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Abstract—We prove normalization for (univalent, Cartesian)
cubical type theory, closing the last major open problem in the
syntactic metatheory of cubical type theory. Our normalization
result is reduction-free, in the sense of yielding a bijection between
equivalence classes of terms in context and a tractable language
of β/η-normal forms. As corollaries we obtain both decidability
of judgmental equality and the injectivity of type constructors.

I. INTRODUCTION

De Morgan [20] and Cartesian [8, 9] cubical type theory
are recent extensions of Martin-Löf type theory which pro-
vide constructive formulations of higher inductive types and
Voevodsky’s univalence axiom; unlike homotopy type theory
[65], both enjoy canonicity, the property that closed terms of
base type are judgmentally equal to constructors [8, 35].

Several proof assistants already implement cubical type
theory, most notably Cubical Agda [66] (for the De Morgan
variant) and redtt [50] (for Cartesian). Like most type-
theoretic proof assistants, both typecheck terms using algo-
rithms inspired by normalization by evaluation [1], which
interleave evaluation and decomposition of types. The cor-
rectness of these algorithms hinges not on canonicity but on
normalization theorems characterizing judgmental equivalence
classes of open terms—and consequences thereof, such as
decidability of equality and injectivity of type constructors.
But unlike canonicity, normalization and its corollaries have
until now remained conjectures for cubical type theory.

We contribute the first normalization proof for Cartesian
cubical type theory [9]. By relying on recent advances in
the metatheory of type theory, our proof is significantly more
abstract and concise than existing canonicity proofs for cubical
type theory; moreover, it can be adapted to De Morgan cubical
type theory without conceptual changes.

A. Cubical type theory and synthetic semantics

Cubical type theory extends type theory with a number of
features centered around a primitive interval I with elements
0, 1 : I. Propositional equality is captured by a path type
path(A, a0, a1) whose elements are functions f :

∏
i:IA(i)

satisfying f(0) = a0 and f(1) = a1 judgmentally. Congruence
of paths follows from substitution; the remaining properties
of equality are defined at each type by the Kan operations of
coercion and box filling (or composition).

In Cartesian cubical type theory, coercion is a function

coe :
∏
A:I→U

∏
r,s:IA(r)→ A(s)

satisfying coe(A, r, r, a) = a for all A : I→ U and a : A(r),1

and additional equations for each particular connective, e.g.:

coe
(
λi.
(∏

x:A(i)B(i, x)
)
, r, s, f

)
= λx.coe(λi.B(i, coe(A, s, i, x)), r, s, f(coe(A, s, r, x)))

The equations governing coercion and composition are
complex, especially for the glue type which justifies uni-
valence; calculating (and verifying the well-definedness of)
these equations was a major obstacle in early work on cubical
type theory. Orton and Pitts [45, 48] streamlined this process
by observing that the model construction for De Morgan
cubical type theory—the most technical part of which is these
equations—can be carried out synthetically in the internal
extensional type theory of any topos satisfying nine axioms
(e.g., whose objects are De Morgan cubical sets); Angiuli et al.
[9] establish an analogous result for the Cartesian variant.

A subtle aspect of these models is that coercion is defined
not on types A : U but on type families A : I → U ;
consequently, a semantic universe U of types-with-coercion
must strangely admit a coercion structure for every figure
I→ U. Licata et al. [45] obtain U by transposing the coercion
map across the right adjoint to exponentiation by I given by
the tininess of I.

The synthetic approach of Orton and Pitts simplifies and
clarifies the model construction of cubical type theory by
factoring out naturality obligations, in much the same way
that homotopy type theory provides a “synthetic homotopy
theory” that factors out e.g., continuity obligations.

In this paper, we combine ideas of Orton and Pitts with
the synthetic Tait computability (STC) theory of Sterling and
Harper [57], which factors out bureaucratic aspects of syntactic
metatheory. In STC, one considers an extensional type theory
whose types are (proof-relevant) logical relations; the under-
lying syntax is exposed via a proof-irrelevant proposition syn
under which the syntactic part of a logical relation is projected.

B. Canonicity for cubical type theory

Traditional canonicity proofs fix an evaluation strategy for
closed terms, and associate to each closed type a proof-
irrelevant computability predicate or logical relation ranging
over closed terms of that type. Then, one ensures that evalua-
tion is contained within judgmental equality, that computabil-
ity is closed under evaluation, and that computability at base

1In De Morgan cubical type theory, coercion is limited to A(0) → A(1),
a restriction counterbalanced by the additional (De Morgan) structure on I.978-1-6654-4895-6/21/$31.00 ©2021 IEEE
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type implies evaluation to a constructor; canonicity follows by
proving that every well-typed closed term is computable.

Whereas evaluation in ordinary type theory need not
descend under binders, evaluating a closed coercion
coe(λi.A, r, s, a) in cubical type theory requires determining
the head constructor of (i.e., evaluating) the type A in context
i : I. Accordingly, the cubical canonicity proofs of Angiuli
et al. [7, 8], Huber [35] define evaluation and computability
for terms in context (i1 : I, . . . , in : I). In both proofs, the
difficulty arises that typing and thus computability are closed
under substitutions of the form In Im, but evaluation is
not; both resolve the issue by showing evaluation is closed
under computability up to judgmental equality.

C. Semantic and proof-relevant computability

The past several years have witnessed an explosion in
semantic computability techniques for establishing syntactic
metatheorems [4, 21, 23, 27, 40, 53, 57, 58, 63]. What makes
semantic computability different from “free-hand” computabil-
ity is that it is expressed as a gluing model, parameterized in
the generic model of the type theory; hence one is always
working with typed terms up to judgmental equality.

A new feature of semantic computability, forced in many
cases by the absence of raw terms, is that a term may
be computable in more than one way. This proof-relevance
plays an important role in the normalization arguments of
Altenkirch et al. [4], Coquand [21], Fiore [27] as well as the
canonicity arguments of Coquand [21], Sterling et al. [58].
The proof-relevant approach is significantly simpler to set up
than the alternative and it provides a compositional account
of computability for universe hierarchies, which had been the
main difficulty in conventional free-hand arguments.

Example 1. A semantic canonicity argument for ordinary
type theory associates to each closed type a computability
structure which assigns to each equivalence class of closed
terms of that type a set of “computability proofs.” We choose
the computability structure at base type to be a collection of
“codes” for each constant; then, by exhibiting a choice of
computability proof for every well-typed term, we conclude
that every equivalence class at base type is a constant.

Crucially, the ability to store data within the computability
proofs circumvents the need to define a subequational evalu-
ation function, allowing us to carry out the entire argument
over equivalence classes of terms; rather than choosing a
representative of each equivalence class, we encode canonical
forms as a structure indexed over equivalence classes of terms.

1) In what contexts do we compute?: Semantic computabil-
ity arguments have already been used to establish ordinary
canonicity, cubical canonicity, and ordinary normalization.
The key difference between these arguments lies in what is
considered an “element” of a type, or more precisely, what
are the contexts (and substitutions) of interest. In ordinary
canonicity proofs, the only context of interest is the closed
context, in which each type has just a set of elements; the
computability structures are thus families of sets.

Following Huber and Angiuli, Favonia, and Harper [8, 35],
cubical canonicity proofs must consider terms in all contexts
In, with all substitutions In Im between them. These con-
texts and substitutions induce a cubical set (i.e., a presheaf) of
elements of each type; the computability structures in question
are thus families of cubical sets indexed in the application of a
“cubical nerve” applied to a syntactical object, an arrangement
suggested by Awodey in 2015. Notably, because semantic
computability arguments are not evaluation-based, cubical
canonicity proofs in this style (e.g., that of Sterling, Angiuli,
and Gratzer [58]) entirely sidestep the evaluation coherence
difficulties of prior work [8, 35].

The passage to presheaves of elements is not a novel feature
of cubical canonicity; it appears already in normalization
proofs for ordinary type theory, in the guise of Kripke logical
relations of varying arities [38]. Because normalization is
by definition a characterization of open terms, one must
necessarily consider the presheaf of elements of a type relative
to all contexts; but in light of the fact that normal forms
are not closed under substitutions of terms for variables,
one considers only a restricted class of substitutions (e.g.,
weakenings, injective renamings, or all variable renamings).

Following Tait [61], the normal forms of type theory are
defined mutually as the neutral forms ne(A) (variables and
eliminations thereof) and the normal forms nf(A) (constants
and constructors applied to normals) of each open type A.
Proof-irrelevant normalization arguments then establish that
every neutral term is computable (via reflection ↑A), and that
every computable term has a normal form (via reification ↓A).
Proof-relevant normalization arguments follow the same yoga
of reflection and reification, except that we speak not of the
subset of neutral terms but rather the collection of neutrals and
normals encoding each equivalence class of terms [21].

2) Related work on gluing for type theory: The past forty
years have brought a steady stream of research developing
the gluing perspective on logical relations [4, 24, 27, 28, 60];
however, only in the past several years has our understanding
of the syntax and semantics of dependent types [3, 12, 29, 46,
64] caught up with the mathematical tools required to advance
a truly objective metatheory of dependent type theory.

In particular, Coquand’s analysis [21] of proof-relevant
canonicity and normalization arguments for dependent type
theory in terms of categorical gluing was the catalyst for a
number of recent works that obtain non-trivial metatheorems
for dependent type theory by semantic means, although some
years earlier Shulman [53] had already used gluing to prove
a homotopy canonicity result for a univalent type theory.

Uemura [63] proved a general gluing theorem for certain
dependent type theories in the language of Shulman’s type
theoretic fibration categories; Kaposi et al. [40] proved a
similar result in the language of categories with families.
Coquand et al. [23] employed gluing to prove a homotopy
canonicity result for a version of cubical type theory that
omits certain computation rules, and Kapulkin and Sattler
[41] used gluing to prove homotopy canonicity for homotopy
type theory (as famously conjectured by Voevodsky). Sterling
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et al. [58] adapted Coquand’s gluing argument to prove the
first non-operational strict canonicity result for a cubical type
theory. Gratzer et al. [30] used gluing to prove canonicity
for a general multi-modal dependent type theory. Sterling and
Harper [57] employ a different gluing argument to establish
a proof-relevant generalization of the Reynolds Abstraction
Theorem for a calculus of ML modules. Gratzer and Sterling
[29] used gluing to establish the conservativity of higher-order
judgments for dependent type theories.

3) What are the neutrals of cubical type theory?: Today’s
obstacles to proving cubical normalization are entirely dif-
ferent from the obstacles faced in the first proofs of cubical
canonicity [8, 35]. As we have already discussed, coherence
of evaluation is a non-issue for semantic computability; more-
over, as normalization already descends under binders, this
feature of coercion poses no additional difficulty.

However, cubical type theory includes a number of open
judgmental equalities that challenge the yoga of reflection and
reification. Consider the rule that applying any element, even
a variable, of type path(A, a0, a1) to 0 : I (resp., 1 : I) equals
a0 (resp., a1). Whereas application of neutrals (e.g., variables)
to normal forms (e.g., constants) is typically irreducible, here
path application of a variable to a constant (but not to a
variable) is a redex which may uncover further redexes:

x : path(λ .N→ N, fib, fib) ` x(0)(7) = 13 : N

One might imagine defining the normal form of path appli-
cation by a case split on the elements of I (sending 0, 1 : I to
the normal form of fib(7), and i : I to a neutral application),
but such a case split requires us to model I as a coproduct,
which will not be tiny, preventing us from obtaining a universe
of Kan types following Licata et al. [45].

Similar issues arise with a number of equations in both
Cartesian and De Morgan cubical type theory; in fact, the
Cartesian variant is a priori more challenging in this regard
because contraction of interval variables i, j : I may also
induce computation (e.g., in coe(A, i, j, a)).

In this paper, we index neutrals neφ(A) by a proposi-
tion φ representing their locus of instability, or where they
cease to be neutral. For example, path application sends a
φ-unstable neutral of type path(A, a0, a1) and an element
r : I to a (φ ∨ (r = 0) ∨ (r = 1))-unstable neutral of type
A(r). Reflection ↑φA operates on stabilized neutrals, pairs of
a neutral neφ(A) with a proof that the term is computable
under φ. In the case of path application x(r), one must
provide computability proofs for a0, a1 under the assumption
r = 0 ∨ r = 1.

Terms in the ordinary fragment are never unstable (hence
φ = ⊥), in which case a stabilized neutral is a neutral in
the ordinary sense; “neutrals” with cubical redexes (such as
x(0)) have φ = >, in which case their stabilized neutral is
just a computability proof (and ↑>A is the identity). To our
knowledge, this is the first time that computability data appears
in the domain of the reflection operation.

D. Contributions

We establish the normalization theorem (Theorem 42) for
Cartesian cubical type theory closed under Π, Σ, path, glue,
and a higher inductive circle type, using a cubical extension of
synthetic Tait computability [57]; the new idea on which our
argument hinges is the concept of stabilized neutrals described
above. As corollaries to our main result, we obtain the admis-
sible injectivity of type constructors (Theorem 43) as well as
an algorithm to decide judgmental equality (Corollary 47).

The present paper does not describe universes or the mod-
ifications necessary to prove normalization for De Morgan
cubical type theory; but note that univalence can be stated
without universes, as we have done here. The novel aspects of
cumulative, univalent universes are already supported because
of the tininess of the interval and the account of glue types;
the difference is that the operator projecting a normal type
from a normalization structure of size α must be generalized
over β ≥ α. Our argument carries over mutatis mutandis to a
normalization proof for De Morgan cubical type theory.

In Section II we discuss the syntax of Cartesian cubical type
theory and its situation within a dependently sorted logical
framework. In Section III, we axiomatize a cubical version of
synthetic Tait computability (STC) [57], a modal type theory
of synthetic logical relations suitable for proving syntactic
metatheorems; we construct in cubical STC a “normalization
model” of cubical type theory displayed over the generic
model. In Section IV we construct a topos model of cubical
STC, which takes us the remaining distance to the main results
of this paper, which are described in Section V.

II. CARTESIAN CUBICAL TYPE THEORY

We define the subject of our normalization theorem, inten-
sional Cartesian cubical type theory, as a locally Cartesian
closed category of judgments T generated by the signature in
Figs. 1 and 2. Readers may consult [9] and [6, Appendix B]
for further exposition, including rule-based presentations.

A. LCCCs as a logical framework

The primary aspects of a type theory are its judgments
A type and a : A and their derivations, many of which
require hypothetical judgments (e.g., λx.b : A → B when
x : A ` b : B). One typically restricts which judgments may
be hypothesized, allowing (x : A) but not (X type), judgmen-
tal equalities (a = b : A), or hypothetical judgments. These
restrictions, realized by the notion of context, are crucial to
the syntactic metatheorems on which implementations rely; for
example, decidability of equality requires that intensional type
theory lacks a context former (isomorphic to) 〈Γ, a = b : A〉.

Both the rule-based presentations and the common cate-
gorical semantics of type theory—including categories with
families [26], natural models [12], and Uemura’s recent gener-
alization thereof known as representable map categories [64]—
include a notion of context as part of the definition of a type
theory, and require these contexts to be preserved by models
and their homomorphisms.
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I,F, tp : jdg
[−] : F→ jdg
tm : tp→ jdg

0, 1 : I
(=) : (I× I)→ F

(∧F), (∨F) : (F× F)→ F
(∀I) : (I→ F)→ F

: {φ}
∏
p,q:[φ]p =[φ] q

: {φ, ψ} ([φ] ∼= [ψ]) ∼= (φ =F ψ)

: {φ}
(∏

i:I[φ(i)]
) ∼= [∀Iφ]

: {r, s} (r =I s) ∼= [r = s]

: {φ, ψ} ([φ]× [ψ]) ∼= [φ ∧F ψ]

: {φ0, φ1} [φi]→ [φ0 ∨F φ1]

For each judgment J ∈ {I,F, tp, [φ], tm(A)}:
abortJ : [0 = 1]→ 1 ∼= J
splitJ : {φ, ψ}

∏
xφ:[φ]→J

∏
xψ:[ψ]→{J|φ↪→xφ}[φ ∨F ψ]→ J

: {φ, ψ}
∏

:[φ]splitJ(xφ, xψ) =J xφ

: {φ, ψ}
∏

:[ψ]splitJ(xφ, xψ) =J xψ

: {φ, ψ, x}x =J splitJ(x, x)

{J | φ ↪→ xφ} :=
∑
x:J
∏
p:[φ]x =J xφ(p)

⊥F := (0 = 1)

∂i := (i = 0) ∨F (i = 1)

[]J := abortJ

[φ ↪→ xφ, ψ ↪→ xψ]J := splitJ(xφ, xψ)

Fig. 1. Basic judgmental structure of Cartesian cubical type theory.

path :
(∑

A:I→tptm(A(0))× tm(A(1))
)
→ tp

Π,Σ :
(∑

A:tp(tm(A)→ tp)
)
→ tp

glue :
∏
φ:F
{(∑

B:tp

∑
A:[φ]→tp

∏
:[φ]tm(Equiv(A,B))

)
→ tp

∣∣ φ ↪→ λ(B,A, f).A
}

S1 : tp

path/tm : {A, a0, a1}
(∏

i:I{tm(A(i)) | ∂i ↪→ [i = ε ↪→ aε]tm(A(i))}
) ∼= tm(path(A, a0, a1))

Π/tm : {A,B}
(∏

x:tm(A)tm(B(x))
) ∼= tm(Π(A,B))

Σ/tm : {A,B}
(∑

x:tm(A)tm(B(x))
) ∼= tm(Σ(A,B))

glue/tm : {φ,B,A, f}
{(∑

a:
∏

:[φ]tm(A){tm(B) | φ ↪→ f(a)}
) ∼= tm(glue(φ,B,A, f))

∣∣ φ ↪→ λ(a, b).a
}

base : tm(S1)

loop :
∏
i:I{tm(S1) | ∂i ↪→ base}

indS1 :
∏
C:tm(S1)→tp

∏
b:tm(C(base))

∏
l:
∏
i:I{tm(C(loop(i)))|∂i↪→b}

∏
x:tm(S1)tm(C(x))

: {C, b, l} indS1(C, b, l, base) =tm(C(base)) b

: {C, b, l, i} indS1(C, b, l, loop(i)) =tm(C(loop(i))) l(i)

hcom :
∏
A:tp

∏
r,s:I
∏
φ:F
∏
a:
∏
i:I
∏

:[i=r∨Fφ]
tm(A){tm(A) | r = s ∨F φ ↪→ a(s)}

coe :
∏
A:I→tp

∏
r,s:I
∏
a:tm(A(r)){tm(A(s)) | r = s ↪→ a}

isContr : tp→ tp

isContr := λA.Σ(A, λx.Π(A, λy.path(λ .A, x, y)))

Equiv : tp→ tp→ tp

Equiv := λA.λB.Σ(Π(A, λ .B), λf.Π(B, λb.isContr(Σ(A, λa.path(λ .B, f(a), b)))))

unglue : {φ,B,A, f} tm(glue(φ,B,A, f))→ tm(B)

unglue := λg.π2(glue/tm−1
(g))

Fig. 2. Generating clauses in the signature for Cartesian cubical type theory pertaining to connectives. For space reasons, we omit the computation rules of
the Kan operations for each connective, which can be found in [9].
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In contrast, higher-order logical frameworks for defining
type theories, such as Martin-Löf’s logical framework [47] and
the Edinburgh Logical Framework [32], elevate the judgmental
structure of a type theory; then, as explicated by Harper
et al. [32], one may impose after the fact a collection of
LF contexts (or worlds) relative to which adequacy and other
metatheorems hold [31]. These worlds, which can be seen to
correspond roughly to the arities of Jung and Tiuryn [38], were
subsequently implemented in the Twelf proof assistant [49] as
“%worlds declarations.”

In light of that perspective, we regard a notion of context
as a structure placed on a locally Cartesian closed category of
judgments T of a type theory, whose objects and morphisms
are (equivalence classes of) judgments and deductions. The
dependent products of T encode hypothetical judgments, and
the finite limits both encode substitution and judgmental
equality; a notion of context is often a full subcategory C ⊆T
spanned by objects distinguished as contexts.

Example 2. The category of judgments T of Martin-Löf type
theory without any types is the free LCCC generated by a
single map tm tp. The category of contexts C ⊆ T is
inductively defined as the full subcategory spanned by the
terminal object and any fiber of tm tp over a context.

Equality is undecidable in T (as it has all finite limits),
but is decidable for terms and types in context, objectified
by the restricted Yoneda embedding T Pr( C) taking the
judgment tp : T to its “functor of context-valued points”
Hom( C, tp) : Cop Set. Proofs of decidability proceed by
further restricting to a category of (contexts and) renamings
R along the forgetful map R C [4, 21, 27].

A second distinction between LCCCs and (for instance)
Uemura’s framework is that the latter is stratified to ensure
that the use of hypothetical judgment in a theory is strictly
positive, whereas both LCCCs and syntactic logical frame-
works place no restriction on hypothetical judgments and even
allow binders of higher-level (e.g., in Martin-Löf’s funsplit
operator [47]). However, using an Artin gluing argument due
to Paul Taylor [62], Gratzer and Sterling [29] have observed
that the extension of a representable map category à la Uemura
to a LCCC is conservative (in fact, fully faithful), ensuring the
adequacy of LCCC encodings of type theories.

We therefore define the category of judgments of Cartesian
cubical type theory as the LCCC T generated by the signature
in Figs. 1 and 2; then, locally Cartesian closed functors
M : T E determine algebras for that signature valued
in E. Unlike homomorphisms of models of type theory, such
functors preserve higher-order judgments; note however that
we are proving a single theorem about the syntactic category
T , not studying the model theory of cubical type theory.

B. The signature of Cartesian cubical type theory

In Fig. 1 we present the judgmental structure of cubical
type theory; we inherit from Martin-Löf type theory the basic
forms of judgment tp : T and tm : (T )/tp classifying
types and terms respectively, and add three additional forms

of judgment for cubical phenomena: I : T for elements of the
interval, F : T for cofibrations (or cofibrant propositions), and
[−] : (T )/F for proofs of cofibrations. The standard notion of
context is generated by 1 and context extension by (x : A),
(i : I), and ( : [φ]).2 In this paper, we will only consider a
more restricted notion of atomic context (Section IV-C) that
plays a role analogous to the renamings of Example 2.

Cofibrations are strict propositions; the cofibration classifier
F is strictly univalent and closed under ∧F, ∨F, ∀I, and =I.
We define ∧F, ∀I, and =I in terms of the same notions in T ,
but T has no disjunction or empty type by which to define
∨F or stipulate (0 = 1)→ ⊥. Instead, we axiomatize these by
eliminators abortJ, splitJ for each generating judgment J.

The following notations in Fig. 1 are used pervasively
throughout this paper. (At present, “propositions” are elements
of F; later they will be elements of a subobject classifier Ω.)

Notation 3 (Extent types [51]). Given a proposition φ and a
partial element aφ : [φ] → A, we write {A | φ ↪→ aφ} for
the collection of elements a : A that restrict to aφ under the
assumption of z : [φ]. In other words:

{A | φ ↪→ aφ} := {a : A | ∀z : [φ].a = aφ(z)}

We will implicitly coerce elements of {A | φ ↪→ aφ} to A.

Notation 4 (Systems [20]). Let φ, ψ be propositions. Under
: [φ ∨ ψ], given a pair of partial elements aφ : [φ]→ A and

aψ : [ψ]→ A that agree when : [φ ∧ ψ], we write

[φ ↪→ aφ, ψ ↪→ aψ] : A

for the “case split” that extends aφ, aψ . Likewise, under the
assumption : [⊥], we write [] : A for the unique element
of A. We will leave abstraction and application over z : φ
implicit; where it improves clarity, we may write the unary
system [φ ↪→ a] for λz : φ.a.

In Fig. 2 we define the connectives of cubical type theory.
We specify the elements of Π, Σ, path, and glue by isomor-
phisms whose underlying functions encode introduction and
elimination rules, and whose equations encode β and η rules;
we will leave the first three of these isomorphisms (and the
projection from equivalences to functions) implicit. The higher
inductive circle S1 has constructors base and loop and an
eliminator indS1 with computation rules. Finally, we specify
the Kan operations hcom and coe; for space reasons we do
not reproduce the computation rules for hcom and coe in each
type, which can be found in Angiuli et al. [9].

The signature for De Morgan cubical type theory [20, 22]
differs only in the structure imposed on I and the types and
computation rules of hcom and coe.

III. SYNTHETIC TAIT COMPUTABILITY

In this section, we axiomatize a category E whose in-
ternal language provides a “type theory of proof-relevant
logical relations” à la Sterling and Harper’s synthetic Tait
computability [57]. Inside that type theory, we then define

2Syntactic presentations typically write 〈Γ, φ〉 for 〈Γ, : [φ]〉.
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Axiom Substantiation

Axiom STC-1 Lemma 27
Axiom STC-2 Construction 31 and Corollary 33
Axiom STC-3 Computation 28
Axiom STC-4 Remark 29 and Construction 31
Axiom STC-5 Lemma 34
Axiom STC-6 Construction 25 and Remark 30

Fig. 3. A dictionary between the axioms of Section III and their substantia-
tions in the category of computability structures.

a reflection–reification computability model of cubical type
theory from which we will derive normalization. We defer
to Section IV an explicit construction of E as a category of
computability structures; Fig. 3 provides forward references to
our justifications of the axioms.

We begin by assuming that E satisfies Giraud’s axioms
[10]; all such categories interpret extensional Martin-Löf type
theory extended by a strictly univalent universe Ω of all proof-
irrelevant propositions. Next, we assume that E contains a
cumulative hierarchy of universes whose elements satisfy a
strictification axiom introduced by Birkedal et al. [15], Orton
and Pitts [48].

Definition 5. An strong universe is a type theoretic universe
U strictly closed under dependent products, dependent sums,
inductive types, quotients, and the subobject classifier, such
that the following additional strict gluing axiom holds:

Given A : U, write Iso(A) :=
∑
B:U(A ∼= B) for

the type of U-isomorphs of A. For any proposition
φ : Ω, there is a section to the weakening map
Iso(A) (φ→ Iso(A)).

Axiom STC-1. There exists a cumulative hierarchy of strong
universes U0 ⊆ U1 . . . in E such that every map in E is
classified by some Ui.

We schematically write U, V for arbitrary universes in the
hierarchy specified by Axiom STC-1.

Axiom STC-2. There exists a tiny [44, 68] interval object
I : U with two endpoints 0, 1 : I.

What it means for the interval to be tiny is that the
exponential functor (I→ −) : E E has a right adjoint (−)I.
Equivalently, the exponential functor preserves colimits.

A. Modalities for syntax and semantics

The central assumption of synthetic Tait computability is
the existence of an uninterpreted proposition syn from which
we will generate the modal syntax–semantics duality.

Axiom STC-3. There exists a proposition syn : Ω.

The proposition syn generates complementary open and
closed lex idempotent modalities #, that we interpret as
respectively projecting the syntactic and semantic aspects of a
given computability structure. Because lex modalities descend

to the slices in a fibered way, we can use #, naı̈vely in
the internal language of E [14, 52]; however, we find it most
convenient to begin by considering the universes U#, U of
“syntactic” and “semantic” types.

1) Universe of syntactic types: Given a universe U : V, we
define the universe U# : V of syntactic types together with
its (dependent) modality; the following definitions are justified
by strict gluing (Axiom STC-1), setting φ := syn.

U# : {V | syn ↪→ U}
U# ∼= syn→ U

# : {U→ U# | syn ↪→ λA.A}
# ∼= λA.λ : syn.A

el# : {U# → U | syn ↪→ λA.A}
el# ∼= λA.

∏
z:synA(z)

To see how strictification applies, observe that syn→ U is
an isomorph of U under the assumption : syn; we may there-
fore choose U# to be (totally) isomorphic to (syn→ U) and
under : syn strictly equal to U. The remaining definitions
go through directly given that U#.

Because it causes no ambiguity, we will leave the decoding
el# implicit in our notations; furthermore, we will leave both
abstraction and application over syn implicit.

Our use of strict gluing above can be summed up in
the following syntactic realignment lemma, the workhorse of
synthetic Tait computability.

Corollary 6 (Syntactic realignment [56, 57, 59]). Given A :
U, A◦ : U#, and an isomorphism f : #(A◦ ∼= A), we may
define a strictly aligned type f∗A : {U | syn ↪→ A◦} and a
strictly aligned isomorphism f† : {f∗A ∼= A | syn ↪→ f}.

Remark 7. The syntactic modality commutes with dependent
products, dependent sums, equality, etc.

Then we axiomatize the existence of an algebra for the
signature of Cartesian cubical type theory in E. One can inter-
nalize as a dependent record the collection T -Mod(V) of T -
algebras/models valued in types classified by any universe V,
writing M.tp, M.tm, etc. for each component. In Axiom STC-
4 below, we require a T -model M valued in U#, such that
M.I is the syntactic part of the interval of Axiom STC-2.

Axiom STC-4. There exists a T -model M : T -Mod(U#)
such that #(M.I = I).

2) Universe of semantic types: A type A : U is called se-
mantic (or #-connected) when it has no syntactic component,
i.e., we have an isomorphism 1 ∼= #A. Using this idea as a
prototype, we define a dual universe of semantic types:

U : {V | syn ↪→ 1}
U ∼= {U | syn ↪→ 1}

 : U→ U 

 ∼= λA.A tA×syn syn

el : U → U

el ∼= λA.A

Above we are writing A tA×syn syn for the pushout of the
two product projections from A× syn.

The definitions of U , , el are likewise justified by
syntactic realignment (Corollary 6): fixing : syn we note
that each of the types above becomes a singleton, so it can be
aligned to restrict to 1 strictly. As with the syntactic modality,
we leave the decoding el implicit.
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Warning 8. The semantic modality commutes with dependent
sums and equality, but not much else.

B. Cofibrations and locality

We construct the universe of cofibrations in two steps: first
we define a universe of propositions E : {U | syn ↪→ M.F},
and then we constrain it to a subclass F ⊆ E generated by
equality of the interval, disjunction, conjunction, and universal
quantification over the interval. Constraining F in this way will
allow us to define an external algorithm to decide equality
underneath a cofibration (Corollary 47).

E : {U | syn ↪→ M.F}
E ∼=

∑
φ:M.F{Ω | syn ↪→ M.[φ]}

It is trivial to close E under conjunction, equality of the
interval, and universal quantification over the interval.

Notation 9. The canonical map (− = >E) : E → Ω is a
suitable decoding function; we treat it as an implicit coercion.

As in Fig. 1, the difficult part is to close E under disjunction
and to enforce 0 6= 1; because M.splitJ only eliminates into
components of M, the “disjunction” M.(∨E) is not even a
disjunction relative to types in U#, much less in all of U
(and similarly for M.abortJ and M.⊥F).

Construction 10 (Disjunction). We explicitly glue together
the syntactic disjunction with the semantic disjunction; to en-
sure that the resulting proposition is aligned over the (weaker)
syntactic disjunction, we place the semantic disjunction un-
derneath the modality  to force it to become #-connected.

(∨E) : {E× E→ E | syn ↪→ M.(∨F)}
φ ∨E ψ = (φM.∨F ψ,M.[φM.∨F ψ] ∧ ([φ] ∨ [ψ]))

No realignment is required, because Ω is strictly univalent.

We may then define the universe of cofibrations F ⊆ E to be
the smallest subobject of E closed under the following rules:

z : syn φ : E
φ ∈ F

φ ∈ F ψ ∈ F
φ ∧E ψ ∈ F φ ∨E ψ ∈ F

∀i : I.(φ(i) ∈ F)

(∀i.φ(i)) ∈ F
r, s : I

(r = s) ∈ F

To avoid confusion, we will write ∧F,∨F : F× F → F for
the maps induced by the closure of F under ∧E,∨E. Likewise
we define >F = (1 = 1) and ⊥F = (0 = 1) in F. We observe
that the universe of cofibrations can be aligned over M.F, i.e.,
we have F : {U | syn ↪→ M.F}; this follows from the fact that
(φ ∈ F) =Ω > for any φ : E assuming z : syn.

We must define semantic conditions for types that are local
with respect to ∨F and ⊥F, in the sense that they behave as
though the positive cofibrations satisfy universal properties.

Definition 11. A type A : U is called ⊥F-connected when it
behaves as if 0 6= 1, i.e., we have ([⊥F]→ A) ∼= 1.

Definition 12. A type A : U is called F-local when it is ⊥F-
connected and, for any two cofibrations φ, ψ : F, the type A
is right-orthogonal to the canonical map [φ] ∨ [ψ] [φ ∨F ψ]
in the sense that the dotted map below always exists uniquely:

[φ] ∨ [ψ]

[φ ∨F ψ]

A

1

[φ ↪→ aφ, ψ ↪→ aψ ]

[φ
↪→
aφ
, ψ
↪→
aψ

]A

A necessary condition for a type A : U being F-local is that
its syntactic part #A is F-local. Axiom STC-5 below implies
that this condition is sufficient, unfolding Construction 10.

Axiom STC-5. We have ⊥F ≤ syn in the internal logic.

Corollary 13. A type A : U in E is F-local if and only if #A
is F-local.

The interpretation of every syntactic sort of Cartesian cu-
bical type theory in M can be seen to be F-local. Therefore,
by Axiom STC-5, any type A whose syntactic part #A is
isomorphic to one of those sorts is automatically F-local.

C. Kan computability structures

Definition 14. We define Utp to be the object of computability
structures, which pair a syntactic type A : M.tp with a total
type aligned over its elements:

Utp : {V | syn ↪→ M.tp}
Utp
∼=
∑
A:M.tp{U | syn ↪→ M.tm(A)}

We leave the projection Utp U implicit in our notation.

Definition 15. A homogeneous composition structure on
A : Utp is an element of the type HCom(A) defined in
Fig. 4; such a structure asserts the existence of an operation
hcomA that is aligned over the existing syntactic homogeneous
composition operation. We define by realignment a weak
classifying object Uhcom

tp for computability structures equipped
with a homogeneous composition structure:

Uhcom
tp : {V | syn ↪→ M.tp}

Uhcom
tp

∼=
∑
A:Utp

HCom(A)

We leave the projection Uhcom
tp Utp implicit.

Likewise, a coercion structure on a line of computability
structures A : I→ Utp is an element of the type Coe(A) also
defined in Fig. 4; such a structure provides a coeA operation
aligned over the existing syntactic coercion operation.

Constructing a weak classifying object for coercion struc-
tures is more challenging; we use the method of Licata et al.
[45], which relies crucially on the tininess of the interval.

Construction 16. Using the right adjoint (−)I to (I→ −)
given by Axiom STC-2, we transpose the map Coe :
(I→ Uhcom

tp ) U to obtain Coe] : Uhcom
tp (U )I.
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HCom : Utp U 

Coe : (I→ Utp) U 

HCom(A) ∼=
{∏

r,s:I
∏
φ:F
∏
a:
∏
i:I
∏

:[i=r∨Fφ]
A{A | r = s ∨F φ ↪→ a(s)}

∣∣ syn ↪→ M.hcomA

}
Coe(A) ∼=

{∏
r,s:I
∏
a:A(r){A(s) | r = s ↪→ a}

∣∣ syn ↪→ M.coeA
}

Fig. 4. Definitions of homogeneous composition structures for a computability structure and coercion structures for a line of computability structures; the
use of U indicates that these structures are #-connected, i.e., equivalently classified by the subuniverse {U | syn ↪→ 1}.

nftp : {U | syn ↪→ M.tp}
ne(−) :

∏
φ:F
∏
A:M.tp{U | φ ∨ syn ↪→ M.tm(A)}

nf :
∏
A:M.tp{U | syn ↪→ M.tm(A)}

var : {A} {var(A)→ ne⊥F(A) | syn ↪→ λx.x}

Fig. 5. Axiomatization of the structure of normal and neutral forms.

Pulling back the “root” of the generic family U̇ U 
along this map, we obtain a weak classifying object Ukan

tp for
computability structures with both homogeneous composition
and coercion, which we call Kan.

Ukan
tp

Uhcom
tp

(U̇ )I

(U )I
Coe]

Because all the structures we are adding to Utp remain
#-connected, we may align this pullback as a large type
Ukan

tp : {V | syn ↪→ M.tp}. The left map Ukan
tp Uhcom

tp

projects a homogeneous composition operation hcomA for
every Kan computability structure A : Ukan

tp ; transposing the
upstairs map, we see that each line of Kan computability
structures A : I→ Ukan

tp also carries a coercion structure coeA.
We leave the composite projection Ukan

tp Utp implicit.

D. Neutral and normal forms

In order to axiomatize the neutral and normal forms, we
will need a computability structure of term variables.

Axiom STC-6. We assume a family of types var :∏
A:M.tp{U | syn ↪→ M.tm(A)}.

In Fig. 5, we axiomatize the judgmental structure of the
normal and neutral forms of cubical type theory in the lan-
guage of synthetic Tait computability; Figs. 6 and 7 contain
the normal and neutral forms of path and glue types (within
dashed boxes); Σ-types, Π-types, and the circle are located in
the appendix. The main part of the normalization argument
only needs constants of the kind listed to exist, but we sub-
stantiate these constants with an external inductive definition
in Appendix C.

As discussed in Section I-C3, the main difficulty in adapting
Coquand’s semantic normalization argument [21] to cubical

type theory is that neutral terms do not evince a cubically-
stable aspect of the syntax of cubical type theory. The simplest
example of this behavior is the neutral form of a path appli-
cation papp(p, i), which is “neutral” in the traditional sense
only so long as i is neither 0 nor 1.

Warning 17. It is reasonable but ultimately futile to try and
restrict the second argument of papp to be a “variable” of
some kind—in doing so, one refutes either the tininess of the
interval or the existence of a Tait reflection operation for paths.

The failure of all previous attempts to isolate the neutral
forms of cubical type theory stems ultimately from an insis-
tence on characterizing positively the conditions under which
a term is neutral. We have taken the opposite perspective, by
indexing the neutrals in a “locus of instability” φ : F under
which they cease to be neutral; as soon as φ becomes true,
the semantic information carried by a : neφ(A) collapses to a
point. Our negative perspective suggests a way to “stabilize”
a neutral form by gluing computability data onto it along its
locus of instability.

Definition 18 (Stabilized neutrals). Let A : Utp be a
computability structure; a stabilized neutral is a pair of a
neutral a0 : neφ(A) together with a computability datum
a :

∏
:[φ]{A | syn ↪→ a0} defined on its locus of instability.

We will write [a0 | φ ↪→ a] for such pairs, and obtain by
realignment a type family of stabilized neutrals:

sneφ : {Utp → U | syn ∨ φ ↪→ [syn ↪→ M.tm, φ ↪→ λA.A]}
sneφ(A) ∼=

∑
a0:neφ(A)

∏
:[φ]{A | syn ↪→ a0}

E. Cubical normalization structures
We now reach the central definition of this paper, that of a

cubical normalization structure, a notion inspired by the Tait
closure condition [61] under which neutrals can be reflected to
computable elements and computable elements can be reified
to normals, as presented for instance by Coquand [21]. Our
version of the Tait reflection operation takes stabilized neutrals
to computable elements.

Definition 19. A cubical normalization structure A : tp
consists of the following data:

[A] : Ukan
tp

⇓A : {nftp | syn ↪→ [A]} (normal form)

↑(−)
A :

∏
φ:F{sneφ([A])→ [A] | syn ∨ φ ↪→ λa.a} (reflect)

↓A : {[A]→ nf([A]) | syn ↪→ λa.a} (reify)

8



path :
{(∑

A:I→nftpnf(A(0))× nf(A(1))
)
→ nftp

∣∣ syn ↪→ M.path
}

plam : {A}
{∏

p:
∏
i:Inf(A(i))nf(M.path(A, p(0), p(1)))

∣∣ syn ↪→ λp.λi.p(i)
}

papp : {φ,A, a0, a1}
{
neφ(M.path(A, a0, a1))→

∏
i:Ineφ∨F∂i(A(i))

∣∣ syn ↪→ λp.λi.p(i)
}

path :
{(∑

A:I→tpA(0)×A(1)
)
→ tp

∣∣ syn ↪→ M.path
}

[path(A, a0, a1)] ∼=
∏
i:I{A(i) | ∂i ↪→ [i = ε ↪→ aε]M.tm(A(i))}

hcomr→s;φ
path(A,a0,a1)p = λi.hcomr→s;φ∨F∂i

A(i) λk.[k = r ∨F φ ↪→ p(k), i = ε ↪→ aε]M.tm(A(i))

coer→sλj.path(λi.A(i,j),a0(j),a1(j))p = λi.comr→s;∂i
λj.A(i,j)λj.[j = r → p(i), i = ε ↪→ aε(j)]M.tm(A(i,j))

⇓path(A, a0, a1) = path
(
λi.⇓A(i), ↓A(0)a0, ↓A(1)a1

)
↑φpath(A,a0,a1)[p0 | φ ↪→ p] = λi.↑φ∨F∂i

A(i) [papp(p0, i) | φ ∨F ∂i ↪→ [φ ↪→ p(i), i = ε ↪→ aε]M.tm(A(i))]

↓path(A,a0,a1)p = plam
(
λi.↓A(i)p(i)

)
Fig. 6. The cubical normalization structure for dependent path types.

glue : {φ}
{(∑

B:nftp

∑
A:[φ]→nftp

∏
:[φ]nf(Equiv(A,B))

)
→ nftp

∣∣ syn ∨ φ ↪→ [syn ↪→ M.glue(φ,−), φ ↪→ λ(B,A, f).A]
}

englue : {φ,B,A, f}
{(∑

a:
∏

:[φ]nf(A){nf(B) | syn ∧ φ ↪→ f(a)}
)
→ nf(M.glue(φ,B,A, f))

∣∣ syn ∨ φ ↪→ λ(a, b).[syn ↪→ M.glue/tm(a, b), φ ↪→ a]
}

unglue : {φ,B,A, f, ψ} {neψ(M.glue(φ,B,A, f))→ neψ∨Fφ(B) | syn ↪→ M.unglue(φ,−)}

glue :
{∏

φ:F
{(∑

B:tp

∑
A:[φ]→tp

∏
:[φ]Equiv(A,B)

)
→ tp

∣∣ φ ↪→ λ(B,A, f).A
} ∣∣ syn ↪→ M.glue

}
[glue(φ,B,A, f)] ∼=

∑
a:
∏

:[φ]A
{B | φ ↪→ f(a)}

hcomr→s;ψ
glue(φ,B,A,f)p = 〈omitted for brevity, see [9]〉

coer→sλi.glue(φ(i),B(i),A(i),f(i))f = 〈omitted for brevity, see [9]〉
⇓glue(φ,B,A, f) = glue

(
φ,⇓B,⇓A, ↓Equiv(A,B)f

)
↑ψglue(φ,B,A,f)[g0 | ψ ↪→ g] =

([
φ ↪→ ↑ψA[g0 | ψ ↪→ g]

]
, ↑ψB

[
unglue(g0)

∣∣ ψ ∨F φ ↪→
[
ψ ↪→ π2(g), φ ↪→ f

(
↑ψA[g0 | ψ ↪→ g]

)]
B

])
↓glue(φ,B,A,f)(a, b) = englue

([
φ ↪→ ↓Aa

]
, ↓Bb

)
Fig. 7. The cubical normalization structure for glue types.

We define by realignment the large type tp of cubical nor-
malization structures, noting that the latter three components
of a cubical normalization structure are #-connected:

tp : {V | syn ↪→ M.tp}

Remark 20 (Vertical maps). We refer to the reflection and
reification maps as vertical, in the sense that they are con-
strained to lie over the syntactic identity function.

The role of verticality is to ensure that reification takes
computability data for a given term to a normal form of the
same term, etc. Likewise, our presentation of the neutral and
normal forms use extent types to express their relationship to
the syntactic T -model without escaping the internal language
of E. In this way, extent types and vertical maps play a very
important role in synthetic Tait computability.

The main result of this section is the construction of a
computability algebra for Cartesian cubical type theory; this
equips each syntactic type with a Kan computability structure,
normal form, and reflection and reification maps.

Theorem 21. We have a computability T -model M′ :
{T -Mod(U) | syn ↪→ M} aligned over the syntactic algebra.

Proof. We define M′.tp = tp, M′.tm(A) = [A], M′.I = I, and
M′.F = F. In Figs. 6 to 11, we show how to close the universe
of cubical normalization structures tp under the connectives
path, Π, Σ, glue, and S1. The fact that the resulting model is
aligned over M follows from each of these components being
aligned over their syntactic counterparts; in particular, each
connective is aligned over the syntactic connective in M.

IV. THE COMPUTABILITY TOPOS

We now define the category E in which Section III takes
place, as a category of sheaves on a generalized space G
which combines syntax and semantics. Mirroring the modal
syntax–semantics duality introduced in Section III-A, sheaves
on G function as computability structures because they have
syntactic and semantic aspects obtained by restriction to the
corresponding regions of the space.
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We construct G in turn by starting with a syntactic topos
T that contains the generic model of Cartesian cubical type
theory, and gluing it onto a semantic topos A over which the
notions of variable, neutral, and normal form are definable.

A. The language of topoi

Topoi are sometimes thought of as generalized topolog-
ical spaces, and sometimes as special kinds of categories.
These perspectives are complementary, but one avoids many
notational and conceptual quagmires by distinguishing them
formally [5, 17, 67]: in the tradition of Grothendieck, the 2-
category of topoi is opposite to the 2-category of cocomplete
and finitely complete categories satisfying Giraud’s exactness
axioms [10].3 This explains why the product of two topoi
is given by a tensor product of categories; the situation is
analogous to the other dualities between geometry and algebra
in mathematics, such as locales/frames, affine schemes/com-
mutative rings, Stone spaces/Boolean algebras, etc.

Notation 22. Given a topos X, we will write Sh(X) for
its category of sheaves, which is the formal avatar of X in
the opposite category. In traditional parlance, morphisms of
topoi go in the “direct image” direction, and morphisms of
categories of sheaves go in the “inverse image” direction.

Example 23 (Presheaves). Given a small category C, the
category of presheaves Pr( C) is the category of functors
Cop Set. Because Pr( C) satisfies Giraud’s axioms, there
is a topos Ĉ satisfying Sh

(
Ĉ
)

= Pr( C).

B. The syntactic topos

Recall from Section II that a model of T in Sh(X) is
a locally Cartesian closed functor T Sh(X); when this
functor only preserves finite limits but not dependent products,
we refer to it as a pre-model. Pre-models play an important
role in the metatheory of higher-order logic (as in the “general
models” of Henkin [33], later studied in the language of topoi
by Awodey and Butz [11]), as well as the metatheory of depen-
dent type theory (as in pseudo-morphisms of cwfs [40, 46]).

We define the syntactic topos T as the presheaf topos T̂ .
In light of Diaconescu’s theorem [25], T is the classifying
topos of pre-models of T , in the sense that morphisms of
topoi X T̂ correspond to pre-models of T in Sh(X).

C. The topos of cubical atomic terms

Next, we define the semantic topos A and an essential
morphism of topoi α : A T along which we will glue in
Section IV-D; that α is essential means there is an additional
left adjoint α! a α∗ a α∗, a technical condition that will play
an important role in Section IV-E. Intuitively, A is the topos
of cubically atomic terms, i.e., term variables and elements
of the interval; concretely, we equip A with a tiny interval
object I ∼= α∗I : Sh(A ) and a fiberwise-tiny family of term
variables var : Sh(A )/α∗tm indexed in syntactic types.

3The 1-cells are reversed, but the 2-cells remain the same.

We define A := Â , where A is a category of cubical
atomic contexts and substitutions whose objects Γ : A we
define simultaneously with their decodings α(Γ) : T :

· : A α(·) = 1T

Γ : A A : α(Γ) tp

Γ.A : A α(Γ.A) = α(Γ).A

Γ : A

Γ.I : A α(Γ.I) = α(Γ)× I

Before defining the morphisms of A , we first characterize
the term variables:

TOP VARIABLE
A : α(Γ) tp

Γ.A 
 zA : A α(zA) = qA

POP VARIABLE
Γ 
 α : A Q ∈ {I} ∪

{
B : α(Γ) tp

}
Γ.Q 
 sQ(α) : A ◦ pQ α(sQ(α)) = α(α) ◦ pQ

Then we define the morphisms γ : ∆ Γ simultaneously
with their decodings α(γ) in terms of the cubical atomic terms:

EMPTY

· : ∆ · α(·) = !α(∆)

VARIABLE
γ : ∆ Γ ∆ 
 α : A ◦ α(γ)

γ.α : ∆ Γ.A α(γ.α) = 〈α(γ),α(α)〉

DIMENSION
γ : ∆ Γ r : α(∆) I

γ.r : ∆ Γ.I α(γ.r) = 〈α(γ), r〉

The above decodings assemble into a functor α : A T ,
which automatically induces an essential morphism of topoi
that we will also write α : A T .

Lemma 24. The chosen interval structure is preserved by re-
striction along α : A T ; that is, we have an isomorphism
yA (·.I) ∼= α∗yT (I).

Construction 25 (The presheaf of variables). We have a fam-
ily var : Sh(A )/α∗tm, whose fiber at each a : α(Γ) tm(A)
is the set of variables Γ 
 a : A with α(a) = a.

D. The glued topos

Let S be the Sierpiński topos satisfying Sh(S) = Set→.
Writing (pt) for the punctual topos satisfying Sh(pt) = Set,
we have open and closed points ◦ : (pt) S and • :
(pt) S corresponding under inverse image to the codomain
and domain functors on Set respectively. In geometrical terms,
these endpoints render S a directed interval {• → ◦} that can
be used to form cylinders by cartesian product.

We define the glued topos G by gluing the open end
of the cylinder A × S onto T along α : A T ,
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obtaining a diagram of open and closed immersions
T G Aj i as follows:

A

A × S

A × ◦

T

G

α

j

A
A × •

i

Finally, we define the category E axiomatized in Section III
to be E := Sh(G ).

Remark 26. The gluing construction above has the advantage
of being expressed totally in the category of Grothendieck
topoi; for familiarity, we note that the category E = Sh(G )
is the traditional Artin gluing of the inverse image functor
α∗ : Pr(T ) Pr(A ) and can hence be explicitly computed
as the comma category Pr(A ) ↓ α∗. Therefore, an object of
E is a pair

(
E,A α∗E

)
of a presheaf E : Pr(T ) and a

presheaf A : Pr(A ) equipped with a structure map to α∗E.

E. Verifying the axioms

Because E = Sh(G ) is a category of sheaves, it satisfies
Giraud’s axioms and thus interprets extensional type theory
extended with a universe Ω of propositions. To see that
E moreover admits a hierarchy of type-theoretic universes
satisfying the strictification axiom (Axiom STC-1), we observe
that E also admits a presentation as a presheaf category.

Lemma 27 (Strong universes). In E we have a cumulative
and transfinite hierarchy of strong universes (Definition 5)
U0 ⊆ U1 ⊆ . . . corresponding to the sequence of strongly
inaccessible cardinals in the background set theory.

Proof. First, we observe that G can be presented as Ĝ for
some small category G, following a standard result of topos
theory that the Artin gluing of a continuous and accessible
functor between categories of presheaves is again a category
of presheaves [10, 19]. Note that α∗ is continuous, as the
inverse image part of an essential morphism of topoi.

We therefore obtain a hierarchy of Hofmann–Streicher uni-
verses [34] in E ' Pr( G), which Coquand has additionally
shown to be cumulative. Finally, using the argument of Orton
and Pitts [48, Theorem 6.3] and our assumption that the back-
ground set theory is boolean, we conclude that the Hofmann–
Streicher universes satisfy the strictification axiom.

Using our computation of E as a comma category (Re-
mark 26), we can explicitly compute the proposition syn stip-
ulated by Axiom STC-3. Then, we construct the syntactic T -
model, family of term variables, and interval object stipulated
by Axioms STC-4, STC-6, and STC-2 respectively.

Computation 28 (The syntactic open). We define syn : E
to be the subterminal object j!1 =

(
1, 0 α∗1

)
, for which

we have an equivalence of categories Pr(T ) ' E/syn. The
inverse image part of the open immersion can be viewed as
the pullback map syn∗ : E E/syn, and the direct image is
the dependent product map syn∗ : E/syn E.

Remark 29 (The syntactic T -model). As the classifier of pre-
models of T , the topos T contains the generic pre-model of
T , namely the Yoneda embedding T Sh(T ) = Pr(T ).
Because the Yoneda embedding is locally Cartesian closed, the
generic pre-model is in fact a genuine T -model; because T
is small, the size of this model is bounded by the smallest #-
modal Hofmann–Streicher universe, allowing us to internalize
it as an element of T -Mod(U#).

Remark 30 (The family of term variables). In light of Re-
mark 26, the presheaf var : Pr(A )/α∗tm from Construction 25
can be internalized as a U-valued family of types in E that
restricts to tm : Pr(T ) under the open immersion.

Construction 31 (The glued interval). We take the interval I :
E to be the direct image I := j∗yT (I) of the syntactic interval
under the open immersion, so j∗I = yT (I). Because of the
isomorphism from Lemma 24, it is easy enough to see that
i∗I ∼= yA (·.I), completing our justification of Axiom STC-4.

To see that the glued interval is tiny, we use a general fact
about Artin gluings along inverse image functors.

Lemma 32. Let f : Y U be a morphism of topoi. Write X
for the Artin gluing of the inverse image functor f∗, and write
j : U X and i : Y X for the respective open and closed
immersions of topoi. Suppose that X : Sh(X) is a sheaf such
that j∗X is a tiny object in Sh(U) and i∗X is a tiny object
in Sh(Y); then X is tiny.

Proof. It suffices to check that the exponential functor
(X → −) preserves colimits; see the appendix for details.

Corollary 33. The glued interval is tiny in E.

Finally, we verify Axiom STC-5 and construct the nor-
mal and neutral forms as indexed quotient inductive types
[3] valued in U ; the full definition appears in the ap-
pendix (Fig. 12).

Lemma 34. In the lattice of opens of G , we have ⊥F ≤ syn.

V. NORMALIZATION FOR CUBICAL TYPE THEORY

Finally, we show that our computability model (Theo-
rem 21) lets us compute the normal form of every syntactic
type, implying the (external to E) decidability of type equality
in cubical type theory, and the injectivity of type constructors.

Remark 35. Because α : A T is an essential mor-
phism of topoi with additional left adjoint α! a α∗, so
is the closed immersion i : A G ; the additional left
adjoint i! takes E : Pr(A ) to the computability structure(
α!E,E α∗α!E

)
determined by the unit of α∗α!.

Construction 36. Let Γ : A be an atomic context; we write
LΓM : E for i!yA (Γ), the computability structure of vectors of
“atoms of type Γ” tracked by honest substitutions/terms.

11



Construction 37. The computability model evinces a locally
Cartesian closed functor M′ : T E; restricting along α :
A T , we have an interpretation functor J−K : A E
taking each atomic context to its computability structure
M′(α(Γ)). We observe that j∗JΓK = yT (α(Γ)) = α!yA (Γ).

Construction 38. For any X : E there is a canoni-
cal natural transformation [J−K, X] α∗j∗X : Pr(A )
which restricts M′(α(Γ)) X : E to its syntactic part,
noting that Hom(α!yA (Γ), j∗X) ∼= α∗j∗X(Γ). Viewed
as a sheaf on G , we write XM′ : E for the pair(
j∗X, [J−K, X] α∗j∗X

)
.

Construction 39. We define a pointwise vertical (Remark 20)
natural transformation atom : L−M J−K : Hom(A , E) that
reflects each atomic substitution as a computable substitution.
The definition follows by recursion on the index Γ : A , and
uses the fact that the locus of instability of a variable is empty:

atom(·)(·) = ·
atomΓ.I(γ.r) = (atomΓ(γ), r)

atomΓ.A(γ.x) =
(
atomΓ(γ), ↑⊥F

M′(A)[var(x) | ⊥F ↪→ []M′(A)]
)

Lemma 40. The pointwise vertical natural transformation
atom : L−M J−K induces by precomposition a vertical map
atom∗X : XM′ X for any sheaf X : E.

Theorem 41 (The normalization function). The functor M′ :
T E induces a vertical map M.tp (M′.tp)M′ . Compos-
ing this with the vertical maps atom∗M′.tp and ⇓, we obtain
a vertical normalization map nbe sending a syntactic type to
the normal form chosen by its normalization structure in M′:

M.tp (M′.tp)M′ M′.tp nftp
atom∗M′.tp ⇓

We can similarly exhibit a pointwise vertical normalization
function for syntactic terms:∏

A:M.tp{M.tm(A)→ nf(A) | syn ↪→ id}

The standard correctness conditions (soundness and com-
pleteness) for normalization follow immediately.

Theorem 42 (Correctness of normalization). The normaliza-
tion function is sound and complete for cubical type theory.

1) Completeness — if two (types, terms) are equal, then
they are taken to equal normal forms.

2) Soundness — if two (types, terms) are taken to the same
normal form, then they are equal.

Proof. Completeness is automatic because our entire devel-
opment was carried out relative to judgmental equivalence
classes of terms. Soundness follows from the fact that the
normalization function is vertical, hence a section to the unit
of the open modality, hence a monomorphism.

We would not expect the Π constructor to be injective in the
syntactic category (a derivability): because monomorphisms
are preserved by left exact functors, this would imply that any

model of cubical type theory has injective type constructors.
However, there is a modal version of injectivity corresponding
to the traditional admissibility statement that does hold.

Theorem 43 (Injectivity of type constructors). The following
formula holds in the internal logic of E = Sh(G ):

∀A,A′, B,B′.
M.Π(A,B) = M.Π(A′, B′) =⇒  ((A,B) = (A′, B′))

Lemma 44 (Idempotence of normalization). For any normal
type A we have nbe(A) = A : nftp; and likewise, for any
normal term a we have nbe(a) = a : nf(A).

Corollary 45. The normal form presentation is tight: a given
term has only a single normal form. Hence the normalization
function is an isomorphism.

Proof. Suppose we have distinct normal forms a 6= a′ for a
term a; the normalization function is vertical, so at least one of
a, a′ lies outside its image; but this contradicts Lemma 44.

Both the syntax and the normal forms of cubical type theory
are recursively enumerable, because they can be presented by
finitely many rules in a conventional deductive system. Hence
we have the following corollaries of Theorems 41 and 42
and Corollary 45.

Corollary 46 (Normalization algorithm). The normalization
function (Theorem 41) is tracked by a recursive function
sending well-typed raw (types, terms) to normal forms.

Corollary 47 (Decidability of equality). Judgmental equality
of types and terms in atomic contexts is decidable.

Proof. First we obtain their unique normal forms using the
algorithm described in Corollary 46; because equality of
normal forms is (externally) decidable, we are done.

Remark 48. The above results unfold to statements about
judgments in atomic contexts (i.e., in the image of α :
A T ), but standard presentations of cubical type theory
also allow context extension by : [φ]. However, one can
algorithmically eliminate such assumptions by left inversion
as in the implementations of Cubical Agda and redtt.
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“Cubical Type Theory: a constructive interpretation
of the univalence axiom,” IfCoLog Journal of Logics
and their Applications, vol. 4, no. 10, pp. 3127–
3169, Nov. 2017. [Online]. Available: http://www.
collegepublications.co.uk/journals/ifcolog/?00019

[21] T. Coquand, “Canonicity and normalization for depen-
dent type theory,” Theoretical Computer Science, vol.
777, pp. 184–191, 2019, in memory of Maurice Nivat, a
founding father of Theoretical Computer Science - Part
I.

[22] T. Coquand, S. Huber, and A. Mörtberg, “On higher
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APPENDIX

A. Normalization structures

In Figs. 8 to 11, we present the remaining normalization
structures that could not fit in the main body of Section III.

B. Explicit computations

In Section IV-E we gave a presentation of E as a category
of presheaves, an apparently necessary step to substantiate the
strict universes of synthetic Tait computability; it is still useful,
however, to gain intuitions for the more traditional presentation
of E as the comma category Sh(A ) ↓ α∗, and to understand
the explicit computations of the inverse image and direct image
parts of the open and closed immersions respectively.

Computation 49 (Comma category). An object of the comma
category E ' Sh(A ) ↓ α∗ is an object E : Pr(T ) together
with a family of presheaves E′ α∗E : Pr(A ); a morphism
from

(
F, F ′ α∗F

)
to
(
E,E′ α∗E

)
is a morphism

e : F E : T together with a commuting square of the
following kind:

F ′

α∗F

E

α∗E

e′

α∗e

Computation 50 (Open immersion). The open immersion j :
T G corresponds under inverse image to the codomain
fibration j∗ : Pr(A ) ↓ α∗ Pr(T ). Hence we may compute
the adjunction j∗ a j∗ as follows:

j∗ :
(
E,E′ α∗E

)
E

j∗ : E
(
E,α∗E α∗E

)
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The direct image functor j∗ is fully faithful. In fact, we have
two additional adjoints j! a j∗ a j∗ a j!, the exceptional right
adjoint by virtue of the adjunction α∗ a α∗.

j! : E
(
E, 0 α∗E

)
j! :

(
E,E′ α∗E

)
α∗E

′ ×α∗α∗E E

Computation 51 (Closed immersion). The closed immersion
i : A G corresponds under inverse image to the domain
functor i∗ : Sh(A ) ↓ α∗ Pr(A ). We compute the adjunc-
tion i∗ a i∗ as follows:

i∗ :
(
E,E′ α∗E

)
E′

i∗ : E′
(
1, E′ α∗1

)
Because α is an essential morphism of topoi, we have an

additional left adjoint i! a i∗ a i∗:

i! : E′
(
α!E

′, E′ α∗α!E
′)

Computation 52 (Open and closed modality). Using the
syntactic open syn (Computation 28), we can compute the
open modality # = j∗j

∗ as the exponential (syn→ −). Like-
wise, syn makes another computation of the closed modality
 = i∗i

∗ available:

A× syn

A

syn

 A

Corollary 53. From Computations 28 and 49 to 51 we may
make the following observations:

1) The open modality # := j∗j
∗ on E has both a right

adjoint j∗j
! and left adjoint j!j

∗; hence the syntactic
open syn : E is a tiny object; the adjunction j!j

∗ a #
can be computed as (−× syn) a (syn→ −).

2) The closed modality  := i∗i
∗ on E has a left adjoint

i!i
∗.

3) The gluing functor α∗ : Pr(T ) Pr(A ) can be
reconstructed as the composite i∗j∗.

The following fracture theorem is from SGA 4 [10].

Lemma 54 (Fracture [10, 52]). Any sheaf on G can be
reconstructed up to isomorphism from its restriction to T
and A ; in particular, the following square is cartesian for
any A : E:

A

#A

 A

 #A

C. Explicit construction of neutral and normal forms

Our construction of the computability model of cubical
type theory (Theorem 21) requires only that certain constants
corresponding to the neutral and normal forms exist in E.

However, to use this computability model to establish the
injectivity and (external) decidability properties of Section V,
it is important to ensure that the corresponding properties hold
for our normal forms.

Concretely, we define them by a family of indexed quotient
inductive types (QITs [3]) valued in the modal universe U :

[tp 3nf A] : U (A : M.tp)

[A 3nf a] : U (A : M.tp, a : M.tm(A))

[a ∈φne A] : U (φ : F, A : M.tp, a : M.tm(A))

In fact, we ensure that [a ∈φne A] is not only #-connected
but actually (φ ∨ syn)-connected, capturing the sense in which
the data of a neutral form collapses to a point on its locus of
instability. Then, the collections of normal and neutral forms
are obtained by dependent sum and realignment as follows
(noting that the fibers of each family are valued in U and
are thus #-connected):

nftp ∼=
∑
A:M.tp[tp 3nf A]

nf(A) ∼=
∑
a:M.tm(A)[A 3nf a]

neφ(A) ∼=
∑
a:M.tm(A)[a ∈

φ
ne A]

Our use of quotienting in the definition of normal forms
is to impose correct cubical boundaries on constructors: for
instance, we must have ∂i → loop(i) = base. Because the
theory of cofibrations is (externally) decidable, the quotient
can be presented externally by an effective rewriting system
that reduces size and is therefore obviously noetherian.

Remark 55. An indexed quotient inductive type in U also
has a universal property in U, obtained by adding an additional
quotient-inductive clause that contracts each fiber to a point
under z : syn.

In Fig. 12 we present the indexed quotient inductive defini-
tion of normal and neutral forms.

Lemma 56 (Decidability of equality of normal forms). Given
two external normal forms A0, A1 : LΓM nftp, it is recur-
sively decidable whether A0 = A1 or A0 6= A1.

Proof. As in the normal form presentation of strict coproducts
[2], elements of nftp are not pure data: they include binders
of type I, var(A), and [φ]. Nevertheless, equality is algorith-
mically decidable as follows, by recursion on Γ, A0, A1.

At a binder of type I or var(A), we continue at Γ.I or
Γ.A respectively. At a binder of type [φ], we note that our
definition of F (Section III-B) licenses a case split on the form
of φ : F. We eliminate universal quantifications in the style of
Cohen et al. [20], proceeding by “left inversion” until reaching
a conjunction of equations r =I s. If the conjunction implies
0 = 1, we halt; otherwise, we proceed under the equalizing
atomic substitution ∆→ Γ.
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Lemma 57 (Injectivity of normal form constructors). The
following formula holds in the internal logic of E = Sh(G ):

∀A,A′, B,B′.
pi(A,B) = pi(A′, B′) =⇒  ((A,B) = (A′, B′))

Proof. We prove this in the same way that one proves injec-
tivity of constructors of any inductive type, with one subtlety:
we must ensure that our constructions respect the cubical
boundary of glue, which is the only constructor of [tp 3nf −]
subject to an equational clause.

By induction on [tp 3nf −], we define a #-connected pred-
icate isPi : nftp→ Ω satisfying a universal property:

∀X : nftp.isPi(X) ⇐⇒  (∃A,B.X = pi(A,B))

We define isPi as follows:

isPi( , pi(A,B)) =  >
isPi( , glue{B,A, f}(φ,B,A, f)) =  ∃z : [φ].isPi(A,A(z))

isPi( , sg(A,B)) =  ⊥
isPi( , path(A, a0, a1)) =  ⊥

isPi( , s1) =  ⊥

We must verify that isPi respects the φ-boundary of glue =
A(z). But supposing that z : [φ], we can calculate that
isPi( , glue(φ,B,A, f)) = isPi( ,A(z)), which is exactly
what it means for isPi to respect that equation.

The reverse implication of the universal property of isPi
is immediate. We prove the forward implication by induction
on X , where again the only subtlety is in the case of glue:
if isPi( , glue(φ,B,A, f)) then we must have isPi(A,A(z)),
which by the inductive hypothesis implies A(z) = pi.

Then we define dom : {X : nftp | isPi(X)} →  nftp:

dom( , pi(A,B)) = η (A)

dom( , glue(φ,B,A, f)) = dom(A,A)

Note that these are the only constructors that may satisfy isPi,
and in the case of glue, if isPi( , glue(φ,B,A, f)) holds then
φ = > and isPi(A,A). We may define cod similarly.

Finally, suppose that pi(A,B) = pi(A′, B′). Then by apply-
ing dom to both sides of this equation, we get  (A = A′); the
equality of codomains likewise follows by applying cod.

D. Proofs of theorems

Lemma 24. The chosen interval structure is preserved by re-
striction along α : A T ; that is, we have an isomorphism
yA (·.I) ∼= α∗yT (I).

Proof. First we compute the representable points of α∗yT (I)
by transpose and the Yoneda lemma:

HomPr(A )(yA (Γ),α∗yT (I))
∼= HomPr(T )(α!yA (Γ), yT (I))
∼= HomPr(T )(yT (α(Γ)), yT (I))
∼= HomT (α(Γ), I)

We see by induction on the definition of the objects and
hom sets of A that this is equivalent to HomA (Γ, ·.I).

Lemma 32. Let f : Y U be a morphism of topoi. Write X
for the Artin gluing of the inverse image functor f∗, and write
j : U X and i : Y X for the respective open and closed
immersions of topoi. Suppose that X : Sh(X) is a sheaf such
that j∗X is a tiny object in Sh(U) and i∗X is a tiny object
in Sh(Y); then X is tiny.

Proof. We must check that the exponential functor (X → −)
preserves colimits. Fixing a diagram E• : I Sh(X), we may
compute the exponential

(
X → colimI E•

)
in the language of

Sh(Y) as follows; first, the standard computation that glues a
function from the open subtopos onto a function from the
closed subtopos [37]:

i∗
(
X → colimI E•

)

f∗
(
j∗X → j∗ colimI E•

)

i∗X → i∗ colimI E•

i∗X → f∗j∗ colimI E•

Commute cocontinuous functors past colimits.

i∗
(
X → colimI E•

)

f∗
(
j∗X → colimI j

∗E•
)

i∗X → colimI i
∗E•

i∗X → colimI f
∗j∗E•

Use the tininess of i∗X, j∗X and the cocontinuity of f∗.

i∗
(
X → colimI E•

)

colimI f
∗(j∗X → j∗E•)

colimI (i∗X → i∗E•)

colimI (i∗X → f∗j∗E•)

Hence by the universality of colimits we have:

colimI i
∗(X → E•)

colimI f
∗(j∗X → j∗E•)

colimI (i∗X → i∗E•)

colimI (i∗X → f∗j∗E•)

Lemma 58. If Γ : A is a formal context, then the hom set
HomT (α(Γ), [0 = 1]) is empty.

Proof. Formal contexts do not induce assumptions of false
cofibrations. This can be seen by a model construction in
which T is interpreted into cubical sets, where the interpre-
tation of cofibrations is standard but each type is interpreted
as an inhabited type. Such an argument accommodates types
that are “weakly empty” (e.g. the void type lacking an η-law),
because the abort eliminator can simply return the basepoint
of its motive.

17



Lemma 34. In the lattice of opens of G , we have ⊥F ≤ syn.

Proof. We recall that the interval I is purely syntactic
(Lemma 24), hence we have ⊥F = j∗yT ([0 = 1]) and
therefore i∗⊥F = α∗yT ([0 = 1]). To show the inequality
⊥F ≤ syn, we need to exhibit a square of the following kind
in Pr(A ):

α∗yT ([0 = 1])

α∗yT ([0 = 1])

⊥F

0

1

syn

It suffices to show that α∗yT ([0 = 1]) is the initial object
of Pr(A ), but this follows from Lemma 58.

Lemma 59. A type A : U in E is ⊥F-connected if and only
#A is ⊥F-connected.

Proof. If A is ⊥F-connected, it is immediate that #A is
⊥F-connected. Conversely, assume that #A is ⊥F-connected;
Lemma 34 implies that A is also ⊥F-connected.

Corollary 13. A type A : U in E is F-local if and only if #A
is F-local.

Proof. For ⊥F-connectedness, we use Lemma 59. Then,
fixing φ, ψ : F we must check that a partial element
[φ ↪→ aφ, ψ ↪→ aψ] : [φ] ∨ [ψ] A can be extended to a
unique partial element [φ ∨F ψ] A.

We assume a proof of [φ ∨F ψ]; by Construction 10 we
have M.[φM.∨F ψ] and  ([φ] ∨ [ψ]), which is the same as
[φ] ∨ [ψ] ∨ syn. Hence we may form the following partial
element, using the fact that #A is F-local: φ ↪→ aφ

ψ ↪→ aψ
syn ↪→ [φ ↪→ aφ, ψ ↪→ aψ]#A

Lemma 60. For any X : E, we have a canonical isomorphism
[L−M, X] ∼= i∗X : Pr(A ) determined by adjoint transpose and
the Yoneda lemma.

Proof. Fix an atomic context Γ : A and compute:

[L−M, X](Γ) ∼= HomE(LΓM, X)

= HomE(i!yA (Γ), X)
∼= HomPr(A )(yA (Γ), i∗X)
∼= i∗X(Γ)

Lemma 40. The pointwise vertical natural transformation
atom : L−M J−K induces by precomposition a vertical map
atom∗X : XM′ X for any sheaf X : E.

Proof. The vertical map is computed in the language of the
comma category as the following square:

[J−K, X]

α∗j∗X

XM′

[L−M, X] ∼= i∗X

α∗j∗X

[atom, X]

X

α∗idj∗X

To see that the diagram commutes, we chase an element
x : JΓK X , using the fact that each component atomΓ :
LΓM JΓK is vertical.

Theorem 41 (The normalization function). The functor M′ :
T E induces a vertical map M.tp (M′.tp)M′ . Compos-
ing this with the vertical maps atom∗M′.tp and ⇓, we obtain
a vertical normalization map nbe sending a syntactic type to
the normal form chosen by its normalization structure in M′:

M.tp (M′.tp)M′ M′.tp nftp
atom∗M′.tp ⇓

Proof. Unfolding things more precisely, the vertical map
M.tp (M′.tp)M′ must be a square of the following form:

α∗yT (tp)

α∗yT (tp)

M.tp = j∗yT (tp)

[J−K,M′.tp]

α∗yT (tp)

(M′.tp)M′

α∗idyT (tp)

The upstairs map is defined by functoriality of the com-
putability interpretation, taking a type A : α(Γ) tp to its
chosen normalization structure M′(A) : JΓK M′.tp.

Theorem 43 (Injectivity of type constructors). The following
formula holds in the internal logic of E = Sh(G ):

∀A,A′, B,B′.
M.Π(A,B) = M.Π(A′, B′) =⇒  ((A,B) = (A′, B′))

Proof. By completeness, M.Π(A,B) = M.Π(A′, B′) implies:

pi(nbe(A), λx.nbe(B(x))) = pi(nbe(A′), λx.nbe(B′(x)))

By soundness, it suffices to show:

 ((nbe(A), λx.nbe(B(x))) = (nbe(A′), λx.nbe(B′(x))))

The result follows from injectivity of pi in nftp, shown by a
standard inductive argument (Lemma 57).

Notation 61. We write J−K : M.tp → M′.tp and J−K :
M.tm(A) → JAK for the maps constructed in Theorem 41
which send types and terms to their normalization data in M′.

Lemma 62 (Idempotence for variables). For all x : var(A),
we have JxK = ↑⊥JAK[var(x) | ⊥ ↪→ []].
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Proof. Because this equation already holds when restricted
over the open subtopos, it suffices to reason “upstairs” in
Sh(A ), hence pointwise with respect to an arbitrary atomic
context Γ : A . Here x is an atomic term Γ 
 x : A and JxK is
a function that projects the corresponding cell from any atomic
substitution γ : yA (Γ) and reflects it in the chosen normal-
ization structure JAKγ as ↑⊥JAKγ [var(xγ) | ⊥ ↪→ []], recalling
Construction 39.

Lemma 63 (Idempotence of normalization). The maps of
Notation 61 satisfy the following equations:

1) For all x : neφ(A), we have JxK = ↑φJAK[x | φ ↪→ JxK].
2) For all a : nf(A), we have ↓JAKJaK = a.
3) For all A : nftp, we have ⇓JAK = A.

Unfolding the definition of the normalization function, we
therefore have nbe(A) = A for any normal type A : nftp, and
nbe(a) = a : nf(A) for any normal term a : nf(A).

Proof. By simultaneous induction on the normal and neutral
forms, using essentially the argument of Kaposi [39]. Because
the syntactic part of the normalization function is the identity,
it suffices to reason in the language of Sh(A ). Representative
cases follow:

1) The case for variables is Lemma 62.
2) The case for neutral function application app(f, a) is as

follows. By induction, JfK = ↑φJM.Π(A,B)K[f | φ ↪→ JfK]
and ↓JAKJaK = a, and we need to check that Japp(f, a)K
is equal to ↑φJB(a)K[app(f, a) | φ ↪→ Japp(f, a)K].

Japp(f, a)K
= JfKJaK

=
(
↑φJM.Π(A,B)K[f | φ ↪→ JfK]

)
JaK

=
(
↑φΠ(JAK,λx.JB(x)K)[f | φ ↪→ JfK]

)
JaK

= ↑φJB(a)K

[
app
(
f, ↓JAKJaK

) ∣∣ φ ↪→ JfKJaK
]

= ↑φJB(a)K[app(f, a) | φ ↪→ JfKJaK]

= ↑φJB(a)K[app(f, a) | φ ↪→ Japp(f, a)K]

3) The case for neutral path application papp(p, r) follows.

Jpapp(p, r)K

= JpK(r)

=
(
↑φJM.path(A,a0,a1)K[p | φ ↪→ JpK]

)
(r)

= ↑φ∨F∂rJA(r)K[papp(p, r) | φ ∨F ∂r ↪→ [φ ↪→ JpK(r), r = ε ↪→ aε]]

= ↑φ∨F∂rJA(r)K[papp(p, r) | φ ∨F ∂r ↪→ JpK(r)]

= ↑φ∨F∂rJA(r)K[papp(p, r) | φ ∨F ∂r ↪→ Jpapp(p, r)K]

4) The case for stabilizing a neutral element of the circle is
as follows. Starting with a neutral s0 such that Js0K =

↑φS1[s0 | φ ↪→ Js0K] and a partial normal form sφ such
that ↓S1JsφK = sφ, we compute:

↓S1Jliftφ(s0, sφ)K
= ↓S1Js0K

= ↓S1↑φS1[s0 | φ ↪→ Js0K]

= ↓S1↑φS1[s0 | φ ↪→ JsφK]
= ↓S1lift(φ, s0, JsφK)
= liftφ

(
s0, ↓S1JsφK

)
= liftφ(s0, sφ)

5) The case for the dependent product type constant is as
follows.

⇓Jpi(A,B)K
= ⇓Π(JAK, λx.JB(x)K)
= pi(⇓JAK, λx.⇓JB(x)K)
= pi(A,B)
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sg :
{(∑

A:nftp

∏
x:var(A)nftp

)
→ nftp

∣∣ syn ↪→ M.Σ
}

pair : {A,B}
{(∑

x:nf(A)nf(B(x))
)
→ nf(M.Σ(A,B))

∣∣ syn ↪→ λ(a, b).(a, b)
}

split : {φ,A,B}
{
neφ(M.Σ(A,B))→

∑
x:neφ(A)neφ(B(x))

∣∣ syn ↪→ λ(a, b).(a, b)
}

Σ :
{(∑

A:tp(A→ tp)
)
→ tp

∣∣ syn ↪→ M.Σ
}

[Σ(A,B)] ∼=
∑
x:AB(x)

hcomr→s;φ
Σ(A,B)p = let x(k) = hcomr→k;φ

A λi.[i = r ∨F φ→ π1(p(i))] in
(
x(s), comr→s;φ

λi.B(x(i))λi.[i = r ∨F φ→ π2(p(i))]
)

coer→sλi.Σ(A(i),B(i))p = let x(k) = coer→kA π1(p) in
(
x(s), coer→sλi.B(x(i))π2(p)

)
⇓Σ(A,B) = sg

(
⇓A, λx.⇓B

(
↑⊥F
A [var(x) | ⊥F ↪→ []M.tm(A)]

))
↑φΣ(A,B)[p0 | φ ↪→ p] = let (x0, y0) = split(p0); x̃ = ↑φA[x0 | φ ↪→ π1(p)] in

(
x̃, ↑φB(x̃)[y0 | φ ↪→ π2(p)]

)
↓Σ(A,B)p = pair

(
↓Aπ1(p), ↓B(π1(p))π2(p)

)
Fig. 8. The cubical normalization structure for dependent sum types.

pi :
{(∑

A:nftp

∏
x:var(A)nftp

)
→ nftp

∣∣ syn ↪→ M.Π
}

lam : {A,B}
{(∏

x:var(A)nf(B(x))
)
→ nf(M.Π(A,B))

∣∣ syn ↪→ λf.λx.f(x)
}

app : {φ,A,B}
{
neφ(M.Π(A,B))→

∏
x:nf(A)neφ(B(x))

∣∣ syn ↪→ λf.λx.f(x)
}

Π :
{(∑

A:tp(A→ tp)
)
→ tp

∣∣ syn ↪→ M.Π
}

[Π(A,B)] ∼=
∏
x:AB(x)

hcomr→s;φ
Π(A,B)f = λx.hcomr→s;φ

B λi.[i = r ∨F φ ↪→ f(x, i)]

coer→sλi.Π(A(i),B(i))f = λx.coer→s
λi.B(i,coes→iA x)

f
(
coes→rA x

)
⇓Π(A,B) = pi

(
⇓A, λx.⇓B

(
↑⊥F
A [var(x) | ⊥F ↪→ []M.tm(A)]

))
↑φΠ(A,B)[f0 | φ ↪→ f ] = λx.↑φB(x)

[
app
(
f0, ↓Ax

) ∣∣ φ ↪→ f(x)
]

↓Π(A,B)f = lam
(
λx.let x̃ = ↑⊥F

A [var(x) | ⊥F ↪→ []M.tm(A)] in ↓B(x̃)f(x̃)
)

Fig. 9. The cubical normalization structure for dependent product types.
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s1 : {nftp | syn ↪→ M.S1}
base : {nf(M.S1) | syn ↪→ M.base}
loop :

{∏
i:I{nf(M.S1) | ∂i ↪→ base}

∣∣ syn ↪→ M.loop
}

fhcom : {HCom(M.S1, nf(M.S1)) | syn ↪→ M.hcomM.S1}
inds1 :

{∏
C:var(M.S1)→nftp

∏
b:nf(C(M.base))

∏
l:
∏
i:I{nf(C(M.loop(i)))|∂i↪→b}

∏
x:neφ(M.S1)neφ(C(x))

∣∣ syn ↪→ M.indS1
}

lift : {φ}
{(∑

b:neφ(M.S1)

∏
:[φ]{nf(M.S1) | syn ↪→ b}

)
→ nf(M.S1)

∣∣ syn ∨ φ ↪→ λ(b, b′).[syn ↪→ b, φ ↪→ b′]
}

The following definition of S1 is justified by realignment: the constructors give rise to a (quotient-inductive) type that is isomorphic to
M.tm(M.S1) underneath z : syn; after realignment, the constructor b−c becomes the identity function.

data [S1] : {U | syn ↪→ M.tm(M.S1)} where
b−c : {syn} → M.tm(M.S1)→ [S1]
base : {[S1] | syn ↪→ bM.basec}
loop :

∏
i:I{[S1] | ∂i ↪→ base, syn ↪→ bM.loop(i)c}

lift :
∏
φ:F
∏
x0:neφ(M.S1)

∏
x:[φ]→{[S1]|syn↪→bx0c}{[S1] | φ ↪→ x, syn ↪→ bx0c}

fhcom :
∏
r,s:I
∏
φ:F
∏
c:
∏
i:I
∏

:[i=r∨Fφ]
∑
x:M.tm(M.S1){[S1]|syn↪→bxc}

{[S1] | r = s ∨F φ ↪→ π2(c(i)), syn ↪→ M.hcomr→s;φ
M.S1 (λi.π1(c(i)))}

S1 : {tp | syn ↪→ M.S1}
hcomr→s;φ

S1 c = fhcom(r, s, φ, λi.[i = r ∨F φ ↪→ (c(i), c(i))])

coer→sλ .S1x = x

↑φS1[x0 | φ ↪→ x] = lift(φ, x0, [φ ↪→ x])

↓S1bcc = c

↓S1base = base

↓S1loop(i) = loop(i)

↓S1lift(φ, x0, x) = liftφ
(
x0, ↓S1x

)
↓S1fhcom(r, s, φ, c) = fhcomr→s;φλi.

[
i = r ∨F φ ↪→ ↓S1π2(c(i))

]
Fig. 10. Definition of the cubical normalization structure for the circle.

indS1 :
{∏

C:S1→tp

∏
b:C(base)

∏
l:
∏
i:I{C(loop(i))|∂i↪→b}

∏
x:S1C(x)

∣∣ syn ↪→ M.indS1

}
indS1(C, b, l, bcc) = M.indS1(C, b, l, c)

indS1(C, b, l, base) = b

indS1(C, b, l, loop(i)) = l(i)

indS1(C, b, l, lift(φ, x0, x)) = let x̃ = ↑φS1[x0 | φ ↪→ (x0, x)] in
let c0 = inds1

(
λy.⇓C

(
↑⊥F
S1 [var(y) | ⊥F ↪→ []tm(S1)]

)
, ↓C(base)b, λi.↓C(loop(i))l(i), x0

)
in

↑φC(x̃)[c0 | φ ↪→ indS1(C, b, l, x̃)]

indS1(C, b, l, fhcom(r, s, φ, x)) = comr→s;φ
λi.C(hcomr→i;φS1 x)

λi.[i = r ∨F φ ↪→ indS1(C, b, l, π2(x(i)))]

Fig. 11. Implementation of the induction principle for the circle.
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CIRCLE TYPE

s1 : [tp 3nf M.S1]

PATH TYPE
A :
∏
i:I[tp 3nf A(i)] a0 : [A(0) 3nf a0] a1 : [A(1) 3nf a1]

path{A, a0, a1}(A, a0, a1) : [tp 3nf M.path(A, a0, a1)]

GLUE TYPE
φ : F B : [tp 3nf B] A :

∏
z:[φ][tp 3nf A(z)] f :

∏
z:[φ][M.Equiv(A(z), B) 3nf f(z)]

glue{B,A, f}(φ,B,A, f) : [tp 3nf M.glue(φ,B,A, f)]

GLUE TYPE BOUNDARY
φ : F B : [tp 3nf B] A :

∏
z:[φ][tp 3nf A(z)] f :

∏
z:[φ][M.Equiv(A(z), B) 3nf f(z)] z : [φ]

glue{B,A, f}(φ,B,A, f) = A(z) : [tp 3nf A(z)]

PI/SG TYPE
A : [tp 3nf A] B :

∏
x:var(A)[tp 3nf B(x)]

pi{A,B}(A,B) : [tp 3nf M.Π(A,B)] sg{A,B}(A,B) : [tp 3nf M.Σ(A,B)]

UNSTABLE
z : [φ]

?(z) : [a ∈φne A]

UNSTABLE COLLAPSE

z : [φ] a : [a ∈φne A]

a = ?(z) : [a ∈φne A]

VARIABLE
x : var(A)

var{A}(x) : [x ∈⊥ne A]

FUNCTION APPLICATION

f : [f ∈φne M.Π(A,B)] a : [A 3nf a]

app{A,B, f, a}(f, a) : [a ∈φne A]

PAIR PROJECTION

p : [p ∈φne M.Σ(A,B)]

fst{A,B, p}(p) : [π1(p) ∈φne A] snd{A,B, p}(p) : [π2(p) ∈φne B(π1(p))]

PATH APPLICATION

p : [p ∈φne M.path(A, a0, a1)] r : I
papp{A, a0, a1}(p, r) : [p(r) ∈φ∨F∂r

ne A(r)]

UNGLUE DESTRUCTOR

g : [g ∈ψne M.glue(φ,B,A, f)]

unglue{B,A, f, g}(φ, g) : [M.unglue(g) ∈ψ∨Fφ
ne B]

CIRCLE INDUCTION

C :
∏
x:var(M.S1)[tp 3nf C(x)] b : [C(M.base) 3nf b] l :

∏
i:I[C(M.loop(i)) 3nf l(i)] s : [s ∈φne M.S1]

ind{C, b, l, s}(C, b, l, s) : [M.indS1(C, b, l, s) ∈φne C(s)]

CIRCLE NEUTRAL LIFT

s0 : [s ∈φne M.S1] sφ :
∏

:[φ][M.S1 3nf s]
lift{s}(s0, sφ) : [M.S1 3nf s]

CIRCLE NEUTRAL LIFT BOUNDARY

s0 : [s ∈φne M.S1] sφ :
∏

:[φ][M.S1 3nf s] z : [φ]

lift{s}(s0, sφ) = sφ(z) : [M.S1 3nf s]

CIRCLE BASE

base : [M.S1 3nf M.base]

CIRCLE LOOP
r : I

loop(r) : [M.S1 3nf M.loop(r)]

CIRCLE LOOP BOUNDARY
r : I : [∂r]

loop(r) = base : [M.S1 3nf M.base]

CIRCLE FORMAL HOMOGENEOUS COMPOSITION
r, s : I φ : F a :

∏
i:I
∏
z:[i=r∨Fφ][M.S1 3nf a(i, z)]

fhcom{a}(r, s, φ, a) : [M.S1 3nf M.hcom(M.S1, r, s, φ, a)]

FUNCTION ABSTRACTION
f :
∏
x:var(A)[B(x) 3nf f(x)]

lam{A,B, f}(f) : [M.Π(A,B) 3nf λx.f(x)]

PAIR CONSTRUCTOR
a : [A 3nf a] b : [B(a) 3nf b]

pair{A,B, a, b}(a, b) : [M.Σ 3nf (a, b)]

PATH ABSTRACTION
p :
∏
i:I[A(i) 3nf p(i)]

plam{A, a0, a1, p}(p) : [M.path(A, a0, a1) 3nf λi.p(i)]

ENGLUE CONSTRUCTOR
a :
∏
z:[φ][A 3nf a] b : [B 3nf b] ∀z : [φ].b = a(z)

englue{B,A, f, a, b}(φ, a, b) : [M.glue(φ,B,A, f) 3nf M.glue/tm(a, b)]

ENGLUE CONSTRUCTOR BOUNDARY
a :
∏
z:[φ][A 3nf a] b : [B 3nf b] ∀z : [φ].b = a(z) z : [φ]

englue{B,A, f, a, b}(φ, a, b) = a(z) : [A 3nf a]

Fig. 12. The explicit indexed quotient-inductive definition of normal and neutral forms. The UNSTABLE and UNSTABLE COLLAPSE rules ensure that neφ(A)
collapses to M.tm(A) within the locus of instability φ.
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