satisfies the Segal condition if, for any given n and
0 < k < n, any given η : Λk[n] → A can uniquely be
extended to a natural transformation ∆[n] → A, in the sense
that the type of extensions is contractible.

We remark that A is often called local with respect to the
inclusion Λk[n] ↪→ ∆[n].

In previous work with Capriotti [42], we unfold the Segal
condition explicitly for small n, k (and actually fix k ≡ 1,

which is sufficient). Given a semisimplicial type (A0, A1, A2)
of level 2, the Segal condition can be expressed as:

h2 : {x0 x1 x2 : A0} → (x01 : A1 x0 x1)→
(x12 : A1 x1 x2)→
isContr (Σ(x02 : A1 x0 x2).A2 x01 x12 x02)

(52)

We also call this a horn-filling condition or the condition that
the horn x0

x01−−→ x1
x12−−→ x2 has a contractible type of fillers.

In [42], an explicit translation between horn-filling condi-
tions and the structure one expects of (higher) semicategories
is constructed. It not hard to see that having the pair (A2, h2)
is equivalent to having a composition operator (◦) :
A1 x0 x1 → A1 x1 x2 → A1 x0 x2: having an element of a
type (here A1 x0 x2) is equivalent to having a family over
the type (here A2 x01 x12 : A1 x0 x2 → U) and a proof that
it is inhabited at exactly one point (here h2 x01 x12). On the
next level, we require that any map Λ1[3]→ A can uniquely
be extended to ∆[3] → A, and this (together with A3) is
equivalent to stating that ◦ is associative. The next level
corresponds to the pentagon coherence of associativity familiar
from the definition of a bicategory [42]. This motivates the
following definition:

Definition 9 (∞-semicategory [40]). A semisimplicial type A
is an ∞-semicategory (also known as a semi-Segal type) if it
satisfies the Segal condition.

The generalisation from semisimplicial types to maps be-
tween semisimplicial types is canonical:

Definition 10 (inner fibration).
An inner fibration, or an
∞-semicategory over an
∞0semicategory, is a Reedy
fibration η : E � A such that,
for all n, 0 < k < n, and squares

Λk[n]

∆[n]

E

A

η (53)

of the form shown on the right, the type of fillers (i.e. the
type of the dashed map) is contractible. It is worth noting that,
by definition, a semisimplicial type A is an ∞-semicategory
exactly if A� 1 is an inner fibration.

C. Contexts and substitutions, second part: identities

The natural next question is how the definition of an ∞-
semicategory can be extended to capture ∞-categories. To do
this, we need to add a property which ensures that the ∞-
semicategory has identities. We want this property to satisfy
the following conditions:

1) Of course, the property should give us (i.e. allow us to
construct) the “naı̈ve” identities that are shown in Fig. 1:
For every object, we want an endomorphism id such that
id � σ = σ and σ � id = σ.

2) The property should be a proposition. In other words, we
want an ∞-semicategory to be an ∞-category in at most
one way. This is important because we do not only want
to talk about a single ∞-category in isolation, but about
a type of ∞-categories.

3) From the perspective of HoTT, it is natural to want
univalent (or saturated)∞-categories, meaning that iden-
tities/equalities and isomorphisms coincide (analogous to
univalent 1-categories [35]). As one might expect, the
standard model will indeed turn out to be a univalent
∞-CwF. However, not all examples that we want can
possibly be univalent: In a type theory, contexts can be
isomorphic in non-trivial ways, meaning that the type
Con in a univalent ∞-CwF cannot be a set. This would
rule out the “syntax” (Example 2). Phrased differently,
the initial model of a non-trivial type theory would not
be on the level of sets (and will in particular not have
decidable equality for contexts), which contradicts the
expectation by Altenkirch [34] and others.6 Therefore, we
want a more general definition of “being an∞-category”
(a.k.a. “having identities”) which allows us to study both
univalent and non-univalent variants.

The question of adding identities to ∞-semicategories has
been studied outside the field of type theory long before HoTT
was researched. It is known [57] that a semisimplicial set with
(not necessarily unique) fillers for all (not necessarily inner)
horns can be extended to a simplicial set. This is however
non-constructive and relies on choice. Our situation is closer
to semisimplicial spaces with an inner horn filling condition,
for which Lurie [58] and Harpaz [59] have suggested a simple
condition that expresses the presence of suitable identities. The
translation of their idea into type theory leads to the complete
semi-Segal types by Capriotti [40] and others. Complete semi-
Segal types can be taken as the definition of type-theoretic
univalent ∞-categories, but the univalence condition is built
into the definition of identities.

A direct replacement of the full simplex category has been
suggested by Sattler and the current author [60], which gives
rise to (a replacement of) simplicial types and thereby (not
necessarily univalent) ∞-categories. Another direct replace-
ment was given by Kock [61]. These approaches both work
by adding an infinite tower of data.

The current paper gives a new and different definition of
identities in ∞-semicategories. The idea is motivated by [60]
and inspired by what is known as dunce’s hat in topology [62],
which is the simplest example of a space that is contractible
but not collapsible (in type-theoretic terms: a space that is
contractible but not of the form Σ(a : A).a = a0). Concretely,
we define identities to be idempotent equivalences. This is
both minimalistic and, as we prove in this section, well-
behaved; it satisfies the three properties listed above. This
definition corresponds to a characterisation of identities that
was independently suggested by Lai [63], who considered
(∞, 1)-categories in a slightly different version of type theory.

6In a private conversation with the current author, Eric Finster has pointed
out that type-checking algorithms do not rely on context equality being
decidable. In other words, one could potentially drop the condition that
contexts of the syntactic model form a set and only keep the condition for
substitutions, types, and terms. This may make a univalent syntactic model
possible.

This author expects that the definition of identities via
idempotent equivalences is equivalent to both of the mentioned
“elaborate” definitions [60], [61]. If we add univalence, the
equivalence with complete semi-Segal types is obvious.

Our definition of an identity does not need the whole
infinite structure of an ∞-semicategory, but only the first
four levels (A0, A1, A2, A3). Using the translation explained
in Section III-B, we phrase this subsection in the (maybe more
familiar) language of a semicategory (Ob,Hom, �, assoc),
without any requirement of set-truncation. This allows us to
present the development in a very elementary way, without the
need to allude to infinite structures. Below, we state the precise
definitions and theorems; the detailed proofs themselves are
reasonably elementary and can be found in the Agda formal-
isation (see footnote 5 on page 4).

Definition 11 (identities via idempotent equivalences). In
a wild semicategory (Ob,Hom, �, assoc), a morphism e :
Hom(x, y) is an equivalence (neutral morphism in [42]),
written iseqv(e), if both composition operations

(� e) : Π{z : Ob}.Hom(y, z)→ Hom(x, z) (54)
(e �) : Π{w : Ob}.Hom(w, x)→ Hom(w, y) (55)

are equivalences of types. A morphism f : Hom(x, x) is
idempotent if f � f = f . A morphism i : Hom(x, x) is a
good identity if it is an equivalence and idempotent. The wild
semicategory C ≡ (Ob,Hom, �, assoc) has a good identity
structure if there is an identity for every object,

hasGoodIdStruc(C) :≡ Π(x : Ob).Σ(i : Hom(x, x)).

iseqv(i)× (i � i = i).
(56)

Theorem 12 (Identities are good iff left and right neutral). A
morphism i : Hom(x, x) is a good identity if and only if, for
all composable morphisms

f−→ i−→ g−→, we have i � f = f and
g � i = g.

Theorem 13 (Uniqueness of good identities). For a given
semicategory C, the type hasGoodIdStruc(C) is a proposition.

Phrased in the language of an ∞-semicategory
(A0, A1, A2, . . .), a morphism e : A1 x y is an equivalence
if any horn of the form 1

e←− 0 −→ 2 or 0 −→ 2
e←− 1 has

a contractible type of fillers. A proof that the morphism
f : A1 xx is idempotent is an element of A2 f f f .

Definition 14. An ∞-category is an ∞-semicategory with a
good identity structure.

Univalence for ∞-categories is an optional additional prop-
erty that one can add; it is not discussed further in this paper.
From the next subsection on, we will drop the attribute good
and simply speak of identities rather than good identities.
There is no risk of confusion, especially since Theorem 12
essentially shows that every identity is good.

Section summary. A semisimplicial type is a type-
valued presheaf on the category ∆+, the category of fi-
nite (non-empty) sets and strictly increasing functions.
Intuitively, a semisimplicial type is an infinite tuple
(A0, A1, A2, . . .); this definition can be formulated in
2LTT.
A semisimplicial type forms the “raw structure” of a
higher category. If we equip it with the Segal condition
(which is itself a propositional property), we get an∞-
semicategory.
Finally, an∞-semicategory with an idempotent equiv-
alence for every object is a not-necessarily-univalent
notion of ∞-category in type theory.

IV. INTERNAL ∞-CWF’S

A. The empty context: a terminal object

Modelling the empty context as a terminal object is stan-
dard.

Definition 15 (terminal object). Given an ∞-category
(A0, A1, A2, . . .), an object x : A0 is terminal if, for all y : A0,
the type A1 y x is contractible.

B. Types: a presheaf

Following Definition 1, types should be a presheaf on the
category of contexts. This author is aware of two differently
looking (but of course in a suitable sense equivalent) ways to
define what an∞-presheaf (or prestack) is in this setting. The
first possibility is to:

1) define the opposite category Aop;
2) define the ∞-category T of types and functions;
3) and define what an ∞-functor between ∞-categories is.

The second possibility, suggested and studied by Christian
Sattler in unpublished work, is to consider right fibrations
over the category of contexts. We will discuss this second
approach and its advantages below in Remark 20. For now,
we concentrate on the first possibility which is closer to the
1-categorical formulation discussed in Section II.

Let us start with the last point (3). A morphism in a (strict)
functor category is a (strict) natural transformation, and ∞-
categories are certain (strict) functors equipped with structure.
Manually unfolded to type theory, a natural transformation
between semisimplicial types of level 2, from (A0, A1, A2) to
(B0, B1, B2) is a tuple (F0, F1, F2) where:

F0 : A0 → B0 (57)
F1 : {x0 x1 : A0} → (A1 x0 x1)→

(B1 (F0 x0) (F0 x1)) (58)
F2 : {x0 x1 x2 : A0} → {x01 : A1 x0 x1} →

{x12 : A1 x1 x2} → {x02 : A1 x0 x2} → (59)
(A2 x01 x12 x02)→ (B2 (F1 x01) (F1 x12) (F1 x02)

Being a strict map between the underlying semisimplicial
types already ensures that F preserves the compositionality
structure. We can make this transparent on level 2 via the
translation explained in Section III-B, under which the last
component F2 translates to:

F ′2 : {x0 x1 x2 : A0} → {x01 : A1 x0 x1} →
{x12 : A1 x1 x2} → (60)
(F1 x12) � (F1 x01) = F1(x12 � x01)

∞-categories come with a proof that the underlying functors
are Reedy fibrant, but the strict natural transformation takes
care of this automatically. Thus, the only task that is left
is to ensure that the functor F preserves identities, i.e. if
i : A1 xx is an idempotent equivalence, then F1 i has to be an
idempotent equivalence as well. Stating it in this way would
not give a well-behaved notion of ∞-functor, since “being
idempotent” is not a propositional property. Fortunately, idem-
potence is already preserved automatically by F2, and “being
an equivalence” is a propositional property.

Definition 16 (∞-functor). An ∞-functor between ∞-
categories is a strict natural transformation which maps iden-
tities to equivalences.

Remark 17. A strict natural transformation between ∞-
categories does not automatically preserve equivalences or
even identities. Let > be the terminal∞-category, which is the
unit type Unit on every level. Let A be the∞-category defined
by A0 :≡ Unit, A1 :≡ (2→ 2), A2 f g h :≡ (g ◦ f = h),
and Ak+3 being constantly Unit. There are three maps > → A,
each of them even an inner fibration, but only a single of them
preserves identities.

Given an ∞-category A ≡ (A0, A1, A2, . . .), we need to
define the opposite category Aop ≡ (Aop

0 , A
op
1 , A

op
2 , . . .). There

is really only one possible construction: of course we want
Aop

0 :≡ A0 and Aop
1 x y :≡ Ay x, and after this, everything is

determined; e.g. we have Aop
2 f g h :≡ A2 g f h, since nothing

else would type-check. The concrete combinatorial description
for the representation as functors is identical to the one for
simplicial sets given by Lurie [64, Sec 1.2.1].

Finally, we need the ∞-category T of types and func-
tions, starting with T0 ≡ U , T1X Y :≡ (X → Y), and
T2 f g h ≡ (g ◦ f = h). We briefly sketch the complete
construction given in [39]. Given any strict category C, one
can define a strict functor N+(C) : ∆op

+
s

=⇒ U via the usual
nerve construction which defines N+(C)n to be (fibrant) type
of sequences X0 → X1 → . . . → Xn. This strict functor is
not Reedy fibrant, but via a general Reedy fibrant replacement
construction [39, Sec. 4], one can find a levelwise equivalent
and Reedy fibrant functor R(N+(C)). The identity structure
is obvious and simply comes from X

id−→ X .

Definition 18 (∞-category of small types). The ∞-category
T is given as R(N+(U)), where U is the strict category of
types and functions.

C. Terms: diagrams over a category of elements

Recall from Definition 1 that terms are in 1-CwF’s modelled
by a functor Tm :

∫
Cop Ty → Set. Our treatment of types has

already covered several of the components that are needed
in order to translate this to the ∞-categorical setting. The
remaining missing part is the construction of the category of
elements, which is what we explain in this subsection.

Let A be an ∞-category and F : A → T be an ∞-
functor. As one may expect,

∫
A F can be viewed as an ∞-

category over A: Given an n-simplex in A consisting of
vertices x0, x1, . . ., lines x01, . . ., and so on, we can build an
n-simplex in

∫
A F if we have something in F0 x0, in F0 x1,

in F1 x01, and so on, where all the new data has to “match”.
Our goal is to define

∫
A F on all levels.

We first solve the problem for the case that A is a strict
category and F : A→ U a strict functor with the following ad-
hoc construction that has been (partially) discussed in [39]. We
define N•+(A,F) to be the strict functor ∆op

+
s

=⇒ U given by the
nerve together with a single point: An element of N•+(A,F)n
is a pair (s, p) of a chain s : x0 → x1 → . . . → xn in
A and a point p : F x0. There is a canonical strict natural
transformation η : N•+(A,F) → N+(A) which, on each
level, forgets the point. Using the mentioned Reedy fibrant
replacement [39, Sec. 4] twice, we get a Reedy fibration
between Reedy fibrant diagrams.

For the terminal (“universal”) case, where A is U and F the
identity functor, we denote the constructed Reedy fibration by
T • � T . We call T • the∞-category of pointed types. For the
first few levels, its “over T ” representation is the following,
where we annotate arguments with their types for readability
and happly is the function given in [4, Eq. 2.9.2]:

T •0 (X : U) :≡ X (61)
T •1 (f : X → Y) (x : X) (y : Y) :≡ (f x = y) (62)
T •2 (α : g ◦ f = h) (e0 : f x = y)

(e1 : g y = z) (e2 : hx = z) :≡ (63)
e2 = (happlyαx) � (apg e0) � e1

We can now come back to the general case of an∞-category
A and an ∞-functor F : A → T . Recall (from [39]) that
Reedy fibrations are closed under pullback.

Definition 19 (∞-category of el-
ements). For an ∞-category A
and a functor F : A → T ,
the ∞-category of elements of
F , written

∫
A F , is defined to

be the strict pullback of F along
the Reedy fibration T • � T , as
shown on the right.

∫
A F

A

T •

T

π1
F

(64)

It is standard that pullbacks are closed under fibrations
(given a lifting problem for

∫
A F � A, we extend it to a

lifting problem for T • � T and use the pullback property).
Therefore,

∫
A F is an ∞-category.

Remark 20 (left and right fibrations). Let η : E � A be
a Reedy fibration between semisimplicial types. η is a left
fibration if it fulfils the condition of Definition 10 for 0 ≤
k < n (that means that all left fibrations are inner fibrations,
but only some inner fibration are left fibrations). Analogously,
η is a right fibration if the condition of Definition 10 holds
for for 0 < k ≤ n.

One can show that the map η : N•+(A,F) → N+(A)
constructed above, and in particular T • � T , is a left
fibration. One can further show that T • � T is a homotopical
left fibration classifier: For any left fibration E � A, the type
of tuples (g, h, q) with g : A → T , h : E → T •, and q
witnessing that the resulting square commutes up to homotopy
and is a homotopy pullback, is contractible.

This implies that left fibrations over A are in a suitable
sense equivalent to ∞-functors A → T . Thus, ∞-presheaves
on A correspond to right fibrations over A. If C is the ∞-
category of contexts, we can define types to be given as a
right fibration Ty � C. Since Ty already is (the opposite of)
the ∞-category of elements, terms are then simply given by
a second right fibration Tm � Ty. This formulation is due to
Christian Sattler.

Note that the strict pullback (64) is also a homotopy
pullback since the vertical maps are Reedy fibrations.

D. Context extension

When generalising from CwF’s to∞-CwF’s, context exten-
sion greatly benefits from the formulation of representabiliy
via initiality in a category of elements (see Section II). Even
for ∞-categories, representability can be stated referring only
to the lowest levels of the category, i.e. using finitely many
components. However, the presentation of Fig. 1 relies on UIP
and does not work out of the box; instead, we define:

Definition 21. Let F : A → T be an ∞-functor. A represen-
tation for F is a tuple (x, u, r) where x : A0, u : F0 x, and r :
(y : D0)→ (v : F0 y)→ isContr (Σ(f : A1 x y).F1 f u = v).

Applying this definition to our case of interest and unfolding
leads us to:

Definition 22 (context extension structure). Let an ∞-
category C be given together with ∞-functors Ty : Cop → T
and Tm :

(∫
Cop Ty

)
→ T . A context extension structure

consists, for all Γ : C0 and A : Ty0 Γ, of the following data:
1) an object Γ . A : C0,
2) a morphism pA : C1 (Γ . A) Γ,
3) and a term qA : Tm0((Γ . A), (Ty1 pAA)).

Whenever, in addition to Γ and A, we have Θ : C0 and
σ : C1 Θ Γ and t : Tm0(Θ, (Ty1 σ A)), then we also have
the following data:

4) a morphism (σ, t) : C1 Θ (Γ . A),
5) a triangle filler .βA,σ,t1 : C2 (σ, t) pA σ
6) an equality .βA,σ,t2 : Tm1 ((σ, t), refl) qA = t over the

equality we get from Ty2 . β
A,σ,t
1 .

7) for any 3-tuple (τ, f, e) of the same type as
((σ, t), .βA,σ,t1 , .βA,σ,t2), the two tuples are equal.

Section summary. An ∞-CwF has the following
components:

1) An ∞-category C, cf. Definition 14. This is a
semisimplicial type (C0, C1, C2, . . .) such that ev-
ery inner horn has a contractible type of fillers
and, for every object, we have an idempotent
equivalence.

2) C has a terminal object, cf. Definition 15. An
object x is terminal if every C1 y x is contractible.

3) An ∞-functor Ty : Cop → T . Here, T (cf.
Definition 18) is the semisimplicial type of (small)
types and functions, with T0 ≡ U and T1X Y :≡
(X → Y). An ∞-functor (cf. Definition 16) is a
strict natural transformation between semisimpli-
cial types which maps identities to equivalences.

4) A second ∞-functor Ty :
∫
Cop Ty → T . The ∞-

category of elements (cf. Definition 19) is defined
by first constructing the ∞-category of pointed
types.

5) A context extension structure, cf. Definition 22.
Context extension can be represented in a finite
way even without referring to the strict layer of
2LTT.

Christian Sattler has suggested an alternative, where
the above functors Ty and Tm are replace by a
sequence of right fibrations, Tm � Ty � C. Context
extension can then be described as a right adjoint of the
first fibration, in line with Awodey’s presentation [23].

V. EXAMPLES OF ∞-CATEGORIES WITH FAMILIES

A. The Syntax as a QIIT

Every set-CwF in the sense of Definition 6 and Fig. 1 can
be presented as an ∞-CwF. Therefore, the syntax QIIT by
Altenkirch and Kaposi [3], discussed in Example 2, is an
∞-CwF. The concrete construction of the ∞-CwF C from
Fig. 1 can be described as follows. One starts by defining
C0 to be Con and by setting C1 Γ ∆ to be Sub Γ ∆. The
next level is given by C2 f g h :≡ (g � f = h), and all
higher components of C are contractible: C3+n() :≡ Unit.
The other parts are constructed analogously. Summarised, the
construction of an ∞-CwF from a set-CwF is easy because
almost all components of the ∞-CwF become trivial.

Although we do not explain it in this paper, we can define
what a morphism between ∞-CwF’s is, which in turn lets us
speak about the property of being the initial ∞-CwF (again,
note that this only makes sense if we consider base types).
We conjecture that the syntax is the initial ∞-CwF, but this
seems to be highly non-trivial.

B. The Initial Model as a HIIT

The definition of an∞-CwF is fully algebraic in the sense of
Cartmell [27], although with infinitely many sorts, operations,
and equations, and this is still true if we add components
such as base types or Π-types. Clearly, semisimplicial types

themselves are an (infinite) generalised algebraic theory, as
seen from the presentation (47–49). For the Segal condition,
this might be slightly harder to see; however, the specific
formulation of the Segal condition via horn filling that we have
chosen in Section III-B makes it doable: for every horn, we can
generate a filler (with two operations), and that filler is equal
to every other filler parallel to it (using two equations). This
construction makes it possible to build the free ∞-category
of a semisimplicial type if the type theory has an “infinite”
version of higher inductive-inductive types as specified by
Kaposi and Kovács [29], i.e. a HIIT where constructors are
indexed over strict natural numbers. The other components of
an ∞-CwF can be written as a GAT as well, giving us the
initial ∞-CwF.

We do not know under which conditions this HIIT turns out
to have decidable equality, but if it does, then it is in particular
based on sets. If this is the case, it is also initial among the
set-CwF’s and thus equivalent to the syntax QIIT.

C. Higher Models from Strict Models and the Standard Inter-
pretation

A strict CwF is a (1-categorical) CwF where most equations
hold up to strict equality. As remarked in Example 3, this is
in particular the case for the standard model. We show that,
from a strict CwF, we get an ∞-CwF. Let us begin with a
precise definition:

Definition 23 (strict CwF). In 2LTT, a strict category with
families (sCwF) is a CwF as in Fig. 1 such that Con, Sub,
Ty and Tm are all fibrant types, while all the stated equalities
for contexts, substitutions, types, and terms hold up to strict
equality (=s). For context extension, we need the contractibil-
ity condition of Definition 21 stated using the usual fibrant
equality type (=), i.e. it suffices to have the conditions 5,6,7
in Definition 22 as fibrant equalities.

Lemma 24. Given a sCwF, we can construct an ∞-CwF.

Proof sketch. The first part of the proof is given by the
construction of semi-Segal types from strict categories, as de-
scribed in [39] and sketched in Section IV-B. To construct the
remaining components, we first generate strict semisimplicial
diagrams by taking nerves N+ and N•+ as in Section IV-C.

The Reedy fibrant replacement
operation R constructed in [39]
has the property that, from a
strict natural transformation
τ : X → Y between strict
diagrams over ∆op

+ , we get a
strict natural transformation
R(τ) : R(X)→ R(Y) between

X

R(X)

1

Y

R(Y)

1

τ

R(τ)

the respective Reedy fibrant replacements, i.e. semisimplicial
types. This follows from [39, Cor 4.28], applied on the
diagram on the right.

Simply fibrantly replacing everything does not fully work
for the ∞-functor Tm since the fibrant replacement does not
commute with the required strict pullback, but switching to

right fibrations and back (as discussed in Remark 20) resolves
the issue. Context extension can be checked manually, since
it only concerns the lowest levels.

Applying Lemma 24 on the 1-categorical standard model
(which is a strict CwF, see Example 3) shows that the standard
model is also an ∞-CwF.

D. Slicing in ∞-CwF’s

As a final example, let us show that the slice construction
analogous to Example 4 works for ∞-CwF’s. Slicing of ∞-
categories in type theory works in essentially the same way
as slicing in simplical sets [64].

Given an ∞-category C with an object Γ : C0, we want
to construct the slice ∞-category (C/Γ). Recall that elements
of Cn can, by Yoneda, be seen as n-simplices ∆[n]

s
=⇒ C. We

define (C/Γ)n to be the type of (n+1)-simplices where the last
vertex strictly equals Γ; in other words, (C/Γ)n is defined to be
Cn+1 with a condition involving a strict equality. This type is
fibrant nevertheless: (C/Γ)n is (strictly isomorphic to) a nested
Σ-type of (n+ 2) vertices including the last vertex xn+1 : C0,
lines, triangle fillers, . . . , and the strict equality e : xn+1 = Γ.
But the type of pairs (xn+1, e) is strictly isomorphic to the
unit type and therefore fibrant.

The morphism part of (C/Γ) is given as those morphisms
in Cn+1 which do not touch the last vertex. Thinking of Cn+1

as simplices and face maps as projections as in (51), face
maps are those projections which do not remove the last vertex
xn+1.

One can check that (C/Γ) is a semi-Segal type. Further, if
i is an identity on Θ in C and f : C1 Θ Γ an object of (C/Γ),
then the identity on this object is given by the cell in C2 f i f
of Theorem 12. Thus, (C/Γ) is an ∞-category. As in the 1-
categorical case, the functors Ty and Tm as well as context
extension are not affected by the slicing operation.

Section summary. In Section II, we have discussed
that several 1-categorical CwF constructions break in
the absence of UIP. In the current section, we have seen
that the examples work (again) in the ∞-categorical
setting.

VI. OPEN PROBLEMS AND FUTURE DIRECTIONS

We have demonstrated that higher-dimensional categories
lead to a notion of model of type theory that is very well-
behaved and works in situations where 1-categorical models
are unsuitable. Our work inspires numerous new questions.
First of all, it seems natural to equip the definition of an ∞-
CwF with additional components such as Π-types, Σ-types,
universes, or simple base types. Developing a notion of ∞-
natural transformation, it is easy to define what a morphism
between∞-categories is; but the natural expectation would be
that [small]∞-CwF’s form a [large] (∞, 2)-category, and it is
much less clear how this can be formulated. The intermediate
goal would be to show that ∞-CwF’s form a large ∞-CwF.

A very important question is whether the Altenkirch-Kaposi
syntax QIIT is initial as an ∞-CwF (after adding base types
and other type formers). Phrased differently, we can ask
whether the initial∞-CwF has decidable equality. This is very
closely related to the open problem whether HoTT can “eat”
itself (Shulman [31]). Our conjecture is that HoTT cannot eat
itself, but that 2LTT can eat itself. Of course, the intermediate
goal that this paper is working towards is the statement that
2LTT can eat HoTT. Even a much weaker question, namely
whether the initial ∞-CwF has trivial fundamental group,
would be very interesting; but already this seemingly much
simpler problem appears to be highly non-trivial, and similar
results for seemingly simpler situations [65]–[67] suggest that
a solution will require new techniques.

If it turns out that the syntax QIIT is indeed the initial ∞-
CwF, we still have to face the problem of defining semisim-
plicial types before we can hope for a solution to the General
Problem of whether “HoTT eats itself”. The other direction
seems in reach: If HoTT can eat itself, then we can define
semisimplicial types. This has already been conjectured by
Shulman [31] but not yet been made precise.

It also would be interesting to formulate and study higher
categories with attributes (which one would expect to be
equivalent to ∞-CwF’s), the more general higher comprehen-
sion categories, and other internal∞-categorical formulations
of models that have been considered in 1-category theory.

The connection to directed type theory [68]–[72] is intrigu-
ing. Future directed type theories may allow us to develop
∞-category theory in a synthetic way, and the relationship to
the semi-synthetic approach of this paper will be interesting
to see.

ACKNOWLEDGEMENTS

This paper has benefited from many conversations that I had
with various people during the last couple of years.

I am particularly grateful for the numerous discussions with
Christian Sattler and Paolo Capriotti. I have learned many ∞-
categorical ideas from Christian and Paolo, and their support
allowed me to understand much more of the higher categorical
literature than I would have managed to understand on my
own. Moreover, Paolo pointed me to abstract and alternative
definitions of CwF’s and representability, which proved to be
very useful for the development in this paper. I also thank
Christian for many helpful comments on an earlier draft of
this paper.

Additional special thanks go to Ambrus Kaposi and
Thorsten Altenkirch for explaining me their intrinsically well-
typed syntax (the syntax QIIT) until the main points sunk in.

I am grateful to the research communities in Birmingham,
Budapest, Nottingham, and Pittsburgh (CMU) for the oppor-
tunities to give talks and discuss the main ideas of this paper.
These opportunities have led to valuable feedback and various
improvements.

Finally, I thank the anonymous reviewers for their comments
which have helped me to improve this paper.

REFERENCES

[1] A. Kaposi, A. Kovács, and N. Kraus, “Shallow embedding of type theory
is morally correct,” in Mathematics of Program Construction (MPC’19),
2019, pp. 329–365, available online at https://arxiv.org/abs/1907.07562.

[2] A. Kaposi, S. Huber, and C. Sattler, “Gluing for type theory,” in
4th International Conference on Formal Structures for Computation
and Deduction (FSCD 2019), ser. Leibniz International Proceedings in
Informatics (LIPIcs), H. Geuvers, Ed., vol. 131. Dagstuhl, Germany:
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2019, pp. 25:1–
25:19. [Online]. Available: http://drops.dagstuhl.de/opus/volltexte/2019/
10532

[3] T. Altenkirch and A. Kaposi, “Type theory in type theory using
quotient inductive types,” in Symposium on Principles of Programming
Languages (POPL’16), SIGPLAN Not., vol. 51, no. 1. New
York, NY, USA: ACM, Jan. 2016, pp. 18–29. [Online]. Available:
http://doi.acm.org/10.1145/2914770.2837638

[4] T. Univalent Foundations Program, Homotopy Type Theory: Univalent
Foundations of Mathematics. Institute for Advanced Study: http:
//homotopytypetheory.org/book/, 2013.

[5] E. Palmgren, “From type theory to setoids and back,” ArXiv, 2019,
available online at https://arxiv.org/abs/1909.01414.

[6] J.-P. Bernardy, T. Coquand, and G. Moulin, “A presheaf
model of parametric type theory,” Electronic Notes in
Theoretical Computer Science, vol. 319, pp. 67 – 82,
2015, the 31st Conference on the Mathematical Foundations
of Programming Semantics (MFPS XXXI). [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1571066115000730

[7] M. Sozeau and N. Tabareau, “Internalization of the groupoid interpre-
tation of type theory,” in TYPES 2014, 2014.

[8] M. Hofmann and T. Streicher, “The groupoid interpretation of type
theory,” in In Venice Festschrift. Oxford University Press, 1996,
pp. 83–111. [Online]. Available: www.mathematik.tu-darmstadt.de/
∼streicher/venedig.ps.gz

[9] A. Abel, J. Öhman, and A. Vezzosi, “Decidability of conversion for type
theory in type theory,” in Symposium on Principles of Programming
Languages (POPL’18), Proceedings of the ACM on programming
languages, vol. 2, no. POPL. ACM, 2017, p. 23. [Online]. Available:
https://doi.org/10.1145/3158111

[10] T. Streicher, “Investigations into intensional type theory,” 1993, habili-
tationsschrift, Ludwig-Maximilians-Universität München.

[11] G. Brunerie, M. de Boer, P. L. Lumsdaine, and A. Mörtberg, “A
formalization of the initiality conjecture in agda,” 2019, talk given
by Brunerie at the HoTT 2019 conference, slides available at https:
//guillaumebrunerie.github.io/pdf/initiality.pdf.

[12] P. L. Lumsdaine and A. Mörtberg, “Formalising the initiality conjecture
in Coq,” 2018, talk given by Lumsdaine at the Göteborg-Stockholm Joint
Type Theory Seminar, slides available at http://peterlefanulumsdaine.
com/research/Lumsdaine-2018-Goteborg-Initiality.pdf.

[13] G. Brunerie and P. L. Lumsdaine, “Formalising the initiality conjecture
in coq and agda,” 2018, talk at the Stockholm-Göteborg Type Theory
Serminar.

[14] ——, “Initiality for Martin-Löf type theory,” 2020, talk at the Homotopy
Type Theory Electronic Seminar Talks (HOTTEST).

[15] M. de Boer, “A proof and formalization of the initiality conjecture
of dependent type theory,” Stockholm, Sweden, 2020, licentiate the-
sis, available online at https://su.diva-portal.org/smash/record.jsf?pid=
diva2%3A1431287.

[16] J. Chapman, “Type theory should eat itself,” Electronic Notes in Theo-
retical Computer Science, vol. 228, pp. 21–36, 2009.

[17] N. A. Danielsson, “A formalisation of a dependently typed language
as an inductive-recursive family,” in Types for Proofs and Programs,
T. Altenkirch and C. McBride, Eds. Berlin, Heidelberg: Springer, 2007,
pp. 93–109.

[18] M. H. Escardó and C. Xu, “Autophagia – type theory eating it-
self?” 2014, agda project, available at https://www.cs.bham.ac.uk/∼mhe/
TT-perhaps-eating-itself/TT-perhaps-eating-itself.html.

[19] A. Kaposi, “Type theory in a type theory with quotient inductive
types,” Ph.D. dissertation, School of Computer Science, University of
Nottingham, Nottingham, UK, 2016, available online at http://eprints.
nottingham.ac.uk/41385/1/th.pdf.

[20] P. L. Lumsdaine, “Formalising the categorical semantics of type theory,
in type theory,” 2015, talk at DMV, Hamburg, on joint work with Hakon
Gylterud and Erik Palmgren.

[21] U. Buchholtz, “Formalizing type theory in type theory using nominal
techniques,” 2017, talk at HoTT/UF, Oxford.

[22] P. Dybjer, “Internal type theory,” in Types for Proofs and Programs
(TYPES), ser. Lecture Notes in Computer Science, S. Berardi and
M. Coppo, Eds., vol. 1158. Springer-Verlag, 1995, pp. 120–134.

[23] S. Awodey, “Natural models of homotopy type theory,” Mathematical
Structures in Computer Science, vol. 28, no. 2, pp. 241–286, 2018.

[24] B. Ahrens, P. L. Lumsdaine, and V. Voevodsky, “Categorical structures
for type theory in univalent foundations,” in 26th EACSL Annual
Conference on Computer Science Logic (CSL 2017), ser. Leibniz
International Proceedings in Informatics (LIPIcs), V. Goranko and
M. Dam, Eds., vol. 82. Dagstuhl, Germany: Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik, 2017, pp. 8:1–8:16. [Online].
Available: http://drops.dagstuhl.de/opus/volltexte/2017/7696

[25] ——, “Categorical structures for type theory in univalent foundations,”
Logical Methods in Computer Science, vol. Volume 14, Issue 3, Sep.
2018. [Online]. Available: https://lmcs.episciences.org/4814

[26] J. Cartmell, “Generalised algebraic theories and contextual categories,”
Ph.D. dissertation, Oxford, 1978.

[27] ——, “Generalised algebraic theories and contextual categories,” Annals
of pure and applied logic, vol. 32, pp. 209–243, 1986.

[28] T. Altenkirch, P. Capriotti, G. Dijkstra, N. Kraus, and F. N. Forsberg,
“Quotient inductive-inductive types,” in Foundations of Software Science
and Computation Structures (FoSSaCS 2018), C. Baier and U. Dal Lago,
Eds. Springer International Publishing, 2018, pp. 293–310.

[29] A. Kaposi and A. Kovács, “Signatures and induction principles
for higher inductive-inductive types,” Logical Methods in Computer
Science, vol. Volume 16, Issue 1, Feb. 2020. [Online]. Available:
https://lmcs.episciences.org/6100

[30] T. Coquand, S. Huber, and C. Sattler, “Homotopy Canonicity
for Cubical Type Theory,” in 4th International Conference on
Formal Structures for Computation and Deduction (FSCD 2019), ser.
Leibniz International Proceedings in Informatics (LIPIcs), H. Geuvers,
Ed., vol. 131. Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik, 2019, pp. 11:1–11:23. [Online]. Available:
http://drops.dagstuhl.de/opus/volltexte/2019/10518

[31] M. Shulman, “Homotopy type theory should eat itself (but so far, it’s
too big to swallow),” 2014, Blog post, homotopytypetheory.org/2014/
03/03/hott-should-eat-itself.

[32] P. Claiambault and P. Dybjer, “The biequivalence of locally cartesian
closed categories and martin-löf type theories,” Mathematical Structures
in Computer Science, vol. 24, no. 6, p. e240606, 2014.

[33] A. Kaposi and T. Altenkirch, “Normalisation by evaluation for type
theory, in type theory,” Logical Methods in Computer Science, vol. 13,
2017.

[34] T. Altenkirch, “Towards the syntax and semantics of higher dimensional
type theory,” 2018, talk abstract for HoTT/UF, Oxford.

[35] B. Ahrens, K. Kapulkin, and M. Shulman, “Univalent categories
and the Rezk completion,” Mathematical Structures in Computer
Science (MSCS), pp. 1–30, Jan 2015. [Online]. Available: http:
//journals.cambridge.org/article S0960129514000486

[36] J. E. Bergner, “A survey of (infinity, 1)-categories,” in Towards higher
categories. Springer, 2010, pp. 69–83.

[37] N. Kraus and C. Sattler, “Higher homotopies in a hierarchy of univalent
universes,” ACM Transactions on Computational Logic (TOCL), vol. 16,
no. 2, pp. 18:1–18:12, April 2015.

[38] V. Voevodsky, “A simple type system with two identity types,” 2013,
unpublished note.

[39] D. Annenkov, P. Capriotti, N. Kraus, and C. Sattler, “Two-level type
theory and applications,” ArXiv, 2019, available online at https://arxiv.
org/abs/1705.03307.

[40] P. Capriotti, “Models of type theory with strict equality,” Ph.D. disserta-
tion, School of Computer Science, University of Nottingham, Notting-
ham, UK, 2016, available online at https://arxiv.org/abs/1702.04912.

[41] U. Schreiber, “Category object in an (infinity,1)-category, revision
20,” November 2012, nLab entry, https://ncatlab.org/nlab/revision/
category+object+in+an+%28infinity%2C1%29-category/20; newest ver-
sion available at https://ncatlab.org/nlab/show/category+object+in+an+
%28infinity%2C1%29-category.

[42] P. Capriotti and N. Kraus, “Univalent higher categories via complete
semi-Segal types,” in Symposium on Principles of Programming
Languages (POPL’18), Proceedings of the ACM on Programming
Languages, vol. 2, no. POPL. New York, NY, USA: ACM, Dec. 2017,
pp. 44:1–44:29. [Online]. Available: http://doi.acm.org/10.1145/3158132

https://arxiv.org/abs/1907.07562
http://drops.dagstuhl.de/opus/volltexte/2019/10532
http://drops.dagstuhl.de/opus/volltexte/2019/10532
http://doi.acm.org/10.1145/2914770.2837638
http://homotopytypetheory.org/book/
http://homotopytypetheory.org/book/
https://arxiv.org/abs/1909.01414
http://www.sciencedirect.com/science/article/pii/S1571066115000730
www.mathematik.tu-darmstadt.de/~streicher/venedig.ps.gz
www.mathematik.tu-darmstadt.de/~streicher/venedig.ps.gz
https://doi.org/10.1145/3158111
https://guillaumebrunerie.github.io/pdf/initiality.pdf
https://guillaumebrunerie.github.io/pdf/initiality.pdf
http://peterlefanulumsdaine.com/research/Lumsdaine-2018-Goteborg-Initiality.pdf
http://peterlefanulumsdaine.com/research/Lumsdaine-2018-Goteborg-Initiality.pdf
https://su.diva-portal.org/smash/record.jsf?pid=diva2%3A1431287
https://su.diva-portal.org/smash/record.jsf?pid=diva2%3A1431287
https://www.cs.bham.ac.uk/~mhe/TT-perhaps-eating-itself/TT-perhaps-eating-itself.html
https://www.cs.bham.ac.uk/~mhe/TT-perhaps-eating-itself/TT-perhaps-eating-itself.html
http://eprints.nottingham.ac.uk/41385/1/th.pdf
http://eprints.nottingham.ac.uk/41385/1/th.pdf
http://drops.dagstuhl.de/opus/volltexte/2017/7696
https://lmcs.episciences.org/4814
https://lmcs.episciences.org/6100
http://drops.dagstuhl.de/opus/volltexte/2019/10518
http://homotopytypetheory.org/2014/03/03/hott-should-eat-itself/
http://homotopytypetheory.org/2014/03/03/hott-should-eat-itself/
http://journals.cambridge.org/article_S0960129514000486
http://journals.cambridge.org/article_S0960129514000486
https://arxiv.org/abs/1705.03307
https://arxiv.org/abs/1705.03307
https://arxiv.org/abs/1702.04912
https://ncatlab.org/nlab/revision/category+object+in+an+%28infinity%2C1%29-category/20
https://ncatlab.org/nlab/revision/category+object+in+an+%28infinity%2C1%29-category/20
https://ncatlab.org/nlab/show/category+object+in+an+%28infinity%2C1%29-category
https://ncatlab.org/nlab/show/category+object+in+an+%28infinity%2C1%29-category
http://doi.acm.org/10.1145/3158132

[43] S. Awodey and M. A. Warren, “Homotopy theoretic models
of identity types,” Mathematical Proceedings of the Cambridge
Philosophical Society, vol. 146, pp. 45–55, 2009. [Online]. Available:
http://journals.cambridge.org/article S0305004108001783

[44] C. Kapulkin and P. L. Lumsdaine, “The simplicial model of univalent
foundations (after voevodsky),” ArXiv e-prints, November 2012, to
appear in the Journal of the European Mathematical Society.

[45] B. Barras, T. Coquand, and S. Huber, “A generalization of the takeuti-
gandy interpretation,” Mathematical Structures in Computer Science,
vol. 25, no. 5, pp. 1071–1099, 2015.

[46] S. Boulier, “Extending type theory with syntactic models,” Ph.D. dis-
sertation, École des Mines de Nantes, Nantes, France, 2018.

[47] H. K. Nguyen and T. Uemura, “∞-type theories,” 2020, abstract
presented at the online workshop HoTT/UF’20.

[48] P. Capriotti and C. Sattler, “Higher categories of algebras for higher
inductive definitions,” 2020, abstract for the conference TYPES’20.

[49] A. Kaposi and A. Kovács, “A syntax for higher inductive-inductive
types,” in 3rd International Conference on Formal Structures for
Computation and Deduction (FSCD 2018), ser. Leibniz International
Proceedings in Informatics (LIPIcs), vol. 108. Dagstuhl, Germany:
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2018, pp. 20:1–
20:18. [Online]. Available: http://drops.dagstuhl.de/opus/volltexte/2018/
9190

[50] B. Ahrens, P. Capriotti, and R. Spadotti, “Non-wellfounded trees in
homotopy type theory,” in Typed Lambda Calculi and Applications
(TLCA 2015), ser. Leibniz International Proceedings in Informatics
(LIPIcs), vol. 38. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
2015, pp. 17–30. [Online]. Available: http://drops.dagstuhl.de/opus/
volltexte/2015/5152

[51] V. Voevodsky, P. L. Lumsdaine et al., “Semi-simplicial types,” Institute
for Advanced Study, 2013, discussion preserved on the nLab, https:
//ncatlab.org/homotopytypetheory/show/semi-simplicial+types.

[52] N. Kraus, “On the role of semisimplicial types,” 2018, abstract, presented
at TYPES’18.

[53] T. Altenkirch, P. Capriotti, and N. Kraus, “Extending homotopy
type theory with strict equality,” in 25th EACSL Annual Conference
on Computer Science Logic (CSL 2016), ser. Leibniz International
Proceedings in Informatics (LIPIcs), vol. 62. Dagstuhl, Germany:
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2016, pp. 21:1–
21:17. [Online]. Available: http://drops.dagstuhl.de/opus/volltexte/2016/
6561

[54] M. Makkai, “First order logic with dependent sorts, with applications
to category theory,” 1995.

[55] C. Reedy, “Homotopy theory of model categories,” 1974, unpublished,
date estimated, available at http://www-math.mit.edu/∼psh/.

[56] C. Rezk, “A model for the homotopy theory of homotopy theory,”
Transactions of the American Mathematical Society, vol. 353, no. 3,
pp. 973–1007, 2001.

[57] C. P. Rourke and B. J. Sanderson, “∆-sets I: Homotopy theory,” The
Quarterly Journal of Mathematics, vol. 22, no. 3, pp. 321–338, 1971.

[58] J. Lurie, “Higher algebra,” Sep 2014, available at https://www.math.ias.
edu/∼lurie/.

[59] Y. Harpaz, “Quasi-unital∞–categories,” Algebraic & Geometric Topol-
ogy, vol. 15, no. 4, pp. 2303–2381, 2015.

[60] N. Kraus and C. Sattler, “Space-valued diagrams, type-theoretically
(extended abstract),” ArXiv e-prints, 2017, available online at https:
//arxiv.org/abs/1704.04543.

[61] J. Kock, “Weak identity arrows in higher categories,” International
Mathematics Research Papers, vol. 2006, 2006.

[62] E. Zeeman, “On the dunce hat,” Topology, vol. 2, no. 4, pp. 341–358,
1963.

[63] L. Lai, “(∞, 1)-categories in infinitary HoTT,” 2018, unpublished note.
[64] J. Lurie, Higher Topos Theory, ser. Annals of Mathematics Studies.

Princeton: Princeton University Press, 2009, also avaialabe online at
http://arxiv.org/abs/math/0608040.

[65] N. Kraus and T. Altenkirch, “Free higher groups in homotopy
type theory,” in Proceedings of the 33rd Annual ACM/IEEE
Symposium on Logic in Computer Science, ser. LICS ’18. New
York, NY, USA: ACM, 2018, pp. 599–608. [Online]. Available:
http://doi.acm.org/10.1145/3209108.3209183

[66] N. Kraus and J. von Raumer, “Path spaces of higher inductive types
in homotopy type theory,” in 34th Annual ACM/IEEE Symposium
on Logic in Computer Science (LICS’19). IEEE, 2019, pp. 1–13.
[Online]. Available: https://doi.org/10.1109/LICS.2019.8785661

[67] ——, “Coherence via well-foundedness: Taming set-quotients in
homotopy type theory,” in Symposium on Logic in Computer
Science (LICS 2020). New York, NY, USA: Association for
Computing Machinery, 2020, pp. 662–675. [Online]. Available:
https://doi.org/10.1145/3373718.3394800

[68] D. R. Licata and R. Harper, “2-dimensional directed type theory,”
Electronic Notes in Theoretical Computer Science, vol. 276, pp. 263 –
289, 2011, twenty-seventh Conference on the Mathematical Foundations
of Programming Semantics (MFPS XXVII). [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1571066111001174

[69] E. Riehl and M. Shulman, “A type theory for synthetic ∞-
categories,” Higher Structures, vol. 1, no. 1, 2017. [Online]. Available:
https://journals.mq.edu.au/index.php/higher structures/article/view/36

[70] A. Nuyts, “Towards a directed homotopy type theory based on 4 kinds
of variance,” Master’s thesis, KU Leuven, Belgium, 2015. [Online].
Available: https://anuyts.github.io/

[71] P. R. North, “Towards a directed homotopy type theory,” Electronic
Notes in Theoretical Computer Science, vol. 347, pp. 223 –
239, 2019, proceedings of the Thirty-Fifth Conference on the
Mathematical Foundations of Programming Semantics (MFPS’19).
[Online]. Available: https://doi.org/10.1016/j.entcs.2019.09.012

[72] M. Z. Weaver and D. R. Licata, “A constructive model of directed
univalence in bicubical sets,” in Proceedings of the 35th Annual
ACM/IEEE Symposium on Logic in Computer Science (LICS’20).
New York, NY, USA: Association for Computing Machinery, 2020, p.
915–928. [Online]. Available: https://doi.org/10.1145/3373718.3394794

http://journals.cambridge.org/article_S0305004108001783
http://drops.dagstuhl.de/opus/volltexte/2018/9190
http://drops.dagstuhl.de/opus/volltexte/2018/9190
http://drops.dagstuhl.de/opus/volltexte/2015/5152
http://drops.dagstuhl.de/opus/volltexte/2015/5152
https://ncatlab.org/homotopytypetheory/show/semi-simplicial+types
https://ncatlab.org/homotopytypetheory/show/semi-simplicial+types
http://drops.dagstuhl.de/opus/volltexte/2016/6561
http://drops.dagstuhl.de/opus/volltexte/2016/6561
http://www-math.mit.edu/~psh/
https://www.math.ias.edu/~lurie/
https://www.math.ias.edu/~lurie/
https://arxiv.org/abs/1704.04543
https://arxiv.org/abs/1704.04543
http://arxiv.org/abs/math/0608040
http://doi.acm.org/10.1145/3209108.3209183
https://doi.org/10.1109/LICS.2019.8785661
https://doi.org/10.1145/3373718.3394800
http://www.sciencedirect.com/science/article/pii/S1571066111001174
https://journals.mq.edu.au/index.php/higher_structures/article/view/36
https://anuyts.github.io/
https://doi.org/10.1016/j.entcs.2019.09.012
https://doi.org/10.1145/3373718.3394794

	Introduction: Formalising Type Theory
	CwF's: 1-Categorical Models of Dependent Type Theory
	Motivation and categorical definition
	Examples

	Internal bold0mu mumu section-Dimensional Categories
	Semisimplicial Types
	Contexts and substitutions, first part: semi-Segal types
	Contexts and substitutions, second part: identities

	Internal bold0mu mumu section-CwF's
	The empty context: a terminal object
	Types: a presheaf
	Terms: diagrams over a category of elements
	Context extension

	Examples of bold0mu mumu section-Categories with Families
	The Syntax as a QIIT
	The Initial Model as a HIIT
	Higher Models from Strict Models and the Standard Interpretation
	Slicing in bold0mu mumu subsection-CwF's

	Open Problems and Future Directions
	References

