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Abstract. We study the extent to which it is possible to approximate the optimal value
of a Unique Games instance in Fixed-Point Logic with Counting (FPC). Formally, we
prove lower bounds against the accuracy of FPC-interpretations that map Unique Games
instances (encoded as relational structures) to rational numbers giving the approximate
fraction of constraints that can be satisfied. We prove two new FPC-inexpressibility
results for Unique Games: the existence of a (1/2, 1/3 + δ)-inapproximability gap, and
inapproximability to within any constant factor. Previous recent work has established similar
FPC-inapproximability results for a small handful of other problems. Our construction
builds upon some of these ideas, but contains a novel technique. While most FPC-
inexpressibility results are based on variants of the CFI-construction, ours is significantly
different. We start with a graph of very large girth and label the edges with random affine
vector spaces over F2 that determine the constraints in the two structures. Duplicator’s
strategy involves maintaining a partial isomorphism over a minimal tree that spans the
pebbled vertices of the graph.

1. Introduction

While the bulk of ordinary complexity theory rests on conjectures about the limits of
efficient computation (e.g., P ̸= NP), descriptive complexity has had much success in proving
unconditional lower bounds. By restricting attention only to those algorithms that can be
defined in some given primitive logic, it is possible to say much more about what such an
algorithm is capable or incapable of doing.

One such logic is Fixed-Point Logic with Counting (FPC), which is first order logic
augmented with a least fixed point operator, numeric variables and counting quantifiers
asserting that a given number of distinct objects satisfy a given predicate. The set of
decision problems definable in FPC forms a proper subset of P.1 Roughly, a polynomial-time
algorithm is definable as an FPC-interpretation only if it respects the natural symmetries

Key words and phrases: fixed-point logic with counting, descriptive complexity, unique games, inapprox-
imability, inexpressibility.

∗A conference version of this paper appeared in LICS 2021 under an identical title. ACM subject
classification: Theory of computation / Logic / Finite Model Theory.

1In the presence of a relation interpreted as a total order over the universe, these sets are equal by the
Immerman-Vardi theorem [Imm86] [Var82], but this paper is concerned with unordered structures.
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of its input, without making any arbitrary choices that break those symmetries.2 Thus,
FPC has become an extremely important and well-studied logic [Daw15], as it seems to
elegantly capture the essence of symmetric computation. It is a robust logic, including a wide
range of powerful algorithmic techniques, such as linear [ADH15] and semidefinite [DW17]
programming.

It was once thought that FPC captured all of polynomial time, until Cai, Fürer and
Immerman [CFI89] constructed a problem that is solvable in polynomial time, yet not
definable in FPC. Their proof technique, which has since become known as a CFI-construction,
was to exhibit pairs of problem instances (A1,B1), (A2,B2), (A3,B3), . . . such that each Ak is
a YES instance, each Bk is a NO instance, yet Ak and Bk are indistinguishable by any sentence
of FPC with k variables (formally, they are Ck-equivalent: Duplicator wins the k-pebble
bijective game played on Ak and Bk; see Section 2.2 for the full definition). CFI-constructions
have been used to establish logical inexpressibility results for a range of other decision
problems—some solvable in polynomial time, others NP-hard [Daw15, ABD09, Daw98].

In a recent paper, Atserias and Dawar [AD19] adapted this technique to obtain the first
known FPC-inapproximability results, proving the nonexistence of approximation algorithms
whose mapping of inputs to outputs is definable as an FPC-interpretation. Essentially, this
requires that Ak and Bk not only have different optimal values, but that these optimal values
differ by some constant multiplicative factor. Atserias and Dawar were able to construct such
instances to derive a tight FPC-inapproximability gap for 3XOR (like 3SAT but with XOR’s
instead of OR’s in each clause), which was then extended via first order interpretations to
yield lower bounds for 3SAT, VertexCover and LabelCover.

1.1. Main results. In this paper, we extend this line of work to consider a keystone problem
in the theory of approximation algorithms: UniqueGames. A UniqueGames instance U is
specified by a set of variables taking values in some fixed label set [q] = {1, 2, . . . , q}, and a
set of constraints. Each constraint requires that a certain pair of variables take values that
are consistent with some permutation on [q]. The goal is to find the maximum fraction of
constraints that can be simultaneously satisfied.3 We denote this fraction by opt(U). Our
main result (Theorem 5.11) is that, for any δ > 0 and any positive integer ℓ, for sufficiently
large q we can construct pairs of UniqueGames instances (A1,B1), (A2,B2), (A3,B3), . . . on a
label set of size q such that, for all k, Ak and Bk are Ck-equivalent, yet

opt(Ak) ≥
1

2ℓ
, opt(Bk) <

1

22ℓ−1 + 2ℓ−1
+ δ.

There are two important specializations of the parameter ℓ. Sending ℓ→∞, it follows
that there is no constant-factor approximation algorithm for UniqueGames that is definable
as an FPC-interpretation (Corollary 5.12). As discussed, this does not rule out the existence
of any polynomial-time constant-factor approximation algorithm, but it does rule out the
existence of a symmetric algorithm, including any algorithm based primarily on linear or

2It is difficult to rigorously define exactly what is meant by “symmetry breaking.” Anderson and Dawar
[AD17] give a precise result along these lines, defined in terms of symmetric circuits.

3The UniqueGames problem is so named because, given any value for one variable in a constraint, there
is a unique value for the other variable that satisfies the constraint (defined by the permutation on the
label set associated to the constraint). There is an alternative interpretation of the optimization problem in
terms of finding an optimal strategy in a game between two provers and a verifier, where the provers wish to
convince the verifier that there is an assignment satisfying all constraints. See the survey by Khot [Kho10]
for more background on UniqueGames.
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semidefinite programming (i.e., an algorithm that just returns the optimal value of a linear
or semidefinite program constructed from the input via elementary operations).

Setting ℓ = 1, this result implies that no sentence of FPC can distinguish all instances
of optimal value 1

2 from those of optimal value 1
3 + δ. The analogue of such a result in

ordinary complexity theory would be that UniqueGames has a (12 ,
1
3 + δ)-inapproximability

gap, i.e., assuming P ̸= NP, there is no polynomial-time algorithm distinguishing instances
of optimal value 1

2 from instances of optimal value 1
3 + δ. Our result is, of course, logically

incomparable to results of this kind since we have imposed an FPC-definability requirement
and dropped the assumption that P ̸= NP. If we were to compare them modulo this exchange
of assumptions, our result would be stronger than what was known prior to the resolution
of the 2-2 Games Conjecture in 2018.4 However, while the 2-2 Games Theorem is the
culmination of over a decade of research spanning several papers, our FPC lower bound is
self-contained and qualitatively very different, exploiting a peculiar weakness of FPC: the
inability to perform Gaussian elimination. The result is thus a testament to the power of
descriptive complexity in proving lower bounds for important restricted classes of algorithms,
even in the realm of approximation.

1.2. Connections to semidefinite programming. The prominence of UniqueGames as
a problem of study in complexity theory is primarily due to its deep connections with
semidefinite programming. A famous theorem of Raghavendra [Rag09] establishes that,
for any constraint satisfaction problem Λ, if we assume P ̸= NP and the Unique Games
Conjecture (UGC), the best polynomial-time approximation algorithm for Λ is given by
solving and rounding a specific semidefinite programming relaxation. Thus, proving the
UGC would immediately yield a complete classification of the approximability of constraint
satisfaction problems, closing the gaps between the best known upper and lower bounds
on the optimal approximation ratios (though still conditional on P ̸= NP). Raghavendra’s
theorem is established via a general, abstract reduction from UniqueGames to Λ. As it so
happens, this reduction is definable as an FPC-interpretation. Together with the fact that
the optimal value of a semidefinite program can be defined in FPC [DW17], this implies an
analogue of Raghavendra’s result for algorithms that are definable in FPC, holding without
the assumption that P ̸= NP [TF20].

Thus, if we could prove an FPC-version of the UGC, we would have a complete and
unconditional understanding of the limits of symmetric computation in approximating
constraint satisfaction problems. This conjecture is as follows.

Conjecture 1.1 (FPC-UGC [TF20]). For all ε, δ > 0, there exists q such that there is no
sentence ϕ of FPC such that, for any UniqueGames instance A on a label set of size q,

(1) if opt(A) ≥ 1− ε, then A |= ϕ, and
(2) if opt(A) < δ, then A ̸|= ϕ.

If true, this would also imply that no fixed level of the Lasserre hierarchy can disprove
the ordinary UGC, which is a well-known open problem in complexity theory.5

4The 2-2 Games Theorem [KMS18] [DKK+18] implies a ( 1
2
, δ)-inapproximability gap for UniqueGames,

while the previous best was ( 1
2
, 3
8
+ δ) from 2012, due to O’Donnell and Wright [OW12].

5This problem is described in [KPS10]. See [DW17] for a discussion of the relationship between FPC and
the Lasserre hierarchy.
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The main result of this paper is a step in the direction of proving this conjecture. Instead
of a (1− ε, δ)-gap, we have a ( 1

2ℓ
, 1
22ℓ−1+2ℓ−1 + δ)-gap for any positive integer ℓ. In light of

our aforementioned comparison to existing conditional lower bounds on UniqueGames in the
realm of polynomial-time computation, we believe there is promise that the FPC-UGC may
be resolved before the ordinary UGC.

1.3. Challenges and techniques. In typical CFI-constructions, Ak and Bk are exactly
the same except at one small place. The difference is critical in that it causes Ak and Bk to
differ with respect to the property being shown to be inexpressible, yet it is small enough
that Duplicator can repeatedly move it around to somewhere else, hiding it from Spoiler.
For UniqueGames (and probably any other optimization problem of practical interest), two
structures differing only on a small number of constraints must have nearly the same optimal
value. Since we require instances whose optimal values differ significantly, this standard
approach does not work for our setting. Duplicator will never be able to maintain an
invariant that the two structures look isomorphic everywhere except in one place.

Atserias and Dawar [AD19] overcame this difficulty for 3XOR by constructing a 3CNF
Boolean formula from the 3XOR instance and applying theorems on resolution proofs and
their connection to existential pebble games. This approach does not work for UniqueGames,
since the variables are not Boolean, and the constraints are only between pairs of variables,
not triples. Thus, our construction is quite different from existing CFI-constructions in the
literature.

The main idea is to start from a graph of large girth and label each edge with a random
ℓ-dimensional subspace of Fm

2 (the m-dimensional vector space over the 2-element field) for
some large integer m > ℓ. These subspaces determine the constraints in the more-satisfiable
instance Ak. To obtain the less-satisfiable instance Bk, we transform these subspaces into
affine subspaces, shifted by random vectors. Duplicator’s strategy in the k-pebble bijective
game relies on the fact that, with high probability, along any path p that is sufficiently long
(though less than the girth), the union of all of the subspaces along p spans Fm

2 . This can
be used to “fill in” the bijection between Ak and Bk along long paths, so all Duplicator has
to worry about are short paths between pebbled vertices. Duplicator can ensure consistency
across these short paths by maintaining an appropriate invariant throughout the game.

1.4. Organization. In Section 2 we review the necessary background on UniqueGames,
FPC, and approximation algorithms. In Section 3 we adapt a key tool from the literature
on CFI-constructions for satisfiability of systems of linear equations to our setting. Section 4
works through two examples illustrating some of the main ideas of our construction. The
formal proof of Ck-equivalence is presented in Section 5, and conclusions follow in Section 6.

2. Preliminaries

We assume the reader is familiar with relational structures and first-order (FO) logic. All
graphs are undirected, but may contain multiple edges between a pair of vertices and/or
loops from a vertex to itself. A graph is simple if it has no multiple edges or self-loops.
Paths are not allowed to repeat edges.
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Figure 1. A UniqueGames instance over the label set {1, 2} represented
graphically, along with one optimal solution (green). Only the bottom edge
(red) is unsatisfied by this solution.

2.1. Unique games. We denote the maximization problem of UniqueGames on a label set of
size q by UG(q). We view the label set as [q] := {1, 2, . . . , q}. We encode UG(q) instances as
relational structures using a vocabulary τUG(q) consisting of q! relation symbols, each of arity
2: for every permutation π : [q]→ [q], τUG(q) has a relation symbol Pπ. The universe can be
thought of as the set of variables of the CSP, and each Pπ is interpreted as the set of pairs
of variables (x1, x2) to which we have a constraint that x1 and x2 should take values z1 and
z2 in [q] such that π(z1) = z2. These are precisely the kinds of constraints that are allowed
in UniqueGames. For any UG(q) instance U , the objective is to compute opt(U) ∈ [0, 1], the
maximum fraction of constraints that can be simultaneously satisfied by any assignment of
variables to values in [q]. We call opt(U) the optimal value, or satisfiability, of U .

It is often convenient to think of UG(q) instances as being defined over some graph H,
where each vertex v ∈ V (H) represents a variable xv, and each edge {v1, v2} ∈ E(H) is
associated to a permutation πv1,v2 on the label set [q] defining which labels for variable xv1
correspond to which labels for variable xv2 . When the permutations are involutions (as will
be the case throughout this paper), the orientation of the edges does not matter, so we can
associate each permutation to an edge, rather than an ordered pair of vertices. For example,
Figure 1 shows a UG(2) instance U with edge permutations written in cycle notation, along
with one of the optimal assignments (xv1 = xv3 = xv4 = 1; xv2 = 2) realizing opt(U) = 3

4 . If
we were to encode this instance as a τUG(2)-structure

A = ⟨A,PA
() , P

A
(12)⟩,

the universe would be A = {xv1 , xv2 , xv3 , xv4}, and the relations would be interpreted as

PA
() = {(xv1 , xv3), (xv3 , xv1)},

PA
(12) = {(xv1 , xv2), (xv2 , xv1), (xv2 , xv4), (xv4 , xv2), (xv3 , xv4), (xv4 , xv3)}.

Note in this case the relations happen to be disjoint, which need not be true in general.
Indeed, most of the instances constructed in this paper involve multiple, contradictory
constraints between some pairs of variables.
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A special subclass of UniqueGames instances play a particularly important role, both in
this paper and in other papers on UniqueGames [Kho10]. We call these GroupUniqueGames
instances, which satisfy the following additional properties:

(1) The label set [q] is identified with some finite Abelian group A of order q.
(2) For every permutation constraint π, there is some g ∈ A such that π(x) = g + x

(we always write the group operation additively). Thus, we can identify the set of
permutations with A as well.

It is convenient to express constraints as equations in A. For instance, if π is the
permutation from condition (2) above and (xv1 , xv2) ∈ PA

π for some τUG(q)-structure A, then
we would write this constraint as the equation

xv2 = g + xv1 .

We depict such a constraint graphically by writing g on the (oriented) edge {v1, v2} (see
Figures 2 and 3 for example). Henceforth we will informally speak of GroupUniqueGames
instances U and equations that occur as constraints of U , with the implicit understanding
of how these are formally represented as τUG(q)-structures A and relations PA

π .

2.2. The logics FPC and Ck. Since we are only concerned with lower bounds, it is not
necessary to go into the formal definitions of any of the logics discussed in this paper. The
main important fact we require is that, for any FPC sentence ϕ, there is a number k such that
ϕ can be translated into Ck, the fragment of infinitary FO logic with counting quantifiers
consisting of (possibly infinite) sentences with only k variables [Ott97]. Therefore, to show
that a given property P is not expressible in FPC, it suffices to construct, for any k, a pair of
structures A = Ak and B = Bk such that A has property P but B does not, yet no sentence
of Ck can distinguish A from B, in the sense that A models any Ck sentence if and only if B
does. When this is the case, we say that A and B are Ck-equivalent, written A ≡Ck B.

There is a useful characterization of Ck-equivalence in terms of a game between two
players, Spoiler and Duplicator, called the k-pebble bijective game. The board on which they
play consists of the universe A of structure A and the universe B of structure B. There are
k pairs of pebbles, initially not placed anywhere. Throughout the game, the pairs of pebbles
will be placed on elements of the two universes, one pebble in each universe. Each round of
the game consists of three parts:

(1) Spoiler picks up one of the k pairs of pebbles, removing them from the board.
(2) Duplicator gives a bijection f : A→ B such that, for all 1 ≤ i ≤ k, if the ith pebble pair

is placed on some pair of elements ai ∈ A, bi ∈ B, then f(ai) = bi.
(3) Spoiler places the pebbles back down, placing one pebble on some a ∈ A and the other

pebble on f(a) ∈ B.

At the end of a round, Spoiler wins if the map sending each pebbled element in A to
its correspondingly-pebbled element in B is not a partial isomorphism between the two
structures, i.e., there is some relation in one of the two structures that holds of a set of
pebbled elements, but the corresponding relation does not hold in the other structure of the
correspondingly-pebbled elements. If Spoiler is unable to win the game in any finite number
of moves, then Duplicator wins.

Theorem 2.1 [Hel96]. Duplicator has a winning strategy in the k-pebble bijective game
played on A and B if and only if A ≡Ck B.
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2.3. Definability of algorithms. In descriptive complexity, the logical analogue of a
decision algorithm is a sentence. To capture algorithms with non-boolean outputs, we turn
to interpretations. Suppose we fix finite, relational vocabularies σ for the input type and
τ for the output type. By saying that an algorithm is FPC-definable, we mean that the
mapping from σ-structures to τ -structures defined by the algorithm can be realized as an
FPC-interpretation of τ in σ.

Roughly, an FPC-interpretation of τ in σ is a formal way to construct a τ -structure B
from a σ-structure A by defining the universe of B in terms of copies of the universe of A,
with FPC σ-formulas defining membership for each relation in τ . For the formal details, see,
for example, Dawar and Wang [DW17]. Theorem 6 of [DW17] contains an example of an
FPC-definable algorithm.

2.4. Inapproximability. Let Λ denote an arbitrary maximization problem (e.g., think of Λ
as UG(q) for some q). For α ∈ [0, 1], an α-approximation algorithm for Λ is a polynomial-time
algorithm that, given an instance of Λ with optimal value x∗, returns a value x such that
αx∗ ≤ x ≤ x∗. Typically, an α-approximation algorithm works by finding a valid “solution”
to the instance of Λ (for UniqueGames, this would be an assignment of values to variables)
and returning the value of that solution. The solution may not be optimal, but it should be
guaranteed to have value at least an α-fraction of that of the optimal solution, whatever
that value may be. The closer α is to 1, the better the guarantee of the algorithm.

Let us fix vocabularies τΛ for instances of Λ and τQ for rational numbers, so that an FPC-
definable approximation algorithm for Λ is an FPC-interpretation of τQ in τΛ. The following
lemma is a logical formulation of the well-known6 relationship between approximation
algorithms and gap problems.

Lemma 2.2. Suppose, for some rational numbers c ≥ s ≥ 0, no sentence of FPC can
distinguish τΛ-structures with optimal value ≥ c from those with optimal value < s. Then
there is no FPC-definable α-approximation algorithm for Λ for any α ≥ s

c .

Proof. We prove the contrapositive. Suppose there was such an interpretation Θ of τQ
in τΛ. Then we can use Θ to write an FPC sentence ϕ in vocabulary τΛ expressing the
property that, for a given τΛ structure A, Θ(A) ≥ s. (By the Immerman-Vardi theorem,
inequality comparison of rational numbers can be done in fixed-point logic even without
needing counting quantifiers, since numbers are encoded in ordered structures.) Let A be
any τΛ structure with optimal value x∗ such that either

(1) x∗ ≥ c, or
(2) x∗ < s.

Let x := Θ(A). If A |= ϕ, we have x∗ ≥ x ≥ s. Therefore, we cannot be in case (2), so we
must be in case (1). Conversely, if A ̸|= ϕ, we have

αx∗ ≤ x < s ≤ cα.

Therefore, x∗ < c, so we cannot possibly be in case (1), and hence must be in case (2). Thus,
ϕ distinguishes the two cases.

So, just as in ordinary complexity theory, where hardness of a gap problem (that
is, distinguishing the two cases in Lemma 2.2), implies hardness of approximation, FPC-
inexpressibility of a gap problem implies the nonexistence of FPC-definable approximation

6See the introduction by Vazirani [Vaz03] for example.
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algorithms. In either case, the goal in proving lower bounds on algorithms/logics is always
to establish as wide a gap as possible.

3. The label-lifted instance

Let U be a GroupUniqueGames instance with group A and variable set

{xv | v ∈ V }.

Then we define G(U) to be a GroupUniqueGames instance with group A and variable set

{xgv | v ∈ V, g ∈ A}.

For every equation

xv1 − xv2 = z

in the constraint set of U and every g1, g2 ∈ A, we have the equation

(xg1v1 − g1)− (xg2v2 − g2) = z

in the constraint set of G(U). We call G(U) the label-lifted instance7 of U .
The operator G is similar to the operator G used by Atserias and Dawar [AD19, Sec.

3.2], and also implicitly used by Atserias, Bulatov and Dawar [ABD09, Sec. 3]. The point
is that the extra structure gives Duplicator a new possible strategy to win the k-pebble
bijective game played on G(U1) and G(U2) which may not be possible with the original
instances U1 and U2; while at the same time, applying G does not change the satisfiability.

Lemma 3.1. For any GroupUniqueGames instance U , opt(G(U)) = opt(U).

Proof. We begin by introducing some notation which is not used outside of this proof.
Suppose U has n variables, denoted xv1 , xv2 , . . . , xvn , C constraints, and |A| = q. For all
i, j ∈ [n], write c(i, j) for the number of constraints between variables xvi and xvj , and
enumerate them as

{xvi − xvj = zi,j,k | k ∈ [c(i, j)]}.
In the context of some fixed assignment of variables, for any constraint equation β, let I(β)
be the function that evaluates to 1 if β is satisfied under the assignment and 0 if β is not
satisfied.

Let xv be an assignment8 of variables attaining the optimum satisfiability of U , i.e.,

opt(U) =
1

C

∑
i,j∈[n]

∑
k∈[c(i,j)]

I(xvi − xvj = zi,j,k).

From this, define an assignment of variables of G(U) by

xgv := xv + g.

7This construction is similar to the label-extended graph of a UniqueGames instance (see, for example,
[Kol11, GT18]), but it is not the same thing. The label-extended graph is obtained by taking all of the edges
with identity constraints in the label-lifted instance.

8We sometimes use a symbol like xv or xg
v to denote a specific variable, and sometimes to denote the value

assigned to that variable. When v is unspecified, as it is here, we mean a function assigning a value to each
variable. It should be clear from context which of the three meanings we intend.
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Then the optimal value of G(U) is at least the number of constraints satisfied by this
assignment divided by the total number of constraints 1

Cq2
, i.e.,

opt(G(U)) ≥ 1

Cq2

∑
i,j∈[n]

∑
gi,gj∈A

∑
k∈[c(i,j)]

I((xgivi − gi)− (x
gj
vj − gj) = zi,j,k)

=
1

Cq2

∑
i,j∈[n]

∑
gi,gj∈A

∑
k∈[c(i,j)]

I(((xvi + gi)− gi)− ((xvj + gj)− gj) = zi,j,k)

=
1

Cq2

∑
i,j∈[n]

∑
gi,gj∈A

∑
k∈[c(i,j)]

I(xvi − xvj = zi,j,k)

=
1

Cq2

∑
i,j∈[n]

(q2)
∑

k∈[c(i,j)]

I(xvi − xvj = zi,j,k)

=
1

C

∑
i,j∈[n]

∑
k∈[c(i,j)]

I(xvi − xvj = zi,j,k)

= opt(U).

For the other direction, let xgv be an assignment of variables attaining the optimum
satisfiability of G(U). Then

opt(G(U)) =
1

Cq2

∑
i,j∈[n]

∑
gi,gj∈A

∑
k∈[c(i,j)]

I((xgivi − gi)− (x
gj
vj − gj) = zi,j,k)

=
1

Cqn

∑
i,j∈[n]

∑
g1,g2,...,gn∈A

∑
k∈[c(i,j)]

I((xgivi − gi)− (x
gj
vj − gj) = zi,j,k),

since, for every fixed i, j ∈ [n], the term∑
k∈[c(i,j)]

I((xgivi − gi)− (x
gj
vj − gj) = zi,j,k)

is counted exactly qn−2 times. Rearranging the order of summation, we have

opt(G(U)) =
1

Cqn

∑
g1,g2,...,gn∈A

∑
i,j∈[n]

∑
k∈[c(i,j)]

I((xgivi − gi)− (x
gj
vj − gj) = zi,j,k) (3.1)

By the averaging principle, there must be some fixed g1,g2, . . . ,gn ∈ A such that∑
i,j∈[n]

∑
k∈[c(i,j)]

I((xgivi − gi)− (x
gj
vj − gj) = zi,j,k) ≥ C · opt(G(U)), (3.2)

for otherwise, if all of the qn choices of g1,g2, . . . ,gn ∈ A failed to satisfy (3.2), we could
strictly upper-bound the right-hand side of (3.1) by

1

Cqn
(qn) (C · opt(G(U))) = opt(G(U)),

contradicting (3.1). Using these fixed gi values, we define an assignment of variables of U by

xvi := xgivi − gi.
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It then follows that the optimal value of U is at least the fraction of constraints satisfied by
this assignment, i.e.,

opt(U) ≥ 1

C

∑
i,j∈[n]

∑
k∈[c(i,j)]

I(xvi − xvj = zi,j,k)

=
1

C

∑
i,j∈[n]

∑
k∈[c(i,j)]

I((xgivi − gi)− (x
gj
vj − gj) = zi,j,k)

≥ opt(G(U)) (by (3.2)),

as desired.9

4. Examples

Before presenting the general gap construction in the next section, we first describe some
special cases: pairs of Ck-equivalent unique games instances with different optimal values,
for k ∈ {2, 3}.

4.1. An example where k = 2. The label-lifted instance is useful for Duplicator since it
makes any two GroupUniqueGames instances on the same underlying graph (in the sense of
Section 2.1) locally isomorphic. For example, take U1 and U2 to be as in Figure 2.

For both U1 and U2, the underlying graph H is the complete graph on 3 vertices. The
group is A := F2 (the finite field of two elements, {0, 1}, under addition modulo 2), so
there are only two kinds of constraints. The identity constraints are drawn in green and
the non-identity constraints are drawn in red. Instance U1 has only identity constraints,
so is completely satisfiable by setting all variables to be the same value. In U2, the 3
constraints are inconsistent, but any 2 of them can be satisfied, so the optimal value is 2

3 .

Therefore, by Lemma 3.1, opt(G(U1)) = 1 and opt(G(U2)) =
2
3 . However, G(U1) and G(U2)

are C2-equivalent. Let X denote the common variable set of both instances. Duplicator’s
strategy in the 2-pebble bijective game is to always give a bijection f : X → X (from the
universe of G(U1) to the universe of G(U2)) with the following property:

For all v ∈ V (H), there exists g∗(v) ∈ A such that, for any g ∈ A, f(xgv) = xg+g∗(v)
v . (4.1)

So, in any given round, Duplicator’s bijection is completely determined by a map
g∗ : V (H)→ A. If there is one pebble pair on the board on (xg1v , xg2v ), as there is in Figure 2,
then for each neighbor u of v in H, g∗(u) is uniquely determined to be the value which
makes the bijection f an isomorphism across all constraints involving vertices u and v. In
the figure, g∗(u) = 1 ∈ F2 and g∗(v) = g∗(w) = 0. The bijection f is depicted by the blue
dotted lines; notice the swap at the vertices involving u corresponding to g∗(u) = 1. No
matter which of the six locations Spoiler places the pebble pair, one can verify that any
relations between two pebbled vertices will be of the same kind.

9We remark that, with very slight modification, this argument also shows that the G operator of Atserias
and Dawar [AD19] preserves the exact satisfiability of a 3XOR instance. In other words, part (2) of Lemma
3 of [AD19] can be strengthened, and as a consequence, the third paragraph in the proof of Lemma 4 of
[AD19] is unnecessary.
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Figure 2. Two GroupUniqueGames instances U1 and U2 with group F2, and
Duplicator’s bijection at some stage in the k-pebble bijective game between
G(U1) and G(U2), just after Spoiler has picked up a pair of pebbles.

Preserving property (4.1) is a more general idea that will be used again in Section 5. We
do not go into the general proof, but this strategy enables Duplicator to win the 2-pebble
bijective game between G(U1) and G(U2) as long as U1 and U2 are defined over the same
underlying graph and that graph is simple. It is possible to construct GroupUniqueGames
instances U2 over simple graphs with arbitrarily low satisfiability δ > 0 (for example, random
constraints on large complete graphs will have low satisfiability with high probability). Turn-
ing all constraints into identity constraints, we can then obtain U1 such that opt(G(U1)) = 1,
opt(G(U2)) = δ, but G(U1) ≡C2 G(U2). Thus, for k = 2, the objective has been accomplished:
we have a (1, δ)-inapproximability gap for C2-definable algorithms, for arbitrarily low δ.

4.2. The challenge of k ≥ 3. To extend this result to an inapproximability gap for FPC-
definable algorithms, we need Ck-equivalence for all k. Unfortunately, we hit a fundamental
barrier starting at k = 3:

Proposition 4.1. For any positive integer q, there is an FPC sentence ϕ expressing the
property that a UG(q) instance (encoded as a τUG(q)-structure) is completely satisfiable.

Furthermore, ϕ can be converted into a C3 sentence.

Proof. For each fixed label i ∈ [q], in the context of a free variable x, we define q unary
relations Ui,1, Ui,2, . . . , Ui,q by simultaneous induction:

Ui,i(y) ⇐= (x = y)

Ui,j(y) ⇐= ∃z
∨

π:[q]→[q]

(
Pπ(y, z) ∧ Ui,π(j)(z)

)
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The meaning of Ui,j(y) is that, given x has label i, it is implied by the constraints that y
has label j. Thus, Ui,i(x) is defined to be true, and whenever a constraint Pπ holds on a
pair of elements (y, z) and we know what the label of z must be, we inductively derive what
the label of y must be. We claim that the following sentence expresses the property that a
UG(q) instance is completely satisfiable:

ϕ ≡ ∀x
∨
i∈[q]

∧
j∈[q]
j ̸=i

¬Ui,j(x)

The correctness of this formula relies on the observation that a UniqueGames instance is not
completely satisfiable if and only if there exists an inconsistent cycle of constraints, forcing
some variable x to be assigned two different values. If f is a satisfying assignment, then
picking i = f(x) must satisfy ϕ. Conversely, if ϕ is satisfied, one can obtain a satisfying
assignment by picking one x from each connected component of the underlying graph and one
satisfying witness i, then assigning labels to every y in that component by taking the unique
j such that Ui,j(y) holds. (It is not too hard to see that the component being connected
implies j exists, and ϕ being satisfied implies j is unique).

Using the Bekic principle [AN01, Lemma 1.4.2] [Lib04, Lemma 10.9], the simultaneous
inductions can be nested within each other in a way that reuses variable names, resulting
in least fixed-point (LFP) formulas for each of the q relations, still using only 3 variables
(x, y and z). Thus, ϕ can indeed be formally written as an LFP sentence, which is an
FPC sentence. Finally, ϕ can be translated into a C3 sentence by unwrapping the inductive
definitions into infinite disjunctions, which again does not require any additional variables
since none of the parameter variables are re-quantified within the inductive definitions, so
there will be no clashes.

This implies that there does not exist an FPC-inapproximability gap of (1, δ) for any
δ < 1 (this is sometimes referred to as “perfect completeness”), since ϕ distinguishes an
instance of optimal value 1 from an instance of optimal value less than 1. In terms of the
3-pebble bijective game, Spoiler’s winning strategy is to drop the first pebble pair anywhere,
then use the other two pebble pairs to traverse an inconsistent cycle of constraints in the
unsatisfiable instance.

4.3. An example where k = 3. From Duplicator’s perspective, the difficulty discussed
above stems from the fact that the g∗ map from (4.1) is uniquely defined from neighboring
vertices. To circumvent this obstacle and give Duplicator more choices, we place a bundle of
parallel constraints between some pairs of variables. Unfortunately, this comes with a price:
since at most one constraint from each bundle can be satisfied, we will necessarily have
opt(G(U1)) < 1. Notice how this avoids the perfect completeness issue from Proposition 4.1.

Figure 3 shows an example of the parallel constraint method where the underlying graph
is H := K4. The group used is the additive part of F2

2, the 2-dimensional vector space over
the 2-element field. We denote its elements as binary strings {00, 01, 10, 11}, so that the
group operation is bitwise XOR.

Since the constraints of U1 come in inconsistent pairs, at most half of them can be satisfied.
This upper bound is attainable by assigning all variables to be 00. Thus, opt(U1) =

1
2 . On

the other hand, this assigment satisfies only 5
12 of the edges in U2, and indeed, it can be

verified by exhaustive search that opt(U2) =
5
12 .
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Figure 3. Two GroupUniqueGames instances U1 and U2 of different optimal
values such that G(U1) ≡C3 G(U2). The constraints differ only on the bottom
two edges.

Duplicator will follow a similar strategy as in the previous example. Suppose that, at
some stage in the 3-pebble bijective game played on G(U1) and G(U2), there are two pebble
pairs already on the board, on variables involving vertices v1 and v3, and Spoiler has just
picked up the third pebble pair. This means that g∗(v1) and g∗(v3) are already determined,
so Duplicator just needs to fill in g∗(v2) and g∗(v4). Let us discuss how Duplicator determines
g∗(v4).

Duplicator will set g∗(v4) so that the map

f(xgv) := xg+g∗(v)
v

is a partial isomorphism among all constraints involving v4 and either v1 or v3. (In particular,
this will ensure f is a partial isomorphism between the pebbled variables if Spoiler places
the pebble pair down on variables involving v4.) For the constraints involving v3 and v4, f
will be a partial isomorphism if, for any g3, g4 ∈ F2

2, the following double implication holds:

xg3v3 − xg4v4 = z is an equation in G(U1)

⇐⇒ f(xg3v3)− f(xg4v4) = z is an equation in G(U2).

Expanding out the definitions of f and G, we can rewrite this condition as

(xv3 + g3)− (xv4 + g4) = z is an equation in U1

⇐⇒ (xv3 + g3 + g∗(v3))− (xv4 + g4 + g∗(v4)) = z is an equation in U2.

Rearranging equations, and using the fact that the equations in U2 between xv3 and xv4 are
precisely the same equations in U1 plus a difference of 10, this becomes

xv3 − xv4 = z − g3 + g4 is an equation in U1

⇐⇒ xv3 − xv4 = z − g3 + g4 − g∗(v3) + g∗(v4) + 10 is an equation in U1.

Notice that, in U1, two equations of the form xv3 − xv4 = z1 and xv3 − xv4 = z2 both appear
as constraints or both do not appear as constraints if and only if z1 and z2 are the same, or
differ by 01. Thus, f is a partial isomorphism for constraints involving v3 and v4 if and only
if

g∗(v4)− g∗(v3) + 10 ∈ {00, 01}.
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By an analogous argument, one can derive that f is a partial isomorphism for constraints
involving v1 and v4 if and only if

g∗(v4)− g∗(v1) ∈ {00, 11}.
These two constraints on g∗(v4) can be written as a system of 2 equations with 2 unknowns:[

1 0
1 1

] [
g∗(v4)1
g∗(v4)2

]
=

[
g∗(v3)1 + 1

g∗(v1)1 + g∗(v1)2

]
The system always has a solution since the matrix on the left-hand side has full rank, which
is ultimately due to the fact that the subspaces {00, 01} and {00, 11} are orthogonal. Thus,
no matter what g∗(v1) and g∗(v3) are, we have seen that Duplicator can find a value for
g∗(v4) making f an isomorphism over all constraints along the path (v1, v4, v3). For example,
if g∗(v3) = 00 and g∗(v1) = 01, then we set g∗(v4) = 10. Duplicator can use the same process
to find a value for g∗(v2) making f an isomorphism over the path (v1, v2, v3).

5. Proof of FPC-inapproximability gap

In comparison to the previous example, the general construction replaces F2
2 with Fm

2 and
has a bundle of 2ℓ constraints between every pair of adjacent vertices, for integers 0 < ℓ < m.
A key difference is that it is no longer possible to make f an isomorphism over an arbitrary
path of length 2 (such as (v1, v4, v3) in the example) given arbitrary values for the endpoints.
However, we show that this is possible for all paths in the graph that are sufficiently long
(see Lemma 5.7). This allows Duplicator to win as long as the base graph H has suitably
high girth.

5.1. Construction. Our construction takes three parameters: ε ∈ (0, 12), δ > 0, and a
positive integer ℓ. Note that δ and ℓ affect the satisfiability of the GroupUniqueGames
instances produced, whereas ε is an arbitrary constant that could just as well be fixed at 1

4 .
The construction is probabilistic, failing with probability at most 2ε. We let

d := 2ℓ + 1, (5.1)

which will be the degree of the vertices in the underlying graph. The reader may find it
helpful to imagine ℓ = 1 and d = 3 throughout this section. Next, we let

γ := 1−

(
1

22ℓ−1+2ℓ−1 + δ
2ℓ

)
(

1
22ℓ−1+2ℓ−1 + δ

) . (5.2)

Note that γ > 0. This is just a technical upper bound on the fraction of edges in the graph
that have a certain undesirable property (see Lemma 5.3). Finally, we pick two very large
integers 0≪ m≪ r; specifically,

m :=

⌈
1

δ
+

(
2

δd
+ 1

)
ℓ− 2

δd
log2(ε)

⌉
, (5.3)

and

r :=

⌈
2mℓ+1(dm−ℓ − 1)

γε

⌉
+ 1. (5.4)

The GroupUniqueGames instances we construct all have the additive part of the vector
space Fm

2 as the group, so q := 2m. The parameter m is chosen so that Bk = G(U2) will be
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highly unsatisfiable with high probability. The meaning of the parameter r will be discussed
shortly.

For any k, let H̃ = H̃k be a d-regular simple graph of girth at least (k + 1)2r. (Regular
graphs of arbitrarily high girth and degree are known to exist; see Lazebnik, Ustimenko
and Woldar [LUW94], for example.) The final graph we use for the construction, H, will

later be obtained from H̃ by removing certain edges. For every edge {v1, v2} ∈ E(H̃), we
independently choose a uniformly random vector b(v1, v2) = b(v2, v1) ∈ Fm

2 and a uniformly

random ℓ-dimensional subspace10 Z(v1, v2) = Z(v2, v1) ⊆ Fm
2 . Say that an edge e ∈ E(H̃) is

good if, for all paths (v0, v1,v2, . . . ,vr) of length r such that e = {v0, v1}, the set⋃
1≤i≤r

Z(vi−1, vi)

spans Fm
2 (recall that paths are never allowed to repeat edges). Edges of H̃ which are not

good edges are called bad edges. We will shortly argue that, with high probability, nearly
all edges are good edges.

Let H = Hk be the graph with vertex set V (H) := V (H̃) and edge set

E(H) := {e ∈ E(H̃) | e is a good edge}.

We define GroupUniqueGames instances U1, Ũ1, U2 and Ũ2 using the additive group
structure on Fm

2 . The variable sets of all four instances are

{xv | v ∈ V (H)}.

For every edge {v1, v2} ∈ E(H̃), Ũ1 and Ũ2 have a bundle of 2ℓ constraints between the

corresponding variables. In Ũ1, the constraints are

{xv1 − xv2 = z | z ∈ Z(v1, v2)},

whereas in Ũ2, the constraints are

{xv1 − xv2 = z + b(v1, v2) | z ∈ Z(v1, v2)}.

Finally, U1 and U2 are obtained from Ũ1 and Ũ2 by removing all constraints on pairs of
variables corresponding to bad edges, i.e., with constraints defined in the exact same way as

Ũ1 and Ũ2, but only for edges {v1, v2} ∈ E(H). Our pair of Ck-equivalent instances will be
Ak := G(U1), and Bk := G(U2).

The example from Section 4.3 is a special case of this construction where k := 3,
H := K4, m := 2, ℓ := 1, and r := 2. The 1-dimensional Z-subspaces consist of the vectors
drawn on each edge in U1 in Figure 3, with b(v3, v4) := 10 and all other b vectors 00.

5.2. Satisfiability properties. In the next section we prove that G(U1) and G(U2) are
always Ck-equivalent. But first, we now analyze the optimal values of these two instances.

Lemma 5.1. The satisfiability of U1 (and thus of G(U1)) is exactly 1
2ℓ
.

10What this means is, randomly choose a set of ℓ linearly independent vectors and take the span. Choose
the first vector uniformly at random from Fm

2 \ {0}, then choose each subsequent vector uniformly at random
from the subset of Fm

2 that is not in the span of the previously chosen vectors.
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Proof. Since the constraints in each bundle of U1 are pairwise incompatible with each other,
at most one constraint can be satisfied from each bundle, so the total satisfiability is at
most the bundle size 1

2ℓ
. The assignment xv := 0 attains this bound by satisfying the z = 0

constraint in each bundle (every subspace Z(v1, v2) must contain z = 0). The claim about
G(U1) follows from Lemma 3.1.

We next argue that, with high probability, G(U2) has a significantly lower optimal value.
The analysis requires many steps, so we break the proof up over several lemmas. Say that a
bundle of constraints is “satisfied” if at least one constraint in the bundle is satisfied. We
begin by showing in Lemma 5.3 that, with high probability, most edges of H̃ are good edges,

in which case the satisfiability of Ũ2 closely approximates the satisfiability of U2. To analyze

the expected satisfiability of Ũ2, in Lemma 5.5 we observe that any assignment satisfying
significantly more than a

1

22ℓ−1 + 2ℓ−1
=

1

2ℓ
· 2
d

fraction of constraints must completely satisfy all of the bundles over some subgraph of

H̃ containing significantly more than a 2
d -fraction of the edges of H̃. Such a subgraph

must contain many more edges than vertices, so it is highly improbable that a random
assignment will completely satisfy it. We then apply a union bound over all assignments
and all subgraphs to conclude that, with high probability, no assignment satisfies more than
a 1

22ℓ−1+2ℓ−1 fraction of constraints.

In order to show that most edges are good edges, we will require the following technical
lemma.

Lemma 5.2. For any d ≥ 3 and positive integer n,

dn − dn−1

(d− 1)n
+ dn−1 − 1 ≤ dn − 1

d− 1
.

Proof. When n = 1, both sides are 1. When n = 2, the inequality reads

d

d− 1
+ d− 1 ≤ d+ 1,

which is clearly true for d ≥ 3. So assume n ≥ 3. Then, using the fact that d ≥ 3, we have

(d− 1)n−1 ≥ (d− 1)2 = (d− 1)(d− 1)

≥ (d− 1)(3− 1) = d+ (d− 2)

≥ d+ (3− 2) ≥ d.

It follows that
dn ≤ dn−1(d− 1)n−1.

Multiplying this inequality by the equation 1 = d− (d− 1), we have

dn ≤ dn(d− 1)n−1 − dn−1(d− 1)n.

Adding the inequalities 0 ≤ (d− 1)n and (d− 1)n−1 ≤ dn−1, we obtain

dn + (d− 1)n−1 ≤ dn(d− 1)n−1 − dn−1(d− 1)n + (d− 1)n + dn−1.

Rearranging,

dn − dn−1 + dn−1(d− 1)n − (d− 1)n ≤ dn(d− 1)n−1 − (d− 1)n−1.

Finally, dividing both sides by (d− 1)n yields the desired inequality.
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Lemma 5.3. The probability that more than a γ fraction of the edges of H̃ are bad edges is
at most ε.

This is our most difficult lemma, so we first give some intuition behind the proof.

Consider the special case where m = 2, ℓ = 1 and d = 3. In other words, H̃ is a 3-regular
graph with each edge labeled by one of the three one-dimensional subspaces of F2

2. Observe

that d = 2ℓ + 1, as in (5.1). Choose a random edge e∗ = {u, v} ∈ E(H̃). Recall that the
definition of a good/bad edge depends on the parameter r from our construction, which
is the length of paths to consider. We imagine starting with r = 1 and increasing r until
(hopefully) e∗ becomes a good edge. Specifically, for any positive integer r, we let Xr be
the random variable defined as the number of paths of length r starting from e∗ in which
the union of the subspaces of F2

2 along p does not span F2
2. We call these “bad” paths. At

r = 1, there are two paths to consider: (u, v) and (v, u). Since ℓ = 1, Z(u, v) = Z(v, u) is
a 1-dimensional subspace of F2

2, so both of these paths fail to span the entire space and
are counted as bad paths. Thus, X1 = 2 with probability 1. To compute X2, observe that,
since the graph is 3-regular, both of these bad paths of length 1 can be extended in exactly
2 different ways to be paths of length 2. So suppose the path (u, v) can be extended to
either (u, v, w1) or (u, v, w2). If Z(v, w1) ⊆ Z(u, v) (which happens with probability 1

3 < 1
2

since there are three nonzero vectors in F2
2 and only one lies within the subspace), then the

extension (u, v, w1) will still fail to generate the space, so it will still be counted in X2. Thus,
with probability more than 1

2 , the extension will generate the space, and not be counted in
X2. In this case we say that the path becomes a “good” path. The same holds for (u, v, w2).
Thus, as we extend the bad path (u, v) by 1 vertex, we have created 2 new potentially bad
paths, but each one immediately becomes a good path with probability > 1

2 , so the expected
number of bad extensions is less than 1. Similarly, the expected number of bad extensions
of (v, u) is less than 1 as well. More generally, this argument shows that the expected value
of Xr is strictly decreasing in r. Thus, with high probability, Xr will eventually hit zero, at
which point we can conclude that e∗ has no bad paths, so it is a good edge.

This special case contains the main idea of the proof. Equation (5.1) is the key, ensuring
that the expected value of Xr is decreasing: at each path extension, d−1 = 2ℓ new potentially
bad paths are created, and each becomes a good path with probability > 1

2ℓ
. The specific

choice of r in (5.4) is just a bound on how large r may need to be to ensure Xr = 0 with
high probability.

Proof of Lemma 5.3. Let e∗ be an edge of H̃ chosen uniformly at random. For each i ∈ [r],
let Pi be the set of paths of length i whose first two vertices are the endpoints of e∗. For

any path p = (v0, v1,v2, . . . ,vn) in H̃, we say that the dimension of p, denoted dim(p), is the
dimension of the vector space

Z(p) := span

⋃
i∈[n]

Z(vi−1, vi)

 .

We define random variables X1,X2, . . . ,Xr as follows:

Xi :=
∑
p∈Pi

(
dm−dim(p) − 1

)
.

(Note that this is more general than the definition in the proof sketch, as it counts subspaces
of different dimensions with different weights.)
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With probability 1,

X1 = 2(dm−ℓ − 1), (5.5)

since there are only 2 paths of length 1 to consider (depending on which direction e∗ is
traversed), and each has dimension ℓ. By definition, Xi ≥ 0 for all i ∈ [r], and e∗ is a good
edge if and only if Xr = 0. Thus, our goal is to upper-bound Pr[Xr ≥ 1].

Claim 5.4. For any 2 ≤ i ≤ r and x ≥ 1,

E[Xi | Xi−1 = x] ≤ x− 1

2mℓ
.

Proof of Claim. We prove that this holds even after additionally conditioning on any tuple
of realizations R of the random subspaces along all paths in Pi−1 that is consistent with
Xi−1 = x. Note that conditioning on these realizations also fixes the value of dim(p0) for
any p0 ∈ Pi−1.

We can split a path p = (v0, v1,v2, . . . ,vi) into two subpaths p0 := (v0, v1,v2, . . . ,vi−1)
and p1 := (vi−1, vi). When this happens, we say p1 ≻ p0 and p0 + p1 = p. Using this
decomposition, we obtain the following bound on Xi:

Xi =
∑

p0∈Pi−1

∑
p1≻p0

(dm−dim(p0+p1) − 1) ≤
∑

p0∈Pi−1

∑
p1≻p0

{
dm−dim(p0) − 1 if Z(p1) ⊆ Z(p0)

dm−dim(p0)−1 − 1 otherwise

Note that, since the girth of H̃ is greater than r, as we expand the radius of edges we are
examining, there are never any cycles. Thus, the events that each Z(p1) ⊆ Z(p0) holds are
independent, and also independent of the previously revealed subspaces R. For convenience,
let us denote

f(p0, p1) :=

{
dm−dim(p0) − 1 if Z(p1) ⊆ Z(p0)

dm−dim(p0)−1 − 1 otherwise
,

so that
Xi ≤

∑
p0∈Pi−1

∑
p1≻p0

f(p0, p1).

Then

E[Xi | R] ≤ E

 ∑
p0∈Pi−1

∑
p1≻p0

f(p0, p1)

∣∣∣∣ R


=
∑

p0∈Pi−1

∑
p1≻p0

E [f(p0, p1) | R]

=
∑

p0∈Pi−1

n:=m−dim(p0)≥1

∑
p1≻p0

E [f(p0, p1) | R]

(since f(p0, p1) = 0 for all p0 of dimension m)

=
∑

p0∈Pi−1
n≥1

∑
p1≻p0

(
Pr[Z(p1) ⊆ Z(p0) | R](dn − 1) +
(1− Pr[Z(p1) ⊆ Z(p0) | R])(dn−1 − 1)

)

=
∑

p0∈Pi−1
n≥1

∑
p1≻p0

(
Pr[Z(p1) ⊆ Z(p0) | R](dn − dn−1) + dn−1 − 1

)
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≤
∑

p0∈Pi−1
n≥1

∑
p1≻p0

(2dim(p0) − 1

2m − 1

)ℓ (
dn − dn−1

)
+ dn−1 − 1

 .

This inequality follows from the observation that, if we choose a vector from Fm
2 \ {0}

uniformly at random, it lies within Z(p0) with probability 2dim(p0)−1
2m−1 . And we may think

of choosing a random ℓ-dimensional subspace as repeatedly sampling nonzero vectors
independently and uniformly at random until the dimension of all vectors sampled so far is
ℓ. In order to have Z(p1) ⊆ Z(p0), it is necessary for all of these vectors to lie within Z(p0),
so in particular, the first ℓ vectors must be contained in Z(p0). Thus, the probability that
Z(p1) ⊆ Z(p0) holds is at most the probability that just the first ℓ vectors are contained in

Z(p0), which is
(
(2dim(p0) − 1)/(2m − 1)

)ℓ
.

Note that, when n := m− dim(p0) ≥ 1,(2dim(p0)−m
)ℓ
−

(
2dim(p0) − 1

2m − 1

)ℓ
(dn − dn−1

)
≥
(
2dim(p0)−m

)ℓ
−

(
2dim(p0) − 1

2m − 1

)ℓ

=
(2dim(p0)(2m − 1))ℓ − ((2dim(p0) − 1)2m)ℓ

(2m(2m − 1))ℓ

≥

(
2mℓ − 2dim(p0)ℓ

(2m(2m − 1))ℓ

)

=

(
1− 2ℓ(dim(p0)−m)

(2m − 1)ℓ

)
=
(
1− 2−ℓn

)
(2m − 1)−ℓ

≥
(
1− 2−ℓ

)
2−mℓ (since n ≥ 1)

≥ 2−ℓ2−mℓ (since ℓ ≥ 1)

=
1

2(m+1)ℓ
.

Therefore,(
2dim(p0) − 1

2m − 1

)ℓ (
dn − dn−1

)
+ dn−1 − 1 ≤

(
2dim(p0)−m

)ℓ (
dn − dn−1

)
+ dn−1 − 1− 1

2(m+1)ℓ

=

(
1

(2ℓ)n

)(
dn − dn−1

)
+ dn−1 − 1− 1

2(m+1)ℓ

=

(
dn − dn−1

(d− 1)n
+ dn−1 − 1

)
− 1

2(m+1)ℓ

(from the definition of d in (5.1))

≤ dn − 1

d− 1
− 1

2(m+1)ℓ
(from Lemma 5.2).
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Putting this all together, we have

E[Xi | R] ≤
∑

p0∈Pi−1

n:=m−dim(p0)≥1

∑
p1≻p0

(2dim(p0) − 1

2m − 1

)ℓ (
dn − dn−1

)
+ dn−1 − 1


≤

∑
p0∈Pi−1

n:=m−dim(p0)≥1

∑
p1≻p0

(
dn − 1

d− 1
− 1

2(m+1)ℓ

)

=
∑

p0∈Pi−1

n:=m−dim(p0)≥1

(
dn − 1− d− 1

2(m+1)ℓ

)

=
∑

p0∈Pi−1

n:=m−dim(p0)≥1

(
dn − 1− 1

2mℓ

)
(from (5.1))

≤

 ∑
p0∈Pi−1

n:=m−dim(p0)≥1

dn − 1

− 1

2mℓ

=

 ∑
p0∈Pi−1

(
dm−dim(p0) − 1

)− 1

2mℓ

(since n = 0 terms contribute zero to the sum)

= x− 1

2mℓ
,

where in the final inequality we have used the assumption that R is consistent with Xi−1 =
x ≥ 1, so there is at least one term in the sum, i.e., at least one bad path. Thus, Claim 5.4
holds.

Returning to the proof of Lemma 5.3, we now suppose toward a contradiction that
Pr[Xr ≥ 1] > γε. Since Xi = 0 implies that Xj = 0 for all i ≤ j, it follows that, for all
i ∈ {1, 2, 3, . . . , r − 1},

Pr[Xi ≥ 1] > γε. (5.6)

For 2 ≤ i ≤ r, observe that

E[Xi] =
∑
x≥0

Pr[Xi−1 = x]E[Xi | Xi−1 = x]

= Pr[Xi−1 = 0]E[Xi | Xi−1 = 0] +
∑
x≥1

Pr[Xi−1 = x]E[Xi | Xi−1 = x]

≤ 0 +
∑
x≥1

Pr[Xi−1 = x]

(
x− 1

2mℓ

)
(by Claim 5.4)

= E[Xi−1]−
Pr[Xi−1 ≥ 1]

2mℓ
.
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Iteratively applying this inequality for i = r, r − 1, . . . , 3, 2, we conclude that

E[Xr] ≤ E[X1]−
r−1∑
i=1

Pr[Xi ≥ 1]

2mℓ

< 2(dm−ℓ − 1)−
r−1∑
i=1

γε

2mℓ
(from (5.5) and (5.6))

= 2(dm−ℓ − 1)− (r − 1)γε

2mℓ

≤ 0 (from the definition of r in (5.4)),

which is a contradiction, since Xr can never be negative.
Hence,

Pr[e∗ is a bad edge] = Pr[Xr ≥ 1] ≤ γε,

so the expected fraction of bad edges is at most γε. Markov’s inequality states that, for a
nonnegative real-valued random variable Y and any a > 0, the probability that Y ≥ a is at

most E[Y ]
a . Applying Markov’s inequality with Y as the fraction of bad edges and a := γ,

we conclude that the probability the fraction of bad edges is greater than γ is thus at most
γε
γ = ε.

Lemma 5.5. With probability at least 1− ε, the satisfiability of Ũ2 is less than

(1− γ)

(
1

22ℓ−1 + 2ℓ−1
+ δ

)
.

Proof. Call a subgraph of H̃ large if it contains all of the vertices of H̃ and at least a (2d + δ)

fraction of the edges of H̃. Recall the definition of d and γ in respective Equations (5.1) and
(5.2). If an assignment satisfies at least a

(1− γ)

(
1

22ℓ−1 + 2ℓ−1
+ δ

)
=

(
1

22ℓ−1 + 2ℓ−1
+

δ

2ℓ

)
fraction of the constraints in Ũ2, then, since at most one constraint from each bundle can
be satisfied, and there are 2ℓ constraints in each bundle, the assignment must satisfy the
bundles of at least a

2ℓ
(

1

22ℓ−1 + 2ℓ−1
+

δ

2ℓ

)
=

1

2ℓ−1 + 1
2

+ δ =
2

d
+ δ

fraction of edges. (Recall that to “satisfy a bundle” is to satisfy one constraint in the bundle.)
In other words, there must be some large subgraph on which the assignment completely
satisfies all of the bundles. Therefore, by the union bound, which says that the probability
of the union of multiple events is at most the sum of the individual probabilities of each
of the events, we conclude that the probability that some assignment satisfies at least a

(1− γ)
(

1
22ℓ−1+2ℓ−1 + δ

)
fraction of constraints is at most the number of large subgraphs

times the probability that some assignment satisfies all bundles on a given large subgraph.

Supposing that H̃ (which is d-regular) has n vertices, the number of large subgraphs of H̃ is

bounded by 2
nd
2 , the total number of subgraphs containing all vertices of H̃. To bound the
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probability that some assignment satisfies all bundles on a given large subgraph, we first
note that the probability of an arbitrary assignment satisfying all bundles is at most(

2ℓ

2m

)nd
2 (

2
d
+δ)

= 2∧
[
(ℓ−m)

nd

2

(
2

d
+ δ

)]
,

since there are at least nd
2

(
2
d + δ

)
edges in any large subgraph, and each edge has its bundle

satisfied independently with probability 2ℓ

2m . Thus, applying the union bound again, the
probability that some assignment satisfies all bundles on a given large subgraph is at most
(2m)n times this quantity. So, in total, the probability that some assignment satisfies at

least a (1− γ)
(

1
22ℓ−1+2ℓ−1 + δ

)
fraction of constraints is at most

2∧
[
nd

2
+mn+ (ℓ−m)

nd

2

(
2

d
+ δ

)]
= 2∧

[
n

(
d

2
+

δd

2

(
2

δd
+ 1

)
ℓ− δd

2
·m
)]

≤ 2∧
[
n

(
d

2
+

δd

2

(
2

δd
+ 1

)
ℓ− δd

2
·
(
1

δ
+

(
2

δd
+ 1

)
ℓ− 2

δd
log2(ε)

))]
(from (5.3))

= 2n log2(ε)

≤ 2log2(ε) (because ε < 1 =⇒ log2(ε) < 0, and n > 0)

= ε.

Therefore, the probability that no assignment satisfies at least this fraction of constraints is
at least 1− ε.

The final step is to observe that Ũ2 being highly unsatisfiable implies U2 is also highly
unsatisfiable.

Lemma 5.6. With probability at least 1− 2ε, the satisfiability of U2 (and thus of G(U2)) is
less than

s :=
1

22ℓ−1 + 2ℓ−1
+ δ.

Proof. By Lemma 5.3, the probability that less than a (1− γ) fraction of edges of H̃ are

good edges is at most ε. By Lemma 5.5, the probability that Ũ2 is (1− γ)s-satisfiable is at
most ε as well. By the union bound, the probability that either of these two events occurs is
at most 2ε, so the probability that neither event occurs is at least 1− 2ε. So it suffices to

prove that, whenever at least a (1− γ) fraction of the edges of H̃ are good edges, if Ũ2 is
not (1− γ)s-satisfiable, then U2 is not s-satisfiable.

We prove the contrapositive, i.e., that if at least an s fraction of constraints are satisfiable

in U2, then at least a (1− γ)s fraction of constraints are satisfiable in Ũ2. Suppose that Ũ2

has a total of c constraints. Then U2 has at least (1− γ)c constraints. So if at least an s
fraction of constraints are satisfiable in U2, it means that at least s(1− γ)c constraints of U2

are satisfied by some assignment xv. Since U2 and Ũ2 have the same variable set, and all

of the constraints of U2 are also constraints of Ũ2, it follows that xv must satisfy s(1− γ)c

constraints of Ũ2 as well, that is, at least an s(1− γ) fraction of constraints.
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5.3. Proof of Ck-equivalence. The following lemma is a generalization of Duplicator’s
strategy for determining g∗(v4) in the example from Section 4.3. Recall that H is the
underlying graph of both instances, consisting of only good edges.

Lemma 5.7. Let p = (v0, v1,v2, . . . ,vn) be a path in H of length n ≥ r. Given any values
in Fm

2 for g∗(v0) and g∗(vn), it is possible to extend g∗ to all of the intermediate vertices

of p so that the map f(xgv) := x
g+g∗(v)
v is a partial isomorphism between G(U1) and G(U2)

over the substructure with universe {xgv | v ∈ p, g ∈ Fm
2 } and relations involving consecutive

vertices in p.

Proof. Since H contains only good edges and p has length at least r, there exists a set of
vectors

B ⊆
⋃
i∈[n]

Z(vi−1, vi)

forming a basis of Fm
2 . Write h(i) for the number of basis vectors in B taken from Z(vi−1, vi),

and denote these vectors by

B =
⋃
i∈[n]

{zi,j | j ∈ [h(i)]},

where each zi,j is in Z(vi−1, vi). Since B is a basis, there exist coefficients ci,j such that

g∗(v0)− g∗(vn)−
∑
i∈[n]

b(vi−1, vi) =
∑
i∈[n]

∑
j∈[h(i)]

ci,jzi,j . (5.7)

For each i in order from 1 to n, inductively define

g∗(vi) := g∗(vi−1)−
∑

j∈[h(i)]

ci,jzi,j − b(vi−1, vi).

Note that, by expanding the inductive definition for g∗(vn), we have

g∗(vn) = g∗(vn−1)−
∑

j∈[h(n)]

cn,jzn,j − b(vn−1, vn)

= g∗(vn−2)−
∑

j∈[h(n−1)]

cn−1,jzn−1,j − b(vn−2, vn−1)

−
∑

j∈[h(n)]

cn,jzn,j − b(vn−1, vn)

= g∗(vn−3)−
∑

j∈[h(n−2)]

cn−2,jzn−2,j − b(vn−3, vn−2)

−
∑

j∈[h(n−1)]

cn−1,jzn−1,j − b(vn−2, vn−1)

−
∑

j∈[h(n)]

cn,jzn,j − b(vn−1, vn)

= . . .

= g∗(v0)−
∑
i∈[n]

b(vi−1, vi) +
∑

j∈[h(i)]

ci,jzi,j

 ,
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so our inductive definition agrees with the given value of g∗(vn) by (5.7). Finally, observe
that, for any i ∈ [n] and any arbitrary gi−1, gi, z ∈ Fm

2 ,

xgivi − x
gi−1
vi−1 = z

is an equation in G(U1)

⇐⇒ (xvi + gi)− (xvi−1 + gi−1) = z

is an equation in U1

⇐⇒ (xvi + gi + g∗(vi−1))− (xvi−1 + gi−1 + g∗(vi−1)) = z

is an equation in U1

⇐⇒ (xvi + gi + g∗(vi−1))− (xvi−1 + gi−1 + g∗(vi−1)) = z +
∑

j∈[h(i)]

ci,jzi,j

is an equation in U1

(since
∑

j∈[h(i)]

ci,jzi,j ∈ Z(vi−1, vi))

⇐⇒ (xvi + gi + g∗(vi−1))− (xvi−1 + gi−1 + g∗(vi−1)) = z +
∑

j∈[h(i)]

ci,jzi,j + b(vi−1, vi)

is an equation in U2

⇐⇒ (xvi + gi + g∗(vi−1)−
∑

j∈[h(i)]

ci,jzi,j − b(vi−1, vi))− (xvi−1 + gi−1 + g∗(vi−1)) = z

is an equation in U2

⇐⇒ x
gi+g∗(vi−1)−

∑
j∈[h(i)] ci,jzi,j−b(vi−1,vi)

vi − x
gi−1+g∗(vi−1)
vi−1 = z

is an equation in G(U2)

⇐⇒ xgi+g∗(vi)
vi − x

gi−1+g∗(vi−1)
vi−1 = z

is an equation in G(U2)

⇐⇒ f(xgivi)− f(x
gi−1
vi−1) = z

is an equation in G(U2),

so f is a partial isomorphism over the entire path.

We are finally ready to prove Ck-equivalence. Duplicator’s strategy is to maintain
consistency between G(U1) and G(U2) over a minimal tree in H spanning all pebbled vertices
(that is, vertices v ∈ V (H) such that some variable xgv is pebbled in one of the two
structures). Since H has high girth relative to r, Spoiler will never be able to expose a cycle
of inconsistency, as any cycle will have to contain a long path over which Duplicator can use
Lemma 5.7 to define a partial isomorphism regardless of any predetermined mappings at
the endpoints.

Lemma 5.8. G(U1) ≡Ck G(U2).

Proof. It is without loss of generality to assume H is connected, for otherwise Duplicator
can apply the strategy presented here on each connected component separately. On every
round i of the k-pebble bijective game played on G(U1) and G(U2), for any u ∈ V (H), let
Ti(u) be a minimal tree containing u and all pebbled vertices just after Spoiler has picked up
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Figure 4. The tree consisting of all vertices and edges in the figure is Ti(u).
This is a minimal tree that includes all pebbled vertices, which are filled in
red, and vertex u, which is near the top left corner (also in red). The green
dashed line outlines the boundary of Ti−1 (not all vertices and edges of this
tree are shown, just those that are also in Ti(u)). The set of vertices Pi is
not shown, but consists of all of the red vertices and vertices of degree ≥ 3.
Assuming that r = 3 (which is, of course, not nearly large enough; this is
just for the purpose of illustration), the forest Fi(u) is as depicted in blue,
consisting of the lettered vertices A through H and all of the edges between
those vertices.

a pebble. Let Pi(u) denote the set of all of the vertices in Ti(u) which have degree at least 3
in Ti(u) or contain a pebbled vertex, also including u. Define Ti := Ti(u

∗
i ) and Pi := Pi(u

∗
i ),

where u∗i is the new vertex pebbled in round i. Finally, define the forest Fi(u) to be the
subgraph of Ti(u) \ Ti−1 (what this notation means is, remove all edges in Ti−1 from Ti(u),
then remove isolated vertices) consisting of all segments in Ti(u) \ Ti−1 between vertices in
Pi(u) ∪ V (Ti−1) which have length less than r. See Figure 4 for an example.

A few remarks are in order about the conceptual meaning of Ti(u) and Fi(u). First,
the parameter u is included because Duplicator can essentially play an entirely different
strategy for each possible vertex u that Spoiler may choose to pebble. In other words, when
determining the bijection among variables of the form xgu, Duplicator imagines what the
new minimal tree Ti between all pebbled vertices will look like if Spoiler chooses to put a
pebble on one of those variables. We call this tree Ti(u). Duplicator will imagine an entirely
different tree for other vertices u, requiring an entirely different strategy. No matter which
vertex u∗ is eventually chosen, Duplicator seeks to always maintain a partial isomorphism
among all variables involved Ti. The trick is showing how to preserve this property as the
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tree changes from Ti−1 in round i− 1 to Ti in round i. Where the two trees overlap, we leave
the bijection the same as in the previous round. Thus we only need to worry about the edges
that are in Ti but not in Ti−1. We decompose this set of edges into a forest Fi of short paths
and junctions of degree ≥ 3, and the remains, which must be a disjoint union of long paths
(specifically, of length ≥ r). Duplicator can use Lemma 5.7 to define the bijection over these
long paths regardless of the constraints on the endpoints (the constraints could come from
vertices in Ti−1, where Duplicator must not change the bijection from the previous round).
Thus, Fi is really the only part where Duplicator might run into trouble. Specifically, it
could be impossible to extend a partial isomorphism over a connected component of Fi if
multiple endpoints are fixed from Ti−1. The next two Claims rule out this possibility on
the grounds that paths in Fi are short and H has high girth. Thus, each component of Fi

has at most one vertex with a constraint on the bijection. Since there are no cycles, it is
possible to inductively extend the bijection to each connected component.

Claim 5.9. On any round i, for any vertex u ∈ V (H), any path in Ti(u) passes through at
most k vertices in Pi(u).

Proof of Claim. Let p = (v0, v1,v2, . . . ,vn) be a path in Ti(u). Consider the following map
h : p ∩ Pi(u)→ V (Ti(u)):

h(v) :=


v if deg(v) < 3 in Ti(u)

a pebbled vertex (or u) reachable from v by a path in

Ti(u) not passing through neighboring vertices in p if deg(v) ≥ 3 in Ti(u)

Note that such a vertex in the second case above always exists when v has degree at least 3,
and is necessarily different from all other vertices in the image of h. Thus, h is injective.
Also, since vertices in Pi(u) of degree less than 3 must be pebbled (or u), the output of h(v)
must always be a pebbled vertex (or u). Thus, we have an injection from p ∩ Pi(u) to a set
of pebbled vertices (plus u), of which there are at most k (since one pebble pair has been
picked up), so |p ∩ Pi(u)| ≤ k.

Claim 5.10. On any round i, for any vertex u ∈ V (H), there does not exist any path
contained in Fi(u) with both endpoints in Ti−1.

Proof of Claim. Suppose toward a contradiction that there was such a path p0, joining
v1, v3 ∈ Ti−1. Let v2 be the first vertex in p0 that is contained within Ti−1, excluding v1 (it
could just be v3 if there are no earlier places where p0 crosses Ti−1). Let p1 be the subpath
of p0 from v1 to v2. Since Ti−1 is connected, there must be some path p2 joining v1 and v2
in Ti−1. Aside from v1 and v2, the path p1 lies outside of Ti−1 (since it is contained in Fi)
whereas p2 lies inside of Ti−1, so p1 and p2 form a cycle. Since p1 is contained within Ti(u),
by Claim 5.9 it intersects at most k vertices in Pi(u), splitting p1 up into at most k + 1
segments. As p1 is contained in Fi(u), the length of each of these segments is strictly less
than r, so p1 has length strictly less than (k + 1)r. Since p2 is contained within Ti−1, which
is minimal, p2 cannot contain any subpaths of length (k + 1)r which do not intersect Pi−1,
for otherwise we could delete such a subpath and add p1 to get a strictly smaller tree that
still connects all vertices in Pi−1, contradicting the minimality of Ti−1. Applying Claim 5.9
to round i− 1 and vertex u∗i−1, we have that at most k vertices of p2 intersect Pi−1, so p2
has length at most k(k + 1)r. Thus, concatenating p1 and p2 yields a cycle of size strictly
less than

(k + 1)r + k(k + 1)r = (k + 1)2r
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in H. This contradicts the fact that H was constructed to have girth at least (k + 1)2r.
Hence, no such path p1 can exist.

Returning to the proof of Ck-equivalence, let Xi(u) denote the variable set of G(U1) and
G(U2) restricted to Ti(u), that is,

Xi(u) := {xgv | v ∈ Ti(u), g ∈ Fm
2 }.

On each round i, Duplicator’s will begin by defining a map

g∗(i, u, ·) : V (Ti(u))→ Fm
2

for each u ∈ V (H). This map will determine how the bijection acts on variables involved in
vertex u via (4.1), which we will recall shortly. As we remarked near the beginning of the
proof, this may be different for each possible u that Spoiler could pebble. We will prove
(inductively) that Duplicator can always define g∗ so that it has the following two properties:

(1) For any pebbled vertex v ∈ V (H),

g∗(i, u, v) = g∗(i− 1, u∗i−1, v).

(2) The map fi,u : Xi(u)→ Xi(u) defined by

fi,u(x
g
v) := xg+g∗(i,u,v)

v

gives a partial isomorphism between G(U1) and G(U2) over pairs of variables whose
underlying vertices are adjacent in Ti(u).

Obviously these properties hold at the beginning of the game, when there are no pebbled
vertices and the tree is empty, so g∗ is the empty map. We will show that Duplicator can
preserve these properties from one round to the next.

On round i, Duplicator presents Spoiler with the bijection

fi(x
g
v) := xg+g∗(i,v,v)

v ,

which respects existing pebble pairs by property (1). No matter which vertex u∗i Spoiler
chooses, the map fi,u∗

i
agrees with fi over u

∗
i , so we know that fi,u∗

i
respects all pebble pairs

since fi does. To see that Duplicator’s bijection is a partial isomorphism between pebbled
variables, first observe that, at the beginning of the next round i+ 1, any edge between a
pair of adjacent pebbled vertices of H is a path of length one (which is less than r) between
vertices in Ti. Thus, this edge must not be in Fi+1, otherwise it would violate Claim 5.10
(applied to round i + 1). The only way that such an edge can fail to be in Fi+1 is for it
to have been in the previous tree, Ti. Thus, we have shown that, after Spoiler places the
pebbles in round i, every pair of pebbled variables in the same relation involves vertices that
are adjacent in Ti. Therefore, Property (2) guarantees Spoiler does not win on round i.

All that remains is to show how Duplicator can satisfy properties (1) and (2) on
each round i, assuming inductively that they are satisfied on round i − 1. Fix a vertex
u ∈ V (G). Duplicator defines g∗(i, u, ·) in three steps: first over V (Ti(u))∩V (Ti−1), then over
V (Fi(u)) \ V (Ti−1), then finally, over the remaining vertices (V (Ti(u)) \ V (Ti−1)) \ V (Fi(u)).

Over V (Ti(u)) ∩ V (Ti−1), Duplicator simply sets

g∗(i, u, v) := g∗(i− 1, u∗i−1, v),

which is well-defined over V (Ti−1) and clearly satisfies both properties (1) and (2), inductively
assuming that g∗(i− 1, u∗i−1, ·) did. Since V (Ti(u)) ∩ V (Ti−1) contains all pebbled vertices,
we no longer have to worry about property (1); we just have to define g∗(i, u, ·) on the
remainder of V (Ti(u)) so that property (2) is satisfied.



3:28 J. Tucker-Foltz Vol. 20:2

Duplicator then uses the following algorithm to define g∗(i, u, ·) over V (Fi(u)) \V (Ti−1).
Basically, we define g∗ by inductively extending from neighboring vertices. A vertex
is assigned the value it needs to have in order to make Duplicator’s bijection a partial
isomorphism across each edge in Fi.

1 while true do
2 if there exists {v1, v2} ∈ E(Fi(u)) such that g∗(i, u, v1) is defined but g∗(i, u, v2)

is not defined then
3 g∗(i, u, v2)← g∗(i, u, v1) + b(v1, v2);

4 else if there exists v ∈ V (Fi(u)) such that g∗(i, u, v) is not defined then
5 g∗(i, u, v)← anything;

6 else
7 return;

8 end

9 end

Observe that the constraints involving each edge in Fi(u) considered in the first case
are preserved by fi,u: for all g1, g2, z ∈ Fm

2 ,

xg1v1 − xg2v2 = z

is an equation in G(U1)

⇐⇒ (xv1 + g1)− (xv2 + g2) = z

is an equation in U1

⇐⇒ (xv1 + g1)− (xv2 + g2) = z + b(v1, v2)

is an equation in U2

⇐⇒ (xv1 + g1 + g∗(i, u, v1))− (xv2 + g2 + g∗(i, u, v1) + b(v1, v2)) = z

is an equation in U2

⇐⇒ xg1+g∗(i,u,v1)
v1 − xg2+g∗(i,u,v1)+b(v1,v2)

v2 = z

is an equation in G(U2)

⇐⇒ xg1+g∗(i,u,v1)
v1 − xg2+g∗(i,u,v2)

v2 = z

is an equation in G(U2)

(from line 3 of the algorithm)

⇐⇒ fi,u(x
g1
v1)− fi,u(x

g2
v2) = z

is an equation in G(U2).

For example, if Fi(u) is as in Figure 4, then the first iteration of the algorithm would
define g∗(i, u,B) so that the constraints involving A and B are consistent under fi,u. The
next iteration would then define g∗(i, u, C) so that the constraints involving B and C are
consistent. Similarly, the next two iterations would set g∗(i, u,D) and g∗(i, u, E) (these could
happen in either order). On the fifth iteration, we would hit the second case of the algorithm
and set one of g∗(i, u, F ), g∗(i, u,G) or g∗(i, u,H) arbitrarily. The final two iterations would
set the other two values according to the first case.

Since the edges encountered in the first case are always made consistent, the only way
that fi,u could fail to be a partial isomorphism over Fi(u) is if, at some iteration, there were
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two different edges satisfying the condition in the first case that yielded different values for
g∗(i, u, v2) for some v2. Since Fi(u) is a forest, the only way that this could happen is if
some connected component of Fi(u) had two distinct vertices v1 and v2 on which g∗(i, u, ·)
was already defined before the algorithm started, which can only happen if v1, v2 ∈ V (Ti−1).
But this means that there is a path in Fi(u) from v1 to v2 that violates Claim 5.10. Thus,
property (2) is still satisfied.

At this point, the only remaining edges of Ti(u) which Duplicator needs to worry about
are those which are in Ti(u) \ Ti−1 but are not in Fi(u). By the definition of Fi(u), this
consists of paths of length at least r, each with a disjoint set of intermediate vertices. Since
g∗(i, u, ·) has not yet been defined on any of the intermediate vertices, Duplicator can apply
Lemma 5.7 to each one separately. Thus, property (2) is satisfied over the entirety of Ti(u).

We have shown that Duplicator has a winning strategy in the k-pebble bijective game
played on G(U1) and G(U2), so, by Theorem 2.1, G(U1) ≡Ck G(U2).

5.4. Proof of main result.

Theorem 5.11. For any δ > 0 and any positive integer ℓ, there exists a positive integer q
such that no sentence of FPC distinguishes UG(q) instances (encoded as τUG(q)-structures)

of optimal value ≥ 1
2ℓ

from those of optimal value < 1
22ℓ−1+2ℓ−1 + δ.

Proof. Let δ and ℓ be given, pick an arbitrary ε ∈ (0, 12), then let q be as defined in Section 5.1.
Suppose toward a contradiction that there is an FPC sentence ϕ distinguishing the two
cases. Then ϕ can be translated into a logically equivalent sentence ϕ′ of Ck for some fixed
k. Given this value of k, let Ak := G(U1) and Bk := G(U2) be as defined in Section 5.1. By
Lemmas 5.1, 5.6 and 5.8, with probability at least 1− 2ε, we will have that

opt(Ak) ≥
1

2ℓ
, opt(Bk) <

1

22ℓ−1 + 2ℓ−1
+ δ,

yet Ak ≡Ck Bk. Since 1− 2ε > 0, this implies that there is some pair of τUG(q)-structures
(Ak,Bk) produced by this construction satisfying these properties. This is a contradiction,
since ϕ′ cannot distinguish Ak and Bk as they are Ck-equivalent, so ϕ cannot distinguish
them either.

Corollary 5.12. For any α ∈ (0, 1], for sufficiently large q there does not exist an FPC-
definable α-approximation algorithm for UG(q).

Proof. Let α ∈ (0, 1] be given. Define

ℓ := ⌈2− log2(α)⌉ , δ :=
1

22ℓ−1 + 2ℓ−1
.

Note that ℓ is a positive integer and δ > 0. Let

c :=
1

2ℓ
,

s :=
1

22ℓ−1 + 2ℓ−1
+ δ =

2

22ℓ−1 + 2ℓ−1

Then, by Theorem 5.11, there exists a positive integer q such that no sentence of FPC
distinguishes τUG(q)-structures with optimal value ≥ c from those with optimal value < s.
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Observe that

s

c
=

2
22ℓ−1+2ℓ−1

1
2ℓ

=
2ℓ+1

22ℓ−1 + 2ℓ−1

≤ 2ℓ+1

22ℓ−1

= 22−ℓ

≤ 22−(2−log2(α)) (since ℓ ≥ 2− log2(α))

= α.

Therefore, it follows from Lemma 2.2 that there is no FPC-definable α-approximation
algorithm for UG(q).

6. Conclusion

This paper has two objectives. The first is to introduce a new proof idea into the arsenal of
tools for CFI-constructions. Our main challenge was that, to prove an FPC-inapproximability
result, it is not sufficient to have Duplicator maintain the standard kind of invariant used in
CFI-constructions: that the two structures are always isomorphic by a bijection agreeing
with all pebble pairs, except at one place where the isomorphism breaks down. Using
techniques from graph theory and linear algebra, we have shown how Duplicator can win the
k-pebble bijective game while only maintaining an extremely weak invariant—consistency
over a very small portion of the two structures. Hopefully this approach can be extended to
other approximation settings as well.

The second objective is to make progress on the FPC-version of the Unique Games
Conjecture. We have established an FPC-inapproximability gap which is competitive
with recent results in ordinary complexity theory about polynomial-time approximation
algorithms, yet our result holds without the assumption that P ̸= NP. Of course, our
proof method is entirely different than the proof methods used in ordinary complexity
theory—so different that the fundamental problem which is shown to be inexpressible in
FPC, distinguishing G(U1) from G(U2), is not even NP-hard.11

To prove the FPC-UGC in its entirety, it will be necessary to (almost completely)
eliminate the parallel, contradictory constraints between pairs of vertices. These simple
gadgets provide Duplicator with the power to make choices, circumventing the “uniqueness”
inherent in “Unique Games,” but they kill the completeness of the inapproximability gap: the
more-satisfiable instance will still only have satisfiability at most 1

2 . One possible approach
would be to build larger gadgets with more complicated automorphisms achieving a similar
effect as these parallel constraints. We leave this possibility to future work.

11To see this, observe that a given bundle of constraints in either structure is satisfiable if and only if a
certain system of m− ℓ linear equations over Fm

2 is solvable. (Specifically, the equations express the constraint
that xg1

v1 − xg2
v2 in the ℓ-dimensional affine subspace Z(v1, v2) − b(v1, v2) + (g1 − g2).) In G(U1), the union

of all of these systems is completely satisfiable, while in G(U2), they are not, so distinguishing G(U1) from
G(U2) can be accomplished by Gaussian elimination.
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