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Abstract—Differential Privacy protects individuals’ data when
statistical queries are published from aggregated databases:
applying “obfuscating” mechanisms to the query results makes
the released information less specific but, unavoidably, also
decreases its utility. Yet it has been shown that for discrete
data (e.g. counting queries), a mandated degree of privacy and
a reasonable interpretation of loss of utility, the Geometric
obfuscating mechanism is optimal: it loses as little utility as
possible [Ghosh et al.[1]].

For continuous query results however (e.g. real numbers) the
optimality result does not hold. Our contribution here is to show
that optimality is regained by using the Laplace mechanism for
the obfuscation.

The technical apparatus involved includes the earlier discrete
result [Ghosh op. cit.], recent work on abstract channels and their
geometric representation as hyper-distributions [Alvim et al.[2]],
and the dual interpretations of distance between distributions
provided by the Kantorovich-Rubinstein Theorem.

Index Terms— Differential privacy, utility, Laplace mechanism,
optimal mechanisms, quantitative information flow, abstract
channels, hyper-distributions.

I. INTRODUCTION

A. The existing optimality result, and our extension

Differential Privacy (DP) concerns databases from which
(database-) queries produce statistics: a database of informa-
tion about people can be queried e.g. to reveal their average
height, or how many of them are men. But a risk is that
from a general statistic, specific information might be revealed
about individuals’ data: whether a specific person is a man, or
his height, or even both. Differentially-private “obfuscating”
mechanisms diminish that risk by perturbing their inputs (the
raw query results) to produce outputs (the query reported)
that are slightly wrong in a probabilistically unpredictable
way. That diminishes the personal privacy risk (good) but also
diminishes the statistics’ utility (bad).

The existing optimality result is that for a mandated dif-
ferential privacy parameter, some ε>0, and under conditions
we will explain, the Geometric obfuscating mechanism Gε

(depending on ε) loses the least utility of any ε-Differentially
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Private oblivious obfuscating mechanism for the same ε, that
loss being caused by her having to use the perturbed statistic
instead of the real one [1].

A conspicuous feature of ε-DP (that is ε-differential pri-
vacy) is that it is achieved without having to know the nature
of the individual’s privacy that it is protecting: it is simply
made “ε-difficult” to determine whether any of his data is in
the database at all. Similarly the minimisation of an observer’s
loss (of utility) is achieved by the optimal obfuscation without
knowing precisely how the obfuscation affects her: instead, the
existence of a “loss function” is postulated that monetises her
loss (think “dollars”) based on the raw query (which she does
not know) and the obfuscated query (which she does know)
— and optimality of Gε holds wrt. all loss functions (within
certain realistic constraints) and all (other) ε-DP mechanisms
Mε.

IN SUMMARY: The existing result states that the ε-DP Geo-
metric obfuscating mechanism Gε minimises loss of utility to
an observer when the query results are discrete, e.g. counting
queries in some (0..N), and certain reasonable constraints
apply to the monetisation of loss. But the result does not hold
when the query results are continuous, e.g. in the unit interval
[0, 1]. We show that optimality is regained by using the
ε-DP Laplace mechanism Lε.

II. DIFFERENTIAL PRIVACY, LOSS OF UTILITY
AND OPTIMALITY

A. Differential privacy

Differential privacy begins with a database that is a multiset
of rows drawn from some set R [3]; thus the type of a database
is BR (using “B” for “bag”). A query q is a function from
database to a query-result in some set X , the input of the
mechanism, and is thus of type BR→X .

A distance function between databases D:BR×BR → R
measures how different two databases are from each other.
Often used is the Hamming distance DH , 1 which gives (as an
integer) how many whole rows would have to be removed
or inserted to transform one database into another: given
two databases b1, b2:BR we define DH(b1, b2) to be the size
#(b1

a
b2) of their (multiset-) symmetric difference. Thus in

1The Hamming distance is also known as the symmetric distance.
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particular two databases that differ only because a row has
been removed from one of them have Hamming distance 1,
and we say that such databases are adjacent.

We define also a distance function (metric) between –for the
moment– discrete distributions DY over a set of observations
Y the output of the mechanism. Given two distributions δ1, δ2
on Y , their distance dD(δ1, δ2) (for “Dwork”) is based on the
largest ratio over all Y⊆Y between probabilities assigned to
Y by δ1 and δ2 — it is

dD(δ1, δ2) := maxY⊆Y | ln(δ1(Y )/δ2(Y ))| (1)

where δ(Y ) is the probability δ assigns to the whole subset
Y of Y , and the logarithm is introduced to make the distance
satisfy the triangle inequality that metrics require. 2

Following the presentation of Chatzikokolakis et al. [4],
once we have chosen a metric D on databases, we say that
a mechanism M achieves ε-Differential Privacy wrt. that D

and some query q, i.e. is ε-DP for D, q, just when

for all databases b1, b2 in BR we have
dD(M(q(b1)),M(q(b2))) ≤ ε · D(b1, b2) . (2)

In the special case when D is the Hamming distance DH , the
above definition becomes

for all databases b1, b2 in BR with DH(b1, b2)≤1,
i.e. that differ only in the presence/absence of a single row,
and for all subsets Y of Y we have

Pr(M(q(b1))∈Y ) ≤ eε · Pr(M(q(b2))∈Y ) .
(3)

With the above metric-based point of view we can say that
an ε-DP mechanism is (simply) a ε-Lipschitz function from
databases BR with metric D to distributions of observations
DY with metric dD [4].

Definition 1: ( dD/D ε-DP for mechanisms) A Lipschitz
mechanism M from X raw query outputs) to Y (observations)
is ( dD/D) ε-Differentially Private just when

for all inputs x1, x2 in X to M we have
dD(M(x1),M(x2)) ≤ ε · D(x1, x2) , (4)

in which we elide dD and D when they are clear from context.
In (2) we gave the special case where M ’s inputs x1, x2 were
raw query-results q(b1), q(b2), i.e. with b1, b2 two databases
acted on by the same query-function q. And (3) was further
specialised to where the two databases were adjacent and the
metric was DH , the Hamming distance.

B. “Counting” queries

Counting queries on databases are the special case where
the codomain X of the query (the mechanism input) is the
non-negative integers and the query q returns the number of
database rows satisfying some criterion, like “being a man”.
The “average height” query is not a counting query.

When the database metric is the Hamming distance DH , a
counting query can be characterised more generally as one that
is a 1-Lipschitz function wrt. dH and the usual metric (absolute

2This distance is also known as “max divergence”.

difference) on the integers, i.e. one whose result changes by
at most 1 between adjacent databases. Since composition of
Lipschitz functions (merely) multiplies their Lipschitz factors,
the composition of a counting query and an obfuscating
mechanism is ε-DP as a whole if the mechanism on its own
(i.e. without the query, acting “obliviously” on x=q(b)) is ε-
Lipschitz. That is why for counting queries we can concentrate
on the mechanisms alone (whose type is X→DY) rather than
including the databases and their type BR in our analysis.

C. Prior knowledge, open-source and the observer
Although the database contents are not (generally) known,

often the distribution of its query results is known: this is
“prior knowledge”, where e.g. it is known that a database
of heights in the Netherlands is likely to contain higher
values than a similar database in other countries — and that
knowledge is different from the (unknown) fact we are trying
to protect, i.e. whether a particular person’s height is in that
database.

We abstract from prior knowledge of the database by con-
centrating instead on the prior knowledge π of the distribution
X of raw queries, the inputs x to the mechanism, that is
induced as the push-forward of the query-function (an “open
source” aggregating function) over the known distribution of
possible databases themselves. Knowing π on the input in X
the observer can use her knowledge of the mechanism (also
open source) to deduce a distribution on the output observa-
tions in Y that will result from applying it and –further– she
can also deduce a posterior distribution on X based on any
particular y in Y that she observes.

D. The Geometric mechanism is ε-DP for DH

1) Specialising to DH : Recall from §II-B that DH , the
Hamming distance, is what is typically used for counting
queries. In that case we see as follows from (2) that the
Geometric mechanism G can be made ε-DP.

The Geometric distribution centred on 0 with parameter α
assigns (discrete) probability

Gα(n) := 1−α/1+α · α|n| (5)

to any integer n (positive or negative) [1]. It implements an ε-
DP Geometric mechanism by obfuscating the query according
to (5) above: thus set α := e−ε and define

Gε(n)(n′) := Gα(n′−n) = 1−α/1+α · α|n
′−n| (6)

to be the probability that integer n is input and n′ is output.
Thus applied to some n, the effect of Gε with ε := − lnα 3

is to leave n as it is with probability 1−α/1+α and to split the
remaining probability 2α/1−α equally between adding 1’s or
subtracting them: Gε continues (in the same direction) with
repeated probability α until, with probability 1−α, it stops.

As explained in §II-C, we now concentrate on Gε alone
and how it perturbs its input (a query result), i.e. no longer
considering the database from which the query came. 4

3The α in Gα is <1, so ε>0.
4Note that although the (raw) query is output from the database, it is input

to the obfuscating mechanism. That is why we refer to X as “input”.



2) The geometric mechanism truncated: In (6) the mech-
anism Gε can effect arbitrary large perturbations. But in
practice its output is constrained (in the discrete case) to a
finite set (0..N) by (re-)assigning all probabilities for negative
observations to observation 0, and all probabilities for ≥N ob-
servations to N . For example with e−ε=α=1/2 and restricting
to (0..2) we have Gε(0)(0) = · · ·+1/12+1/6+1/3 = 2/3 and
Gε(0)(1) = 1/6 and Gε(0)(2) = 1/12+1/24+ · · · = 1/6. It can
be shown [5] however that truncation makes no difference to
our results, and so from here on we will assume that truncation
has been applied to Gε.

E. Discrete optimality

It has been shown [1] that when X is discrete (and hence
the prior π on X is also), and when the obfuscation is via
Gε, and when the observer applies a “loss function” `(w, x)
of her choice to monetise in R≥ the loss of utility to her if
the raw query was x but she assumes it was w, then any other
ε-DP mechanism Mε acting on X can only lose more utility
(on average) according to that π and ` than Gε does. That
is, the ε-DP Geometric mechanism is optimal for minimising
loss (maximising utility) over all priors π and all (“legal”)
loss functions ` under a mandated ε-DP obfuscation. A loss
function is said to be legal if it is monotone (increasing) wrt.
to the difference between the guess (w) and the actual value
x of the query. As explained in [1] this means that the loss
`(w, x) takes the form of a function m(|w−x|, x), which must
be monotone (increasing) in its first argument.

F. The geometric mechanism is never ε-DP
on dense continuous inputs, e.g. when D on X is Euclidean

If the input metric for G is not the Hamming distance DH ,
e.g. when the G’s input X is continuous, still G’s output
remains discrete, taking some number of steps, each of fixed
length say λ>0, in either direction. That is, any G input x is
perturbed to x+iλ for some integer i.

Now because X is continuous and dense, we can vary the
input x itself, by a tiny amount, to some x′ so that D(x, x′)<λ
no matter how small λ might be, producing perturbations
x′+iλ each of which is distant that same (constant) D(x, x′)
from the original x+iλ and, precisely because D(x, x′)<λ ,
those new perturbations cannot overlap the ones based on the
original x.

Thus the two distributions produced by G acting on x and on
x′ have supports that do not intersect at all. And therefore the
dD distance between the two distributions is infinite, meaning
that G cannot be be ε-DP for any (finite) ε. That is, for
a database producing truly real query results X , a standard
(discrete) G cannot establish ε-DP for any ε, however large ε
might be.

There are two possible solutions. The first solution, both
obvious and practical, is to “discretise” the input and to
scale appropriately: a person’s height of 1.75m would become
175cm instead. A second solution however is motivated by
taking a more theoretical approach. Rather than discretise
the type of the query results, we leave it continuous — and

seek our optimal mechanism among those that –unlike the
Geometric– do not take only discrete steps. It will turn out to
be the Laplace distribution.

G. Our result — continuous optimality

In the discrete case typically the set X of raw queries
is (0..N) for some N≥0, and the prior knowledge π is a
(discrete) distribution on that. For our continuous setting we
will use X=[0, 1] for raw queries, the unit interval U , and
the discrete distribution π will become a proper measure on
[0, 1] expressed as a probability density function. The ε-DP
obfuscating mechanisms, now Kε for “kontinuous”, will take
a raw query x from a continuous set X rather than a discrete
one. And the metric on X=U will be Euclidean.

Our (continuous) optimality result formalised at Thm. 5
is that ε-DP Laplace mechanism Lε minimises loss over all
continuous priors π on X=U and all legal loss functions
` under a mandated ε-DP obfuscation with respect to the
Euclidean metric on the continuous input X=[0, 1].

The theorem requires that all mechanisms satisfy (2) with
D the Euclidean distance on continuous inputs. We write ε-
DP for such mechanisms. The argument in §II-F above shows
therefore that Geometric mechanisms are no longer suitable
(for optimality) because on continuous X they are no longer
ε-DP.

III. AN OUTLINE OF THE PROOF

We access the existing discrete results in §I-A, and §II-E
from within the continuous U by “pixelating” it, that is
defining UN={0, 1/N, 2/N, . . . ,N−1/N, 1} for integer N>0,
and mapping (0.N) isomorphically onto that discrete subset.
We then establish near optimality for a similarly pixelated
Laplace mechanism, showing that “near” becomes “equal to”
when N tends to infinity. In more detail:
(a) (We show in §VI-B that) Any (discrete) prior on UN

corresponds to some prior on the original U , but can also
be obtained by pixelating some continuous prior π on all
of U , concentrating its (now discrete) probabilities onto
elements of UN only: e.g. the probability π[n/N, n+1/N)
of the entire 1/N-sized interval is moved onto the point
n/N . We write it πN .

(b) (§VI-C) Any function f acting on all of U can be made
into an N-step function by first restricting its inputs to
UN and then filling in the “missing” values f(x) for x in
(n/N, n+1/N) by copying the value for f(n/N). If f is an
ε-DP mechanism Kε, we write its N-stepped version as
Kε
N , and note that Kε

N remains ε-DP when restricted to
the points in UN only.
If f is a loss function on (W and) X we write `N for its
stepped version.

(c) (§VII-C; Lem. 10; Lem. 16) Now for any N , mechanism
Kε
N , prior πN , and legal N-step loss function `N we can

appeal to the discrete optimality result: for the pixelated
prior πN and the N-step and legal `N the loss due to GεN
is ≤ the loss due to Kε

N .



(d) (§VII-B; Thm. 13) The replacement of GεN by LεN (both
N-step functions on [0, 1]) is via pixelating the output
(continuous) distribution of LεN to a multiple T of N :
we write that TLεN . The Kantorovich-Rubinstein Theorem,
provided additionally that `N is p-Lipschitz for some p>0
independent of N , shows that the (additive) difference
between the GεN -loss and the TLεN -loss, for any πN and
`N and T a multiple of N , tends to zero as N increases.

(e) (§VI-D) Then we remove the subscript πN on the prior,
and on the mechanisms Kε

N and TLεN , relying now on the
ε-DP of the two mechanisms to make the (multiplicative)
ratio between the losses they cause tend to 1.

(f) (§VIII) The final step, removing the subscript N from `N ,
is that the loss-calculating procedure is continuous and
that `N tends to ` as N tends to infinity.

IV. CHANNELS; LOSS FUNCTIONS;
HYPER-DISTRIBUTIONS; REFINEMENT

In this section we provide a summary of the more general
Quantitative Information Flow techniques that we will need
for the subsequent development.

A. Channels, priors, marginals, posteriors

The standard treatment of information flow is via Shannon’s
(unreliable) channels: they take an input x from say X and
deliver an output that for a perfect channel will be x again,
but for an imperfect channel might be some other x′ in X
instead. For example, an imperfect channel transmitting bits
might “flip’ input bits so that with probability say 1/4 an input
0 becomes an output 1 and vice versa [6]. In the discrete case,
and generalising to allow outputs of possibly a different type
Y , such channels are X×Y matrices C whose row-x, column-
y element Cx,y is the probability that input x will produce
output y. A perfect channel would be the identity matrix on
X×X ; a completely broken channel on X×Y for any Y would
have Cx,y = 1/#Y.

The x-th row of a (channel) matrix C is Cx,−; and the
y-th column is C−,y . Since each row sums to 1 (making
C a stochastic matrix), the row Cx,− determines a discrete
distribution in DY; for the “broken” channel it would be the
uniform distribution, which we write �.

As a matrix, a channel has type X×Y→R (but with 1-
summing rows); isomorphically it also has type X→DY . We’ll
write X_Y for both, provided context makes it clear which
one we are using.

If a prior distribution π:DX on X is known, then the
channel C can be applied to π to create a joint distribution J in
D(X×Y) on both input and output together, written π.C and
where Jx,y :=πxCx,y . For that J , the left-marginal

∑
y Jx,y

gives the prior π again (no matter what C might be), i.e. the
probability that the input was x — thus πx = Jx,Σ if we use
that notation for the marginal. The right marginal JΣ,y is the
probability that the output is y, given both π and C.

The y-posterior distribution on X , given π,C and a particu-
lar y, is the conditional distribution on X if that y was output:

it is the y-th column divided by the marginal probability of
that y, that is J−,y/JΣ,y (provided the marginal is not zero).

If we fix π and C, and use the conventional abbreviation
pXY for the resulting joint distribution (π.C), then the usual
notations for the above are pX for left marginal (=π) and
pX(x) for its value πx at a particular x, with pY and pY (y)
similarly for the right marginal. Then pX|y(x) is the posterior
probability of the original observation’s being x when y has
been observed. Further, we can write just p(x) and p(y) and
p(x|y) when context makes the (missing) subscripts clear.

B. Loss functions; remapping

Our obfuscating mechanisms M and Gε are channels like C
in the discrete case — the result of the query is the channel’s
input x, and the (perturbed) value the observer sees is the
channel’s output y. The loss functions `(w, x) will quantify
the loss to her of seeing (only) y, and then choosing w, when
what she really wants to know is x. Such ε-DP mechanisms
have earlier been modelled this way, i.e. as channels by
Alvim et al. [7] and Chatzikokolakis et al. [4], who observed
that for ε-DP the ratios of their entries must satisfy the ε-
DP constraints, because the definition at §II-A(4) reduces
to comparing (multiplicatively) adjacent entries in channel
columns.

The connection between the observation y and the loss-
function parameter w is that the observer does not necessarily
have to “take what she sees” — there might be good reasons
for her making a different choice. For example, in a word-
guessing game where the last, obfuscated letter ? in a word
SA? is shown on the board, the observer might have to guess

what it really is. Even if it looks like a blurry Y (value 4 in
Scrabble), she might instead guess X (value 8) because that
would earn more points on average if from prior knowledge
she knows that X strictly more than half as likely as Y is —
i.e. it’s worth her taking the risk. Thus rather than mandating
that the observer must accept what she thinks the letter is
most likely to be, she uses the obfuscated query y to deduce
information about the whole posterior distribution of the actual
query. . . and might suggest that she guess some w 6=y, because
the expected loss of doing that is less than (the expected utility
is greater than) it would be if she simply accepted the y she
saw. That rational strategy is called “remapping” [1]. Thus she
sees y, but y tells her that w is what she should choose as her
least-loss inducing guess for x. That is, the simplest strategy
is “take what you see”; but it might not be the best one. In
general (and now using M again for mechanism), we write
$(π,M, `) for the expected loss to a rational observer, given
the π,M she knows and the loss function ` she has chosen:
it is ∑

y

p(y) minw
∑
x

`(w, x) p(x|y) , (7)

that is the expected value, over all possible observations y
and their marginal probabilities, of the least loss she could
rationally achieve over all her possible choices w given the
knowledge that y will have provided about the posterior
distribution p(X|y) of the actual raw input x. Note that M and



π determine (from (§IV-A) the p(y) and p(x|y) that appear in
(7). We remark that this formulation for measuring expected
loss corresponds precisely to the formulation used by Ghosh
et al. in the optimality theorem.

C. The relevance of hyper-distributions, abstract channels

It is important to remember that the expected-loss formula
(7) does not use the actual mechanism-output values y in any
way directly: instead it takes the only expected value of what
they might be. All that matters is their marginal probabilities
p(y) and the a-posteriori distributions p(X|y) that they induce.
That allows us to abstract from Y altogether.

A hyper-distribution expresses that abstraction: it is a dis-
tribution of distributions on X alone, that is of type DDX ;
abbreviate those as “hyper” and “D2X ”. Given a joint dis-
tribution J :D(X×Y), we write [J ] for the hyper-distribution
whose support is posterior distributions 5 p(X|y) on X and
which assigns the corresponding marginal distribution p(y) to
each. (Zero-valued marginals are left out.) We now re-express
(7) in those terms.

If we write `(w,−) for the function on X that ` de-
termines once w is fixed, and write EDIST RV for expected
value of random-variable RV with distribution DIST, then
minw Ep(X|y) `(w,−) is the inner part of (7). Then fix some `
and define for general distribution δ:DX that

Y`(δ) := minw Eδ `(w,−) , (8)

(using Y for “entropY ”) so that Y` is itself a real-valued
function on distributions δ (as e.g. Shannon entropy is). With
that preparation, the expression (7) becomes the expected value
of Y` over the hyper produced by abstracting from J = π.M
as above. That is (7) gives equivalently

$(π,M, `) = E[π.M ] Y` , (9)

in which the M and π now explicitly appear and where –we
recall– the brackets [−] convert the joint distribution π.M to
a hyper. (If Y` were in fact Shannon entropy, then (9) would
be the conditional Shannon entropy. But Y`’s are much more
general than Shannon entropy alone [2], [9].)

Finally, using hypers we define an abstract channel to be a
function from prior to hyper, i.e. of type X→D2X , realised
from some concrete channel M :X_Y as π 7→ [π.M ]. It
is “abstract” because the type Y no longer appears: it is
unnecessary because if M(π) is the application of M as a
function applied to prior π, then from (9) the worst rational
expected loss is written simply EM(π) Y` .

(Recall from §IV-B that this naturally takes into account the
“rational observers” and the remapping they might perform, as
described in [1].)

1) Example of a channel representation of a mechanism:
If we have a discrete input X :={x0, x1, x2}, and discrete out-
put Y:={y0, y1, y2, y3, y4}, we can represent an obfuscating
mechanism M with the channel M below.

5In the hyper-distribution literature these are called “inners” [8].

M =

 2/3 1/6 1/12 1/24 1/24

1/6 1/6 1/3 1/6 1/6
1/24 1/24 1/12 1/6 2/3


As described in §IV-A above, the row Mx,− corresponds to

the probability distribution of outputs y in Y for that x. For
example the top left number 2/3=Mx0,y0 is the probability that
output y0 is observed when the input is x0. We can interpret
this as an ε-DP mechanism once we know the metric D on X .
In particular §II-A(1) simplifies to comparing ratios of entries
in the same column, and when we do that we find that for
example dD(M(x0),M(x1)) = ln 4. Thus from §II-A(4) now
applied to X we can say that if M is ε-DP then ε satisfies

dD(M(x0),M(x1)) = ln 4 ≤ ε · D(x0, x1) .

2) Example of a loss function calculation: Now suppose
that we choose a loss function known as “Bayes Risk”, br
defined on X :={x0, x1, x2} as above:

br(w, x) := 1 if x 6= w else 0 ,

where W:=X . Letting the input prior be the uniform distri-
bution � over X , we can compute the loss $(�,M, br) by
selecting for each output y, the w which makes the expected
value of br(w,−) over the posterior pX|y the least. We then
take the expected value of these least values over the marginal
pY . For y0 for example, that least expected value occurs at
w=x0, and for y1 it occurs either for w=x0 or w=x0. Overall
the total expected loss is 1/3.

D. Refinement of hypers and mechanisms

The hypers D2X on X have a partial order (v) “refinement”
[10] that we will need in the proof of our main result. It admits
several equivalent interpretations in this context. Below, we
write ∆ etc. for general hypers in D2X .

We have that ∆v∆′, that hyper ∆ is refined by hyper ∆′,
under any of these equivalent conditions:
(a) when E∆ Y` ≤ E∆′ Y` for all loss functions ` (i.e. whether

legal or not).
(b) when considered as distributions on posteriors DX it is

possible to convert ∆ into ∆′ via a Wasserstein-style
“earth move” of probability from one posterior to another
[11], [12], [8].

(c) when generated from joint-distribution matrices D in
D(X×Y) generating ∆, and D′ in D(X×Y ′) generating
∆′, there is a “post-processing matrix” R of type Y_Y ′
such that as matrices we have D·R = D′ via matrix
multiplication.

And we say that one mechanism M is refined by another
M ′ just when [π.M ]v [π.M ′] for all priors π. When this
occurs we also write M vM ′. From formulation (a) we will
use the fact that the (v)-infimum of the TLεN ’s (indexed over
a sequence of T ’s) is just Lε itself [13] and [15, Lem. 20,
Appendix §B].

Formulation (b) is particularly useful. If we find a specific
earth move from ∆ to ∆′ that defines a refinement we can then



use the equivalent (a) to deduce that E∆ Y` ≤ E∆′ Y`. However
if we can also compute the cost 6 of the particular earth move
we can conclude in addition that the difference |E∆ Y`−E∆′ Y`|
must be bounded above by an amount we can compute. This
follows from the well-known Kantorovich-Rubinstein duality
[11] which says that |E∆ Y`−E∆′ Y`| is no more than minimal
cost incurred by any earth move transforming ∆ to ∆′ scaled
by the “Lipschitz constant” 7 of Y`. We use these ideas in
Lem. 11 and Thm. 13.

V. MEASURES ON CONTINUOUS X AND Y
A. Measures via probability density functions

Continuous analogues of the π, M and ` will be our
principal concern here: ultimately we we will use M[0, 1]
for our measurable spaces X and Y , and will suppose for
simplicity that X=Y=[0, 1]. (More generality is achieved by
simple scaling).

Measures M[0, 1] (that is MX and MY) will be given as
probability density functions, where a PDF say µ: [0, 1]→R≥
determines the probability

∫ b
a
µ assigned to the sample

[a, b]⊆[0, 1] using the standard Borel measure on [0, 1], and
more generally the expected value of some random variable
V on [a, b) given by PDF µ is

∫ b−
a

µ(x)V (x)dx .
Even though µ is of type PDF, we abuse notation to write

for example µ[a, b) for the probability
∫ b−
a
µ that µ assigns to

that interval, and µa for the probability µ assigns to the point
a alone, i.e. some r just when when the actual PDF-value of
µ(a) is the Dirac delta-function scaled by r, written δr .

B. Continuous mechanisms over continuous priors
Our mechanisms M , up to now discrete, will now become

“kontinuous”, renamed K as a mnemonic. Thus a continuous
mechanism K:X→MY given input x produces measure K(x)
on the observations Y=[0, 1]. And given a a whole continuous
prior π:M[0, 1], that same K therefore determines a joint
measure over X×Y . 8By analogy with (8,9) we have

Definition 2: Continuous version of (7) The expected loss
$(π,K, `) due to continuous prior π, continuous mechanism
K and loss function ` is given by 9∫ 1

0

( infw (

∫ 1

0

`(w, x)π(x)K(x)(y) dx) )dy . (10)

The continuous version of uncertainty (8) is now

Y`(δ) := infw:W

∫ 1

0

`(w, x)δ(x)dx

and the continuous version of expected loss (9) is now

$(π,K, `) =

∫
y:Y
Y` dK(π) .

6The cost is determined by the amount of “earth” to be moved, and the
distance it must be moved. See for example [14].

7The Lipschitz constant of a function is the amount by which the difference
in outputs can vary when compared to the difference in inputs.

8See [15, Appendix §A2].
9This is well defined whenever the W-indexed family of functions of y

given by
∫ 1
0 `(w, x)π(x)K(x)(y) dx contains a countable subset W ′ such

that the inf over W is equal to the inf over W ′ [16]. This is clear if W is
finite, and whenever W ′ can be taken to be the rationals.

C. The truncated Laplace mechanism

As for the Geometric mechanism, the Laplace mechanism
is based on the Laplace distribution. It is defined as follows:

Definition 3: (Laplace distribution) The ε-Laplace mecha-
nism with with input x in X=[0, 1] and probability density in
R≥ for output y in Y is usually written as a PDF in y (for
given x) as [17]

Lε(x, y) := ε/2 · e−ε|y−x| .

The ε/2 is a normalising factor. It is known [4] that the mecha-
nism Lε satisfies ε-DP over [0, 1] (where the underlying metric
on X is Euclidean). Just as for the Geometric mechanism we
truncate Lε’s outputs so that they also lie inside U . We do so
in the same manner, by remapping all outputs greater than 1
to 1, and all outputs less than 0 to 0.

Definition 4: (truncated Laplace mechanism) As earlier
for Gε, we truncate the Laplace mechanism Lε to Łε for
inputs restricted to [0, 1], and output restricted to [0, 1], in the
following way (as a PDF):

Łε(x)(y) := δa if y=0
Lε(x, y) if 0<y<1
δb if y=1 ,

where the constants a, b are
∫ 0

−∞ Lε(x, y)dy = eεx/2 and∫∞
1

Lε(x, y)dy = eε(1−x)/2 respectively, and δr is the Dirac
delta-function with weight r.

We can now state our principal contribution. It is to show
that the truncated Laplace Łε is universally optimal, in this
continuous setting, in the same way that Gε was optimal in
the discrete setting:

Theorem 5: (truncated Laplace is optimal) Let Kε be any
continuous ε-DP mechanism with input and output both [0, 1],
and let π be any continuous (prior) probability distribution
over [0, 1] and ` any Lipschitz continuous 10, legal loss
function on X=U .

Then $(π,Łε, `) ≤ $(π,K, `) .

As we foreshadowed in the proof outline in §III, Thm. 5
relies ultimately on the earlier-proven optimality Gε in the
discrete case: we must show how we can approximate contin-
uous ε-DP mechanisms in discrete form, each one satisfying
the conditions under which the earlier result applies, and in
§VI we fill in the details. Along the way we show how the
Laplace mechanism provides a smooth approximation to the
Geometric- with discrete inputs.

VI. APPROXIMATING CONTINUITY FOR X
A. Connecting continuous and discrete

Our principal tool for connecting the discrete and con-
tinuous settings is the evenly-spaced discrete subset UN =

10Lipschitz continuous is less general than continuous. It means that the
difference in outputs is within a constant κ>0 scaling factor of the difference
between the inputs.



{0, 1/N, 2/N . . . ,N−1/N, 1} of the unit interval U=[0, 1] for
ever-increasing N>0.

The separation 1/N is the interval width.

B. Approximations of continuous priors

The N -approximation of prior π:MU of type DUN , i.e.
yielding actual probabilities (not densities), and is defined

πN (n/N) := π[n/N, n+1/N) if n<N−1
π[n/N, 1] if n=N−1
0 otherwise .

The discrete πN gathers each of the continuous π-interval’s
measure onto its left point, with as a special case [1,1] from
π included onto the point N−1/N of πN .

As an example take N to be 2, and π to be the uniform
(continuous) distribution over U , which can be represented by
the constant 1 PDF. Since the interval width is 1/2, we see that
πN assigns probability 1/2 to both 0 and 1/2 and zero to all
other points in U .

C. N-step mechanisms and loss functions

In the other direction, we can lift discrete M and loss-
function ` on UN into the continuous X=U by replicating
their values for the x’s not in UN in a way that constructs
N-step functions: we have

Definition 6: For x in U=[0, 1] define bxcN := bNxc/N .
Definition 7: Given mechanism M : UN_Y , define

MN : [0, 1]→R≥ so that

MN (x) := M(bxcN ) if 0≤x<1
M(N−1/N) if x=1 .

Note that we have not yet committed here to whether M
produces discrete or continuous distributions on its output Y .
We are concentrating only on its input (from X ).

Similarly, given loss function `:W×UN ,→R≥, define
`N :W×[0, 1]→R≥ so that

`N (w, x) := `(w, bxcN ) if 0≤x<1
`(w,N−1/N) if x=1 .

Say that mechanisms and loss functions over [0, 1] are N-step
functions just when they are constructed as above.

The important property enabled by the above definitions
is the correspondence between loss functions’ values in their
pixelated and original versions, which will allow us to apply
the earlier discrete-optimality result, based on Lem. 9 to come.
That is, we have

Lemma 8: For any continuous prior π in MU , mechanism
M in U_Y and loss function ` in W×U→R≥ we have

continuous X︷ ︸︸ ︷
$(π,MN , `N ) =

discrete X︷ ︸︸ ︷
$(πN ,M, `) .

That is, the loss realised via a pixelated πN , and (already
discrete) M and `, all operating on UN , is the same as the
loss realised via the original continuous π and the lifted (and
thus N-step) mechanism MN and `N , now operating over all
of X=U .

Proof: We interpret the losses using Def. 2, focussing
on the integrand of the inner integral. Note that we can
split it up into a finite sum of integrals of the form∫ n+1/N−
n/N

π(x)V (x)dx. When we do that for the left-hand
formula $(π,MN , `N ) we see that throughout the interval
[n/N, n+1/N) the contribution of the mechanism and the loss is
constant, i.e. MN (x)(y) · `N (w, x) = M(n/N)(y) · `(w, n/N).
This means the integral becomes

M(n/N)(y) · `(w, n/N) ·
∫ n+1/N−

n/N

π(x)dx

which is equal to M(n/N)(y) · `(w, n/N) ·πN (n/N). A similar
argument applies to the last interval (which includes 1),
compensated for by the definitions of `N and MN to take
their corresponding values from 1−N/N .

Looking now at the right-hand formula, $(πN ,M, `) we
see that it is now exactly the finite sum of the integrals just
described.

D. Approximating continuous ε-DP mechanisms

The techniques above give good discrete approximations for
continuous-input ε-DP mechanisms M acting on continuous
priors simply by considering MN ’s for increasing N ’s, using
§VI-C. As a convenient abuse of notation, when we start with
a continuous-input mechanism M on [0, 1] we write MN to
mean the N-step mechanism that is made by first restricting
M to the subset UN of [0, 1] and then lifting that restriction
“back again” as in Def. 7, effectively converting it into an N-
step function. When we do this we find that the posterior loss
wrt. N-step loss functions can be bounded above and below
by using pixelated priors and N-stepped mechanisms.

Lemma 9: Let K be a continuous-input ε-DP mechanism,
and π in M[0, 1] a continuous prior and ` a (non-negative)
N-step function. Then the following inequalities hold:

e−
ε
N ·

discreteX︷ ︸︸ ︷
$(πN ,KN , `) ≤

continuousX︷ ︸︸ ︷
$(π,K, `) ≤ e

ε
N ·

discreteX︷ ︸︸ ︷
$(πN ,KN , `) .

(Notice that the middle formula $(π,K, `), the mechanism
K is not N-stepped, but in the formulae on either side they
are as in Lem. 8.)

Proof: The proof is as for Lem. 8, but noting also
that K’s being ε-DP implies that for all N we have
K(bxcN )(y)×e− ε

N ≤ K(x)(y) ≤ K(bxcN )(y)×e ε
N . 11

With Lem. 8 and Lem. 9 we can study optimality of Łε on
finite discrete inputs UN . We will see that, although Geometric
mechanisms are still optimal for the (effectively) discrete
inputs UN , the Laplace mechanism provides increasingly good
approximate optimality for UN as N increases, and is in fact
(truly) optimal in the limit.

11Here we are using the ε-DP-constraints applied to the PDF K(x)(y).



VII. THE LAPLACE AND GEOMETRIC MECHANISMS

In this section we make precise the restriction of the
Geometric mechanism Gε (§II-D1) to inputs and outputs both
in UN (a subset of [0, 1]): for both x, y in UN we define

on UN︷ ︸︸ ︷
GεN (x)(y) :=

on (0..N)︷ ︸︸ ︷
G

ε
N (Nx)(Ny) . (11)

As an illustration, we take ε=2 ln 4 and input X=U2, in
which the 2 comes from U2 and the ln 4 comes from the α=1/4
of the Geometric distribution used to make the mechanism Gε.
Using the three points 0, 1/2 and 1 of the input, we compute
the truncated geometric mechanism Gε2 as the channel below,
where the rows’ labels are (invisibly) the inputs U2, and the
columns are similarly labelled by the outputs (also U2 in this
case). This means that if the input was 0, then the output
(after truncation) will be 0 with probability 4/5, and 1/2 with
probability 3/20 etc:

Gε2 =

 4/5 3/20 1/20

1/5 3/5 1/5
1/20 3/20 4/5

 .

Notice now that the ratio of adjacent probabilities that are in
the same column satisfy the ε-DP constraint, so for example
4/5 ÷ 1/5 = 3/5 ÷ 3/20 = 4 ≤ e(2 ln 4)/2. Notice also that the
distance between adjacent inputs in U2 under the Euclidean
distance is 1/2, not 1 as it would be in the conventional
X=(0, 1, 2).

Suppose now that we consider U4 instead, consisting of the
five points 0, 1/4, 1/2, 3/4 and 1, and we adjust the α in the
underlying Geometric distribution Gα from §II-D1(5). The ε-
DP parameter ε, now 4 ln 2, is the same as before — and the
resulting matrix is

Gε4 =


2/3 1/6 1/12 1/24 1/24

1/3 1/3 1/6 1/12 1/12

1/6 1/6 1/3 1/6 1/6
1/12 1/12 1/6 1/3 1/3
1/24 1/24 1/12 1/6 2/3


As before though, the ratio of adjacent probabilities that are

in the same column satisfy the ε-DP-constraint over all of U4:
now we have 2/3÷ 1/3 = 1/3÷ 1/2 = 2 ≤ e(4 ln 2)/4.

This amplifies the explanation in (2) that the ε-DP con-
straints over discrete inputs UN must take into account the
underlying metric on the input space. More generally, when-
ever we double N in UN , the α-parameter must become

√
α.

At this point, we have enough to be able to appeal to
the discrete optimality result, to bound below the losses for
continuous mechanisms, provided that the loss `N is N -legal,
i.e. that its legality obtains at least for the distinct points in
UN .

Lemma 10: For any continuous prior π in MU , ε-DP-
mechanism M :U_Y and loss function `:W×U→R≥ such
that `N is N -legal, we have:

$(πN , G
ε
N , `N ) ≤ $(π,MN , `N )

Proof: Follows from Lem. 8 and noting that M restricted
to UN satisfies the conditions for universal discrete optimality
[1].

Our next task is to study the relationship between the
Geometric- and Laplace mechanisms. We show first that GεN
is refined (§IV-D) by the truncated Laplace mechanism also
restricted to to UN . Since Łε is already defined over the whole
of U we continue to write its restriction to UN as Łε. This
will immediately show that losses under the Geometric are no
more than those under the Laplace (§IV-D(1)), consistent with
observations that, on discrete inputs, Laplace obfuscation does
not necessarily minimise the loss. Since the output Y of Łε is
continuous, we proceed by first approximating it using post-
processing to make Laplace-based mechanisms TŁε, defined
below, which have discrete output, and which can form an
anti-refinement chain converging to Łε. We are then able to
show separately the refinements between GεN and TŁε, using
methods designed for finite mechanisms.

The T,N -Laplace mechanisms approximate Łε by T -
pixelation of their outputs. Here x is (still) in UN but y is
in UT .

TŁε(x)(y) := Łε(x)[y, y+1/T) if y<1−1/T
Łε[1−1/T , 1] otherwise.

(12)
That is, we pixelate the Y using T for the Laplace (indepen-
dently of the N we use for X .) This is illustrated in Fig. 1a.

Observe that as this is a post-processing (§IV-D(3)) of the
output of Łε, the refinement Łε v TŁε follows.

A. Refinement between N -Geometric
and T,N -Laplace mechanisms

We now demonstrate the crucial fact that GεN is refined by
TŁε. We use version (b) of refinement, described in §IV-D,
and establish a Wasserstein-style earth-move between hypers
[�.GεN ] and [�.TŁε] (i.e. for uniform prior �).

Lemma 11: For all integer T>0 we have that GεN v TŁε.
Proof: Take ∆,∆′ in D2UN as hypers both with finite

supports. We can depict such hypers in RN+1-space by locat-
ing their supports, each of which is a point in RN+1, where
the axes of the diagram correspond to each point in UN . For
example if we take ∆ to be the hyper-distribution [�.Gε2], it
has three posterior distributions, which are 1-summing triples
in R3. They are depicted by the orange points in Fig. 1.
Similarly the supports of the a hyper-distribution ∆′ taken to
be [�.TŁε] are represented by the blue dots. Notice that the
blue dots are contained in the convex hull of the orange dots,
and this observation allows us to prove that the mechanisms
Gε2 and 8Łε are in a refinement relation.

We use the following fact [8, Lem. 12.2] about refinement
(v).

Let C,C ′:UN _UT be channels and let � be the
uniform prior. If the supports of [�.C] are linearly
independent when considered as vectors in RN , and
their convex hull encloses the supports of [�.C ′],
then C v C ′. 12



The width of the central “vertical slice” is 1/T .

(a) Illustrates batching the output for TL (similar for TŁε).
The outputs (shown here as PDF plots) are batched into output
segments of length 1/T in this example, for T=8. The segment
from [x, x+1/T) is indicated by the two vertical lines. The
probability assigned to this segment is the area under the
relevant curves. For the red curve it is the sum of the white
and blue regions; the green curve it is the sum of the white,
blue and green regions and for the black curve it is only the
white region.

(b) The supports of hypers [�.Gε2] (orange) and [�.8Łε]
(blue) for inputs {0, 1/2, 1} placed within the (triangular)
probability simplex. The blue points are within in the convex
hull of the orange points.

Fig. 1: N -geometric and T,N -Laplace mechanisms.

To apply this result, we let C be GεN recall that indeed the
supports of [�.GεN ] are linearly independent (see for example
[5]). Moreover in general, the supports of [�.TŁε] are also
contained in the convex hull. We provide details of this latter
fact in [15, Appendix §B].

Finally we can show full refinement between the Laplace
and the Geometric mechanism, which follows from continuity
of refinement [13].

Theorem 12: GεN v Łε.
Proof: We first form an anti-refinement chain

. . .v T1Łεv T0Łε so that (a) ŁεvTiŁε for all i, and
(b) the chain converges to Łε.

12The lemma applies to channels because of the direct correspondence
between channels and the supports of hyper-distributions formed from uniform
priors.

We reason as follows:
GεN v Łε

iff
GεN v TiŁε for all i≥0

“v is continuous; (a), (b) above”

which follows from Lem. 11. We provide details of (a), (b)
just above in [15, Appendix §B].

We have shown that the Laplace mechanism is a refinement
of the Geometric mechanism. This means that it genuinely
leaks less information than does the Geometric mechanism
and therefore affords greater privacy protections. On the other
hand this means that we have lost utility with respect to the
aggregated information. In the next section we turn to the
comparison of the Laplace and Geometric mechanisms with
respect to that loss.

B. The Laplace approximates the Geometric

The geometrical interpretation of the Laplace and Geometric
mechanisms set out above indicates how the Laplace ap-
proximates the Geometric as UN ’s interval-width approaches
0. In particular the refinement relationship established in
Thm. 12 describes how the posteriors of [�.TŁε] all lie
in between pairs of posteriors of [�.GεN ]. This relationship
between posteriors translates to a bound between the cor-
responding expected losses $(�,Łε, `) and $(�, GεN , `) via
the Kantorovich-Rubinstein theorem applied to the hypers
[�.TŁε] and [�.GεN ]. We sketch the argument in the next
theorem, and provide full details in [15, Appendix §D].

Theorem 13: Let ` be a κ-Lipschitz loss function, and � the
uniform distribution over UN . Then

$(�,Łε, `)− $(�, GεN , `) ≤ cκ/N , (13)

where c = 3/(1−e−ε)2 is constant for fixed ε.
Proof: We appeal to the Kantorovich-Rubinstein theorem

which states that the “Kantorovich distance” between probabil-
ity distributions ∆,∆′ bounds above the difference between
expected values |E∆ f − E∆′f | whenever f satisfies the κ-
Lipschitz condition. In our case the relevant distributions are
the hyper-distributions [�.TŁε] and [�.GεN ], and the relevant
Lipschitz functions are Y` for loss functions `. 13

We write W(∆,∆′) for the Wasserstein distance between
hyper-distributions ∆,∆′ which is determined by the minimal
earth-moving cost to transform ∆ to ∆′. For any such earth
move each posterior δ of ∆ is reassigned to a selection of
posteriors of ∆′ in proportion to the probability mass that
∆ assigns to δ. The cost of the move is the expected value
of the distance between posterior reassignment (weighted by
the proportion of the reassignment). Thus the cost of any
specific earth move provides an upper bound to W(∆,∆′).
14 Importantly for us, the relation of refinement v determines
a specific earth move [8] whose cost we can calculate.

13Some f :DX → R is κ-Lipschitz if |f(δ) − f(δ′)| ≤ κW(δ, δ′), for
κ>0, and W(δ, δ′) is the Kantorovich distance between δ, δ′.

14All the costs are determined by the underlying metric used to define the
probability distributions. For us this is determined by the Euclidean distance
on the interval [0, 1].



Referring to Lem. 11 and Fig. 1, we see that the refine-
ment between the approximation to the Laplace [�.TŁε] and
[�.GεN ], reassigns the Geometric’s posteriors (the orange
dots) to the Laplace’s posteriors (the blue dots). Crucially
though the Geometric’s posteriors form a linear order accord-
ing to their distance from one another, and the refinement
described in Lem. 11 shows how each Laplace posterior lies
in between adjacent pairs of Geometric posteriors (according
to the linear ordering), provided that N divides T . There-
fore any redistribution of a Geometric posterior is bounded
above by the distance to one or other of its adjacent pos-
teriors. We show in [15, Appendix §D] that distances be-
tween adjacent pairs is bounded above by c/N , and therefore
W([�.TŁε], [�.GεN ]) ≤ c/N .

Next we observe that if `(w, x) is a κ-Lipschitz function on
[0, 1] (as a function of x), then Y` is a κ-Lipschitz function,
and so by the Kantorovich-Rubinstein theorem we must have
(recalling from (9)) that $(π,M, `)=E[π.M ] Y`:

$(�,T Łε, `)− $(�, GεN , `) ≤ cκ/N . (14)

By Thm. 12 and post-processing we see that GεNvŁεv TŁε.
Recall from (a) that refinement means that the corresponding
losses are also ordered, i.e.

$(�, GεN , `) ≤ $(�,Łε, `) ≤ $(�,T Łε, `)

and so the difference $(�,Łε, `) − $(�, GεN , `) must be no
more than the difference $(�,T Łε, `)−$(�, GεN , `) , thus (13)
follows from (14). Full details are set out in [15, Appendix
§D].

More generally, (13) holds whatever the prior.
Theorem 14: Let ` be a κ-Lipschitz loss function, and π

any prior over UN . Then

$(π,Łε, `)− $(π,GεN , `) ≤ cκ/N . (15)

Proof: This follows as for Thm. 13, by direct calculation,
noting that for discrete distributions we have $(�,M, `∗) =
$(πN ,M, `), where `∗(w, x):=`(w, x)×πN (x)×N . Details
are given in [15, Appendix §D].

C. Approximating monotonic functions

The final piece needed to complete our generalisation of the
Ghosh et al.’s optimality theorem is monotonicity. We describe
here how to approximate continuous monotonic functions, and
expose the limitations for the Laplace mechanism.

Definition 15: The loss function ` :W×X→R is said to be
monotone if: there is some mapping θ:W→[0, 1], such that

`(w, x) := m(|θ(w)−x|, x) ,

where m : R×R→ R is monotone in its first argument.
Notice how θ takes care of any remapping that might need

to be applied for computing expected losses. Interestingly
step functions are not in general monotone on the whole of
the continuous input [0, 1], but fortunately they are for the
restrictions to UN that we need.

Lemma 16: Let ` be monotone. Then the approximation `T
restricted to UN is monotone whenever T is a multiple of N .

Proof: If x∈UN then bxcT=x since N divides T .
Examples of continuous monotone loss functions include

len and len2, where x,w ∈ [0, 1], and

len(w, x) := |x−w| . (16)

Note that len is 1-Lipschitz and len2 is 2-Lipschitz.
We note finally that as the pixellation of N of ` increases

the approximations `N converge to `.

VIII. UNIVERSAL OPTIMALITY
FOR THE LAPLACE MECHANISM

We finally have all the pieces in place to prove our main
result, Thm. 5 from §V-C — the generalisation of discrete
optimality [1].

Let Kε be any continuous ε-DP mechanism with input
[0, 1], and let π be a (continuous) probability distribution over
[0, 1] and ` a legal (i.e. continuous, monotone, κ-Lipschitz)
loss function. Then:

$(π,Łε, `) ≤ $(π,Kε, `) . (17)

Proof: We use the above results to approximate the
expected posterior loss by step functions; these approximations
are equivalent to posterior losses over discrete mechanisms
satisfying ε-DP enabling appeal to Ghosh et al.’s universal
optimality result on discrete mechanisms. We reason as fol-
lows:

$(π,Kε, `N )× eε/N
≥ $(πN ,K

ε
N , `N ) “Lem. 9”

≥ $(πN , G
ε
N , `N ) “Lem. 10: `N is legal by Lem. 16”

≥
$(πN ,Łε, `N )− cκ/N

“Thm. 14; `N is κ-Lipschitz”

≥ $(π,Łε, `N )× e−ε/n − cκ/N . “Lem. 9”

The result now follows as above by taking N to ∞, and
noting that eε/N , e−ε/N , cκ/N and `N converge to 1, 1, 0, `
respectively, and that taking expected values over fixed distri-
butions is continuous.

Note that Thm. 5 only holds for mechanisms that are ε-
DP. An arbitrary embedding KN is not necessarily ε-DP,
and in particular Thm. 5 does not apply to GεN . Also the
continuous property on ` is required, because `N must be
monotone for all N . Thus arbitrary step functions do not
satisfy this property, and so the Laplace mechanism is not in
general universally optimal wrt. arbitrary step functions. Two
popular loss functions however are continuous, and thus we
have the following corollary.

Corollary 17: The Laplace mechanism is universally opti-
mal for len and len2.

IX. RELATED WORK

The study of (universally) optimal mechanisms is one way
to understand the cost of obfuscation, needed to implement
privacy, but with a concomitant loss of utility of queries to
databases. Pai and Roth [18] provide a detailed survey of the



principles underlying the design of mechanisms including the
need to trade utility with privacy, and Dinur et al. [19] explore
the relationship between how much noise needs to be added to
database queries relative to the usefulness of the data released.
Our use of loss functions to measure utility follows both that of
Ghosh et al. [1] and Alvim et al. [9], and concerns optimality
for entire mechanisms that satisfy a particular level of ε-DP.
For example, the mean error len and the mean squared error
len2 can be used to evaluate loss, as described by Ghosh et al.
[1] and mentioned in §VII-C.

The Laplace mechanism as a way to implement differential
privacy has been shown for example by Dwork and Roth [20].
Moreover Chatzikokolakis et al. [4] showed how it satisfied
ε-DP-privacy as formulated here using the Euclidean metric.

Whilst rare, optimality results avoid the need to design be-
spoke implementations of privacy mechanisms that are tailored
to particular datasets. The Geometric mechanism appears to be
special for discrete inputs, as Ghosh et al. [1] showed when
utility is measured using their “legal” loss functions. On the
other hand, although the Laplace mechanism continues to be
a popular obfuscation mechanism, its deficiencies in terms of
utility have been demonstrated by others when the inputs to
the obfuscation are discrete [21], and where the optimisation is
based on minimising the probability of reporting an incorrect
value, subject to the ε-DP-constraint. Similarly Geng et al.
[22] show that adding noise according to a kind of “pixellated”
distribution appears to produce the best utility for arbitrary dis-
crete datasets. Such examples are consistent with our Thm. 12
showing where the Laplace mechanism is a refinement of the
Geometric mechanism (loses more utility) when restricted to
a discrete input (to the obfuscation). We mention also that
optimal mechanisms have also been studied by Gupte et al.
[23] wrt. minimax agents, rather than average-case minimising
agents.

Other works have shown the Laplace mechanism is opti-
mal for metric differential privacy in particular non-Bayesian
scenarios. Koufogiannis et al. [24] show that the Laplace
mechanism is optimal for the mean-squared error function
under Lipschitz privacy, equivalent to metric differential pri-
vacy; and Wang et al. [25] show that the Laplace mechanism
minimises loss measured by Shannon entropy, again for metric
differential privacy. Our result on R includes those results as
specific cases; however, those works do go further in that they
demonstrate optimality for their respective loss functions on
Rn. We leave the study of these domains in the Bayesian
setting to future work.

We also note that the linear ordering of the underlying query
results seems to be important for finding optimality results.
For example Brenner and Nissim [26] have demonstrated that
for non-linearly ordered inputs, there are no optimal ε-DP-
mechanisms for a fixed level of ε. Although their result finds
that only counting queries have optimal mechanisms, their
context (oblivious mechanisms on database queries) does not
include the possibility of continuous valued query results with
a linear order; our result does not contradict their impossibility,
it can be seen rather as an extension of this result to a

continuous setting.
Alvim et al. [27] also use the framework of Quantitative

Information Flow to study the relationship between the privacy
and the utility of ε-DP mechanisms. In their work they model
utility in terms of a leakage measure, where leakage is defined
as the ratio of input gain to output gain wrt. a mechanism
modelled as a channel. Their gain is entirely dual to our loss
here, and is a model of an adversary trying to infer as much
as possible about the secret input. Other notions of optimality
have also been studied in respect of showing that the Laplace
mechanism is not optimal, including [28] who work with “near
instance” optimality, and Geng and Viswanath [22] show how
to scale the Laplace in various ways to obtain good utility.
Note also that these definitions of optimality do not use a
prior, and therefore represent the special case of utility per
exact input, rather than in a scenario where the observer’s
prior knowledge is included.

The use of the Laplace mechanism in real privacy applica-
tions has been demonstrated by Chatzikokolakis et al. [4] for
geolocation privacy, and [29] for for privacy-preserving graph
analysis, and Phan et al. [30] in deep learning.

Information-theoretic channel models for studying differen-
tial privacy were originally proposed by Alvim et al. [7], [27],
and extended to arbitrary metrics in [4].

X. CONCLUSION

We have studied the relationship between differential pri-
vacy (good) and loss of utility (bad) when the input X can be
over an interval of the reals, rather than having X described
as in the optimality result of Ghosh et al. [1], [31], i.e. as a
discrete space. Here we have instead used as input space the
continuous interval [0, 1]; but we note that the result extends
straightforwardly to any finite interval [a, b] of R. Our result
also imposes the condition that the loss functions must be
κ-Lipschitz for some finite κ. We do not know whether this
condition can be removed in general.

We observe that for N-step loss functions, the Laplace
mechanism is not optimal, and in fact a bespoke Geometric
mechanism will be optimal for such loss functions. However
our Thm. 14 provides a way to estimate the error, relative to
the optimal loss, when using the Laplace mechanism.

Finally we note that the space of ε-DP mechanisms is very
rich, even for discrete inputs, suggesting that the optimality
result given here will be useful whenever the input domain
can be linearly ordered.
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