
ar
X

iv
:2

00
5.

13
71

0v
3

 [
cs

.C
C

]
 3

0
A

pr
 2

02
1

From Finite-Valued Nondeterministic Transducers
to Deterministic Two-Tape Automata

Elisabet Burjons
Department of Computer Science

RWTH Aachen, Germany

burjons@cs.rwth-aachen.de

Fabian Frei
Department of Computer Science

ETH Zürich, Switzerland

fabian.frei@inf.ethz.ch

Martin Raszyk
Department of Computer Science

ETH Zürich, Switzerland

martin.raszyk@inf.ethz.ch

Abstract—The question whether P equals NP revolves around
the discrepancy between active production and mere verification
by Turing machines. In this paper, we examine the analogous
problem for finite transducers and automata. Every nondeter-
ministic finite transducer defines a binary relation associating
each input word with all output words that the transducer can
successfully produce on the given input. Finite-valued transducers
are those for which there is a finite upper bound on the number
of output words that the relation associates with every input
word. We characterize finite-valued, functional, and unambigu-
ous nondeterministic transducers whose relations can be verified
by a deterministic two-tape automaton, show how to construct
such an automaton if one exists, and prove the undecidability of
the criterion.

Index Terms—Finite-Valued Transducers, Two-Tape Automata,
Production versus Verification by Finite Machines, Undecidable
Verifiability Criterion.

FORMAL VERIFICATION

All major results presented in this paper were also formally

proved in Isabelle/HOL [13], a theorem prover using higher-

order logic, ensuring their correctness beyond any reasonable

doubt. The formalizations, including an explanation of how

to interpret them and details on how they connect to the

individual definitions and theorems in the present paper, are

available at https://github.com/lics21-automata/automata.

I. INTRODUCTION

Automata. One of the simplest computation models is a

finite automaton reading any given input word from left to

right while deterministically updating its state according to

a transition function that depends on the current state and

symbol that is currently read; once the input word has been

read completely, it is either accepted or rejected depending

on the state in which the automaton ends up. We refer to

such an automaton as a deterministic finite automaton (DFA).

For a nondeterministic finite automaton (NFA), in contrast,

the transition function may permit an arbitrary number of

transitions from the current state instead of exactly one; the

input word is then accepted if it is accepted for any of the

possible choices of transitions. The set of words accepted by

an automaton A is its recognized language L(A). It is well-

known that deterministic and nondeterministic finite automata

both recognize the same class of regular languages [14]; that

is, nondeterminism does not add any computational power to

the finite automaton model.

Two-Tape Automata. One way to generalize finite au-

tomata is the multi-tape model. Here, an automaton has mul-

tiple tapes, each with one head that can read the word written

on the tape from left to right. There are several different but

equivalent ways to model multi-tape automata, most notably

the Rabin-Scott model and the Turing machine model. In the

Rabin-Scott model, only one of the heads is reading a symbol

and advancing to the next one in each step; the current state

determines on which tape this happens. The computation is

either accepted or rejected once all heads have reached the

end of the tape. In the Turing machine model, in contrast, the

multi-tape automaton reads all symbols at the current head

positions simultaneously a nd can then move forward any

subset of the heads in each step. In this paper, we only examine

deterministic finite automata with two tapes (2t-DFAs).

Transducers. Transducers were introduced by Elgot and

Mezei [8] as a generalization of automata. A transducer reads

the given input word symbol by symbol, just like an automa-

ton, but additionally produces a separate output word while

doing so. During each transition reading one input symbol,

the transducer produces a possibly empty sequence of output

symbols. The final output word is obtained by concatenating

the outputs of all transitions. After transducing the entire input

word into an output word, the transducer decides whether the

computation is accepting or not depending on the current state.

In this paper, we are mainly interested in nondeterministic

finite transducers (NFTs). For further context, we will also

consider deterministic finite transducers (DFTs) and an exten-

sion of NFTs that allows for λ-transitions (λ-NFTs). Allowing

λ-transitions means that the transducer can produce output not

only when reading an input symbol but also on the empty word

λ, that is, at any time without reading any part of the input.

Functionality and Finite-Valuedness. A deterministic

transducer associates any given input word with the output

word produced on it if the corresponding computation is

accepting. A nondeterministic transducer can have multiple

accepting computations on an input word, associating it with

all corresponding output words. Denoting the input and output978-1-6654-4895-6/21/$31.00 ©2021 IEEE

http://arxiv.org/abs/2005.13710v3
https://github.com/lics21-automata/automata

alphabet by Σ and Γ, respectively, a transducer’s language is

a relation between Σ∗ and Γ∗. For two-tape automata, we

analogously consider the tapes as containing an input over Σ
and an output over Γ, respectively. Thus, the language of a

two-tape automaton is a relation L ⊆ Σ∗ × Γ∗ as well.

Given such a relation, we say that an input a ∈ Σ∗ is

associated with an output u ∈ Γ∗ if (a, u) ∈ L. The relation

L is functional if any input is associated with at most one

output. Note that such an L describes a function that may be

only partial. Given a k ∈ N, we say that L is k-valued if

it associates at most k outputs with every input. If there is a

k ∈ N such that L is k-valued, we call L finite-valued. We call

two-tape automata and transducers functional or finite-valued

if their languages are. We denote the restriction of machine

model M to functional or finite-valued ones by f-M and fv-

M, respectively. Moreover, we denote by L(M) the family of

languages recognizable by machines of model M.

See Figure 1 for an overview of the hierarchy of lan-

guages that are of interest to us. The vertical inclu-

sions in it are trivial since functionality implies finite-

valuedness. The strictness follows for instance from the rela-

tions {(0, 0), (0, 00), . . . , (0, 0k)}—which is k-valued but not

functional for any k > 1—and the not even finite-valued

{ (0, 0i) | i ∈ N } since they are recognizable by 2t-DFAs

as well as NFTs.

It is worth pointing out that determinism implies function-

ality for transducers but not for two-tape automata.

Motivation. The main motivation underlying all computa-

tion models is to study their expressive power, that is, the set

of languages recognized by machines in each model. For in-

stance, DFTs are strictly less expressive than functional NFTs.

A characterization of the languages that can be recognized in

one given model but not the other is also of interest.

For example, a classical result by Choffrut shows that

satisfying the so-called twinning property (condition de jume-

lage) is a both necessary and sufficient condition for a

functional NFT to be determinizable [5]. Choffrut also in-

troduced the notion of functions with bounded variation (à

variation bornée)—called uniformly bounded by others [16]—

which characterizes the functions recognized by determiniz-

able NFTs. Later, this criterion of bounded variation was

proved to be decidable in polynomial time [21].

Our goal is to develop an analogous property that char-

acterizes functional NFTs having an equivalent 2t-DFA, to

examine the decidability or undecidability of this criterion,

and provide an algorithm that transforms an NFTs into an

equivalent 2t-DFA whenever possible.

Inclusion Hierarchy. To provide the context for our main

endeavor, we prove all inclusions in Figure 1, going from

left to right. The inclusion L(DFT) ⊆ L(2t-DFA) has been

formally proved by Aho et al. [1, Thms. 3.1 and 3.2]. The in-

tuition is simple: Given a DFT, we can construct an equivalent

2t-DFA that simply simulates the DFT on the first tape and

checks whether the output of the DFT matches the content of

[11]

L(2t-DFA) (L(λ-NFT)

([Thm. 23] ([20]

L′(fv-2t-DFA) (L(fv-NFT)

[5] ([Thm. 23] ([17]

L(DFT) (L′(f-2t-DFA) (L(f-NFT)

Fig. 1: The strict hierarchy of languages recognized by relevant

machine models. The inclusions and their strictness are mostly

trivial; they are briefly discussed in the introduction. For

each inclusion, there is the following decision problem: Given

an element of the superset, is it contained in the subset?

The shaded inclusions are exactly those associated with an

undecidable problem. The references point to the proofs of

decidability and undecidability, respectively. The decidability

for the two vertical inclusions is an immediate consequence

of the same result for the two right ones.

the second tape. It is easy to construct an example, such as

the following, showing that the inclusion is strict.

Example 1. We present the concrete language that can be

recognized by an f-2t-DFA but not by a DFT.

Consider the relation that maps any binary string w to 0|w|

if the last symbol of w is 0 and to 1|w| otherwise. It is easy

to construct a functional 2t-DFA that verifies this relation as

follows.

The automaton advances its two heads synchronously, al-

ways comparing the current output symbol with the previous

one. If there is a discrepancy at any point, the automaton re-

jects; otherwise, the output word is guaranteed to be uniform.

If the two heads reach the end of the input and output word

at the same time and the last two symbols match, then the

automaton accepts; otherwise, it rejects.

A DFT cannot compute this relation, however, because it

cannot output any symbol until it knows the last symbol of

the word on the first tape, and by that time, the transducer

cannot recall the length of the input word, which equals the

number of copies of the last symbol that the transducer needs

to produce.

To prove the inclusion L(2t-DFA) ⊆ L(λ-NFT), we

can construct a transducer that guesses the output and then

verifies it by simulating the automaton. Here, we need to

consider transducers with λ-transitions—i.e., transducers that

can produce output without reading any input symbol—for the

inclusion to hold because a general two-tape automaton can

advance its output head arbitrarily many times while its input

head is standing still.

Trying to prove the two inclusions L(fv-2t-DFA) ⊆
L(fv-NFT) and L(f-2t-DFA) ⊆ L(f-NFT), we can essentially

let the transducer guess the output and then verify it by simu-

lating the automaton. This works because the output head of a

finite-valued or functional automaton can advance by at most

n positions, where n denotes the number of the automaton’s

states, while the input head is standing still. Otherwise, one

could pump in a non-empty output subword on which the

automaton loops without changing the input word. However,

one needs to exclude computations on the empty input word

λ since the transducer cannot produce (and thus guess) any

output without reading an input symbol. For this technical

reason, we introduce the following notation used in Figure 1.

We denote by L′(fv-2t-DFA) = {Lr({λ}×Γ∗) | L ∈ L} the

set of fv-2t-DFA-recognizable relations with all pairs (λ, x)
associating the empty input λ to any output removed, and

L′(f-2t-DFA) is defined analogously.

Question of Decidability. We now turn our attention to the

corresponding decidability questions. Whether a machine is

finite-valued is decidable even in the case of nondeterministic

transducers [20]. We can also decide whether the given fv-NFT

is functional or not [17]. It follows from these two results that

we can decide the finite-valuedness and functionality for two-

tape automata as well.

Via a reduction from the Post correspondence problem,

Fischer and Rosenberg proved that, for any k ≥ 2, it is

undecidable whether a k-tape NFA has any equivalent k-tape

DFA [11]. In particular, given a 2t-NFA, it is undecidable

whether there is an equivalent 2t-DFA. This can be refor-

mulated with λ-NFTs, as they are equivalent to 2t-NFAs.

Their proof relies on relations that are not finite-valued,

however. In this paper, we extend Fischer and Rosenberg’s

undecidability result [11] to the finite-valued, functional, and

even unambiguous case. The undecidability also implies the

strictness of the corresponding inclusions.

For the remaining decision problem, we can construct from

the given f-2t-DFA an equivalent NFT, as long as we consider

automata accepting relations with non-empty input words, as

described above. Finally, we can check whether the described

NFT, which is equivalent to the given fv-2t-DFA, has an

equivalent DFT via the decidable twinning property [6].

Alternative Terminology. We mention some alternative ter-

minology that will not be relevant in presentation of our paper

but can be found in the literature. Deterministic transducers

are sometimes called sequential transducers. This is because

their transductions—which are unique for every given input

word—can be processed sequentially, symbol by symbol.

There is also the notion of subsequential transducers. These

are sequential transducers with one additional feature: After

reading the entire input word and having reached a final state,

they can append to the output one more word that may depend

on the final state.

The difference between sequentiality and subsequentiality

is an overall rather insubstantial technical detail. It is easy to

see that sequential and subsequential become equivalent under

the assumption of a unique symbol marking the end of every

input word.

A function is called sequential or subsequential if it is

recognized as the relation of a sequential or subsequential

transducer, respectively. Finally, a relation (and in particular

a function) is called rational if it is recognized by a finite

nondeterministic transducer.

We can now restate our motivating result by Choffrut in his

own terminology: Rational functions with bounded variation

are exactly the subsequential functions.

It is also possible to extend the notion of subsequentiality to

nondeterministic transducers. However, the additional option

to add a suffix to the output depending on the final state

makes even less of a difference if nondeterministic transi-

tions are allowed. This is because the transducer can always

guess that the current symbol is the last with an additional

transition option including the final suffix for every situation.

Whenever the guess turns out to be wrong, the corresponding

computation path can be aborted in the following step. This

works on all input words except for the empty one: On the

empty input word λ a transducer cannot perform even a single

transition and is thus unable to produce any output at all

without subsequentiality. However, even with subsequentiality

an NFT can only associate finitely many output words with

the input λ; the difference is thus negligible and we may just

ignore it by excluding all pairs { (λ, u) | u ∈ Γ∗ } in the

relation from consideration.

Further Model Extensions. We remark that both multi-

tape automata and transducers can be extended to the two-

way model that allows the heads to move not only forward

but also back, from right to left [3], [4]. Filiot et al. [10]

showed that it is decidable whether a two-way DFT can be

transformed into an equivalent one-way DFT and provide

a characterization of the two-way DFTs for which this is

possible. It is known that two-way DFTs compute exactly

those relations that are expressible as monadic second-order

logic string transductions [9]. Rabin and Scott [14] proved that

two-way automata are as powerful as one-way automata for a

single tape but recognize strictly more languages with multiple

tapes.

Yao and Rivest have shown that increasing the number

of heads on a single tape yields a strict hierarchy of lan-

guages [22]; see also the survey by Holzer et al. [12]. A

more recent result by Raszyk et al. [15] proves that DFTs

with multiple heads are strictly more expressive than f-NFTs.

Asking whether multi-head two-way DFAs can simulate two-

head one-way NFAs is equivalent to the famous question

whether L = NL [18].

In the present paper, we exclusively consider the one-way

model with one head per tape.

Our Contributions. We compare the computational power

of 2t-DFAs and fv-NFTs. To this end, we introduce the

notion of transducers having bounded trailing and show that

this property characterizes fv-NFTs whose relations are com-

putable by a 2t-DFA. In other words: Any given fv-NFT

(and thus in particular any functional NFT) has an equivalent

2t-DFA if and only if the fv-NFT has bounded trailing.

This result is analogous to the already mentioned classical

result by Choffrut [6]. He introduced the notion of a transducer

satisfying the twinning property and proved that this property

characterizes functional NFTs having an equivalent DFT.

We show how our notion of bounded trailing can be seen as

a relaxation of another property due to Choffrut [6], namely

functions with bounded variation.

Furthermore, we prove the question whether a given trans-

ducer has bounded trailing to be undecidable. This stands

in contrast to the twinning property, which was proven

to be a polynomial-time decidable criterion by Weber and

Klemm [21].

Finally, we provide a concrete construction that is guaran-

teed to transform any given fv-NFT into an equivalent 2t-DFA

whenever possible, that is, if the fv-NFT has bounded trailing,

despite this criterion being undecidable.

We have formally proved all major results of this paper

(Lemma 10, Theorem 14, Claim 21, Claim 22, and Theo-

rem 15 for functional NFTs) as well as Examples 13 and 17

in the proof assistant Isabelle [2] to ensure their correctness.

We also provide pen-and-paper proofs for all of our results.

II. PRELIMINARIES

We formally describe the automaton model and transducer

model considered in this paper and then introduce some useful

terminology.

There are many equivalent ways of extending the one-tape

automaton model to multiple tapes. We base our definition on

the Turing machine model.

Definition 2. A two-tape deterministic finite automaton

(2t-DFA), is a septuple A = (Q,Σ,Γ, , δ, q0, F) consisting

of

• a finite, nonempty set of states Q,

• a finite, nonempty input alphabet Σ,

• a finite, nonempty output alphabet Γ,

• a blank symbol /∈ Σ ∪ Γ,

• an initial state q0 ∈ Q,

• a set of accepting states F ⊆ Q, and

• a transition function δ satisfying the following properties:

– δ : Q× (Σ ∪ { })× (Γ ∪ { })
→ Q× {Stay,Advance} × {Stay,Advance},
(q, σ, γ) 7→ (q′,m1,m2),

– σ = =⇒ m1 = Stay

(i.e., the first head stops at the end delimiter),

– γ = =⇒ m2 = Stay (i.e., the second head stops

at the end delimiter), and

– m1 = Advance ∨ m2 = Advance (i.e., at least one

head advances in every step).

The computation of a 2t-DFA proceeds as follows. There

are two tapes that we call the input and output tape; the former

contains a word a ∈ Σ∗, the latter a word u ∈ Γ∗. Both words

are delimited by the blank symbol at the end. The two tapes

have one reading head each, which we refer to as the input and

output head. The input and output head are initially positioned

on the first symbol of a and u, respectively. Depending on the

current state of the automaton and what symbols the two heads

are reading, either the input or output head or both advance

by one symbol in each step. As soon as a head reaches the

blank symbol delimiting a word, it cannot move any further.

The computation ends when both heads have reached the end

of the input. A word pair (a, u) is in the language accepted by

the automaton if and only if the computation on this pair of

words ends in an accepting state. A configuration consists of

the positions of the two heads and the current state. We write

q a−−−→u q′ if the automaton can start in a state q and end up

in a state q′ by reading a word a with the input head and u
with the output head.

We now formally define a nondeterministic finite transducer.

Definition 3. A nondeterministic finite transducer (NFT) is a

sextuple T = (Q,Σ,Γ, δ, q0, F), where Q, Σ, Γ, q0, and F
are defined as for a 2t-DFA in Definition 2, but the transition

function δ now is a function that maps each pair (q, σ) ∈
Q×Σ of a state and input symbol to a finite subset of Q×Γ∗,

describing the nondeterministic transition options.

The computation of an NFT proceeds like the computation

of an NFA except that the NFT produces in each step a

possibly empty sequence of output symbols. The outputs from

the single steps are concatenated to obtain the final output of

the complete computation. Using the visualization of a two-

tape machine, we can describe the computation of an NFT

as reading the word on the input tape symbol-wise while

writing to the initially empty output tape, appending each

step’s output. We write q a−→u q′ if the transducer transitions

from state q to state q′ with the input head reading a ∈ Σ∗

and the output head producing u ∈ Γ∗.
The computation ends once the entire input word has been

read, that is, when the input head has reached the blank

symbol. If the transducer is in an accepting state at this

moment, then the word pair (a, u) on the two tapes is in

the relation L(T) computed by T . If the transition function

does not offer any option for a step and thus forcibly ends

the computation before the blank symbol on the input tape

is reached, then this computation does not contribute to the

relation L(T).
A binary relation R ⊆ Σ∗×Γ∗ is finite-valued if a constant

bounds the number of outputs u ∈ Γ∗ per input a ∈ Σ∗, that

is, if ∃ k ∈ N : ∀ a ∈ Σ∗ : |{ u ∈ Γ∗ | (a, u) ∈ R }| ≤ k.

Definition 4. An NFT T is a finite-valued nondeterministic

finite transducer (fv-NFT) if L(T) is a finite-valued relation.

If L(T) is even functional, then T is a functional nondeter-

ministic finite transducer (f-NFT).

We will use the following two notions related to NFTs many

times in our proofs.

Definition 5 (Shortcut guarantee g). Let an NFT T =
(Q,Σ,Γ, δ, q0, F) be given. Let Q′ ⊆ Q denote the set of

all co-reachable states, that is, states from which an accepting

state can be reached on some input. For every q ∈ Q′, let

gq = min{ |x| | ∃u ∈ Γ∗, f ∈ F : q x−→u f }

denote the length of a shortest word x that leads from q into

an accepting state. We call g(T) = maxq∈Q′ gq the shortcut

guarantee of T .

Definition 6 (Output speed s). Let an NFT T =
(Q,Σ,Γ, δ, q0, F) be given. We call

s(T) = max{ |γ| | ∃ q, q′ ∈ Q, σ ∈ Σ: (q′, γ) ∈ δ(q, σ) }

the output speed of T . Note that s(T) is well-defined since δ
only maps to finite subsets of Q× Γ∗.

III. BOUNDED TRAILING

In this section, we introduce our core notion of bounded

trailing, which we will prove to be an undecidable char-

acterization of fv-NFTs having an equivalent fv-2t-DFA in

the following three sections. We begin by recapitulating the

notion of bounded variation introduced by Choffrut [6], which

characterizes f-NFTs having an equivalent DFT.
For any two words v1, v2, we denote by lcp(v1, v2) their

longest common prefix and define the distance

d(v1, v2) = |v1|+ |v2| − 2 · |lcp(v1, v2)|.

Observe that prefixing any word u to both v1 and v2 does not

change their distance; we have d(uv1, uv2) = d(v1, v2).

Definition 7 (Bounded variation). A relation R ⊆ Σ∗ × Γ∗

has bounded variation if

∀ k ∈ N : ∃ t ∈ N : ∀ (a1, u1), (a2, u2) ∈ R :

d(a1, a2) ≤ k =⇒ d(u1, u2) ≤ t.

If a1 and a2 have a common prefix a, we can split

them into a1 = ab1 and a2 = ab2, respectively. We have

d(b1, b2) ≤ |b1| + |b2| and, if a is the longest common

prefix of a1 and a2, indeed d(b1, b2) = |b1| + |b2|. Applying

d(a1, a2) = d(ab1, ab2) = d(b1, b2), we thus obtain the

following equivalent definition of bounded variation.

Lemma 8 (Bounded variation). A relation R ⊆ Σ∗ × Γ∗ has

bounded variation if and only if

∀ k ∈ N : ∃ t ∈ N : ∀ a, b1, b2 ∈ Σ∗, u1, u2 ∈ Γ∗ :

(ab1, u1) ∈ R ∧ (ab2, u2) ∈ R ∧ |b1|+ |b2| ≤ k

=⇒ d(u1, u2) ≤ t.

We can now instantiate the characterization of bounded

variation described in Lemma 8 for the case of a rela-

tion recognized by a transducer. Specifically, we translate

an input-output pair lying in the relation into the existence

of a concrete computation by an NFT. Appropriately split-

ting u1 and u2 into uv1w1 and uv2w2, respectively, with

a (not necessarily longest) common prefix u, and applying

d(u1, u2) = d(uv1w1, uv2w2) = d(v1w1, v2w2), this results

in the following definition.

Definition 9 (Bounded variation for transducers). An NFT

T = (Q,Σ,Γ, q0, F, δ) has bounded variation if

∀ k ∈ N : ∃ t ∈ N : ∀ q1, q2 ∈ Q, f1, f2 ∈ F,

a, b1, b2 ∈ Σ∗, u, v1, v2, w1, w2 ∈ Γ∗ :

q0
a−−−→uv1

q1
b1−−−→w1

f1 ∧ q0
a−→uv2

q2
b2−−−→w2

f2 ∧ |b1|+ |b2| ≤ k

=⇒ d(v1w1, v2w2) ≤ t.

We will now simplify Definition 9. It follows from the

definition of d that

d(v1, v2)−
∣

∣|w1| − |w2|
∣

∣ ≤ d(v1w1, v2w2)

≤ d(v1, v2) + |w1|+ |w2|.

(These bounds are tight; consider v1 = 000, v2 = 0, w1 = 0
and either w2 = 000 or w2 = 100.) Using the bounded output

speed s of T (Definition 6), we obtain

||w1| − |w2|| ≤ |w1|+ |w2| ≤ s(|b1|+ |b2|) ≤ sk.

Hence, the difference between d(v1, v2) and d(v1w1, v2w2)
can be bounded by a term depending only on T and k and

can thus be hidden within the choice of t. We can therefore

simplify d(v1w1, v2w2) to d(v1, v2).

Using the shortcut guarantee g of T (Definition 5) for

b1 and b2, we can now assume without loss of generality

that |b1| + |b2| ≤ 2g because replacing b1 and b2 can only

change the respective output words w1 and w2, which are

no longer referenced anywhere else. This finally allows us

to drop the universally quantified variable k ∈ N altogether.

We thus obtain the following equivalent definition of bounded

variation.

Lemma 10. An NFT T = (Q,Σ,Γ, q0, F, δ) has bounded

variation if and only if

∃ t ∈ N : ∀ q1, q2 ∈ Q, f1, f2 ∈ F,

a, b1, b2 ∈ Σ∗, u, v1, v2, w1, w2 ∈ Γ∗ :

q0
a−−−→uv1

q1
b1−−−→w1

f1 ∧ q0
a−→uv2

q2
b2−−−→w2

f2

=⇒ d(v1, v2) ≤ t.

Let us call a computation useful if it can be extended to

an accepting computation. Intuitively, an NFT has bounded

variation if the outputs of any two useful computations on the

same input prefix a only differ on suffixes of bounded length.

Our notion of bounded trailing relaxes the notion of

bounded variation by only looking at certain pairs of useful

computations on the same input prefix a, namely computation

pairs such that the output uv of the first computation contains

the output u of the second computation as a prefix and such

that the second computation can be extended to an accepting

one that trails the first computation, in the sense of catching

up with its output, by first producing the missing suffix v.

Since we have only restricted the computation pairs for

which we impose the condition on the output, we have indeed

relaxed the notion of bounded variation. In particular, bounded

variation implies bounded trailing.

We now formally define our notion of bounded trailing.

Starting from the condition in Lemma 10, we set v2 = λ,

rename v1 to v, and require that w2 starts with the prefix

v, which we then split off in the notation. Finally, we use

d(λ, v) = |v|.

Definition 11 (Bounded trailing). An NFT T =
(Q,Σ,Γ, q0, F, δ) has bounded trailing if

∃ t ∈ N : ∀ q1, q2 ∈ Q, f1, f2 ∈ F,

a, b1, b2 ∈ Σ∗, u, v, w1, w2 ∈ Γ∗ :

q0
a−−−→uv q1

b1−−−→w1
f1 ∧ q0

a−→u q2
b2−−−→vw2

f2 =⇒ |v| ≤ t.

Example 13 describes a concrete transducer with bounded

trailing.

The following three sections prove bounded trailing to be

a necessary and sufficient condition for an fv-NFT to have an

equivalent 2t-DFA and that bounded trailing is undecidable. In

contrast, bounded variation is decidable since it is equivalent

to the so-called twinning property, which is decidable in

polynomial time [21]. We also point out that bounded trailing

does not characterize having an equivalent 2t-DFA for NFTs

that are not finite-valued. Constructing a counterexample is

straightforward; we provide one in the following example.

Example 12. We describe a not finite-valued transducer that

has an equivalent 2t-DFA but nevertheless unbounded trailing.

Consider the relation

{(0n, 0m) | n ∈ N ∧m ∈ N ∧ 0 ≤ m ≤ 2n},

which is clearly not finite-valued. It is easy for a 2t-DFA to

recognize this relation by repeatedly advancing first the output

head twice and then the input head once. Any input-output pair

is in the language if and only if the end of the output is reached

before the end of the input and all read symbols before the

end markers are 0. It is also simple to build an equivalent

NFT with unbounded trailing as follows. Whenever reading

one input symbol, the transducer writes a 0 to the output tape

either zero, one, or two times.

This transducer does indeed have unbounded trailing since

for every even t ∈ N, it has the two computations

q0
0t/2
−−−→
λ0t

q
0t/2
−−−→
λ

f and q0
0t/2
−→
λ

q
0t/2
−−−→
0tλ

f ,

where λ is the empty word and

a = b1 = b2 = 0t/2, u = w1 = w2 = λ, and v = 0t

in Definition 11.

IV. BOUNDED TRAILING IS SUFFICIENT

In this section, we show that any NFT that has bounded

trailing can be transformed into an equivalent 2t-DFA. Let

T be an NFT with a trailing bound t ∈ N. We construct

an equivalent 2t-DFA A that simulates all nondeterministic

computations of transducer T that are compatible with the

output seen so far. Automaton A uses its states to maintain a

subword z of the output word with the following property. For

the currently read prefix p of the input word, there is a prefix

x of the output word such that for any accepting computation

of T that starts in the initial state q0 of T , reads p, reaches

a state q of T , and produces an output w consistent with the

given output tape, we can write w as xy for a prefix y of z. In

other words: Whatever prefix p of its input word automaton

A has read at any point, it has always stored a z such that

for some x every accepting computation of T on p consistent

with A’s output word has the form q0
p−−−→xy q for some prefix

y of z.

Automaton A stores in its current state a representation

of each such computation of T , namely the pair (q, |y|). We

denote the set of these pairs by P . We show that storing P is

feasible with a finite set of states by maintaining a subword

z of length at most r = s + t, where s and t are T ’s output

speed and trailing bound, respectively. Initially, z is empty and

the set P of pairs (q, n) stored in A’s state contains only a

single pair, (q0, 0), where q0 is T ’s initial state. This reflects

the fact that the only computation of T on the empty prefix

of the input tape keeps T in its initial state and produces no

output. If L(T) = ∅, then A immediately transitions into a

rejecting sink state.

Automaton A now proceeds as follows. As long as the

length of the subsequence z stays below r and the output tape

has not been fully read, the next symbol on the output tape is

read and appended to z. Moreover, A removes from the set P
all representations of computations that cannot be extended to

an accepting computation with the extended subsequence z of

the output tape. If the set P becomes empty, then automaton

A transitions into a rejecting sink state because there is no

accepting computation of T consistent with the given input

and output tape. Otherwise, A determines the minimum m
such that (q,m) ∈ P for some q and drops the first m output

symbols from the subsequence z. This corresponds to cutting

off from z a prefix of length m and appending it to x. Note

that this is sound because none of the stored computations

end before outputting the new x. This way, A maintains the

invariant that there is some state q of T such that (q, 0) ∈ P .

Once the length of the subsequence z becomes r or the

output tape has been fully read, automaton A reads in the next

symbol from the input tape and then simulates every single

step that is nondeterministically possible for every single

stored computation and updates the set P accordingly to a

new P ′. The mentioned invariant guarantees that (q, 0) ∈ P
for some state q of T . The fact that T has bounded trailing

with a trailing bound t implies that n ≤ t holds for every

pair (q, n) ∈ P . Hence, performing one further nondetermin-

istically possible step continuing T ’s computation represented

by (q, n) ∈ P yields a pair (q′, n′) ∈ P ′ that satisfies

n′ ≤ t + s since s is the longest output that T can produce

while reading a single symbol. This is just within the length

limit r = s + t that we set for z. As before, automaton A
rejects if the set P ′ becomes empty, because this means there

is no accepting computation of T consistent with the given

input and output tape. Otherwise, automaton A performs on

P ′ the normalization described in the previous paragraph to

obtain a new set P that maintains the invariant that there is

some q′ for which (q′, 0) ∈ P .

Finally, if both the input and output tape have been fully

read, automaton A accepts if and only if there is some q ∈ F
with (q, |z|) ∈ P , that is, an accepting state q of T that some

computation of T arrives at after producing an output that

matches xz until the very end, meaning that the output is

equal to the content of the output tape.

Example 13. We now provide a concrete example of the

general construction described above; that is, we use a given

NFT with bounded trailing to construct an equivalent 2t-DFA.

We consider the NFT T with the set of states Q =
{q0, q1, q2, q3}, initial state q0 ∈ Q, the set of accepting states

F = {q0}, and the transition function δ given in Figure 2a.

Let us define the language

L0 = {(aa, ababa), (aa, ababab), (ab, ababaa)}.

One can check that the language computed by T is the Kleene

closure of L0 (i.e., L(T) = L∗
0) and that the trailing of T is

bounded by t = 1.

The computation of automaton A on the input-output pair

(aa, ababab) is summarized in Figure 2b. We now describe

this computation in detail. Because L(T) 6= ∅, the initial state

of automaton A is storing z = λ, where λ denotes the empty

word, and P = {(q0, 0)}. The output speed of T—that is, the

length of a longest output that T can produce while reading

one input symbol—is s = 4. Hence, the maximum length of

the subsequence z maintained in A’s state is r = s+ t = 5.

Because the output tape consists of six symbols, the first r =
5 of them are read and appended to z. The nonempty output

words in L(T) all start with the same five symbols, and the

only pair in P , namely (q0, 0), can be extended to an accepting

computation consistent with next five output symbols. These

symbols are therefore successively output and appended to z,

while (q0, 0) is being kept in P . After this, A’s state is storing

z = ababa and P = {(q0, 0)}.

Now that the length of z is 5 = r, the first symbol a from

the input tape is read. All nondeterministic steps from

δ(q0, a) = {(q1, aba), (q2, abab), (q3, abab)}

are consistent with z, which leads to P ′ =
{(q1, 3), (q2, 4), (q3, 4)}. The minimum m for which

(q,m) ∈ P ′ for some q is m = 3. After performing

the normalization of P ′ with this m, the state of automaton

A is storing z = ba and P = {(q1, 0), (q2, 1), (q3, 1)}.

Since the length of z is now 2 < r, automaton A reads the

next output symbol b and appends it to z, which thus becomes

z = bab. Then A removes the pair (q3, 1) from the set P
because this pair can no longer be extended to an accepting

computation consistent with the extended subsequence z = bab
since the only possible transition from q3 produces the output

aa, which is inconsistent with the suffix ab of z = bab. The

remaining two pairs (q1, 0) and (q2, 1) are still consistent with

the extended z = bab. As (q1, 0) stays in P , no normalization

need be performed.

Now that the end of the output tape has been reached, A
reads in the next symbol a from the input tape despite |z| =
3 < r. Performing one step that reads a on every pair in P
yields P ′ = {(q0, 3)}. Note that (q0, 2) 6∈ P ′ because each

transition from q0 starts with a b, the last symbol of z. After

a b

q0 {(q1, aba), (q2, abab), (q3, abab)} ∅
q1 {(q0, ba), (q0, bab)} ∅
q2 {(q0, ab)} ∅
q3 ∅ {(q0, aa)}

(a) The transition function δ of the given NFT T .

a a

a b a b a b

P = {(q0, 0)}

x = λ

z = λ

a a

a b a b a b

P = {(q0, 0)}

x = λ

z = ababa

a a

a b a b a b

P = {(q1, 0), (q2, 1), (q3, 1)}

x = aba

z = ba

a a

a b a b a b

P = {(q1, 0), (q2, 1)}

x = aba

z = bab

a a

a b a b a b

P = {(q0, 0)}

x = ababab

z = λ

(b) The computation of 2t-DFA A on input (aa, ababab). The
positions of the heads are marked in black, the subsequence z of
the output tape is shaded gray, and x consists of the white cells
before z.

Fig. 2: Illustrations pertaining to Example 13.

one more normalization, A’s state is storing z = λ and P =
{(q0, 0)}.

Finally, A has reached the end of both the input and output

tape, thus it checks whether (q, |z|) ∈ P for some q ∈ F .

Because (q0, 0) ∈ P , q0 ∈ F , and |z| = 0, automaton A
accepts the input-output pair (aa, ababab) ∈ L(T).

We conclude this section by formally stating its main result.

Theorem 14. Any NFT with bounded trailing has an equiva-

lent 2t-DFA.

V. BOUNDED TRAILING IS NECESSARY

In this section, we prove the reverse of Theorem 14 for the

case of finite-valuedness.

Theorem 15. Any fv-NFT with an equivalent 2t-DFA has

bounded trailing.

Proof. Let an fv-NFT T and a 2t-DFA A with L(T) = L(A)
be given. (We may assume that T and A use a common input

alphabet Σ and a common output alphabet Γ.) Let k be an

arbitrary integer such that T is k-valued. We assume that T
has unbounded trailing and derive from this a contradiction

to the k-valuedness of T , thus proving the theorem. We may

assume without loss of generality that A moves exactly one

head in each step because any step moving both heads at once

can be simulated by two steps moving only one head at a time

using one additional intermediate state.

Denote the state sets of transducer T and automaton A by

QT and QA, respectively. Let g and s be the transducer’s

shortcut guarantee and output speed, respectively. Finally, we

define a homestretch length h = (g+1) ·(|QA|+1) and a trail

length minimum t = h+ t1+ · · ·+ tk, where ti is recursively

defined by

ti = 2s+ s(1 + i(t0 + t1 + · · ·+ ti−1)) · (1 + |QT | · |QA|
i)

with the base case t0 = h+(g+1)s. The reason for choosing

exactly these values for h and t will become clear during the

proof. For now, we note that they depend only on the given

transducer T and the automaton A, hence they are well-defined

and fixed within this proof.

Since T has unbounded trailing, it has two accepting

computations

q0
a−−−→uv q

b−−−→w f and q0
a−−→u q

b−−−→vw f

with |v| > t, where q0 is the initial state and f and f are

accepting states of T . We decompose the trail v of length

at least t as
¬¬vvkvk−1 . . . v2v1

¬¬v with |vk| = tk, . . . , |v1| = t1
and |¬¬v| = h. We call

¬¬v the homestretch. We consider the

input-output prefix (a, uv) common to both computations of

automaton A. The two-tape automaton model ensures that

the two heads of A will eventually reach the end of a and

v1, respectively. Depending on which one does so first, we

distinguish two cases.

Case : Input head is first. In this case, we consider the

input-output pair (ab , uvw); see Figure 3a.

We begin by showing why we may assume without loss

of generality that |b | ≤ g. For this, we consider transducer

T ’s configuration after the computation q0
a−−−→uv q ; the cor-

responding head positions are indicated by the black triangles

in Figure 3a. The shortcut guarantee g ensures the existence

of a word pair (b, w) ∈ Σ∗×Γ∗ and an accepting state f ∈ F
such that q b−−→w f and |b| ≤ g; we can therefore substitute b,

w, and f for b , w , and f if necessary and thus assume b .

Now, we consider automaton A’s computation on the same

input-output pair (ab , uvw). Let x denote the output word’s

suffix that has not yet been read by A when its input head has

just reached the end of a; see the white triangles in Figure 3a

for A’s head positions. The input head has only b left to

read but the output head all of x. We have already established

that |b | ≤ g using the shortcut guarantee, and we know that

|x| ≥ |¬¬v| = h since x contains the homestretch
¬¬v. In each

step, A advances exactly one head by exactly one symbol,

and a head does not move anymore once it has reached the

end of the word written on its tape. Thus at most g movements

remain for the input head but at least h for the output head.

We call a step in which the input head moves an input step

and a step in which the output head moves an output step. The

input steps split the remaining computation into at most g+1
sequences of consecutive output steps. Since there are at least

h output steps, there is at least one sequence of h/(g + 1)
uninterrupted output steps. Because of h/(g+1) > |QA|, this

sequence contains at least two different output steps leading

A into the same state. Choosing any two such steps, we can

repeat a nonempty part of the output word arbitrarily often,

namely, the part that starts at the position of the output head

immediately after the first step and ends with the symbol at

the position of the output head just before the second step.

This results in arbitrarily many accepting computations, with

the word on the input tape unmodified. Hence A associates

infinitely many different output words with the same input

word ab , contradicting the k-valuedness of L(A) = L(T).

Case : Output head is first. In this case, automaton A’s

output head reaches the end of v1 before its input head has

finished reading a. This remains true for A’s computation on

the input-output pair (ab , uvw); see Figure 3b.

In what follows, we establish an upper bound on the

length of the remaining output
¬¬vw . The homestretch length

|¬¬v| = h is already fixed. The length of w can be bounded by

combining the shortcut guarantee g and the output speed s as

follows. Consider the transducer’s computation

q
b

−−−→vw f .

Since the output head can write at most s symbols per step,

we can cut off from b a prefix
¬¬

b such that

q
¬¬

b−−−→
v ¬¬w

q′

for some prefix
¬¬w of w with length | ¬¬w | < s and some

state q′. Denote by
¬¬

b and
¬¬w the remaining suffixes such that

b =
¬¬

b
¬¬

b and w = ¬¬w ¬¬w . The state q′ is co-reachable as

evidenced by the accepting computation

q0
a−→u q

¬¬

b−−−→
v ¬¬w

q′
¬¬

b−−−→¬¬w
f .

Using the definition of the shortcut guarantee g, we can

therefore assume |
¬¬

b | ≤ g by substituting a sufficiently short b′

and some appropriate w′ and f ′ for
¬¬

b ,
¬¬w , and f if necessary.

From this, we then obtain | ¬¬w | ≤ g ·s since the output speed s
tells us how many symbols the transducer can output at most

when reading one input symbol. We can thus assume that

|w | = | ¬¬w ¬¬w | < s+ g · s = (g + 1)s

without loss of generality. This finally yields the desired upper

bound |¬¬vw | < h+ (g + 1)s.
Recall that

¬¬vvkvk−1 . . . v2v1
¬¬v is the unique decomposition

of v with |vk| = tk, . . . , |v1| = t1 and
¬¬v = h. Since t0 =

h+ (g + 1)s, we immediately obtain

|vivi−1 . . . v1
¬¬vw | ≤ t0 + t1 + · · ·+ ti.

Let
¬¬a be a’s suffix that is still unread at the moment when

the output head of the automaton reaches the start of
¬¬v.

Denote automaton A’s initial state by q̂0 and choose any

decomposition of a into
¬¬aakak−1 . . . a2a1

¬¬a such that A’s

computation q̂0
ab−−−−−−−→uvw f splits into

q̂0
¬¬a−−−→u ¬¬v q̂k+1

ak−−−→vk
q̂k

ak−1−−−→vk−1
. . . a2−−−→v2

q̂2
a1−−−→v1

q̂1
¬¬ab−−−→¬¬vw f .

a b

u v w

(a) Case : Automaton A’s head positions when its input head has just reached the end of a and transducer T ’s head positions after its
computation q0

a
−−→uv q .

a b

u ¬¬v vk · · · v2 v1
¬¬v w

tk t2 t1 h

(b) Case : Automaton A’s head positions when its output head has just reached the end of v1 and transducer T ’s head positions after
computing q0

a
−−→u q .

Fig. 3: Two different input-output pairs in the relation L(A) = L(T). The black and white triangles represent the heads of

transducer T and automaton A, respectively. The second subfigure shows a decomposition
¬¬vvkvk−1 . . . v2v1

¬¬v of v.

We will now prove the following claim by induction over

i ∈ {0, 1, . . . , k}:

Claim 16. For every i ∈ {0, 1, . . . , k}, there is an input word

bi+1 ∈ Σ∗ and, for every j ∈ {1, 2, . . . , i}, an output word

ṽj ∈ Γ∗ with |ṽj | < |vj |, such that transducer T has the

accepting computation

q0
a−−→u q

bi+1−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→¬¬vvkvk−1 . . . vi+1ṽiṽi−1 . . . ṽ2ṽ1
¬¬vw

f

and such that automaton A has i + 1 computations that all

read the same input word abi+1 overall, all begin with

q̂0
¬¬aakak−1 . . . ai+1−−−−−−−−−−−−−−−−−−→u ¬¬vvkvk−1 . . . vi+1

q̂i+1,

and from q̂i+1 lead to accepting states while reading the

remaining input ai . . . a2a1
¬¬abi and the i+ 1 distinct outputs

vivi−1 . . . v3v2v1,

vivi−1 . . . v3v2ṽ1,

vivi−1 . . . v3ṽ2ṽ1,

. . . ,

viṽi−1 . . . ṽ3ṽ2ṽ1, and

ṽiṽi−1 . . . ṽ3ṽ2ṽ1,

respectively.

Instantiated for i = k, this claim shows that the relation

L(A) = L(T) associates a single input word abk+1 with

k + 1 distinct output words of pairwise different lengths,

contradicting the k-valuedness and thus concluding the proof

of Theorem 15.

We now briefly outline the proof of Claim 16; the full proof

is provided afterward. Proving the induction basis is trivial:

For i = 0, the claim coincides precisely with the situation

shown in Figure 3b when setting b1 = b . It remains to

prove the induction step. Assuming the claim for i− 1 as our

induction hypothesis, our goal is to find nonempty subwords
◦

bi
of bi and

◦vi of vi such that not only transducer T ’s accepting

computation loops on them, but all of A’s pairwise distinct

accepting computations on the i different input-output pairs

loop on the common input subword
◦

bi without advancing

the output head at all. This is achievable since the length

ti of the subword vi in the output is recursively defined to

be sufficiently large—allowing us to force transducer T into

producing plenty of output while reading the input bi—and

simultaneously small enough—ensuring that automaton A has

very few steps that advance the output head while reading

bi.

We now prove Claim 16 used in the proof above.

Proof of Claim 16. Establishing the induction basis is trivial:

For i = 0, the claim coincides precisely with the situation

shown in Figure 3b when setting b1 = b . It remains to

prove the induction step. We fix an arbitrary i ∈ {1, . . . , k},

assume the claim for i − 1 as our induction hypothesis, and

prove it for i. First consider T ’s computation given by the

induction hypothesis for i − 1. Because T produces at most

s output symbols when reading one input symbol, there are

decompositions bi =
¬¬

bibi
¬¬

bi and vi =
¬¬vivi

¬¬vi with | ¬¬vi| < s and

|¬¬vi| < s such that T has a computation

q0
a−−→u q

¬¬

bi−−−−−−−−−−−−−−→¬¬vvkvk−1 . . . vi+1
¬¬vi

¬¬qi
bi−−−→vi

¬¬qi
¬¬

bi−−−−−−−−−−−−−−→¬¬viṽi−1 . . . ṽ1
¬¬vw

f .

Note that

|vi| > ti−2s = s·(1+i(t0+t1+· · ·+ti−1))·(1+|QT |·|QA|
i).

Thus
¬¬qi
bi−−→vi

¬¬qi contains more than

(1 + i(t0 + t1 + · · ·+ ti−1)) · (1 + |QT | · |QA|
i)

steps during which T produces nonempty output. We call the

positions of bi at which T produces nonempty output during

its computation T -productive.

Now consider the i different computations of A given by the

induction hypothesis for i− 1. They all start with a common

prefix that splits into

q̂0
¬¬aakak−1 . . . ai+1−−−−−−−−−−−−−−→u ¬¬vvkvk−1 . . . vi+1

q̂i+1
ai−−−→vi

q̂i.

Note that in the remainder of these computations, automaton

A always scans the same input word ai−1 . . . a2a1bi but i
different output words. These output words are indeed pairwise

different since their lengths are

|ṽiṽi−1ṽi−2 . . . ṽ3ṽ2ṽ1
¬¬vw | < |viṽi−1ṽi−2 . . . ṽ3ṽ2ṽ1

¬¬vw |

< |vivi−1ṽi−2 . . . ṽ3ṽ2ṽ1
¬¬vw |

< . . .

< |vivi−1vi−2 . . . v3ṽ2ṽ1
¬¬vw |

< |vivi−1vi−2 . . . v3v2ṽ1
¬¬vw |

< |vivi−1vi−2 . . . v3v2v1
¬¬vw |

≤ t0 + t1 + · · ·+ ti.

Since these are i different computations, each of which has

at most t0+t1+· · ·+ti−1 output symbols, there are within the

remaining ai−1 . . . a2a1bi input suffix at most i(t0+t1+ · · ·+
ti−1) positions such that, for at least one of the i computations

by A, the input head of A stays put in said position while its

output head advances. We call these positions A-productive

and the others A-unproductive. It follows in particular that

the subword bi in bi =
¬¬

bibi
¬¬

bi contains at most

i(t0 + t1 + · · ·+ ti−1)

positions that are A-productive. They delimit at most

1 + i(t0 + t1 + · · ·+ ti−1)

sequences of consecutive A-unproductive positions in bi. Us-

ing the lower bound on the number of T -productive positions

in bi derived above, we conclude that at least one of these

A-unproductive sequences contains more than

(1 + i(t0 + t1 + · · ·+ ti−1)) · |QT | · |QA|i

1 + i(t0 + t1 + · · ·+ ti−1)
= |QT | · |QA|

i

T -productive positions. Thus bi has a decomposition
¬¬

b′i
◦

bi
¬¬

b′i
such that, on the one hand, all i computations of A given by the

induction hypothesis for i− 1 loop through
◦

bi simultaneously

without advancing the output head at all and, on the other

hand, T ’s partial computation on bi decomposes into

¬¬qi

¬¬

b′i−−−→¬¬v′i

◦qi

◦

bi−−−→◦

vi
◦qi

¬¬

b′i−−−→¬¬v′i

¬¬qi

with a loop that starts at some state
◦qi and, while reading the

input sequence
◦

bi, produces some output
◦vi that is nonempty

due to at least one T -productive position in
◦

bi. Removing the

nonproductive loop
◦

bi from all i of A’s computations given by

the induction hypothesis for i − 1, we obtain all but the last

of A’s computations in the claim for i. Moreover, deleting the

loop on
◦

bi from T ’s computation in the induction hypothesis

for i − 1 and defining bi+1 =
¬¬

bi
¬¬

b′i
¬¬

b′i
¬¬

bi and ṽi = ¬¬vi
¬¬v′i
¬¬v′i

¬¬vi
yields the computation for T in the claim for i. Finally, we use

L(A) = L(T) to obtain from this new computation of T the

missing last computation of A. All mentioned computations

of A start with the same prefix

q̂0
¬¬aakak−1 . . . ai+1−−−−−−−−−−−−−−→u ¬¬vvkvk−1 . . . vi+1

q̂i+1

since A is deterministic and all input and output in this prefix

has remained unchanged. This concludes the induction step

and thus the proof of Claim 16.

We now provide an illustrative example of an fv-NFT

with unbounded trailing. According to Theorem 15, it has no

equivalent fv-2t-DFA, implying the strictness of the inclusion

L(fv-2t-DFA) ⊆ L(fv-NFT); see Figure 1.

Example 17. The transducer’s alphabets are Σ = Γ = {0, 1}
and its relation is

{ (0i10j10, 0i) | i, j ∈ N } ∪ { (0i10j11, 0j) | i, j ∈ N }.

This union contains exactly the pairs of the form

(0i10j1β, 0k), where β is a bit valued 0 or 1 and k = i
if β = 0 and k = j if β = 1. This relation is easily computed

by an fv-NFT that nondeterministically guesses β, then copies

either 0i or 0j to the output tape, and finally accepts or rejects

depending on whether the guess was correct.

No 2t-DFA can compute this relation, however, for the

following intuitive reason. Consider an input-output pair

(0i10j1β, 0k) with sufficiently large i, j, and k. By the time the

input head reaches the first 1, the output head has either read

most of 0k already or has a large part of it still lying ahead.

In the first case, the automaton may have potentially checked

whether k = i, but cannot remember how many zeroes of

0k the output head has already passed making it impossible

to check whether k = j if the input ends with β = 1. In

the second case, the automaton can potentially still check

whether k = j, but cannot remember how many zeroes the

input head has already passed, that is, the value of i. This

makes it impossible to check whether k = i if the input ends

with β = 0. Therefore, the automaton fails on inputs with

β = 1 in the first case and on inputs with β = 0 in the second

case.

To show formally that the described transducer has un-

bounded trailing we use the variable names of Definition 11.

For any given t ∈ N, we can choose u = w1 = w2 = λ,

where λ denotes the empty word, a = v = 0t, b1 = 10t10,

and b2 = 10t11. This yields two computations showing that

the trailing bound must be at least t, namely

q0
0t−−−→
λ0t

q 10t10−−−−−→
λ

f and q0
0t−−−→
λ

q 10t11−−−−−→
0tλ

f .

VI. BOUNDED TRAILING IS UNDECIDABLE

In this section, we prove that determining whether an

fv-NFT has bounded trailing is undecidable. This is achieved

by reducing the halting problem on the empty input, which

is known to be undecidable, to the problem of determining

whether an fv-NFT has bounded trailing. We present a reduc-

tion via a third problem, namely determining whether a Turing

machine reaches infinitely many configurations on the empty

input.

We begin by formally defining the standard model of

a deterministic Turing machine with a single tape that is

unbounded in both directions.

Definition 18. A Turing machine is a sextuple M =
(Q,Γ, , q0, F, δ) consisting of

• a finite, nonempty set of states Q,

• a finite, nonempty alphabet Γ,

• a blank symbol 6∈ Γ,

• an initial state q0 ∈ Q,

• a set F ⊆ Q of accepting states, and

• a (partial) transition function

δ : Q× (Γ ∪ { }) → Q× Γ× {Left,Right}.

A configuration of a Turing machine consists of its current

state, the content of the tape, and the position of the head

on the tape. We will only consider the computations of a

Turing machine on the empty input, the initial configuration

thus always consists of the initial state q0, a tape containing

only blank symbols, and the head scanning one of them.

A configuration is called accepting if its current state q is

accepting, i.e., if q ∈ F . A configuration is called halting

if it is accepting or the transition function is undefined for

the current state q ∈ Q and the symbol a ∈ Γ currently

scanned by the head. If a configuration is not halting, the

next configuration reached in one step of the Turing machine’s

computation is obtained by updating the current state, writing

a non-blank symbol to the tape’s cell scanned by the head,

and moving the head either one cell to the left or one cell to

the right.

Any configuration reached during the Turing machine’s

computation on the empty input consists of a finite contiguous

sequence of non-blank symbols and the position of the head

scanning either any symbol within this sequence or one of the

two blank symbols delimiting it. Hence, we can represent a

configuration of this machine as a finite sequence of cells of

two types: Every configuration contains exactly one cell of the

first type, namely the one currently scanned by the head. In

our representation, this type of cell contains some potentially

blank symbol and the current state. The second type contains a

non-blank symbol only. The initial configuration is represented

by a single cell containing the blank symbol and the initial

state—recall that we consider only the computation on the

empty input.

A Turing machine halts on the empty input if it reaches a

halting configuration during its computation starting in the ini-

tial configuration. The undecidability of determining whether

a halting configuration can be reached is well known [19].

A straightforward reduction shows that it is also undecidable

whether a given Turing machine reaches infinitely many

different configurations during its computation on the empty

input.

Lemma 19. The problem of determining whether a Turing

machine reaches infinitely many different configurations dur-

ing its computation on the empty input is undecidable.

Proof. We prove the lemma by contradiction. Suppose that

there is an algorithm A∞ that decides for every given Turing

machine M whether it reaches infinitely many different con-

figurations on the empty input. We will use A∞ to design an

algorithm AH that decides for any Turing machine M whether

it reaches a halting configuration on the empty input. The

latter problem is known to be undecidable, yielding the desired

contradiction.

Given a Turing machine M , algorithm AH first invokes A∞

to decide whether M reaches infinitely many different config-

urations on the empty input. If it does, then AH outputs “No”

because reaching a halting configuration implies reaching only

finitely many configurations in total. Otherwise, AH simulates

M ’s deterministic computation on the empty input step by

step, remembering all configurations, until either a halting or

a previously encountered configuration is reached. Then AH

outputs “Yes” in the former case and “No” in the latter.

Because both the set of states and the alphabet are finite,

the set of all configurations of a bounded length is necessarily

finite. It follows that a Turing machine M reaches infinitely

many configurations if and only if it reaches configurations of

arbitrary length.

Corollary 20. The problem of determining whether a Turing

machine reaches configurations of arbitrary length on the

empty input is undecidable.

We now show how to construct from a given deterministic

Turing machine M an fv-NFT T that has unbounded trailing

if and only if M reaches configurations of arbitrary length.

A valid input for T is a sequence of M ’s configurations

followed by one of two special symbols that we call mode indi-

cators. The configurations are represented by finite sequences

of cells as described in the previous section and separated from

each other by a dedicated symbol not occurring anywhere else.

The two mode indicators are represented by a cell containing

either of the two words in {copy, step}. The transducer T
starts its computation by nondeterministically guessing the

mode indicator and then operates in the corresponding mode

described below. If the guess turns out to be wrong or if the

input is invalid in any way, the computation is aborted and the

transducer rejects the input. The two possible types of input-

output pairs after an accepting computation are depicted in

Figure 4a.

Copy Mode

The input is output symbol by symbol, omitting the

mode indicator in the end.

Step Mode

In the first step, output M ’s entire fixed initial con-

figuration c0 while reading and remembering the first

input symbol. Then read from the sequence in the in-

put one configuration c after the other. While reading

c, compute and output the successor configuration c′

that M reaches from c in one computation step. Of

course, this all assumes that such a configuration c′

exists; otherwise, T aborts the computation as it does

for invalid inputs.

To see that T can in fact realize these computations, observe

that the changes necessary to turn a configuration c into its

successor configuration c′ do, on the one hand, only depend on

the single type-one cell of c containing the currently scanned

symbol and the current state and, on the other hand, only affect

the immediate proximity of this cell.

Hence, the successor configuration c′ can indeed be com-

puted from c by a finite transducer that essentially is still

copying each configuration symbol by symbol, but letting the

input head run ahead by one cell while keeping the contents

of the three most recent input cells in a buffer. This allows

the transducer to modify the configuration in the right place

to produce the successor configuration even for configuration

changes of the Turing machine that move its only head to the

left. Transducer T can be effectively computed from any given

Turing machine M ; we omit the technicalities.

c1 c2 c3 · · · ck copy

c1 c2 c3 · · · ck

c1 c2 c3 · · · ck step

c0 c′1 c′2 · · · c′k−1
c′k

(a) The two types of valid inputs for T and the corresponding
accepted outputs. Each ci with i > 0 encodes an arbitrary configu-
ration of M , c0 is its initial configuration, and c′i is ci’s successor
configuration under a single computation step of M .

c0 c1 c2 · · · ck copy

c0 c1 c2 · · · ck

c0 c1 c2 · · · ck step

c0 c1 c2 · · · ck ck+1

(b) Two accepting computation patterns of T that make unbounded
trailing inevitable if M reaches arbitrarily long configurations. Here,
c0 is still the initial configuration of M on the empty input, but ci+1

is now the successor configuration of ci under a single computation
step of M .

Fig. 4: Accepting computation patterns of transducer T , which

depends on Turing machine M .

The described transducer T is unambiguous; that is, there

is at most one accepting computation for every input word.

This is easily checked as follows. On the one hand, T rejects

all invalid inputs anyway. On a valid input, on the other

hand, T takes only a single nondeterministic decision to

choose the operating mode and then the computation proceeds

deterministically, being accepting for only one of the two

choices, depending on the mode indicator at the end of

the input word. Transducer T ’s being unambiguous implies

that the undecidability stated in Theorem 23 remains valid

even when we are restricted to unambiguous NFTs instead

of fv-NFTs. Namely, unambiguity implies functionality and

thus finite-valuedness—but of course not vice versa—which

trivially means that Theorems 14 and 15 hold for functional

and unambiguous NFTs too. Nevertheless, unambiguous trans-

ducers are just as expressive as functional ones [7]. We state

T ’s relevant properties formally.

Claim 21. T is unambiguous and thus also functional and

finite-valued; that is, T is an f-NFT and an fv-NFT.

We will now sketch the proof of the crucial connection

between the length of M ’s configurations and T ’s trailing.

Claim 22. T has unbounded trailing if and only if Turing

machine M reaches configurations of arbitrary length during

its computation on the empty input.

Proof. The transducer T takes only one nondeterministic

decision during any computation, namely to operate in either

copy or step mode, the rest of the computation is deterministic.

According to Definition 11, the only way for any trailing to

occur is therefore a pair of two computations, one in copy

mode and one in step mode, producing consistent output

words. One of these two output words must be a prefix of the

other; we call it the common prefix of the two computations.

See Figure 4b for an example of the arising situation.

In the following paragraph we argue why the configurations

within the common prefix represent a valid computation of M
and why the current trail length is equal to the length of the

configuration currently read, up to a constant.

Since transducer T always starts by outputting the initial

configuration c0 in step mode, t his has to be the first configu-

ration on the output tape in copy mode as well. In copy mode,

T can only write this configuration c0 to the beginning of the

output tape if c0 is also the first configuration on the input

tape. The step mode behavior now ensures that the second

configuration on the output tape is the successor of c0, we call

it c1. Iterating this argument, we see that the common prefix

indeed contains a valid computation c0, c1, . . . , ck, where each

configuration is the successor of the previous one under one

computation step of M . Finally, the trail is always as long as

the configuration that is currently being read, up to the size

of the one cell by which the input head is leading. Thus the

current trail length is indeed always, up to constant, equal to

the length of the current configuration in the simulation of the

computation of M on the empty input word. This concludes

the proof of Claim 22.

Finally, we obtain the main result of this section by com-

bining Corollary 20 and Claims 21 and 22.

Theorem 23. Whether a given fv-NFT has bounded trailing

is an undecidable problem.

Proof. We prove the theorem by contradiction. Suppose that

there is an algorithm A deciding whether an fv-NFT has

bounded trailing. We construct an algorithm A∞ deciding

whether a Turing machine M reaches configurations of ar-

bitrary length. The latter problem is undecidable by Corol-

lary 20, yielding a contradiction.

Given a Turing machine M , algorithm A∞ constructs the

fv-NFT T and uses algorithm A to decide whether T has

bounded trailing. If it does, then A∞ outputs “No,” otherwise

it outputs “Yes.” The correctness of algorithm A∞ follows

from Claim 22.

VII. CONCLUSION

We have introduced the notion of bounded trailing, char-

acterized fv-NFTs having an equivalent fv-2t-DFA as those

with bounded trailing, proved that it is undecidable whether an

fv-NFT has bounded trailing—thereby proving fv-NFTs to be

more powerful than fv-2t-DFAs—and showed how to construct

an equivalent fv-2t-DFA given a trailing bound. Furthermore,

all of these results hold true for functional and unambiguous

transducers as well because Theorems 14 and 15 prove the

characterization for any fv-NFT—including functional and

unambiguous finite transducers—and because we have shown

our criterion’s undecidability using an unambiguous finite

transducer, which is the most restrictive.

On the one hand, our results mirror Choffrut’s classical

characterization of determinizable NFTs as those with the

twinning property [6]. One the other hand, the undecidability

of our bounded-trailing criterion contrasts with the twinning

property being decidable in polynomial time [21]. Despite

this undecidability, we provide a uniform construction that

transforms an fv-NFT into an fv-2t-DFA whenever possible.

Fischer and Rosenberg [11] have shown already more than

half a century ago that deciding whether a 2t-NFA (or equiva-

lently, a λ-NFT) can be transformed into an equivalent 2t-DFA

is an undecidable problem; however, their proof requires

relations that are not finite-valued and thus does not yield

any result for fv-NFTs. Moreover, neither a characterization

of transducers with an equivalent deterministic automaton nor

a method to construct an equivalent deterministic automaton if

it exists has been described so far. The present paper addresses

all of these issues for the case of fv-NFTs.

We emphasize again that the bounded trailing property

defined in this paper does not characterize NFTs having

an equivalent 2t-DFA unless the relation is finite-valued;

a corresponding counterexample of a transducer with both

an equivalent 2t-DFA and unbounded trailing is found in

Example 12. Finding a reasonable characterization of NFTs

with an equivalent 2t-DFA and a method to transform the

former into the latter if possible remains as an open research

opportunity.

ACKNOWLEDGMENTS

We are grateful to Juraj Hromkovič and Richard Královič

for inspiring discussions, and thank the anonymous reviewers

for their careful reading of this paper and suggestions.

This research is supported by the Swiss National Science

Foundation grant “Big Data Monitoring”(167162).

The authors are listed in alphabetical order.

REFERENCES

[1] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. A general theory of
translation. Math. Systems Theory, 3:193–221, 1969.

[2] E. Burjons, F. Frei, and M. Raszyk. Formalization associated with this
paper, 2021. https://github.com/lics21-automata/automata.

[3] O. Carton. Two-way transducers with a two-way output tape. In
Developments in Language Theory, pages 263–272. Springer Berlin
Heidelberg, 2012.

[4] O. Carton, L. Exibard, and O. Serre. Two-way two-tape automata. In
Developments in Language Theory - 21st International Conference, DLT

2017, volume 10396 of Lecture Notes in Computer Science, pages 147–
159. Springer, 2017.

[5] C. Choffrut. Une caracterisation des fonctions sequentielles et des fonc-
tions sous-sequentielles en tant que relations rationnelles. Theoretical

Computer Science, 5(3):325–337, 1977.
[6] C. Choffrut. A generalization of Ginsburg and Rose’s characterization

of G-S-M mappings. In Automata, Languages and Programming, pages
88–103. Springer Berlin Heidelberg, 1979.

[7] C. Choffrut and S. Grigorieff. Uniformization of rational relations. In
Jewels are Forever, Contributions on Theoretical Computer Science in

Honor of Arto Salomaa, pages 59–71. Springer, 1999.
[8] C. C. Elgot and J. E. Mezei. On relations defined by generalized finite

automata. IBM J. Res. Dev., 9(1):47–68, 1965.
[9] J. Engelfriet and H. J. Hoogeboom. Two-way finite state transducers and

monadic second-order logic. In Automata, Languages and Programming.
Springer, 1999.

[10] E. Filiot, O. Gauwin, P.-A. Reynier, and F. Servais. From two-way to
one-way finite state transducers. In LICS 2013, pages 468–477. IEEE
Computer Society, 2013.

[11] P. C. Fischer and A. L. Rosenberg. Multitape one-way nonwriting
automata. Journal of Computer and System Sciences, 2(1):88–101, 1968.

[12] M. Holzer, M. Kutrib, and A. Malcher. Complexity of multi-head
finite automata: Origins and directions. Theoretical Computer Science,
412(1):83–96, 2011.

[13] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL: A Proof

Assistant for Higher-Order Logic, volume 2283 of Lecture Notes in
Computer Science. Springer, 2002.

[14] M. O. Rabin and D. Scott. Finite automata and their decision problems.
IBM Journal of Research and Development, 3(2):114–125, 1959.

[15] M. Raszyk, D. A. Basin, and D. Traytel. From nondeterministic to multi-
head deterministic finite-state transducers. In ICALP 2019, volume 132
of LIPIcs, pages 127:1–127:14, 2019.

[16] C. Reutenauer and M.-P. Schützenberger. Minimization of rational word
functions. SIAM J. Comput., 20(4):669–685, 1991.

[17] M. P. Schützenberger. Sur les relations rationnelles. In Automata Theory

and Formal Languages, pages 209–213, Berlin, Heidelberg, 1975.
[18] I. H. Sudborough. On tape-bounded complexity classes and multihead

finite automata. Journal of Computer and System Sciences, 10(1):62–76,
1975.

[19] A. M. Turing. On computable numbers, with an application to the
entscheidungsproblem. Proceedings of the London Mathematical So-

ciety, s2-42(1):230–265, 1937.
[20] A. Weber. On the valuedness of finite transducers. Acta Informatica,

27(8):749–780, 1989.
[21] A. Weber and R. Klemm. Economy of description for single-valued

transducers. Information and Computation, 118(2):327–340, 1995.
[22] A. C. Yao and R. L. Rivest. k + 1 heads are better than k. J. ACM,

25(2):337–340, 1978.

https://github.com/lics21-automata/automata

	I Introduction
	II Preliminaries
	III Bounded Trailing
	IV Bounded Trailing is Sufficient
	V Bounded Trailing is Necessary
	VI Bounded Trailing is Undecidable
	VII Conclusion
	References

