INAPPROXIMABILITY OF UNIQUE GAMES IN FIXED-POINT LOGIC WITH COUNTING

JAMIE TUCKER-FOLTZ
Harvard University
e-mail address: jtuckerfoltz@gmail.com

Abstract

We study the extent to which it is possible to approximate the optimal value of a Unique Games instance in Fixed-Point Logic with Counting (FPC). Formally, we prove lower bounds against the accuracy of FPC-interpretations that map Unique Games instances (encoded as relational structures) to rational numbers giving the approximate fraction of constraints that can be satisfied. We prove two new FPC-inexpressibility results for Unique Games: the existence of a ($1 / 2,1 / 3+\delta$)-inapproximability gap, and inapproximability to within any constant factor. Previous recent work has established similar FPC-inapproximability results for a small handful of other problems. Our construction builds upon some of these ideas, but contains a novel technique. While most FPCinexpressibility results are based on variants of the CFI-construction, ours is significantly different. We start with a graph of very large girth and label the edges with random affine vector spaces over \mathbb{F}_{2} that determine the constraints in the two structures. Duplicator's strategy involves maintaining a partial isomorphism over a minimal tree that spans the pebbled vertices of the graph.

1. Introduction

While the bulk of ordinary complexity theory rests on conjectures about the limits of efficient computation (e.g., $\mathrm{P} \neq \mathrm{NP}$), descriptive complexity has had much success in proving unconditional lower bounds. By restricting attention only to those algorithms that can be defined in some given primitive logic, it is possible to say much more about what such an algorithm is capable or incapable of doing.

One such logic is Fixed-Point Logic with Counting (FPC), which is first order logic augmented with a least fixed point operator, numeric variables and counting quantifiers asserting that a given number of distinct objects satisfy a given predicate. The set of decision problems definable in FPC forms a proper subset of P. ${ }^{1}$ Roughly, a polynomial-time algorithm is definable as an FPC-interpretation only if it respects the natural symmetries

[^0]of its input, without making any arbitrary choices that break those symmetries. ${ }^{2}$ Thus, FPC has become an extremely important and well-studied logic [Daw15], as it seems to elegantly capture the essence of symmetric computation. It is a robust logic, including a wide range of powerful algorithmic techniques, such as linear [ADH15] and semidefinite [DW17] programming.

It was once thought that FPC captured all of polynomial time, until Cai, Fürer and Immerman [CFI89] constructed a problem that is solvable in polynomial time, yet not definable in FPC. Their proof technique, which has since become known as a CFI-construction, was to exhibit pairs of problem instances $\left(\mathbb{A}_{1}, \mathbb{B}_{1}\right),\left(\mathbb{A}_{2}, \mathbb{B}_{2}\right),\left(\mathbb{A}_{3}, \mathbb{B}_{3}\right), \ldots$ such that each \mathbb{A}_{k} is a YES instance, each \mathbb{B}_{k} is a NO instance, yet \mathbb{A}_{k} and \mathbb{B}_{k} are indistinguishable by any sentence of FPC with k variables (formally, they are C^{k}-equivalent: Duplicator wins the k-pebble bijective game played on \mathbb{A}_{k} and \mathbb{B}_{k}; see Section 2.2 for the full definition). CFI-constructions have been used to establish logical inexpressibility results for a range of other decision problems - some solvable in polynomial time, others NP-hard [Daw15, ABD09, Daw98].

In a recent paper, Atserias and Dawar [AD19] adapted this technique to obtain the first known FPC-inapproximability results, proving the nonexistence of approximation algorithms whose mapping of inputs to outputs is definable as an FPC-interpretation. Essentially, this requires that \mathbb{A}_{k} and \mathbb{B}_{k} not only have different optimal values, but that these optimal values differ by some constant multiplicative factor. Atserias and Dawar were able to construct such instances to derive a tight FPC-inapproximability gap for 3XOR (like 3SAT but with XOR's instead of OR's in each clause), which was then extended via first order interpretations to yield lower bounds for 3SAT, VertexCover and LabelCover.
1.1. Main results. In this paper, we extend this line of work to consider a keystone problem in the theory of approximation algorithms: UniqueGames. A UniqueGames instance U is specified by a set of variables taking values in some fixed label set $[q]=\{1,2, \ldots, q\}$, and a set of constraints. Each constraint requires that a certain pair of variables take values that are consistent with some permutation on $[q]$. The goal is to find the maximum fraction of constraints that can be simultaneously satisfied. ${ }^{3}$ We denote this fraction by opt (U). Our main result (Theorem 5.11) is that, for any $\delta>0$ and any positive integer ℓ, for sufficiently large q we can construct pairs of UniqueGames instances $\left(\mathbb{A}_{1}, \mathbb{B}_{1}\right),\left(\mathbb{A}_{2}, \mathbb{B}_{2}\right),\left(\mathbb{A}_{3}, \mathbb{B}_{3}\right), \ldots$ on a label set of size q such that, for all k, \mathbb{A}_{k} and \mathbb{B}_{k} are C^{k}-equivalent, yet

$$
\operatorname{opt}\left(\mathbb{A}_{k}\right) \geq \frac{1}{2^{\ell}}, \quad \quad \operatorname{opt}\left(\mathbb{B}_{k}\right)<\frac{1}{2^{2 \ell-1}+2^{\ell-1}}+\delta .
$$

There are two important specializations of the parameter ℓ. Sending $\ell \rightarrow \infty$, it follows that there is no constant-factor approximation algorithm for UniqueGames that is definable as an FPC-interpretation (Corollary 5.12). As discussed, this does not rule out the existence of any polynomial-time constant-factor approximation algorithm, but it does rule out the existence of a symmetric algorithm, including any algorithm based primarily on linear or

[^1]semidefinite programming (i.e., an algorithm that just returns the optimal value of a linear or semidefinite program constructed from the input via elementary operations).

Setting $\ell=1$, this result implies that no sentence of FPC can distinguish all instances of optimal value $\frac{1}{2}$ from those of optimal value $\frac{1}{3}+\delta$. The analogue of such a result in ordinary complexity theory would be that UniqueGames has a $\left(\frac{1}{2}, \frac{1}{3}+\delta\right)$-inapproximability gap, i.e., assuming $\mathrm{P} \neq \mathrm{NP}$, there is no polynomial-time algorithm distinguishing instances of optimal value $\frac{1}{2}$ from instances of optimal value $\frac{1}{3}+\delta$. Our result is, of course, logically incomparable to results of this kind since we have imposed an FPC-definability requirement and dropped the assumption that $\mathrm{P} \neq \mathrm{NP}$. If we were to compare them modulo this exchange of assumptions, our result would be stronger than what was known prior to the resolution of the 2-2 Games Conjecture in 2018. ${ }^{4}$ However, while the 2-2 Games Theorem is the culmination of over a decade of research spanning several papers, our FPC lower bound is self-contained and qualitatively very different, exploiting a peculiar weakness of FPC: the inability to perform Gaussian elimination. The result is thus a testament to the power of descriptive complexity in proving lower bounds for important restricted classes of algorithms, even in the realm of approximation.
1.2. Connections to semidefinite programming. The prominence of UniqueGames as a problem of study in complexity theory is primarily due to its deep connections with semidefinite programming. A famous theorem of Raghavendra [Rag09] establishes that, for any constraint satisfaction problem Λ, if we assume $\mathrm{P} \neq \mathrm{NP}$ and the Unique Games Conjecture (UGC), the best polynomial-time approximation algorithm for Λ is given by solving and rounding a specific semidefinite programming relaxation. Thus, proving the UGC would immediately yield a complete classification of the approximability of constraint satisfaction problems, closing the gaps between the best known upper and lower bounds on the optimal approximation ratios (though still conditional on $\mathrm{P} \neq \mathrm{NP}$). Raghavendra's theorem is established via a general, abstract reduction from UniqueGames to Λ. As it so happens, this reduction is definable as an FPC-interpretation. Together with the fact that the optimal value of a semidefinite program can be defined in FPC [DW17], this implies an analogue of Raghavendra's result for algorithms that are definable in FPC, holding without the assumption that $P \neq N P$ [TF20].

Thus, if we could prove an FPC-version of the UGC, we would have a complete and unconditional understanding of the limits of symmetric computation in approximating constraint satisfaction problems. This conjecture is as follows.

Conjecture 1.1 (FPC-UGC [TF20]). For all $\varepsilon, \delta>0$, there exists q such that there is no sentence ϕ of FPC such that, for any UniqueGames instance \mathbb{A} on a label set of size q,
(1) $\operatorname{if} \operatorname{opt}(\mathbb{A}) \geq 1-\varepsilon$, then $\mathbb{A} \models \phi$, and
(2) if $\operatorname{opt}(\mathbb{A})<\delta$, then $\mathbb{A} \not \vDash \phi$.

If true, this would also imply that no fixed level of the Lasserre hierarchy can disprove the ordinary UGC, which is a well-known open problem in complexity theory. ${ }^{5}$

[^2]The main result of this paper is a step in the direction of proving this conjecture. Instead of a ($1-\varepsilon, \delta$)-gap, we have a $\left(\frac{1}{2^{\ell}}, \frac{1}{2^{2 \ell-1}+2^{\ell-1}}+\delta\right)$-gap for any positive integer ℓ. In light of our aforementioned comparison to existing conditional lower bounds on UniqueGames in the realm of polynomial-time computation, we believe there is promise that the FPC-UGC may be resolved before the ordinary UGC.
1.3. Challenges and techniques. In typical CFI-constructions, \mathbb{A}_{k} and \mathbb{B}_{k} are exactly the same except at one small place. The difference is critical in that it causes \mathbb{A}_{k} and \mathbb{B}_{k} to differ with respect to the property being shown to be inexpressible, yet it is small enough that Duplicator can repeatedly move it around to somewhere else, hiding it from Spoiler. For UniqueGames (and probably any other optimization problem of practical interest), two structures differing only on a small number of constraints must have nearly the same optimal value. Since we require instances whose optimal values differ significantly, this standard approach does not work for our setting. Duplicator will never be able to maintain an invariant that the two structures look isomorphic everywhere except in one place.

Atserias and Dawar [AD19] overcame this difficulty for 3XOR by constructing a 3CNF Boolean formula from the 3XOR instance and applying theorems on resolution proofs and their connection to existential pebble games. This approach does not work for UniqueGames, since the variables are not Boolean, and the constraints are only between pairs of variables, not triples. Thus, our construction is quite different from existing CFI-constructions in the literature.

The main idea is to start from a graph of large girth and label each edge with a random ℓ-dimensional subspace of \mathbb{F}_{2}^{m} (the m-dimensional vector space over the 2 -element field) for some large integer $m>\ell$. These subspaces determine the constraints in the more-satisfiable instance \mathbb{A}_{k}. To obtain the less-satisfiable instance \mathbb{B}_{k}, we transform these subspaces into affine subspaces, shifted by random vectors. Duplicator's strategy in the k-pebble bijective game relies on the fact that, with high probability, along any path p that is sufficiently long (though less than the girth), the union of all of the subspaces along p spans \mathbb{F}_{2}^{m}. This can be used to "fill in" the bijection between \mathbb{A}_{k} and \mathbb{B}_{k} along long paths, so all Duplicator has to worry about are short paths between pebbled vertices. Duplicator can ensure consistency across these short paths by maintaining an appropriate invariant throughout the game.
1.4. Organization. In Section 2 we review the necessary background on UniqueGames, FPC, and approximation algorithms. In Section 3 we adapt a key tool from the literature on CFI-constructions for satisfiability of systems of linear equations to our setting. Section 4 works through two examples illustrating some of the main ideas of our construction. The formal proof of C^{k}-equivalence is presented in Section 5, and conclusions follow in Section 6.

2. Preliminaries

We assume the reader is familiar with relational structures and first-order (FO) logic. All graphs are undirected, but may contain multiple edges between a pair of vertices and/or loops from a vertex to itself. A graph is simple if it has no multiple edges or self-loops. Paths are not allowed to repeat edges.

Figure 1. A UniqueGames instance over the label set $\{1,2\}$ represented graphically, along with one optimal solution (green). Only the bottom edge (red) is unsatisfied by this solution.
2.1. Unique games. We denote the maximization problem of UniqueGames on a label set of size q by $\operatorname{UG}(q)$. We view the label set as $[q]:=\{1,2, \ldots, q\}$. We encode $\operatorname{UG}(q)$ instances as relational structures using a vocabulary $\tau_{\mathrm{UG}(q)}$ consisting of q ! relation symbols, each of arity 2: for every permutation $\pi:[q] \rightarrow[q], \tau_{\cup G(q)}$ has a relation symbol P_{π}. The universe can be thought of as the set of variables of the CSP, and each P_{π} is interpreted as the set of pairs of variables $\left(x_{1}, x_{2}\right)$ to which we have a constraint that x_{1} and x_{2} should take values z_{1} and z_{2} in $[q]$ such that $\pi\left(z_{1}\right)=z_{2}$. These are precisely the kinds of constraints that are allowed in UniqueGames. For any $\operatorname{UG}(q)$ instance U, the objective is to compute $\operatorname{opt}(U) \in[0,1]$, the maximum fraction of constraints that can be simultaneously satisfied by any assignment of variables to values in $[q]$. We call $\operatorname{opt}(U)$ the optimal value, or satisfiability, of U.

It is often convenient to think of $\mathrm{UG}(q)$ instances as being defined over some graph H, where each vertex $v \in V(H)$ represents a variable x_{v}, and each edge $\left\{v_{1}, v_{2}\right\} \in E(H)$ is associated to a permutation $\pi_{v_{1}, v_{2}}$ on the label set [q] defining which labels for variable $x_{v_{1}}$ correspond to which labels for variable $x_{v_{2}}$. When the permutations are involutions (as will be the case throughout this paper), the orientation of the edges does not matter, so we can associate each permutation to an edge, rather than an ordered pair of vertices. For example, Figure 1 shows a $\mathrm{UG}(2)$ instance U with edge permutations written in cycle notation, along with one of the optimal assignments ($x_{v_{1}}=x_{v_{3}}=x_{v_{4}}=1 ; x_{v_{2}}=2$) realizing $\operatorname{opt}(U)=\frac{3}{4}$. If we were to encode this instance as a $\tau_{\mathrm{UG}(2) \text {-structure }}$

$$
\mathbb{A}=\left\langle A, P_{()}^{\mathbb{A}}, P_{(12)}^{\mathbb{A}}\right\rangle,
$$

the universe would be $A=\left\{x_{v_{1}}, x_{v_{2}}, x_{v_{3}}, x_{v_{4}}\right\}$, and the relations would be interpreted as

$$
\begin{aligned}
P_{()}^{\mathbb{A}} & =\left\{\left(x_{v_{1}}, x_{v_{3}}\right),\left(x_{v_{3}}, x_{v_{1}}\right)\right\}, \\
P_{(12)}^{\mathbb{A}} & =\left\{\left(x_{v_{1}}, x_{v_{2}}\right),\left(x_{v_{2}}, x_{v_{1}}\right),\left(x_{v_{2}}, x_{v_{4}}\right),\left(x_{v_{4}}, x_{v_{2}}\right),\left(x_{v_{3}}, x_{v_{4}}\right),\left(x_{v_{4}}, x_{v_{3}}\right)\right\} .
\end{aligned}
$$

Note in this case the relations happen to be disjoint, which need not be true in general. Indeed, most of the instances constructed in this paper involve multiple, contradictory constraints between some pairs of variables.

A special subclass of UniqueGames instances play a particularly important role, both in this paper and in other papers on UniqueGames [Kho10]. We call these GroupUniqueGames instances, which satisfy the following additional properties:
(1) The label set $[q]$ is identified with some finite Abelian group A of order q.
(2) For every permutation constraint π, there is some $g \in A$ such that $\pi(x)=g+x$ (we always write the group operation additively). Thus, we can identify the set of permutations with A as well.
It is convenient to express constraints as equations in A. For instance, if π is the permutation from condition (2) above and $\left(x_{v_{1}}, x_{v_{2}}\right) \in P_{\pi}^{\mathbb{A}}$ for some $\tau_{\mathrm{UG}(q)}$-structure \mathbb{A}, then we would write this constraint as the equation

$$
x_{v_{2}}=g+x_{v_{1}} .
$$

We depict such a constraint graphically by writing g on the (oriented) edge $\left\{v_{1}, v_{2}\right\}$ (see Figures 2 and 3 for example). Henceforth we will informally speak of GroupUniqueGames instances U and equations that occur as constraints of U, with the implicit understanding of how these are formally represented as $\tau_{\mathrm{UG}(q)}$-structures \mathbb{A} and relations $P_{\pi}^{\mathbb{A}}$.
2.2. The logics FPC and C^{k}. Since we are only concerned with lower bounds, it is not necessary to go into the formal definitions of any of the logics discussed in this paper. The main important fact we require is that, for any FPC sentence ϕ, there is a number k such that ϕ can be translated into C^{k}, the fragment of infinitary FO logic with counting quantifiers consisting of (possibly infinite) sentences with only k variables [Ott97]. Therefore, to show that a given property \mathcal{P} is not expressible in FPC, it suffices to construct, for any k, a pair of structures $\mathbb{A}=\mathbb{A}_{k}$ and $\mathbb{B}=\mathbb{B}_{k}$ such that \mathbb{A} has property \mathcal{P} but \mathbb{B} does not, yet no sentence of C^{k} can distinguish \mathbb{A} from \mathbb{B}, in the sense that \mathbb{A} models any C^{k} sentence if and only if \mathbb{B} does. When this is the case, we say that \mathbb{A} and \mathbb{B} are C^{k}-equivalent, written $\mathbb{A} \equiv_{C^{k}} \mathbb{B}$.

There is a useful characterization of C^{k}-equivalence in terms of a game between two players, Spoiler and Duplicator, called the k-pebble bijective game. The board on which they play consists of the universe A of structure \mathbb{A} and the universe B of structure \mathbb{B}. There are k pairs of pebbles, initially not placed anywhere. Throughout the game, the pairs of pebbles will be placed on elements of the two universes, one pebble in each universe. Each round of the game consists of three parts:
(1) Spoiler picks up one of the k pairs of pebbles, removing them from the board.
(2) Duplicator gives a bijection $f: A \rightarrow B$ such that, for all $1 \leq i \leq k$, if the $i^{\text {th }}$ pebble pair is placed on some pair of elements $a_{i} \in A, b_{i} \in B$, then $f\left(a_{i}\right)=b_{i}$.
(3) Spoiler places the pebbles back down, placing one pebble on some $a \in A$ and the other pebble on $f(a) \in B$.
At the end of a round, Spoiler wins if the map sending each pebbled element in A to its correspondingly-pebbled element in B is not a partial isomorphism between the two structures, i.e., there is some relation in one of the two structures that holds of a set of pebbled elements, but the corresponding relation does not hold in the other structure of the correspondingly-pebbled elements. If Spoiler is unable to win the game in any finite number of moves, then Duplicator wins.
Theorem 2.1 [Hel96]. Duplicator has a winning strategy in the k-pebble bijective game played on \mathbb{A} and \mathbb{B} if and only if $\mathbb{A} \equiv_{C^{k}} \mathbb{B}$.
2.3. Definability of algorithms. In descriptive complexity, the logical analogue of a decision algorithm is a sentence. To capture algorithms with non-boolean outputs, we turn to interpretations. Suppose we fix finite, relational vocabularies σ for the input type and τ for the output type. By saying that an algorithm is FPC-definable, we mean that the mapping from σ-structures to τ-structures defined by the algorithm can be realized as an FPC-interpretation of τ in σ.

Roughly, an FPC-interpretation of τ in σ is a formal way to construct a τ-structure \mathbb{B} from a σ-structure \mathbb{A} by defining the universe of \mathbb{B} in terms of copies of the universe of \mathbb{A}, with FPC σ-formulas defining membership for each relation in τ. For the formal details, see, for example, Dawar and Wang [DW17]. Theorem 6 of [DW17] contains an example of an FPC-definable algorithm.
2.4. Inapproximability. Let Λ denote an arbitrary maximization problem (e.g., think of Λ as $\operatorname{UG}(q)$ for some q). For $\alpha \in[0,1]$, an α-approximation algorithm for Λ is a polynomial-time algorithm that, given an instance of Λ with optimal value x^{*}, returns a value x such that $\alpha x^{*} \leq x \leq x^{*}$. Typically, an α-approximation algorithm works by finding a valid "solution" to the instance of Λ (for UniqueGames, this would be an assignment of values to variables) and returning the value of that solution. The solution may not be optimal, but it should be guaranteed to have value at least an α-fraction of that of the optimal solution, whatever that value may be. The closer α is to 1 , the better the guarantee of the algorithm.

Let us fix vocabularies τ_{Λ} for instances of Λ and $\tau_{\mathbb{Q}}$ for rational numbers, so that an FPCdefinable approximation algorithm for Λ is an FPC-interpretation of $\tau_{\mathbb{Q}}$ in τ_{Λ}. The following lemma is a logical formulation of the well-known ${ }^{6}$ relationship between approximation algorithms and gap problems.

Lemma 2.2. Suppose, for some rational numbers $c \geq s \geq 0$, no sentence of FPC can distinguish τ_{Λ}-structures with optimal value $\geq c$ from those with optimal value $<s$. Then there is no FPC-definable α-approximation algorithm for Λ for any $\alpha \geq \frac{s}{c}$.
Proof. We prove the contrapositive. Suppose there was such an interpretation Θ of $\tau_{\mathbb{Q}}$ in τ_{Λ}. Then we can use Θ to write an FPC sentence ϕ in vocabulary τ_{Λ} expressing the property that, for a given τ_{Λ} structure $\mathbb{A}, \Theta(\mathbb{A}) \geq s$. (By the Immerman-Vardi theorem, inequality comparison of rational numbers can be done in fixed-point logic even without needing counting quantifiers, since numbers are encoded in ordered structures.) Let \mathbb{A} be any τ_{Λ} structure with optimal value x^{*} such that either
(1) $x^{*} \geq c$, or
(2) $x^{*}<s$.

Let $x:=\Theta(\mathbb{A})$. If $\mathbb{A} \models \phi$, we have $x^{*} \geq x \geq s$. Therefore, we cannot be in case (2), so we must be in case (1). Conversely, if $\mathbb{A} \not \vDash \phi$, we have

$$
\alpha x^{*} \leq x<s \leq c \alpha .
$$

Therefore, $x^{*}<c$, so we cannot possibly be in case (1), and hence must be in case (2). Thus, ϕ distinguishes the two cases.

So, just as in ordinary complexity theory, where hardness of a gap problem (that is, distinguishing the two cases in Lemma 2.2), implies hardness of approximation, FPCinexpressibility of a gap problem implies the nonexistence of FPC-definable approximation

[^3]algorithms. In either case, the goal in proving lower bounds on algorithms/logics is always to establish as wide a gap as possible.

3. The label-Lifted instance

Let U be a GroupUniqueGames instance with group A and variable set

$$
\left\{x_{v} \mid v \in V\right\}
$$

Then we define $\mathcal{G}(U)$ to be a GroupUniqueGames instance with group A and variable set

$$
\left\{x_{v}^{g} \mid v \in V, g \in A\right\} .
$$

For every equation

$$
x_{v_{1}}-x_{v_{2}}=z
$$

in the constraint set of U and every $g_{1}, g_{2} \in A$, we have the equation

$$
\left(x_{v_{1}}^{g_{1}}-g_{1}\right)-\left(x_{v_{2}}^{g_{2}}-g_{2}\right)=z
$$

in the constraint set of $\mathcal{G}(U)$. We call $\mathcal{G}(U)$ the label-lifted instance ${ }^{7}$ of U.
The operator \mathcal{G} is similar to the operator G used by Atserias and Dawar [AD19, Sec. 3.2], and also implicitly used by Atserias, Bulatov and Dawar [ABD09, Sec. 3]. The point is that the extra structure gives Duplicator a new possible strategy to win the k-pebble bijective game played on $\mathcal{G}\left(U_{1}\right)$ and $\mathcal{G}\left(U_{2}\right)$ which may not be possible with the original instances U_{1} and U_{2}; while at the same time, applying \mathcal{G} does not change the satisfiability.
Lemma 3.1. For any GroupUniqueGames instance U, opt $(\mathcal{G}(U))=\operatorname{opt}(U)$.
Proof. We begin by introducing some notation which is not used outside of this proof. Suppose U has n variables, denoted $x_{v_{1}}, x_{v_{2}}, \ldots, x_{v_{n}}, C$ constraints, and $|A|=q$. For all $i, j \in[n]$, write $c(i, j)$ for the number of constraints between variables $x_{v_{i}}$ and $x_{v_{j}}$, and enumerate them as

$$
\left\{x_{v_{i}}-x_{v_{j}}=z_{i, j, k} \mid k \in[c(i, j)]\right\} .
$$

In the context of some fixed assignment of variables, for any constraint equation β, let $\mathbb{I}(\beta)$ be the function that evaluates to 1 if β is satisfied under the assignment and 0 if β is not satisfied.

Let x_{v} be an assignment ${ }^{8}$ of variables attaining the optimum satisfiability of U, i.e.,

$$
\operatorname{opt}(U)=\frac{1}{C} \sum_{i, j \in[n]} \sum_{k \in[c(i, j)]} \mathbb{I}\left(x_{v_{i}}-x_{v_{j}}=z_{i, j, k}\right) .
$$

From this, define an assignment of variables of $\mathcal{G}(U)$ by

$$
x_{v}^{g}:=x_{v}+g
$$

[^4]Then the optimal value of $\mathcal{G}(U)$ is at least the number of constraints satisfied by this assignment divided by the total number of constraints $\frac{1}{C q^{2}}$, i.e.,

$$
\begin{aligned}
\operatorname{opt}(\mathcal{G}(U)) & \geq \frac{1}{C q^{2}} \sum_{i, j \in[n]} \sum_{g_{i}, g_{j} \in A} \sum_{k \in[c(i, j)]} \mathbb{I}\left(\left(x_{v_{i}}^{g_{i}}-g_{i}\right)-\left(x_{v_{j}}^{g_{j}}-g_{j}\right)=z_{i, j, k}\right) \\
& =\frac{1}{C q^{2}} \sum_{i, j \in[n]} \sum_{g_{i}, g_{j} \in A} \sum_{k \in[c(i, j)]} \mathbb{I}\left(\left(\left(x_{v_{i}}+g_{i}\right)-g_{i}\right)-\left(\left(x_{v_{j}}+g_{j}\right)-g_{j}\right)=z_{i, j, k}\right) \\
& =\frac{1}{C q^{2}} \sum_{i, j \in[n]} \sum_{g_{i}, g_{j} \in A} \sum_{k \in[c(i, j)]} \mathbb{I}\left(x_{v_{i}}-x_{v_{j}}=z_{i, j, k}\right) \\
& =\frac{1}{C q^{2}} \sum_{i, j \in[n]}\left(q^{2}\right) \sum_{k \in[c(i, j)]} \mathbb{I}\left(x_{v_{i}}-x_{v_{j}}=z_{i, j, k}\right) \\
& =\frac{1}{C} \sum_{i, j \in[n]} \sum_{k \in[c(i, j)]} \mathbb{I}\left(x_{v_{i}}-x_{v_{j}}=z_{i, j, k}\right) \\
& =\operatorname{opt}(U) .
\end{aligned}
$$

For the other direction, let x_{v}^{g} be an assignment of variables attaining the optimum satisfiability of $\mathcal{G}(U)$. Then

$$
\begin{aligned}
\operatorname{opt}(\mathcal{G}(U)) & =\frac{1}{C q^{2}} \sum_{i, j \in[n]} \sum_{g_{i}, g_{j} \in A} \sum_{k \in[c(i, j)]} \mathbb{I}\left(\left(x_{v_{i}}^{g_{i}}-g_{i}\right)-\left(x_{v_{j}}^{g_{j}}-g_{j}\right)=z_{i, j, k}\right) \\
& =\frac{1}{C q^{n}} \sum_{i, j \in[n]} \sum_{g_{1}, g_{2}, \ldots, g_{n} \in A} \sum_{k \in[c(i, j)]} \mathbb{I}\left(\left(x_{v_{i}}^{g_{i}}-g_{i}\right)-\left(x_{v_{j}}^{g_{j}}-g_{j}\right)=z_{i, j, k}\right),
\end{aligned}
$$

since, for every fixed $i, j \in[n]$, the term

$$
\sum_{k \in[c(i, j)]} \mathbb{I}\left(\left(x_{v_{i}}^{g_{i}}-g_{i}\right)-\left(x_{v_{j}}^{g_{j}}-g_{j}\right)=z_{i, j, k}\right)
$$

is counted exactly q^{n-2} times. Rearranging the order of summation, we have

$$
\begin{equation*}
\operatorname{opt}(\mathcal{G}(U))=\frac{1}{C q^{n}} \sum_{g_{1}, g_{2}, \ldots, g_{n} \in A} \sum_{i, j \in[n]} \sum_{k \in[c(i, j)]} \mathbb{I}\left(\left(x_{v_{i}}^{g_{i}}-g_{i}\right)-\left(x_{v_{j}}^{g_{j}}-g_{j}\right)=z_{i, j, k}\right) \tag{3.1}
\end{equation*}
$$

By the averaging principle, there must be some fixed $g_{1}, g_{2}, \ldots, g_{n} \in A$ such that

$$
\begin{equation*}
\sum_{i, j \in[n]} \sum_{k \in[c(i, j)]} \mathbb{I}\left(\left(x_{v_{i}}^{g_{i}}-g_{i}\right)-\left(x_{v_{j}}^{g_{j}}-g_{j}\right)=z_{i, j, k}\right) \geq C \cdot \operatorname{opt}(\mathcal{G}(U)), \tag{3.2}
\end{equation*}
$$

for otherwise, if all of the q^{n} choices of $g_{1}, g_{2}, \ldots, g_{n} \in A$ failed to satisfy (3.2), we could strictly upper-bound the right-hand side of (3.1) by

$$
\frac{1}{C q^{n}}\left(q^{n}\right)(C \cdot \operatorname{opt}(\mathcal{G}(U)))=\operatorname{opt}(\mathcal{G}(U)),
$$

contradicting (3.1). Using these fixed g_{i} values, we define an assignment of variables of U by

$$
x_{v_{i}}:=x_{v_{i}}^{g_{i}}-g_{i} .
$$

It then follows that the optimal value of U is at least the fraction of constraints satisfied by this assignment, i.e.,

$$
\begin{aligned}
\operatorname{opt}(U) & \geq \frac{1}{C} \sum_{i, j \in[n]} \sum_{k \in[c(i, j)]} \mathbb{I}\left(x_{v_{i}}-x_{v_{j}}=z_{i, j, k}\right) \\
& =\frac{1}{C} \sum_{i, j \in[n]} \sum_{k \in[c(i, j)]} \mathbb{I}\left(\left(x_{v_{i}}^{g_{i}}-g_{i}\right)-\left(x_{v_{j}}^{g_{j}}-g_{j}\right)=z_{i, j, k}\right) \\
& \geq \operatorname{opt}(\mathcal{G}(U)) \quad(\text { by }(3.2)),
\end{aligned}
$$

as desired. ${ }^{9}$

4. Examples

Before presenting the general gap construction in the next section, we first describe some special cases: pairs of C^{k}-equivalent unique games instances with different optimal values, for $k \in\{2,3\}$.
4.1. An example where $k=2$. The label-lifted instance is useful for Duplicator since it makes any two GroupUniqueGames instances on the same underlying graph (in the sense of Section 2.1) locally isomorphic. For example, take U_{1} and U_{2} to be as in Figure 2.

For both U_{1} and U_{2}, the underlying graph H is the complete graph on 3 vertices. The group is $A:=\mathbb{F}_{2}$ (the finite field of two elements, $\{0,1\}$, under addition modulo 2), so there are only two kinds of constraints. The identity constraints are drawn in green and the non-identity constraints are drawn in red. Instance U_{1} has only identity constraints, so is completely satisfiable by setting all variables to be the same value. In U_{2}, the 3 constraints are inconsistent, but any 2 of them can be satisfied, so the optimal value is $\frac{2}{3}$. Therefore, by Lemma 3.1, opt $\left(\mathcal{G}\left(U_{1}\right)\right)=1$ and $\operatorname{opt}\left(\mathcal{G}\left(U_{2}\right)\right)=\frac{2}{3}$. However, $\mathcal{G}\left(U_{1}\right)$ and $\mathcal{G}\left(U_{2}\right)$ are C^{2}-equivalent. Let X denote the common variable set of both instances. Duplicator's strategy in the 2-pebble bijective game is to always give a bijection $f: X \rightarrow X$ (from the universe of $\mathcal{G}\left(U_{1}\right)$ to the universe of $\left.\mathcal{G}\left(U_{2}\right)\right)$ with the following property:
For all $v \in V(H)$, there exists $g^{*}(v) \in A$ such that, for any $g \in A, f\left(x_{v}^{g}\right)=x_{v}^{g+g^{*}(v)}$.
So, in any given round, Duplicator's bijection is completely determined by a map $g^{*}: V(H) \rightarrow A$. If there is one pebble pair on the board on $\left(x_{v}^{g_{1}}, x_{v}^{g_{2}}\right)$, as there is in Figure 2, then for each neighbor u of v in $H, g^{*}(u)$ is uniquely determined to be the value which makes the bijection f an isomorphism across all constraints involving vertices u and v. In the figure, $g^{*}(u)=1 \in \mathbb{F}_{2}$ and $g^{*}(v)=g^{*}(w)=0$. The bijection f is depicted by the blue dotted lines; notice the swap at the vertices involving u corresponding to $g^{*}(u)=1$. No matter which of the six locations Spoiler places the pebble pair, one can verify that any relations between two pebbled vertices will be of the same kind.

[^5]

Figure 2. Two GroupUniqueGames instances U_{1} and U_{2} with group \mathbb{F}_{2}, and Duplicator's bijection at some stage in the k-pebble bijective game between $\mathcal{G}\left(U_{1}\right)$ and $\mathcal{G}\left(U_{2}\right)$, just after Spoiler has picked up a pair of pebbles.

Preserving property (4.1) is a more general idea that will be used again in Section 5. We do not go into the general proof, but this strategy enables Duplicator to win the 2-pebble bijective game between $\mathcal{G}\left(U_{1}\right)$ and $\mathcal{G}\left(U_{2}\right)$ as long as U_{1} and U_{2} are defined over the same underlying graph and that graph is simple. It is possible to construct GroupUniqueGames instances U_{2} over simple graphs with arbitrarily low satisfiability $\delta>0$ (for example, random constraints on large complete graphs will have low satisfiability with high probability). Turning all constraints into identity constraints, we can then obtain U_{1} such that $\operatorname{opt}\left(\mathcal{G}\left(U_{1}\right)\right)=1$, $\operatorname{opt}\left(\mathcal{G}\left(U_{2}\right)\right)=\delta$, but $\mathcal{G}\left(U_{1}\right) \equiv_{C^{2}} \mathcal{G}\left(U_{2}\right)$. Thus, for $k=2$, the objective has been accomplished: we have a $(1, \delta)$-inapproximability gap for C^{2}-definable algorithms, for arbitrarily low δ.
4.2. The challenge of $k \geq 3$. To extend this result to an inapproximability gap for FPCdefinable algorithms, we need C^{k}-equivalence for all k. Unfortunately, we hit a fundamental barrier starting at $k=3$:

Proposition 4.1. For any positive integer q, there is an FPC sentence ϕ expressing the property that a $\mathrm{UG}(q)$ instance (encoded as a $\tau_{\mathrm{UG}(q)}$-structure) is completely satisfiable. Furthermore, ϕ can be converted into a C^{3} sentence.

Proof. For each fixed label $i \in[q]$, in the context of a free variable x, we define q unary relations $U_{i, 1}, U_{i, 2}, \ldots, U_{i, q}$ by simultaneous induction:

$$
\begin{aligned}
& U_{i, i}(y) \Longleftarrow(x=y) \\
& U_{i, j}(y) \Longleftarrow \exists z \bigvee_{\pi:[q] \rightarrow[q]}\left(P_{\pi}(y, z) \wedge U_{i, \pi(j)}(z)\right)
\end{aligned}
$$

The meaning of $U_{i, j}(y)$ is that, given x has label i, it is implied by the constraints that y has label j. Thus, $U_{i, i}(x)$ is defined to be true, and whenever a constraint P_{π} holds on a pair of elements (y, z) and we know what the label of z must be, we inductively derive what the label of y must be. We claim that the following sentence expresses the property that a $\mathrm{UG}(q)$ instance is completely satisfiable:

$$
\phi \equiv \forall x \bigvee_{\substack { i \in[q] \\
\begin{subarray}{c}{j \in[q] \\
j \neq i{ i \in [q] \\
\begin{subarray} { c } { j \in [q] \\
j \neq i } }\end{subarray}} \neg U_{i, j}(x)
$$

The correctness of this formula relies on the observation that a UniqueGames instance is not completely satisfiable if and only if there exists an inconsistent cycle of constraints, forcing some variable x to be assigned two different values. If f is a satisfying assignment, then picking $i=f(x)$ must satisfy ϕ. Conversely, if ϕ is satisfied, one can obtain a satisfying assignment by picking one x from each connected component of the underlying graph and one satisfying witness i, then assigning labels to every y in that component by taking the unique j such that $U_{i, j}(y)$ holds. (It is not too hard to see that the component being connected implies j exists, and ϕ being satisfied implies j is unique).

Using the Bekic principle [AN01, Lemma 1.4.2] [Lib04, Lemma 10.9], the simultaneous inductions can be nested within each other in a way that reuses variable names, resulting in least fixed-point (LFP) formulas for each of the q relations, still using only 3 variables (x, y and z). Thus, ϕ can indeed be formally written as an LFP sentence, which is an FPC sentence. Finally, ϕ can be translated into a C^{3} sentence by unwrapping the inductive definitions into infinite disjunctions, which again does not require any additional variables since none of the parameter variables are re-quantified within the inductive definitions, so there will be no clashes.

This implies that there does not exist an FPC-inapproximability gap of $(1, \delta)$ for any $\delta<1$ (this is sometimes referred to as "perfect completeness"), since ϕ distinguishes an instance of optimal value 1 from an instance of optimal value less than 1. In terms of the 3 -pebble bijective game, Spoiler's winning strategy is to drop the first pebble pair anywhere, then use the other two pebble pairs to traverse an inconsistent cycle of constraints in the unsatisfiable instance.
4.3. An example where $k=3$. From Duplicator's perspective, the difficulty discussed above stems from the fact that the g^{*} map from (4.1) is uniquely defined from neighboring vertices. To circumvent this obstacle and give Duplicator more choices, we place a bundle of parallel constraints between some pairs of variables. Unfortunately, this comes with a price: since at most one constraint from each bundle can be satisfied, we will necessarily have $\operatorname{opt}\left(\mathcal{G}\left(U_{1}\right)\right)<1$. Notice how this avoids the perfect completeness issue from Proposition 4.1.

Figure 3 shows an example of the parallel constraint method where the underlying graph is $H:=K_{4}$. The group used is the additive part of \mathbb{F}_{2}^{2}, the 2 -dimensional vector space over the 2 -element field. We denote its elements as binary strings $\{00,01,10,11\}$, so that the group operation is bitwise XOR.

Since the constraints of U_{1} come in inconsistent pairs, at most half of them can be satisfied. This upper bound is attainable by assigning all variables to be 00 . Thus, $\operatorname{opt}\left(U_{1}\right)=\frac{1}{2}$. On the other hand, this assigment satisfies only $\frac{5}{12}$ of the edges in U_{2}, and indeed, it can be verified by exhaustive search that $\operatorname{opt}\left(U_{2}\right)=\frac{5}{12}$.

Figure 3. Two GroupUniqueGames instances U_{1} and U_{2} of different optimal values such that $\mathcal{G}\left(U_{1}\right) \equiv_{C^{3}} \mathcal{G}\left(U_{2}\right)$. The constraints differ only on the bottom two edges.

Duplicator will follow a similar strategy as in the previous example. Suppose that, at some stage in the 3-pebble bijective game played on $\mathcal{G}\left(U_{1}\right)$ and $\mathcal{G}\left(U_{2}\right)$, there are two pebble pairs already on the board, on variables involving vertices v_{1} and v_{3}, and Spoiler has just picked up the third pebble pair. This means that $g^{*}\left(v_{1}\right)$ and $g^{*}\left(v_{3}\right)$ are already determined, so Duplicator just needs to fill in $g^{*}\left(v_{2}\right)$ and $g^{*}\left(v_{4}\right)$. Let us discuss how Duplicator determines $g^{*}\left(v_{4}\right)$.

Duplicator will set $g^{*}\left(v_{4}\right)$ so that the map

$$
f\left(x_{v}^{g}\right):=x_{v}^{g+g^{*}(v)}
$$

is a partial isomorphism among all constraints involving v_{4} and either v_{1} or v_{3}. (In particular, this will ensure f is a partial isomorphism between the pebbled variables if Spoiler places the pebble pair down on variables involving v_{4}.) For the constraints involving v_{3} and v_{4}, f will be a partial isomorphism if, for any $g_{3}, g_{4} \in \mathbb{F}_{2}^{2}$, the following double implication holds:

$$
\begin{aligned}
x_{v_{3}}^{g_{3}}-x_{v_{4}}^{g_{4}} & =z \text { is an equation in } \mathcal{G}\left(U_{1}\right) \\
\Longleftrightarrow f\left(x_{v_{3}}^{g_{3}}\right)-f\left(x_{v_{4}}^{g_{4}}\right) & =z \text { is an equation in } \mathcal{G}\left(U_{2}\right) .
\end{aligned}
$$

Expanding out the definitions of f and \mathcal{G}, we can rewrite this condition as

$$
\begin{aligned}
\left(x_{v_{3}}+g_{3}\right)-\left(x_{v_{4}}+g_{4}\right) & =z \text { is an equation in } U_{1} \\
\Longleftrightarrow\left(x_{v_{3}}+g_{3}+g^{*}\left(v_{3}\right)\right)-\left(x_{v_{4}}+g_{4}+g^{*}\left(v_{4}\right)\right) & =z \text { is an equation in } U_{2} .
\end{aligned}
$$

Rearranging equations, and using the fact that the equations in U_{2} between $x_{v_{3}}$ and $x_{v_{4}}$ are precisely the same equations in U_{1} plus a difference of 10 , this becomes

$$
\begin{array}{r}
x_{v_{3}}-x_{v_{4}}=z-g_{3}+g_{4} \text { is an equation in } U_{1} \\
\Longleftrightarrow x_{v_{3}}-x_{v_{4}}=z-g_{3}+g_{4}-g^{*}\left(v_{3}\right)+g^{*}\left(v_{4}\right)+10 \text { is an equation in } U_{1} .
\end{array}
$$

Notice that, in U_{1}, two equations of the form $x_{v_{3}}-x_{v_{4}}=z_{1}$ and $x_{v_{3}}-x_{v_{4}}=z_{2}$ both appear as constraints or both do not appear as constraints if and only if z_{1} and z_{2} are the same, or differ by 01 . Thus, f is a partial isomorphism for constraints involving v_{3} and v_{4} if and only if

$$
g^{*}\left(v_{4}\right)-g^{*}\left(v_{3}\right)+10 \in\{00,01\} .
$$

By an analogous argument, one can derive that f is a partial isomorphism for constraints involving v_{1} and v_{4} if and only if

$$
g^{*}\left(v_{4}\right)-g^{*}\left(v_{1}\right) \in\{00,11\} .
$$

These two constraints on $g^{*}\left(v_{4}\right)$ can be written as a system of 2 equations with 2 unknowns:

$$
\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
g^{*}\left(v_{4}\right)_{1} \\
g^{*}\left(v_{4}\right)_{2}
\end{array}\right]=\left[\begin{array}{c}
g^{*}\left(v_{3}\right)_{1}+1 \\
g^{*}\left(v_{1}\right)_{1}+g^{*}\left(v_{1}\right)_{2}
\end{array}\right]
$$

The system always has a solution since the matrix on the left-hand side has full rank, which is ultimately due to the fact that the subspaces $\{00,01\}$ and $\{00,11\}$ are orthogonal. Thus, no matter what $g^{*}\left(v_{1}\right)$ and $g^{*}\left(v_{3}\right)$ are, we have seen that Duplicator can find a value for $g^{*}\left(v_{4}\right)$ making f an isomorphism over all constraints along the path $\left(v_{1}, v_{4}, v_{3}\right)$. For example, if $g^{*}\left(v_{3}\right)=00$ and $g^{*}\left(v_{1}\right)=01$, then we set $g^{*}\left(v_{4}\right)=10$. Duplicator can use the same process to find a value for $g^{*}\left(v_{2}\right)$ making f an isomorphism over the path $\left(v_{1}, v_{2}, v_{3}\right)$.

5. Proof of FPC-inapproximability gap

In comparison to the previous example, the general construction replaces \mathbb{F}_{2}^{2} with \mathbb{F}_{2}^{m} and has a bundle of 2^{ℓ} constraints between every pair of adjacent vertices, for integers $0<\ell<m$. A key difference is that it is no longer possible to make f an isomorphism over an arbitrary path of length 2 (such as $\left(v_{1}, v_{4}, v_{3}\right)$ in the example) given arbitrary values for the endpoints. However, we show that this is possible for all paths in the graph that are sufficiently long (see Lemma 5.7). This allows Duplicator to win as long as the base graph H has suitably high girth.
5.1. Construction. Our construction takes three parameters: $\varepsilon \in\left(0, \frac{1}{2}\right), \delta>0$, and a positive integer ℓ. Note that δ and ℓ affect the satisfiability of the GroupUniqueGames instances produced, whereas ε is an arbitrary constant that could just as well be fixed at $\frac{1}{4}$. The construction is probabilistic, failing with probability at most 2ε. We let

$$
\begin{equation*}
d:=2^{\ell}+1 \tag{5.1}
\end{equation*}
$$

which will be the degree of the vertices in the underlying graph. The reader may find it helpful to imagine $\ell=1$ and $d=3$ throughout this section. Next, we let

$$
\begin{equation*}
\gamma:=1-\frac{\left(\frac{1}{2^{2 \ell-1}+2^{\ell-1}}+\frac{\delta}{2^{\ell}}\right)}{\left(\frac{1}{2^{2 \ell-1}+2^{\ell-1}}+\delta\right)} . \tag{5.2}
\end{equation*}
$$

Note that $\gamma>0$. This is just a technical upper bound on the fraction of edges in the graph that have a certain undesirable property (see Lemma 5.3). Finally, we pick two very large integers $0 \ll m \ll r$; specifically,

$$
\begin{equation*}
m:=\left\lceil\frac{1}{\delta}+\left(\frac{2}{\delta d}+1\right) \ell-\frac{2}{\delta d} \log _{2}(\varepsilon)\right\rceil \tag{5.3}
\end{equation*}
$$

and

$$
\begin{equation*}
r:=\left\lceil\frac{2^{m \ell+1}\left(d^{m-\ell}-1\right)}{\gamma \varepsilon}\right\rceil+1 . \tag{5.4}
\end{equation*}
$$

The GroupUniqueGames instances we construct all have the additive part of the vector space \mathbb{F}_{2}^{m} as the group, so $q:=2^{m}$. The parameter m is chosen so that $\mathbb{B}_{k}=\mathcal{G}\left(U_{2}\right)$ will be
highly unsatisfiable with high probability. The meaning of the parameter r will be discussed shortly.

For any k, let $\widetilde{H}=\widetilde{H}_{k}$ be a d-regular simple graph of girth at least $(k+1)^{2} r$. (Regular graphs of arbitrarily high girth and degree are known to exist; see Lazebnik, Ustimenko and Woldar [LUW94], for example.) The final graph we use for the construction, H, will later be obtained from \widetilde{H} by removing certain edges. For every edge $\left\{v_{1}, v_{2}\right\} \in E(\widetilde{H})$, we independently choose a uniformly random vector $b\left(v_{1}, v_{2}\right)=b\left(v_{2}, v_{1}\right) \in \mathbb{F}_{2}^{m}$ and a uniformly random ℓ-dimensional subspace ${ }^{10} Z\left(v_{1}, v_{2}\right)=Z\left(v_{2}, v_{1}\right) \subseteq \mathbb{F}_{2}^{m}$. Say that an edge $e \in E(\widetilde{H})$ is good if, for all paths ($v_{0}, v_{1}, v_{2}, \ldots, v_{r}$) of length r such that $e=\left\{v_{0}, v_{1}\right\}$, the set

$$
\bigcup_{1 \leq i \leq r} Z\left(v_{i-1}, v_{i}\right)
$$

spans \mathbb{F}_{2}^{m} (recall that paths are never allowed to repeat edges). Edges of \widetilde{H} which are not good edges are called bad edges. We will shortly argue that, with high probability, nearly all edges are good edges.

Let $H=H_{k}$ be the graph with vertex set $V(H):=V(\widetilde{H})$ and edge set

$$
E(H):=\{e \in E(\widetilde{H}) \mid e \text { is a good edge }\} .
$$

We define GroupUniqueGames instances $U_{1}, \widetilde{U}_{1}, U_{2}$ and \widetilde{U}_{2} using the additive group structure on \mathbb{F}_{2}^{m}. The variable sets of all four instances are

$$
\left\{x_{v} \mid v \in V(H)\right\}
$$

For every edge $\left\{v_{1}, v_{2}\right\} \in E(\widetilde{H}), \widetilde{U}_{1}$ and \widetilde{U}_{2} have a bundle of 2^{ℓ} constraints between the corresponding variables. In \widetilde{U}_{1}, the constraints are

$$
\left\{x_{v_{1}}-x_{v_{2}}=z \mid z \in Z\left(v_{1}, v_{2}\right)\right\},
$$

whereas in \widetilde{U}_{2}, the constraints are

$$
\left\{x_{v_{1}}-x_{v_{2}}=z+b\left(v_{1}, v_{2}\right) \mid z \in Z\left(v_{1}, v_{2}\right)\right\} .
$$

Finally, U_{1} and U_{2} are obtained from \widetilde{U}_{1} and \widetilde{U}_{2} by removing all constraints on pairs of variables corresponding to bad edges, i.e., with constraints defined in the exact same way as \widetilde{U}_{1} and \widetilde{U}_{2}, but only for edges $\left\{v_{1}, v_{2}\right\} \in E(H)$. Our pair of C^{k}-equivalent instances will be $\mathbb{A}_{k}:=\mathcal{G}\left(U_{1}\right)$, and $\mathbb{B}_{k}:=\mathcal{G}\left(U_{2}\right)$.

The example from Section 4.3 is a special case of this construction where $k:=3$, $H:=K_{4}, m:=2, \ell:=1$, and $r:=2$. The 1 -dimensional Z-subspaces consist of the vectors drawn on each edge in U_{1} in Figure 3, with $b\left(v_{3}, v_{4}\right):=10$ and all other b vectors 00.
5.2. Satisfiability properties. In the next section we prove that $\mathcal{G}\left(U_{1}\right)$ and $\mathcal{G}\left(U_{2}\right)$ are always C^{k}-equivalent. But first, we now analyze the optimal values of these two instances.

Lemma 5.1. The satisfiability of U_{1} (and thus of $\mathcal{G}\left(U_{1}\right)$) is exactly $\frac{1}{2^{\ell}}$.

[^6]Proof. Since the constraints in each bundle of U_{1} are pairwise incompatible with each other, at most one constraint can be satisfied from each bundle, so the total satisfiability is at most the bundle size $\frac{1}{2^{2}}$. The assignment $x_{v}:=0$ attains this bound by satisfying the $z=0$ constraint in each bundle (every subspace $Z\left(v_{1}, v_{2}\right)$ must contain $z=0$). The claim about $\mathcal{G}\left(U_{1}\right)$ follows from Lemma 3.1.

We next argue that, with high probability, $\mathcal{G}\left(U_{2}\right)$ has a significantly lower optimal value. The analysis requires many steps, so we break the proof up over several lemmas. Say that a bundle of constraints is "satisfied" if at least one constraint in the bundle is satisfied. We begin by showing in Lemma 5.3 that, with high probability, most edges of \widetilde{H} are good edges, in which case the satisfiability of \widetilde{U}_{2} closely approximates the satisfiability of U_{2}. To analyze the expected satisfiability of \widetilde{U}_{2}, in Lemma 5.5 we observe that any assignment satisfying significantly more than a

$$
\frac{1}{2^{2 \ell-1}+2^{\ell-1}}=\frac{1}{2^{\ell}} \cdot \frac{2}{d}
$$

fraction of constraints must completely satisfy all of the bundles over some subgraph of \widetilde{H} containing significantly more than a $\frac{2}{d}$-fraction of the edges of \widetilde{H}. Such a subgraph must contain many more edges than vertices, so it is highly improbable that a random assignment will completely satisfy it. We then apply a union bound over all assignments and all subgraphs to conclude that, with high probability, no assignment satisfies more than $\mathrm{a} \frac{1}{2^{2 \ell-1}+2^{\ell-1}}$ fraction of constraints.

In order to show that most edges are good edges, we will require the following technical lemma.
Lemma 5.2. For any $d \geq 3$ and positive integer n,

$$
\frac{d^{n}-d^{n-1}}{(d-1)^{n}}+d^{n-1}-1 \leq \frac{d^{n}-1}{d-1}
$$

Proof. When $n=1$, both sides are 1 . When $n=2$, the inequality reads

$$
\frac{d}{d-1}+d-1 \leq d+1
$$

which is clearly true for $d \geq 3$. So assume $n \geq 3$. Then, using the fact that $d \geq 3$, we have

$$
\begin{aligned}
(d-1)^{n-1} & \geq(d-1)^{2}=(d-1)(d-1) \\
& \geq(d-1)(3-1)=d+(d-2) \\
& \geq d+(3-2) \geq d .
\end{aligned}
$$

It follows that

$$
d^{n} \leq d^{n-1}(d-1)^{n-1}
$$

Multiplying this inequality by the equation $1=d-(d-1)$, we have

$$
d^{n} \leq d^{n}(d-1)^{n-1}-d^{n-1}(d-1)^{n} .
$$

Adding the inequalities $0 \leq(d-1)^{n}$ and $(d-1)^{n-1} \leq d^{n-1}$, we obtain

$$
d^{n}+(d-1)^{n-1} \leq d^{n}(d-1)^{n-1}-d^{n-1}(d-1)^{n}+(d-1)^{n}+d^{n-1}
$$

Rearranging,

$$
d^{n}-d^{n-1}+d^{n-1}(d-1)^{n}-(d-1)^{n} \leq d^{n}(d-1)^{n-1}-(d-1)^{n-1}
$$

Finally, dividing both sides by $(d-1)^{n}$ yields the desired inequality.

Lemma 5.3. The probability that more than a fraction of the edges of \widetilde{H} are bad edges is at most ε.

This is our most difficult lemma, so we first give some intuition behind the proof. Consider the special case where $m=2, \ell=1$ and $d=3$. In other words, \widetilde{H} is a 3-regular graph with each edge labeled by one of the three one-dimensional subspaces of \mathbb{F}_{2}^{2}. Observe that $d=2^{\ell}+1$, as in (5.1). Choose a random edge $e^{*}=\{u, v\} \in E(\widetilde{H})$. Recall that the definition of a good/bad edge depends on the parameter r from our construction, which is the length of paths to consider. We imagine starting with $r=1$ and increasing r until (hopefully) e^{*} becomes a good edge. Specifically, for any positive integer r, we let X_{r} be the random variable defined as the number of paths of length r starting from e^{*} in which the union of the subspaces of \mathbb{F}_{2}^{2} along p does not span \mathbb{F}_{2}^{2}. We call these "bad" paths. At $r=1$, there are two paths to consider: (u, v) and (v, u). Since $\ell=1, Z(u, v)=Z(v, u)$ is a 1-dimensional subspace of \mathbb{F}_{2}^{2}, so both of these paths fail to span the entire space and are counted as bad paths. Thus, $X_{1}=2$ with probability 1 . To compute X_{2}, observe that, since the graph is 3 -regular, both of these bad paths of length 1 can be extended in exactly 2 different ways to be paths of length 2 . So suppose the path (u, v) can be extended to either $\left(u, v, w_{1}\right)$ or $\left(u, v, w_{2}\right)$. If $Z\left(v, w_{1}\right) \subseteq Z(u, v)$ (which happens with probability $\frac{1}{3}<\frac{1}{2}$ since there are three nonzero vectors in \mathbb{F}_{2}^{2} and only one lies within the subspace), then the extension $\left(u, v, w_{1}\right)$ will still fail to generate the space, so it will still be counted in X_{2}. Thus, with probability more than $\frac{1}{2}$, the extension will generate the space, and not be counted in X_{2}. In this case we say that the path becomes a "good" path. The same holds for $\left(u, v, w_{2}\right)$. Thus, as we extend the bad path (u, v) by 1 vertex, we have created 2 new potentially bad paths, but each one immediately becomes a good path with probability $>\frac{1}{2}$, so the expected number of bad extensions is less than 1 . Similarly, the expected number of bad extensions of (v, u) is less than 1 as well. More generally, this argument shows that the expected value of X_{r} is strictly decreasing in r. Thus, with high probability, X_{r} will eventually hit zero, at which point we can conclude that e^{*} has no bad paths, so it is a good edge.

This special case contains the main idea of the proof. Equation (5.1) is the key, ensuring that the expected value of X_{r} is decreasing: at each path extension, $d-1=2^{\ell}$ new potentially bad paths are created, and each becomes a good path with probability $>\frac{1}{2^{\ell}}$. The specific choice of r in (5.4) is just a bound on how large r may need to be to ensure $X_{r}=0$ with high probability.

Proof of Lemma 5.3. Let e^{*} be an edge of \widetilde{H} chosen uniformly at random. For each $i \in[r]$, let P_{i} be the set of paths of length i whose first two vertices are the endpoints of e^{*}. For any path $p=\left(v_{0}, v_{1}, v_{2}, \ldots, v_{n}\right)$ in \widetilde{H}, we say that the dimension of p, denoted $\operatorname{dim}(p)$, is the dimension of the vector space

$$
Z(p):=\operatorname{span}\left(\bigcup_{i \in[n]} Z\left(v_{i-1}, v_{i}\right)\right) .
$$

We define random variables $X_{1}, X_{2}, \ldots, X_{r}$ as follows:

$$
X_{i}:=\sum_{p \in P_{i}}\left(d^{m-\operatorname{dim}(p)}-1\right) .
$$

(Note that this is more general than the definition in the proof sketch, as it counts subspaces of different dimensions with different weights.)

With probability 1 ,

$$
\begin{equation*}
X_{1}=2\left(d^{m-\ell}-1\right) \tag{5.5}
\end{equation*}
$$

since there are only 2 paths of length 1 to consider (depending on which direction e^{*} is traversed), and each has dimension ℓ. By definition, $X_{i} \geq 0$ for all $i \in[r]$, and e^{*} is a good edge if and only if $X_{r}=0$. Thus, our goal is to upper-bound $\operatorname{Pr}\left[X_{r} \geq 1\right]$.
Claim 5.4. For any $2 \leq i \leq r$ and $x \geq 1$,

$$
\mathbb{E}\left[X_{i} \mid X_{i-1}=x\right] \leq x-\frac{1}{2^{m \ell}}
$$

Proof of Claim. We prove that this holds even after additionally conditioning on any tuple of realizations R of the random subspaces along all paths in P_{i-1} that is consistent with $X_{i-1}=x$. Note that conditioning on these realizations also fixes the value of $\operatorname{dim}\left(p_{0}\right)$ for any $p_{0} \in P_{i-1}$.

We can split a path $p=\left(v_{0}, v_{1}, v_{2}, \ldots, v_{i}\right)$ into two subpaths $p_{0}:=\left(v_{0}, v_{1}, v_{2}, \ldots, v_{i-1}\right)$ and $p_{1}:=\left(v_{i-1}, v_{i}\right)$. When this happens, we say $p_{1} \succ p_{0}$ and $p_{0}+p_{1}=p$. Using this decomposition, we obtain the following bound on X_{i} :
$X_{i}=\sum_{p_{0} \in P_{i-1}} \sum_{p_{1} \succ p_{0}}\left(d^{m-\operatorname{dim}\left(p_{0}+p_{1}\right)}-1\right) \leq \sum_{p_{0} \in P_{i-1}} \sum_{p_{1} \succ p_{0}} \begin{cases}d^{m-\operatorname{dim}\left(p_{0}\right)}-1 & \text { if } Z\left(p_{1}\right) \subseteq Z\left(p_{0}\right) \\ d^{m-\operatorname{dim}\left(p_{0}\right)-1}-1 & \text { otherwise }\end{cases}$
Note that, since the girth of \widetilde{H} is greater than r, as we expand the radius of edges we are examining, there are never any cycles. Thus, the events that each $Z\left(p_{1}\right) \subseteq Z\left(p_{0}\right)$ holds are independent, and also independent of the previously revealed subspaces R. For convenience, let us denote

$$
f\left(p_{0}, p_{1}\right):= \begin{cases}d^{m-\operatorname{dim}\left(p_{0}\right)}-1 & \text { if } Z\left(p_{1}\right) \subseteq Z\left(p_{0}\right) \\ d^{m-\operatorname{dim}\left(p_{0}\right)-1}-1 & \text { otherwise }\end{cases}
$$

so that

$$
X_{i} \leq \sum_{p_{0} \in P_{i-1}} \sum_{p_{1} \succ p_{0}} f\left(p_{0}, p_{1}\right) .
$$

Then

$$
\begin{aligned}
\mathbb{E}\left[X_{i} \mid R\right] \leq & \mathbb{E}\left[\sum_{p_{0} \in P_{i-1}} \sum_{p_{1} \succ p_{0}} f\left(p_{0}, p_{1}\right) \mid R\right] \\
= & \sum_{p_{0} \in P_{i-1}} \sum_{p_{1} \succ p_{0}} \mathbb{E}\left[f\left(p_{0}, p_{1}\right) \mid R\right] \\
= & \sum_{\substack{p_{0} \in P_{i-1} \\
n:=m-\operatorname{dim}\left(p_{0}\right) \geq 1}} \sum_{p_{1} \succ p_{0}} \mathbb{E}\left[f\left(p_{0}, p_{1}\right) \mid R\right] \\
& \quad\left(\text { since } f\left(p_{0}, p_{1}\right)=0 \text { for all } p_{0} \text { of dimension } m\right) \\
= & \sum_{\substack{p_{0} \in P_{i-1} \\
n \geq 1}} \sum_{p_{1} \succ p_{0}}\binom{\operatorname{Pr}\left[Z\left(p_{1}\right) \subseteq Z\left(p_{0}\right) \mid R\right]\left(d^{n}-1\right)+}{\left(1-\operatorname{Pr}\left[Z\left(p_{1}\right) \subseteq Z\left(p_{0}\right) \mid R\right]\right)\left(d^{n-1}-1\right)} \\
= & \sum_{\substack{p_{0} \in P_{i-1} \\
n \geq 1}} \sum_{p_{1} \succ p_{0}}\left(\operatorname{Pr}\left[Z\left(p_{1}\right) \subseteq Z\left(p_{0}\right) \mid R\right]\left(d^{n}-d^{n-1}\right)+d^{n-1}-1\right)
\end{aligned}
$$

$$
\leq \sum_{\substack{p_{0} \in P_{i-1} \\ n \geq 1}} \sum_{p_{1} \succ p_{0}}\left(\left(\frac{2^{\operatorname{dim}\left(p_{0}\right)}-1}{2^{m}-1}\right)^{\ell}\left(d^{n}-d^{n-1}\right)+d^{n-1}-1\right)
$$

This inequality follows from the observation that, if we choose a vector from $\mathbb{F}_{2}^{m} \backslash\{0\}$ uniformly at random, it lies within $Z\left(p_{0}\right)$ with probability $\frac{2^{\operatorname{dim}\left(p_{0}\right)}-1}{2^{m}-1}$. And we may think of choosing a random ℓ-dimensional subspace as repeatedly sampling nonzero vectors independently and uniformly at random until the dimension of all vectors sampled so far is ℓ. In order to have $Z\left(p_{1}\right) \subseteq Z\left(p_{0}\right)$, it is necessary for all of these vectors to lie within $Z\left(p_{0}\right)$, so in particular, the first ℓ vectors must be contained in $Z\left(p_{0}\right)$. Thus, the probability that $Z\left(p_{1}\right) \subseteq Z\left(p_{0}\right)$ holds is at most the probability that just the first ℓ vectors are contained in $Z\left(p_{0}\right)$, which is $\left(\left(2^{\operatorname{dim}\left(p_{0}\right)}-1\right) /\left(2^{m}-1\right)\right)^{\ell}$.

Note that, when $n:=m-\operatorname{dim}\left(p_{0}\right) \geq 1$,

$$
\begin{aligned}
\left(\left(2^{\operatorname{dim}\left(p_{0}\right)-m}\right)^{\ell}-\left(\frac{2^{\operatorname{dim}\left(p_{0}\right)}-1}{2^{m}-1}\right)^{\ell}\right) & \left(d^{n}-d^{n-1}\right) \geq\left(2^{\operatorname{dim}\left(p_{0}\right)-m}\right)^{\ell}-\left(\frac{2^{\operatorname{dim}\left(p_{0}\right)}-1}{2^{m}-1}\right)^{\ell} \\
& =\frac{\left(2^{\operatorname{dim}\left(p_{0}\right)}\left(2^{m}-1\right)\right)^{\ell}-\left(\left(2^{\operatorname{dim}\left(p_{0}\right)}-1\right) 2^{m}\right)^{\ell}}{\left(2^{m}\left(2^{m}-1\right)\right)^{\ell}} \\
& \geq\left(\frac{2^{m \ell}-2^{\operatorname{dim}\left(p_{0}\right) \ell}}{\left(2^{m}\left(2^{m}-1\right)\right)^{\ell}}\right) \\
& =\left(\frac{1-2^{\ell\left(\operatorname{dim}\left(p_{0}\right)-m\right)}}{\left(2^{m}-1\right)^{\ell}}\right) \\
& =\left(1-2^{-\ell n}\right)\left(2^{m}-1\right)^{-\ell} \\
& \geq\left(1-2^{-\ell}\right) 2^{-m \ell} \quad(\text { since } n \geq 1) \\
& \geq 2^{-\ell} 2^{-m \ell} \quad(\text { since } \ell \geq 1) \\
& =\frac{1}{2^{(m+1) \ell}}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\left(\frac{2^{\operatorname{dim}\left(p_{0}\right)}-1}{2^{m}-1}\right)^{\ell}\left(d^{n}-d^{n-1}\right)+d^{n-1}-1 & \leq\left(2^{\operatorname{dim}\left(p_{0}\right)-m}\right)^{\ell}\left(d^{n}-d^{n-1}\right) \\
& +d^{n-1}-1-\frac{1}{2^{(m+1) \ell}} \\
& =\left(\frac{1}{\left(2^{\ell}\right)^{n}}\right)\left(d^{n}-d^{n-1}\right)+d^{n-1}-1-\frac{1}{2^{(m+1) \ell}} \\
& =\left(\frac{d^{n}-d^{n-1}}{(d-1)^{n}}+d^{n-1}-1\right)-\frac{1}{2^{(m+1) \ell}}
\end{aligned}
$$

(from the definition of d in (5.1))
$\leq \frac{d^{n}-1}{d-1}-\frac{1}{2^{(m+1) \ell}} \quad$ (from Lemma 5.2).

Putting this all together, we have

$$
\begin{align*}
\mathbb{E}\left[X_{i} \mid R\right] & \leq \sum_{\substack{p_{0} \in P_{i-1} \\
n:=m-\operatorname{dim}\left(p_{0}\right) \geq 1}} \sum_{p_{1} \succ p_{0}}\left(\left(\frac{2^{\operatorname{dim}\left(p_{0}\right)}-1}{2^{m}-1}\right)^{\ell}\left(d^{n}-d^{n-1}\right)+d^{n-1}-1\right) \\
& \leq \sum_{\substack{p_{0} \in P_{i-1} \\
n:=m-\operatorname{dim}\left(p_{0}\right) \geq 1}} \sum_{p_{1} \succ p_{0}}\left(\frac{d^{n}-1}{d-1}-\frac{1}{2^{(m+1) \ell}}\right) \\
= & \sum_{\substack{p_{0} \in P_{i-1} \\
n:=m-\operatorname{dim}\left(p_{0}\right) \geq 1}}\left(d^{n}-1-\frac{d-1}{2^{(m+1) \ell}}\right) \\
= & \sum_{\substack{p_{0} \in P_{i-1} \\
n:=m-\operatorname{dim}\left(p_{0}\right) \geq 1}}\left(d^{n}-1-\frac{1}{2^{m \ell}}\right) \quad(\text { from (5.1)) } \tag{5.1}\\
& \leq\left(\sum_{\substack{p_{0} \in P_{i-1} \\
n:=m-\operatorname{dim}\left(p_{0}\right) \geq 1}} d^{n}-1\right)-\frac{1}{2^{m \ell}} \\
= & \left(\sum_{\substack{ \\
p_{0} \in P_{i-1}}}\left(d^{m-\operatorname{dim}\left(p_{0}\right)}-1\right)\right)-\frac{1}{2^{m \ell}} \\
= & x-\frac{1}{2^{m \ell}},
\end{align*}
$$

where in the final inequality we have used the assumption that R is consistent with $X_{i-1}=$ $x \geq 1$, so there is at least one term in the sum, i.e., at least one bad path. Thus, Claim 5.4 holds.

Returning to the proof of Lemma 5.3, we now suppose toward a contradiction that $\operatorname{Pr}\left[X_{r} \geq 1\right]>\gamma \varepsilon$. Since $X_{i}=0$ implies that $X_{j}=0$ for all $i \leq j$, it follows that, for all $i \in\{1,2,3, \ldots, r-1\}$,

$$
\begin{equation*}
\operatorname{Pr}\left[X_{i} \geq 1\right]>\gamma \varepsilon . \tag{5.6}
\end{equation*}
$$

For $2 \leq i \leq r$, observe that

$$
\begin{aligned}
\mathbb{E}\left[X_{i}\right] & =\sum_{x \geq 0} \operatorname{Pr}\left[X_{i-1}=x\right] \mathbb{E}\left[X_{i} \mid X_{i-1}=x\right] \\
& =\operatorname{Pr}\left[X_{i-1}=0\right] \mathbb{E}\left[X_{i} \mid X_{i-1}=0\right]+\sum_{x \geq 1} \operatorname{Pr}\left[X_{i-1}=x\right] \mathbb{E}\left[X_{i} \mid X_{i-1}=x\right] \\
& \leq 0+\sum_{x \geq 1} \operatorname{Pr}\left[X_{i-1}=x\right]\left(x-\frac{1}{2^{m \ell}}\right) \quad(\text { by Claim 5.4) } \\
& =\mathbb{E}\left[X_{i-1}\right]-\frac{\operatorname{Pr}\left[X_{i-1} \geq 1\right]}{2^{m \ell}} .
\end{aligned}
$$

Iteratively applying this inequality for $i=r, r-1, \ldots, 3,2$, we conclude that

$$
\begin{aligned}
\mathbb{E}\left[X_{r}\right] & \leq \mathbb{E}\left[X_{1}\right]-\sum_{i=1}^{r-1} \frac{\operatorname{Pr}\left[X_{i} \geq 1\right]}{2^{m \ell}} \\
& <2\left(d^{m-\ell}-1\right)-\sum_{i=1}^{r-1} \frac{\gamma \varepsilon}{2^{m \ell}} \quad(\text { from (5.5) and (5.6)) } \\
& =2\left(d^{m-\ell}-1\right)-\frac{(r-1) \gamma \varepsilon}{2^{m \ell}} \\
& \leq 0 \quad(\text { from the definition of } r \text { in (5.4) })
\end{aligned}
$$

which is a contradiction, since X_{r} can never be negative.
Hence,

$$
\operatorname{Pr}\left[e^{*} \text { is a bad edge }\right]=\operatorname{Pr}\left[X_{r} \geq 1\right] \leq \gamma \varepsilon,
$$

so the expected fraction of bad edges is at most $\gamma \varepsilon$. Markov's inequality states that, for a nonnegative real-valued random variable Y and any $a>0$, the probability that $Y \geq a$ is at most $\frac{\mathbb{E}[Y]}{a}$. Applying Markov's inequality with Y as the fraction of bad edges and $a:=\gamma$, we conclude that the probability the fraction of bad edges is greater than γ is thus at most $\frac{\gamma \varepsilon}{\gamma}=\varepsilon$.

Lemma 5.5. With probability at least $1-\varepsilon$, the satisfiability of \widetilde{U}_{2} is less than

$$
(1-\gamma)\left(\frac{1}{2^{2 \ell-1}+2^{\ell-1}}+\delta\right) .
$$

Proof. Call a subgraph of \widetilde{H} large if it contains all of the vertices of \widetilde{H} and at least a $\left(\frac{2}{d}+\delta\right)$ fraction of the edges of \widetilde{H}. Recall the definition of d and γ in respective Equations (5.1) and (5.2). If an assignment satisfies at least a

$$
(1-\gamma)\left(\frac{1}{2^{2 \ell-1}+2^{\ell-1}}+\delta\right)=\left(\frac{1}{2^{2 \ell-1}+2^{\ell-1}}+\frac{\delta}{2^{\ell}}\right)
$$

fraction of the constraints in \widetilde{U}_{2}, then, since at most one constraint from each bundle can be satisfied, and there are 2^{ℓ} constraints in each bundle, the assignment must satisfy the bundles of at least a

$$
2^{\ell}\left(\frac{1}{2^{2 \ell-1}+2^{\ell-1}}+\frac{\delta}{2^{\ell}}\right)=\frac{1}{2^{\ell-1}+\frac{1}{2}}+\delta=\frac{2}{d}+\delta
$$

fraction of edges. (Recall that to "satisfy a bundle" is to satisfy one constraint in the bundle.) In other words, there must be some large subgraph on which the assignment completely satisfies all of the bundles. Therefore, by the union bound, which says that the probability of the union of multiple events is at most the sum of the individual probabilities of each of the events, we conclude that the probability that some assignment satisfies at least a $(1-\gamma)\left(\frac{1}{2^{2 \ell-1}+2^{\ell-1}}+\delta\right)$ fraction of constraints is at most the number of large subgraphs times the probability that some assignment satisfies all bundles on a given large subgraph. Supposing that \widetilde{H} (which is d-regular) has n vertices, the number of large subgraphs of \widetilde{H} is bounded by $2^{\frac{n d}{2}}$, the total number of subgraphs containing all vertices of \widetilde{H}. To bound the
probability that some assignment satisfies all bundles on a given large subgraph, we first note that the probability of an arbitrary assignment satisfying all bundles is at most

$$
\left(\frac{2^{\ell}}{2^{m}}\right)^{\frac{n d}{2}\left(\frac{2}{d}+\delta\right)}=2^{\wedge}\left[(\ell-m) \frac{n d}{2}\left(\frac{2}{d}+\delta\right)\right],
$$

since there are at least $\frac{n d}{2}\left(\frac{2}{d}+\delta\right)$ edges in any large subgraph, and each edge has its bundle satisfied independently with probability $\frac{2^{\ell}}{2^{m}}$. Thus, applying the union bound again, the probability that some assignment satisfies all bundles on a given large subgraph is at most $\left(2^{m}\right)^{n}$ times this quantity. So, in total, the probability that some assignment satisfies at least a $(1-\gamma)\left(\frac{1}{2^{2 \ell-1}+2^{\ell-1}}+\delta\right)$ fraction of constraints is at most

$$
\begin{align*}
& 2^{\wedge}\left[\frac{n d}{2}+m n+(\ell-m) \frac{n d}{2}\left(\frac{2}{d}+\delta\right)\right] \\
= & 2^{\wedge}\left[n\left(\frac{d}{2}+\frac{\delta d}{2}\left(\frac{2}{\delta d}+1\right) \ell-\frac{\delta d}{2} \cdot m\right)\right] \\
\leq & 2^{\wedge}\left[n\left(\frac{d}{2}+\frac{\delta d}{2}\left(\frac{2}{\delta d}+1\right) \ell-\frac{\delta d}{2} \cdot\left(\frac{1}{\delta}+\left(\frac{2}{\delta d}+1\right) \ell-\frac{2}{\delta d} \log _{2}(\varepsilon)\right)\right)\right] \tag{5.3}\\
= & 2^{n \log _{2}(\varepsilon)} \\
\leq & 2^{\log _{2}(\varepsilon)} \quad\left(\text { because } \varepsilon<1 \Longrightarrow \log _{2}(\varepsilon)<0, \text { and } n>0\right) \\
= & \varepsilon .
\end{align*}
$$

Therefore, the probability that no assignment satisfies at least this fraction of constraints is at least $1-\varepsilon$.

The final step is to observe that \widetilde{U}_{2} being highly unsatisfiable implies U_{2} is also highly unsatisfiable.

Lemma 5.6. With probability at least $1-2 \varepsilon$, the satisfiability of U_{2} (and thus of $\mathcal{G}\left(U_{2}\right)$) is less than

$$
s:=\frac{1}{2^{2 \ell-1}+2^{\ell-1}}+\delta .
$$

Proof. By Lemma 5.3, the probability that less than a $(1-\gamma)$ fraction of edges of \widetilde{H} are good edges is at most ε. By Lemma 5.5 , the probability that \widetilde{U}_{2} is $(1-\gamma) s$-satisfiable is at most ε as well. By the union bound, the probability that either of these two events occurs is at most 2ε, so the probability that neither event occurs is at least $1-2 \varepsilon$. So it suffices to prove that, whenever at least a $(1-\gamma)$ fraction of the edges of \widetilde{H} are good edges, if \widetilde{U}_{2} is not $(1-\gamma) s$-satisfiable, then U_{2} is not s-satisfiable.

We prove the contrapositive, i.e., that if at least an s fraction of constraints are satisfiable in U_{2}, then at least a $(1-\gamma) s$ fraction of constraints are satisfiable in \widetilde{U}_{2}. Suppose that \widetilde{U}_{2} has a total of c constraints. Then U_{2} has at least $(1-\gamma) c$ constraints. So if at least an s fraction of constraints are satisfiable in U_{2}, it means that at least $s(1-\gamma) c$ constraints of U_{2} are satisfied by some assignment x_{v}. Since U_{2} and \widetilde{U}_{2} have the same variable set, and all of the constraints of U_{2} are also constraints of \widetilde{U}_{2}, it follows that x_{v} must satisfy $s(1-\gamma) c$ constraints of \widetilde{U}_{2} as well, that is, at least an $s(1-\gamma)$ fraction of constraints.
5.3. Proof of C^{k}-equivalence. The following lemma is a generalization of Duplicator's strategy for determining $g^{*}\left(v_{4}\right)$ in the example from Section 4.3. Recall that H is the underlying graph of both instances, consisting of only good edges.

Lemma 5.7. Let $p=\left(v_{0}, v_{1}, v_{2}, \ldots, v_{n}\right)$ be a path in H of length $n \geq r$. Given any values in \mathbb{F}_{2}^{m} for $g^{*}\left(v_{0}\right)$ and $g^{*}\left(v_{n}\right)$, it is possible to extend g^{*} to all of the intermediate vertices of p so that the map $f\left(x_{v}^{g}\right):=x_{v}^{g+g^{*}(v)}$ is a partial isomorphism between $\mathcal{G}\left(U_{1}\right)$ and $\mathcal{G}\left(U_{2}\right)$ over the substructure with universe $\left\{x_{v}^{g} \mid v \in p, g \in \mathbb{F}_{2}^{m}\right\}$ and relations involving consecutive vertices in p.

Proof. Since H contains only good edges and p has length at least r, there exists a set of vectors

$$
B \subseteq \bigcup_{i \in[n]} Z\left(v_{i-1}, v_{i}\right)
$$

forming a basis of \mathbb{F}_{2}^{m}. Write $h(i)$ for the number of basis vectors in B taken from $Z\left(v_{i-1}, v_{i}\right)$, and denote these vectors by

$$
B=\bigcup_{i \in[n]}\left\{z_{i, j} \mid j \in[h(i)]\right\},
$$

where each $z_{i, j}$ is in $Z\left(v_{i-1}, v_{i}\right)$. Since B is a basis, there exist coefficients $c_{i, j}$ such that

$$
\begin{equation*}
g^{*}\left(v_{0}\right)-g^{*}\left(v_{n}\right)-\sum_{i \in[n]} b\left(v_{i-1}, v_{i}\right)=\sum_{i \in[n]} \sum_{j \in[h(i)]} c_{i, j} z_{i, j} . \tag{5.7}
\end{equation*}
$$

For each i in order from 1 to n, inductively define

$$
g^{*}\left(v_{i}\right):=g^{*}\left(v_{i-1}\right)-\sum_{j \in[h(i)]} c_{i, j} z_{i, j}-b\left(v_{i-1}, v_{i}\right) .
$$

Note that, by expanding the inductive definition for $g^{*}\left(v_{n}\right)$, we have

$$
\begin{aligned}
g^{*}\left(v_{n}\right)= & g^{*}\left(v_{n-1}\right)-\sum_{j \in[h(n)]} c_{n, j} z_{n, j}-b\left(v_{n-1}, v_{n}\right) \\
= & g^{*}\left(v_{n-2}\right)-\sum_{j \in[h(n-1)]} c_{n-1, j} z_{n-1, j}-b\left(v_{n-2}, v_{n-1}\right) \\
& -\sum_{j \in[h(n)]} c_{n, j} z_{n, j}-b\left(v_{n-1}, v_{n}\right) \\
= & g^{*}\left(v_{n-3}\right)-\sum_{j \in[h(n-2)]} c_{n-2, j} z_{n-2, j}-b\left(v_{n-3}, v_{n-2}\right) \\
& -\sum_{j \in[h(n-1)]} c_{n-1, j} z_{n-1, j}-b\left(v_{n-2}, v_{n-1}\right) \\
& -\sum_{j \in[h(n)]} c_{n, j} z_{n, j}-b\left(v_{n-1}, v_{n}\right) \\
= & \ldots \\
= & g^{*}\left(v_{0}\right)-\sum_{i \in[n]}\left(b\left(v_{i-1}, v_{i}\right)+\sum_{j \in[h(i)]} c_{i, j} z_{i, j}\right),
\end{aligned}
$$

so our inductive definition agrees with the given value of $g^{*}\left(v_{n}\right)$ by (5.7). Finally, observe that, for any $i \in[n]$ and any arbitrary $g_{i-1}, g_{i}, z \in \mathbb{F}_{2}^{m}$,

$$
x_{v_{i}}^{g_{i}}-x_{v_{i-1}}^{g_{i-1}}=z
$$

is an equation in $\mathcal{G}\left(U_{1}\right)$

is an equation in $\mathcal{G}\left(U_{2}\right)$
\Longleftrightarrow
\Longleftrightarrow
so f is a partial isomorphism over the entire path.
We are finally ready to prove C^{k}-equivalence. Duplicator's strategy is to maintain consistency between $\mathcal{G}\left(U_{1}\right)$ and $\mathcal{G}\left(U_{2}\right)$ over a minimal tree in H spanning all pebbled vertices (that is, vertices $v \in V(H)$ such that some variable x_{v}^{g} is pebbled in one of the two structures). Since H has high girth relative to r, Spoiler will never be able to expose a cycle of inconsistency, as any cycle will have to contain a long path over which Duplicator can use Lemma 5.7 to define a partial isomorphism regardless of any predetermined mappings at the endpoints.

Lemma 5.8. $\mathcal{G}\left(U_{1}\right) \equiv_{C^{k}} \mathcal{G}\left(U_{2}\right)$.
Proof. It is without loss of generality to assume H is connected, for otherwise Duplicator can apply the strategy presented here on each connected component separately. On every round i of the k-pebble bijective game played on $\mathcal{G}\left(U_{1}\right)$ and $\mathcal{G}\left(U_{2}\right)$, for any $u \in V(H)$, let $T_{i}(u)$ be a minimal tree containing u and all pebbled vertices just after Spoiler has picked up

Figure 4. The tree consisting of all vertices and edges in the figure is $T_{i}(u)$. This is a minimal tree that includes all pebbled vertices, which are filled in red, and vertex u, which is near the top left corner (also in red). The green dashed line outlines the boundary of T_{i-1} (not all vertices and edges of this tree are shown, just those that are also in $T_{i}(u)$). The set of vertices P_{i} is not shown, but consists of all of the red vertices and vertices of degree ≥ 3. Assuming that $r=3$ (which is, of course, not nearly large enough; this is just for the purpose of illustration), the forest $F_{i}(u)$ is as depicted in blue, consisting of the lettered vertices A through H and all of the edges between those vertices.
a pebble. Let $P_{i}(u)$ denote the set of all of the vertices in $T_{i}(u)$ which have degree at least 3 in $T_{i}(u)$ or contain a pebbled vertex, also including u. Define $T_{i}:=T_{i}\left(u_{i}^{*}\right)$ and $P_{i}:=P_{i}\left(u_{i}^{*}\right)$, where u_{i}^{*} is the new vertex pebbled in round i. Finally, define the forest $F_{i}(u)$ to be the subgraph of $T_{i}(u) \backslash T_{i-1}$ (what this notation means is, remove all edges in T_{i-1} from $T_{i}(u)$, then remove isolated vertices) consisting of all segments in $T_{i}(u) \backslash T_{i-1}$ between vertices in $P_{i}(u) \cup V\left(T_{i-1}\right)$ which have length less than r. See Figure 4 for an example.

A few remarks are in order about the conceptual meaning of $T_{i}(u)$ and $F_{i}(u)$. First, the parameter u is included because Duplicator can essentially play an entirely different strategy for each possible vertex u that Spoiler may choose to pebble. In other words, when determining the bijection among variables of the form x_{u}^{g}, Duplicator imagines what the new minimal tree T_{i} between all pebbled vertices will look like if Spoiler chooses to put a pebble on one of those variables. We call this tree $T_{i}(u)$. Duplicator will imagine an entirely different tree for other vertices u, requiring an entirely different strategy. No matter which vertex u^{*} is eventually chosen, Duplicator seeks to always maintain a partial isomorphism among all variables involved T_{i}. The trick is showing how to preserve this property as the
tree changes from T_{i-1} in round $i-1$ to T_{i} in round i. Where the two trees overlap, we leave the bijection the same as in the previous round. Thus we only need to worry about the edges that are in T_{i} but not in T_{i-1}. We decompose this set of edges into a forest F_{i} of short paths and junctions of degree ≥ 3, and the remains, which must be a disjoint union of long paths (specifically, of length $\geq r$). Duplicator can use Lemma 5.7 to define the bijection over these long paths regardless of the constraints on the endpoints (the constraints could come from vertices in T_{i-1}, where Duplicator must not change the bijection from the previous round). Thus, F_{i} is really the only part where Duplicator might run into trouble. Specifically, it could be impossible to extend a partial isomorphism over a connected component of F_{i} if multiple endpoints are fixed from T_{i-1}. The next two Claims rule out this possibility on the grounds that paths in F_{i} are short and H has high girth. Thus, each component of F_{i} has at most one vertex with a constraint on the bijection. Since there are no cycles, it is possible to inductively extend the bijection to each connected component.
Claim 5.9. On any round i, for any vertex $u \in V(H)$, any path in $T_{i}(u)$ passes through at most k vertices in $P_{i}(u)$.

Proof of Claim. Let $p=\left(v_{0}, v_{1}, v_{2}, \ldots, v_{n}\right)$ be a path in $T_{i}(u)$. Consider the following map $h: p \cap P_{i}(u) \rightarrow V\left(T_{i}(u)\right)$:

$$
h(v):= \begin{cases}v & \text { if } \operatorname{deg}(v)<3 \text { in } T_{i}(u) \\ \text { a pebbled vertex (or } u) \text { reachable from } v \text { by a path in } & \\ T_{i}(u) \text { not passing through neighboring vertices in } p & \text { if } \operatorname{deg}(v) \geq 3 \text { in } T_{i}(u)\end{cases}
$$

Note that such a vertex in the second case above always exists when v has degree at least 3 , and is necessarily different from all other vertices in the image of h. Thus, h is injective. Also, since vertices in $P_{i}(u)$ of degree less than 3 must be pebbled (or u), the output of $h(v)$ must always be a pebbled vertex (or u). Thus, we have an injection from $p \cap P_{i}(u)$ to a set of pebbled vertices (plus u), of which there are at most k (since one pebble pair has been picked up), so $\left|p \cap P_{i}(u)\right| \leq k$.
Claim 5.10. On any round i, for any vertex $u \in V(H)$, there does not exist any path contained in $F_{i}(u)$ with both endpoints in T_{i-1}.

Proof of Claim. Suppose toward a contradiction that there was such a path p_{0}, joining $v_{1}, v_{3} \in T_{i-1}$. Let v_{2} be the first vertex in p_{0} that is contained within T_{i-1}, excluding v_{1} (it could just be v_{3} if there are no earlier places where p_{0} crosses T_{i-1}). Let p_{1} be the subpath of p_{0} from v_{1} to v_{2}. Since T_{i-1} is connected, there must be some path p_{2} joining v_{1} and v_{2} in T_{i-1}. Aside from v_{1} and v_{2}, the path p_{1} lies outside of T_{i-1} (since it is contained in F_{i}) whereas p_{2} lies inside of T_{i-1}, so p_{1} and p_{2} form a cycle. Since p_{1} is contained within $T_{i}(u)$, by Claim 5.9 it intersects at most k vertices in $P_{i}(u)$, splitting p_{1} up into at most $k+1$ segments. As p_{1} is contained in $F_{i}(u)$, the length of each of these segments is strictly less than r, so p_{1} has length strictly less than $(k+1) r$. Since p_{2} is contained within T_{i-1}, which is minimal, p_{2} cannot contain any subpaths of length $(k+1) r$ which do not intersect P_{i-1}, for otherwise we could delete such a subpath and add p_{1} to get a strictly smaller tree that still connects all vertices in P_{i-1}, contradicting the minimality of T_{i-1}. Applying Claim 5.9 to round $i-1$ and vertex u_{i-1}^{*}, we have that at most k vertices of p_{2} intersect P_{i-1}, so p_{2} has length at most $k(k+1) r$. Thus, concatenating p_{1} and p_{2} yields a cycle of size strictly less than

$$
(k+1) r+k(k+1) r=(k+1)^{2} r
$$

in H. This contradicts the fact that H was constructed to have girth at least $(k+1)^{2} r$. Hence, no such path p_{1} can exist.

Returning to the proof of C^{k}-equivalence, let $X_{i}(u)$ denote the variable set of $\mathcal{G}\left(U_{1}\right)$ and $\mathcal{G}\left(U_{2}\right)$ restricted to $T_{i}(u)$, that is,

$$
X_{i}(u):=\left\{x_{v}^{g} \mid v \in T_{i}(u), g \in \mathbb{F}_{2}^{m}\right\}
$$

On each round i, Duplicator's will begin by defining a map

$$
g^{*}(i, u, \cdot): V\left(T_{i}(u)\right) \rightarrow \mathbb{F}_{2}^{m}
$$

for each $u \in V(H)$. This map will determine how the bijection acts on variables involved in vertex u via (4.1), which we will recall shortly. As we remarked near the beginning of the proof, this may be different for each possible u that Spoiler could pebble. We will prove (inductively) that Duplicator can always define g^{*} so that it has the following two properties:
(1) For any pebbled vertex $v \in V(H)$,

$$
g^{*}(i, u, v)=g^{*}\left(i-1, u_{i-1}^{*}, v\right) .
$$

(2) The map $f_{i, u}: X_{i}(u) \rightarrow X_{i}(u)$ defined by

$$
f_{i, u}\left(x_{v}^{g}\right):=x_{v}^{g+g^{*}(i, u, v)}
$$

gives a partial isomorphism between $\mathcal{G}\left(U_{1}\right)$ and $\mathcal{G}\left(U_{2}\right)$ over pairs of variables whose underlying vertices are adjacent in $T_{i}(u)$.
Obviously these properties hold at the beginning of the game, when there are no pebbled vertices and the tree is empty, so g^{*} is the empty map. We will show that Duplicator can preserve these properties from one round to the next.

On round i, Duplicator presents Spoiler with the bijection

$$
f_{i}\left(x_{v}^{g}\right):=x_{v}^{g+g^{*}(i, v, v)}
$$

which respects existing pebble pairs by property (1). No matter which vertex u_{i}^{*} Spoiler chooses, the map $f_{i, u_{i}^{*}}$ agrees with f_{i} over u_{i}^{*}, so we know that $f_{i, u_{i}^{*}}$ respects all pebble pairs since f_{i} does. To see that Duplicator's bijection is a partial isomorphism between pebbled variables, first observe that, at the beginning of the next round $i+1$, any edge between a pair of adjacent pebbled vertices of H is a path of length one (which is less than r) between vertices in T_{i}. Thus, this edge must not be in F_{i+1}, otherwise it would violate Claim 5.10 (applied to round $i+1$). The only way that such an edge can fail to be in F_{i+1} is for it to have been in the previous tree, T_{i}. Thus, we have shown that, after Spoiler places the pebbles in round i, every pair of pebbled variables in the same relation involves vertices that are adjacent in T_{i}. Therefore, Property (2) guarantees Spoiler does not win on round i.

All that remains is to show how Duplicator can satisfy properties (1) and (2) on each round i, assuming inductively that they are satisfied on round $i-1$. Fix a vertex $u \in V(G)$. Duplicator defines $g^{*}(i, u, \cdot)$ in three steps: first over $V\left(T_{i}(u)\right) \cap V\left(T_{i-1}\right)$, then over $V\left(F_{i}(u)\right) \backslash V\left(T_{i-1}\right)$, then finally, over the remaining vertices $\left(V\left(T_{i}(u)\right) \backslash V\left(T_{i-1}\right)\right) \backslash V\left(F_{i}(u)\right)$.

Over $V\left(T_{i}(u)\right) \cap V\left(T_{i-1}\right)$, Duplicator simply sets

$$
g^{*}(i, u, v):=g^{*}\left(i-1, u_{i-1}^{*}, v\right),
$$

which is well-defined over $V\left(T_{i-1}\right)$ and clearly satisfies both properties (1) and (2), inductively assuming that $g^{*}\left(i-1, u_{i-1}^{*}, \cdot\right)$ did. Since $V\left(T_{i}(u)\right) \cap V\left(T_{i-1}\right)$ contains all pebbled vertices, we no longer have to worry about property (1); we just have to define $g^{*}(i, u, \cdot)$ on the remainder of $V\left(T_{i}(u)\right)$ so that property (2) is satisfied.

Duplicator then uses the following algorithm to define $g^{*}(i, u, \cdot)$ over $V\left(F_{i}(u)\right) \backslash V\left(T_{i-1}\right)$. Basically, we define g^{*} by inductively extending from neighboring vertices. A vertex is assigned the value it needs to have in order to make Duplicator's bijection a partial isomorphism across each edge in F_{i}.

```
while true do
    if there exists \(\left\{v_{1}, v_{2}\right\} \in E\left(F_{i}(u)\right)\) such that \(g^{*}\left(i, u, v_{1}\right)\) is defined but \(g^{*}\left(i, u, v_{2}\right)\)
        is not defined then
        \(g^{*}\left(i, u, v_{2}\right) \leftarrow g^{*}\left(i, u, v_{1}\right)+b\left(v_{1}, v_{2}\right) ;\)
    else if there exists \(v \in V\left(F_{i}(u)\right)\) such that \(g^{*}(i, u, v)\) is not defined then
        \(g^{*}(i, u, v) \leftarrow\) anything;
    else
            return;
    end
end
```

Observe that the constraints involving each edge in $F_{i}(u)$ considered in the first case are preserved by $f_{i, u}$: for all $g_{1}, g_{2}, z \in \mathbb{F}_{2}^{m}$,

For example, if $F_{i}(u)$ is as in Figure 4, then the first iteration of the algorithm would define $g^{*}(i, u, B)$ so that the constraints involving A and B are consistent under $f_{i, u}$. The next iteration would then define $g^{*}(i, u, C)$ so that the constraints involving B and C are consistent. Similarly, the next two iterations would set $g^{*}(i, u, D)$ and $g^{*}(i, u, E)$ (these could happen in either order). On the fifth iteration, we would hit the second case of the algorithm and set one of $g^{*}(i, u, F), g^{*}(i, u, G)$ or $g^{*}(i, u, H)$ arbitrarily. The final two iterations would set the other two values according to the first case.

Since the edges encountered in the first case are always made consistent, the only way that $f_{i, u}$ could fail to be a partial isomorphism over $F_{i}(u)$ is if, at some iteration, there were
two different edges satisfying the condition in the first case that yielded different values for $g^{*}\left(i, u, v_{2}\right)$ for some v_{2}. Since $F_{i}(u)$ is a forest, the only way that this could happen is if some connected component of $F_{i}(u)$ had two distinct vertices v_{1} and v_{2} on which $g^{*}(i, u, \cdot)$ was already defined before the algorithm started, which can only happen if $v_{1}, v_{2} \in V\left(T_{i-1}\right)$. But this means that there is a path in $F_{i}(u)$ from v_{1} to v_{2} that violates Claim 5.10. Thus, property (2) is still satisfied.

At this point, the only remaining edges of $T_{i}(u)$ which Duplicator needs to worry about are those which are in $T_{i}(u) \backslash T_{i-1}$ but are not in $F_{i}(u)$. By the definition of $F_{i}(u)$, this consists of paths of length at least r, each with a disjoint set of intermediate vertices. Since $g^{*}(i, u, \cdot)$ has not yet been defined on any of the intermediate vertices, Duplicator can apply Lemma 5.7 to each one separately. Thus, property (2) is satisfied over the entirety of $T_{i}(u)$.

We have shown that Duplicator has a winning strategy in the k-pebble bijective game played on $\mathcal{G}\left(U_{1}\right)$ and $\mathcal{G}\left(U_{2}\right)$, so, by Theorem 2.1, $\mathcal{G}\left(U_{1}\right) \equiv_{C^{k}} \mathcal{G}\left(U_{2}\right)$.

5.4. Proof of main result.

Theorem 5.11. For any $\delta>0$ and any positive integer ℓ, there exists a positive integer q such that no sentence of FPC distinguishes $\mathrm{UG}(q)$ instances (encoded as $\tau_{\mathrm{UG}(q)}$-structures) of optimal value $\geq \frac{1}{2^{\ell}}$ from those of optimal value $<\frac{1}{2^{2 \ell-1}+2^{\ell-1}}+\delta$.

Proof. Let δ and ℓ be given, pick an arbitrary $\varepsilon \in\left(0, \frac{1}{2}\right)$, then let q be as defined in Section 5.1. Suppose toward a contradiction that there is an FPC sentence ϕ distinguishing the two cases. Then ϕ can be translated into a logically equivalent sentence ϕ^{\prime} of C^{k} for some fixed k. Given this value of k, let $\mathbb{A}_{k}:=\mathcal{G}\left(U_{1}\right)$ and $\mathbb{B}_{k}:=\mathcal{G}\left(U_{2}\right)$ be as defined in Section 5.1. By Lemmas $5.1,5.6$ and 5.8 , with probability at least $1-2 \varepsilon$, we will have that

$$
\operatorname{opt}\left(\mathbb{A}_{k}\right) \geq \frac{1}{2^{\ell}}, \quad \quad \operatorname{opt}\left(\mathbb{B}_{k}\right)<\frac{1}{2^{2 \ell-1}+2^{\ell-1}}+\delta
$$

yet $\mathbb{A}_{k} \equiv{ }_{C^{k}} \mathbb{B}_{k}$. Since $1-2 \varepsilon>0$, this implies that there is some pair of $\tau_{\mathrm{UG}(q)}$-structures $\left(\mathbb{A}_{k}, \mathbb{B}_{k}\right)$ produced by this construction satisfying these properties. This is a contradiction, since ϕ^{\prime} cannot distinguish \mathbb{A}_{k} and \mathbb{B}_{k} as they are C^{k}-equivalent, so ϕ cannot distinguish them either.

Corollary 5.12. For any $\alpha \in(0,1]$, for sufficiently large q there does not exist an $F P C$ definable α-approximation algorithm for UG(q).

Proof. Let $\alpha \in(0,1]$ be given. Define

$$
\ell:=\left\lceil 2-\log _{2}(\alpha)\right\rceil, \quad \delta:=\frac{1}{2^{2 \ell-1}+2^{\ell-1}}
$$

Note that ℓ is a positive integer and $\delta>0$. Let

$$
\begin{aligned}
c & :=\frac{1}{2^{\ell}} \\
s & :=\frac{1}{2^{2 \ell-1}+2^{\ell-1}}+\delta=\frac{2}{2^{2 \ell-1}+2^{\ell-1}}
\end{aligned}
$$

Then, by Theorem 5.11, there exists a positive integer q such that no sentence of FPC distinguishes $\tau_{\mathrm{UG}(q)}$-structures with optimal value $\geq c$ from those with optimal value $<s$.

Observe that

$$
\begin{aligned}
\frac{s}{c} & =\frac{\frac{2}{2^{2 \ell-1}+2^{\ell-1}}}{\frac{1}{2^{\ell}}} \\
& =\frac{2^{\ell+1}}{2^{2 \ell-1}+2^{\ell-1}} \\
& \leq \frac{2^{\ell+1}}{2^{2 \ell-1}} \\
& =2^{2-\ell} \\
& \leq 2^{2-\left(2-\log _{2}(\alpha)\right)} \quad\left(\text { since } \ell \geq 2-\log _{2}(\alpha)\right) \\
& =\alpha .
\end{aligned}
$$

Therefore, it follows from Lemma 2.2 that there is no FPC-definable α-approximation algorithm for UG(q).

6. Conclusion

This paper has two objectives. The first is to introduce a new proof idea into the arsenal of tools for CFI-constructions. Our main challenge was that, to prove an FPC-inapproximability result, it is not sufficient to have Duplicator maintain the standard kind of invariant used in CFI-constructions: that the two structures are always isomorphic by a bijection agreeing with all pebble pairs, except at one place where the isomorphism breaks down. Using techniques from graph theory and linear algebra, we have shown how Duplicator can win the k-pebble bijective game while only maintaining an extremely weak invariant-consistency over a very small portion of the two structures. Hopefully this approach can be extended to other approximation settings as well.

The second objective is to make progress on the FPC-version of the Unique Games Conjecture. We have established an FPC-inapproximability gap which is competitive with recent results in ordinary complexity theory about polynomial-time approximation algorithms, yet our result holds without the assumption that $P \neq N P$. Of course, our proof method is entirely different than the proof methods used in ordinary complexity theory - so different that the fundamental problem which is shown to be inexpressible in FPC, distinguishing $\mathcal{G}\left(U_{1}\right)$ from $\mathcal{G}\left(U_{2}\right)$, is not even NP-hard. ${ }^{11}$

To prove the FPC-UGC in its entirety, it will be necessary to (almost completely) eliminate the parallel, contradictory constraints between pairs of vertices. These simple gadgets provide Duplicator with the power to make choices, circumventing the "uniqueness" inherent in "Unique Games," but they kill the completeness of the inapproximability gap: the more-satisfiable instance will still only have satisfiability at most $\frac{1}{2}$. One possible approach would be to build larger gadgets with more complicated automorphisms achieving a similar effect as these parallel constraints. We leave this possibility to future work.

[^7]
Acknowledgments

This work was generously supported by the Winston Churchill Foundation through a Churchill Scholarship at the University of Cambridge, UK. I would like to express my deep gratitude to Anuj Dawar, whose advice and insights substantially improved the results in this paper. I am also very grateful to Neil Immerman, as well as my LMCS and LICS reviewers, for detailed, helpful comments on earlier drafts.

References

[ABD09] Albert Atserias, Andrei A. Bulatov, and Anuj Dawar. Affine systems of equations and counting infinitary logic. Theoretical Computer Science, 410(18):1666-1683, 2009. doi:10.1016/j.tcs. 2008.12.049.
[AD17] Matthew Anderson and Anuj Dawar. On symmetric circuits and fixed-point logics. Theory of Computing Systems, 60(3):521-551, 2017. doi:10.1007/s00224-016-9692-2.
[AD19] Albert Atserias and Anuj Dawar. Definable inapproximability: new challenges for Duplicator. Journal of Logic and Computation, 29(8):1185-1210, 2019. doi:10.1093/logcom/exz022.
[ADH15] Matthew Anderson, Anuj Dawar, and Bjarki Holm. Solving linear programs without breaking abstractions. Journal of the ACM, 62(6):48:1-48:26, 2015. doi:10.1145/2822890.
[AN01] André Arnold and Damian Niwinski. Rudiments of μ-calculus. Elsevier, 2001.
[CFI89] Jin-yi Cai, Martin Fürer, and Neil Immerman. An optimal lower bound on the number of variables for graph identification. In 30th Annual Symposium on Foundations of Computer Science, Research Triangle Park, North Carolina, USA, 30 October - 1 November 1989, pages 612-617, 1989. doi:10.1109/SFCS.1989.63543.
[Daw98] Anuj Dawar. A restricted second order logic for finite structures. Information and Computation, 143(2):154-174, 1998. doi:10.1006/inco.1998.2703.
[Daw15] Anuj Dawar. The nature and power of fixed-point logic with counting. ACM SIGLOG News, 2(1):8-21, January 2015. doi:10.1145/2728816. 2728820.
[DKK ${ }^{+}$18] Irit Dinur, Subhash Khot, Guy Kindler, Dor Minzer, and Muli Safra. On non-optimally expanding sets in Grassmann graphs. In Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2018, Los Angeles, CA, USA, June 25-29, 2018, pages 940-951, 2018. doi:10.1145/3188745.3188806.
[DW17] Anuj Dawar and Pengming Wang. Definability of semidefinite programming and Lasserre lower bounds for CSPs. In 32nd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2017, Reykjavik, Iceland, June 20-23, 2017, pages 1-12, 2017. doi:10.1109/LICS.2017.8005108.
[GT18] Joshua A. Grochow and Jamie Tucker-Foltz. Computational topology and the unique games conjecture. In 34th International Symposium on Computational Geometry, SoCG 2018, June 11-14, 2018, Budapest, Hungary, pages 43:1-43:16, 2018. doi:10.4230/LIPIcs.SoCG.2018.43.
[Hel96] Lauri Hella. Logical hierarchies in PTIME. Information and Computation, 129(1):1-19, 1996. doi:10.1006/inco. 1996.0070.
[Imm86] Neil Immerman. Relational queries computable in polynomial time. Information and Control, 68(1-3):86-104, 1986. doi:10.1016/S0019-9958(86)80029-8.
[Kho10] Subhash Khot. On the unique games conjecture (invited survey). In Proceedings of the 25th Annual IEEE Conference on Computational Complexity, CCC 2010, Cambridge, Massachusetts, USA, June 9-12, 2010, pages 99-121, 2010. doi:10.1109/CCC.2010.19.
[KMS18] Subhash Khot, Dor Minzer, and Muli Safra. Pseudorandom sets in Grassmann graph have nearperfect expansion. In 59th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2018, Paris, France, October 7-9, 2018, pages 592-601, 2018. doi:10.1109/FOCS.2018.00062.
[Kol11] Alexandra Kolla. Spectral algorithms for unique games. Computational Complexity, 20(2):177-206, 2011. doi:10.1007/s00037-011-0011-7.
[KPS10] Subhash Khot, Preyas Popat, and Rishi Saket. Approximate Lasserre integrality gap for unique games. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, 13th International Workshop, APPROX 2010, and 14th International Workshop,

RANDOM 2010, Barcelona, Spain, September 1-3, 2010. Proceedings, pages 298-311, 2010. doi:10.1007/978-3-642-15369-3_23.
[Lib04] Leonid Libkin. Elements of Finite Model Theory. Texts in Theoretical Computer Science. An EATCS Series. Springer, 2004. URL: http://www.cs.toronto.edu/\~libkin/fmt, doi: 10.1007/978-3-662-07003-1.
[LUW94] Felix Lazebnik, V. Ustimenko, and Andrew Woldar. A new series of dense graphs of high girth. Bulletin of the American Mathematical Society, 32, 12 1994. doi:10.1090/ S0273-0979-1995-00569-0.
[Ott97] Martin Otto. Bounded variable logics and counting - a study in finite models, volume 9 of Lecture Notes in Logic. Springer, 1997.
[OW12] Ryan O'Donnell and John Wright. A new point of NP-hardness for unique games. In Proceedings of the 44 th Symposium on Theory of Computing Conference, STOC 2012, New York, NY, USA, May 19 - 22, 2012, pages 289-306, 2012. doi:10.1145/2213977.2214005.
[Rag09] Prasad Raghavendra. Approximating NP-Hard Problems Efficient Algorithms and Their Limits. PhD thesis, University of Washington, USA, 2009. AAI3377316.
[TF20] Jamie Tucker-Foltz. Approximating Constraint Satisfaction Problems Symmetrically. Master's thesis, University of Cambridge, UK, 2020.
[Var82] Moshe Y. Vardi. The complexity of relational query languages (extended abstract). In Proceedings of the 14th Annual ACM Symposium on Theory of Computing, May 5-7, 1982, San Francisco, California, USA, pages 137-146, 1982. doi:10.1145/800070.802186.
[Vaz03] Vijay V. Vazirani. Hardness of Approximation, pages 306-333. Springer Berlin Heidelberg, Berlin, Heidelberg, 2003. doi:10.1007/978-3-662-04565-7_29.

[^0]: Key words and phrases: fixed-point logic with counting, descriptive complexity, unique games, inapproximability, inexpressibility.

 * A conference version of this paper appeared in LICS 2021 under an identical title. ACM subject classification: Theory of computation / Logic / Finite Model Theory.
 ${ }^{1}$ In the presence of a relation interpreted as a total order over the universe, these sets are equal by the Immerman-Vardi theorem [Imm86] [Var82], but this paper is concerned with unordered structures.

[^1]: ${ }^{2}$ It is difficult to rigorously define exactly what is meant by "symmetry breaking." Anderson and Dawar [AD17] give a precise result along these lines, defined in terms of symmetric circuits.
 ${ }^{3}$ The UniqueGames problem is so named because, given any value for one variable in a constraint, there is a unique value for the other variable that satisfies the constraint (defined by the permutation on the label set associated to the constraint). There is an alternative interpretation of the optimization problem in terms of finding an optimal strategy in a game between two provers and a verifier, where the provers wish to convince the verifier that there is an assignment satisfying all constraints. See the survey by Khot [Kho10] for more background on UniqueGames.

[^2]: ${ }^{4}$ The 2-2 Games Theorem [KMS18] [DKK $\left.{ }^{+} 18\right]$ implies a $\left(\frac{1}{2}, \delta\right)$-inapproximability gap for UniqueGames, while the previous best was $\left(\frac{1}{2}, \frac{3}{8}+\delta\right)$ from 2012, due to O'Donnell and Wright [OW12].
 ${ }^{5}$ This problem is described in [KPS10]. See [DW17] for a discussion of the relationship between FPC and the Lasserre hierarchy.

[^3]: ${ }^{6}$ See the introduction by Vazirani [Vaz03] for example.

[^4]: ${ }^{7}$ This construction is similar to the label-extended graph of a UniqueGames instance (see, for example, [Kol11, GT18]), but it is not the same thing. The label-extended graph is obtained by taking all of the edges with identity constraints in the label-lifted instance.
 ${ }^{8}$ We sometimes use a symbol like x_{v} or x_{v}^{g} to denote a specific variable, and sometimes to denote the value assigned to that variable. When v is unspecified, as it is here, we mean a function assigning a value to each variable. It should be clear from context which of the three meanings we intend.

[^5]: ${ }^{9}$ We remark that, with very slight modification, this argument also shows that the G operator of Atserias and Dawar [AD19] preserves the exact satisfiability of a 3XOR instance. In other words, part (2) of Lemma 3 of [AD19] can be strengthened, and as a consequence, the third paragraph in the proof of Lemma 4 of [AD19] is unnecessary.

[^6]: ${ }^{10}$ What this means is, randomly choose a set of ℓ linearly independent vectors and take the span. Choose the first vector uniformly at random from $\mathbb{F}_{2}^{m} \backslash\{0\}$, then choose each subsequent vector uniformly at random from the subset of \mathbb{F}_{2}^{m} that is not in the span of the previously chosen vectors.

[^7]: ${ }^{11}$ To see this, observe that a given bundle of constraints in either structure is satisfiable if and only if a certain system of $m-\ell$ linear equations over \mathbb{F}_{2}^{m} is solvable. (Specifically, the equations express the constraint that $x_{v_{1}}^{g_{1}}-x_{v_{2}}^{g_{2}}$ in the ℓ-dimensional affine subspace $Z\left(v_{1}, v_{2}\right)-b\left(v_{1}, v_{2}\right)+\left(g_{1}-g_{2}\right)$.) In $\mathcal{G}\left(U_{1}\right)$, the union of all of these systems is completely satisfiable, while in $\mathcal{G}\left(U_{2}\right)$, they are not, so distinguishing $\mathcal{G}\left(U_{1}\right)$ from $\mathcal{G}\left(U_{2}\right)$ can be accomplished by Gaussian elimination.

