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Abstract—We explore the problem of finding a minimal com-
plete test suite for a refusal trace (or failure trace) semantics.
Since complete test suites are typically infinite, we consider the
setting with a bound ℓ on the length of refusal traces of interest.
A test suite T is thus complete if it is failed by all processes that
contain a disallowed refusal trace of length at most ℓ.

The proposed approach is based on generating a minimal com-
plete set of forbidden refusal traces. Our solution utilises several
interesting insights into refusal trace semantics. In particular,
we identify a key class of refusals called fundamental refusals
which essentially determine the refusal trace semantics, and the
associated fundamental equivalence relation. We then propose a
small but not necessarily minimal test suite based on our theory,
which can be constructed with a simple algorithm. Subsequently,
we provide an enumerative method to remove all redundant
traces from our complete test suite, which comes in two variants,
depending on whether we wish to retain the highly desirable
uniform completeness (guarantee of shortest counterexamples).

A related problem is the construction of a characteristic
formula of a process P , that is, a formula ΦP such that
every process which satisfies ΦP refines P . Our test generation
algorithm can be used to construct such a formula using a variant
of Hennessy-Milner logic with recursion.

I. INTRODUCTION

Testing is arguably the most widely used form of software

verification and validation, but it is typically largely manual

and therefore expensive and error-prone. There has thus been

significant interest in test automation, including model-based

testing (MBT) approaches that base test generation on a formal

specification or model [13]. There is evidence of the effec-

tiveness of MBT in industrial projects [11] and, in addition,

the use of MBT approaches can guarantee that well-defined

classes of faults will be found (see, for example, [7]).

MBT work goes back to Moore’s seminal paper [16] and

initially considered finite state machine (FSM) specifications.

Here, observations are traces: sequences of inputs and outputs.

More generally, however, observations may be richer than

this, leading to a wide range of implementation relations for

labelled transition systems (LTSs) [8]. The interest in LTSs is

motivated by their ability to capture the semantics of formal

languages such as CSP (see, for example, [19]).

In testing, the consensus has been that observations are

types of traces and so implementation relations are based on

decorated traces. Traces can include, for example, refusals,

where a refusal X denotes the system being in a stable state

in which no action in X is enabled. Most work uses ioco [21]

or one of its variants; see [22] for an overview. In ioco, an

observation is a trace that can contain instances of quiescence:

the situation in which the system under test (SUT) cannot

produce output or change state without first receiving input.

The ioco test theory assumes that the SUT cannot refuse inputs

(is input-enabled) and the environment cannot block outputs,

which is why quiescence is the only type of refusal.

A refusal of a set X is observed through the tester offering

the actions in X and subsequent deadlock (detected through

a timeout). A failure trace [8], also called a refusal trace

[19], and initially introduced by Philips [18], is a sequence

containing actions and refusals of sets of actions. Clearly,

an observation made in ioco is a type of refusal trace. It

has been noted that sometimes an SUT can block input. For

example, a web-page might have fields that are greyed-out or

an autonomous system might switch off sensors. As a result,

it can make sense to allow the observation of the refusal of

inputs during testing, and this is reflected in a variant of ioco

called mioco [12].

This paper considers testing from an LTS specification

where observations are refusal traces. The use of refusal traces

was motivated by several factors. First, in testing it is not

normally possible to backtrack or save the system state and so

observations are linear; they are decorated traces. Second, it is

often feasible to observe refusal traces in testing. Indeed, there

is a standard approach to observing the refusal of a set X of

actions: one offers the actions in X and concludes that the

refusal has been observed if a timeout occurs1. Thus, from a

testing perspective it makes sense to consider refusal traces as

observations. Third, normally a tester will not have access to

richer information than refusal traces since, for example, it is

not possible to identify the set of actions that can be executed

in a particular state. Thus, refusal traces normally provide

the richest semantics that is consistent with testing under

reasonably realistic assumptions [9]. Fourth, refusal traces are

required if we wish to capture certain types of behaviour such

as priorities [19]. Finally, the use of refusal traces is consistent

with the widely used ioco implementation relation.

We initially investigated the recent approach of Peleska

et al. [17], which concerned generating a finite test suite to

check behaviour up to a given bound on length. This work

1This is exactly what is normally done when testing based on ioco.978-1-6654-4895-6/21/$31.00 ©2021 IEEE



Fig. 1. The process on the right is a correct implementation of the reference process in failure semantics, but not in refusal trace semantics.
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introduced techniques for testing for both traces and failures

but not for refusal traces. Interestingly, however, it transpires

that the approach of Peleska et al. [17] cannot be extended to

test for refusal traces. This is due to the fundamental difference

between testing failures and refusal traces refinement – the

former semantics only requires testing for forbidden refusals

(which can be efficiently performed by checking certain sets

of allowed continuations as in [17]), whereas for the latter

semantics we need – in addition – to establish the context

of allowed refusals along the trace. As a result, we adopted

the approach of Cavalcanti et al. [5] in which a test case is a

refusal trace σ that should not be a behaviour of the SUT; the

observation of σ in testing will denote a faulty behaviour. Test

execution involves determining whether the SUT can exhibit

σ. The problem then is to derive a complete test suite (one

guaranteed to find all faults), by choosing a set of refusal

traces to use when testing from LTS P .

As far as we are aware, this is the first work to explore the

problem of finding a minimal complete test suite when obser-

vations are refusal traces and inputs may be refused. Previous

work has looked at testing using refusal traces. For example,

Cavalcanti et al. [5] provide a new CSP semantics based on

refusal traces, in the context of testing robotic systems, and

showed how complete test suites can be defined. However,

there was no attempt to minimise these test suites. Random test

generation was adopted in the work on mioco [12]. Although

the generation of an efficient test suite has been a major topic

in FSM-based testing, along with the complexity of associated

decision problems [6], [15], [23], even here, test suites need

not be minimal.

Removing redundancies from a test suite was motivated

by very practical issues: test execution takes time and has

an associated cost. Importantly, test execution time will often

exceed test generation time and, in addition, a test suite may

be executed many times (e.g. in regression testing). It is thus

desirable to use minimal test suites where possible and hence

test suite reduction is the main topic of this article. Note that

results in this paper are also applicable to scenarios when one

cannot afford to work with a complete test suite – they identify

tests that are redundant in any test suite.

In this work, we start off with an “obvious” complete test

suite which may contain a lot of redundant behaviours. In

the course of the paper we investigate different sources of

redundancy, identifying tests that can be removed, or better,

not even considered in the first place. The latter enhancement

is possible due to interesting insights into the structure of local

refusals, giving rise to the so-called fundamental equivalence.

Equivalent refusals and refusal traces correspond to the same

behaviour of a valid refinement, hence only one test per

equivalence class is required. We progressively refine our test

suites, obtaining first a substantially reduced suite that can be

neatly characterised and constructed with reasonable efficiency

(we sketch the test generation algorithm). In order to remove

the remaining redundant traces, we employ a more costly

enumerative method, finally arriving at test suites that we

prove to be minimal. In some cases we find that there may

be a trade-off between minimality and usefulness of test suite

in terms of clarity and succinctness of counterexamples – we

address this by defining two different test suites which are

provably minimal in both scenarios, depending on whether or

not one prioritises the abovementioned usefulness criterion.

A line of research from the area of modal logic related

to complete test suites are characteristic formulae [10], [20]

for process semantics. A characteristic formula is a logical

encapsulation of process behaviour with respect to a given pro-

cess semantics – a formula satisfied by exactly those processes

which refine, or are equivalent to P . Characteristic formulae

constructions have been offered by Aceto et al. [1], [2] for

a number of branching-time semantics. In addition, the so-

called characterisation by primality principle has been shown

for logics defining semantics in the linear time–branching time

spectrum [3].

We show how our theory developed originally for complete

test suites can be applied to construct characteristic formulae

for refusal trace refinement. As the underlying logic, we

use a variant of Hennessy-Milner logic with recursion. The

construction produces formulae with a neat, succinct structure

(though not necessarily minimal). Our contribution exemplifies

close relationships between the different areas of testing and

modal logic.

In general, our work offers an in-depth exploration of

refusal/failure trace semantics and its interesting properties

which distinguish it from other related semantics. As a simple

example, consider the two processes in Fig 1. In standard

failure semantics, the process on the right is a correct im-

plementation of the reference process for any refusal set X
strictly between the empty set and Act. However, this is not

the case in refusal trace semantics – to see this, observe that the



refusal trace ∅.a.X.a′1 is not allowed by the reference process.
The example captures a subtle difference between failures

and refusal trace semantics: in failure semantics, smaller re-

fusals of individual states have no significance – only maximal

refusals of the entire process after a trace determine the

behaviour of a system. This is visible for instance in the

labelling of the normalised graph in [17], where the only

information stored are the maximal refusals after a trace. In

refusal trace semantics, the maximal refusals of individual

states play a much more prominent role – we call them state

refusals (duals of the so-called ready sets from the literature).

Ultimately, as we show throughout the paper, the refusal trace

semantics is essentially determined by the intersections of state

refusals – this crucial class we dub fundamental refusals.

Contributions

The following are the main contributions of the paper.

• We identify a key class of refusals called fundamental

refusals, whose traces essentially determine the refusal

trace semantics. The associated fundamental equivalence

captures a wide range of refusal traces which are always

exhibited “as a whole” by a conforming system (a test

suite needs only one representative per equivalence class).

• Using the aforementioned theory and further straight-

forward reduction methods, we provide a simple and

substantially reduced test suite that can be generated

reasonably efficiently.

• We investigate the more cumbersome sources of redun-

dancy in test suites, such as redundancies due to contin-

uation contexts and longer traces, and provide complete

and minimal test suites for refusal trace refinement:

– under uniform completeness assumption, which is

natural and desirable, especially from an application

perspective

– for the general case, where additional refusal traces

can be eliminated.

• We provide a characteristic formula construction for

refusal trace refinement using a variant of Hennessy-

Milner logic with recursion.

II. PRELIMINARIES

For simplicity and generality, the presentation is based on

labelled transition systems. While most of our definitions are

standard, there are some exceptions:

• we introduce state refusals (maximal refusals of individ-

ual states); they provide the same observational power as

initials / ready sets

• our definition of refusal traces includes those that end

in actions, as well as the empty trace – this assumption

is convenient in our theory and makes no semantic

difference

A labelled transition system (LTS) is a tuple L = 〈S,!
, Act〉 where S is a finite set of states, Act a finite set of

actions, and !⊆ S×Act×S a transition relation. We use the

shorthand notation s
a

−! [resp. s 6
a

−! ] whenever there exists

[does not exist] a state s′ such that s
a

−! s′.

A process can be defined by indicating the set of possible

initial states within a certain LTS. Formally, a process is a tuple

P = 〈SI ,L〉, where L = 〈S,!, Act〉 and SI ⊆ S. Typically,

the underlying LTS should be clear from the context and we

shall identify a process P with the set SI .

For a state s, a set X ⊆ Act is a refusal of s, if for all

a ∈ X , s 6
a

−!. The set of all refusals of s is denoted with

R(s). The state refusal of s is the largest refusal of s, denoted

with SR(s).
A refusal trace (failure trace) σ of a state s is a sequence

that is either an empty word ǫ, or a word of the form

X0a1X1a2 . . . Xn−1anXn, or X0a1X1a2 . . . Xn−1an such

that there is a chain of transitions s = s0
a1
−! s1

a2
−!

. . .
an−1

−! sn−1
an
−! sn = q and for all k ∈ {0, . . . , n− 1, [n]},

Xk ∈ R(sk). If in addition we have Xk ∈ SR(sk), then the

above trace is a state refusal trace. We denote the existence of

such a chain of transitions by s
σ

−! q. We define the length of

a refusal trace in one of the above forms as n, that is, as the

number of actions occurring in the trace. The set of refusal

traces originating from a state s [of length ≤ l] is denoted

with RT(s) [resp. RTl(s)]; the notation is lifted to processes.

The language of well-formed refusal traces is defined as:

RT , {σ ∈ P(Act)× (Act×P(Act))∗ ∪ (P(Act)×Act)∗

| σ = ρ.Xi.ai+1.ρ
′ =⇒ ai+1 /∈ Xi}

The notions of refusal, state refusal, and refusal trace are lifted

from states to processes in a natural way, by taking the union

over all (initial) states in a process. For instance, R(P ) ,⋃
s∈P R(s) [recall that we identify the process P with its set

of initial states].

In line with literature on testing, refusal trace refinement is

defined as restriction of behaviours: a process Q is a refusal

trace refinement [up to ℓ steps] of a process P , notation P ⊑RT

Q [P ⊑ℓ
RT Q], iff RT(Q) ⊆ RT(P ) [RTℓ(Q) ⊆ RTℓ(P )].

For a process P and refusal trace σ, the process P after σ,

denoted with P ||σ, is the set {q ∈ S | ∃s ∈ P : s
σ

−! q}.

Example 1: Consider the LTS from Fig. 2, representing a

process P with sI = s0. Process P has one state refusal,

i.e. SR(P ) = {{b, c, d, e, f}}, while its set of refusals

R(P ) consists of all subsets of {b, c, d, e, f}. After perform-

ing action a, the process exhibits four state refusals, i.e.

SR(P ||{b, c, d, e, f}.a) = {{a}, {c}, {a, b, c, d}, {c, d, e, f}}.

All refusals of P ||{b, c, d, e, f}.a are depicted in Fig. 3.

It is important to distinguish state refusals, which are the

largest refusals of individual states, from maximal refusals of

a process (after a given trace). Each maximal refusal of a

process is a state refusal, but not the other way round – in our

example, the maximal refusals of P ||{b, c, d, e, f}.a are only

{a, b, c, d} and {c, d, e, f}. The refusals {a} and {c} are state

refusals of P ||{b, c, d, e, f}.a, but not maximal refusals of that

process.

III. TEST SUITES, GENERIC SUITE AND FORBIDDEN

REFUSALS

In our framework, a test suite for a given process P is a

set of refusal traces forbidden by P . The research question



Fig. 2. A labelled transition system. Certain relevant states are labelled in bold with state refusal sets, a convention that we use throughout the paper.
s0

{b, c, d, e, f}

s1 {a, b, c, d} s2 {a} s3{c} s4{c, d, e, f}
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that we explore in the paper is the generation, for a given

reference process P , and the maximal number of steps l, a

test suite TS ⊆ RT such that for every process Q

P ⊑l
RT Q ⇐⇒ ∀σ ∈ TS : σ /∈ RT(Q)

Implication from left to right is called soundness while the

implication from right to left is called completeness.

Our starting point is a generic suite consisting of all refusal

traces within a given length bound that are not exhibited by

the reference process. The only restriction that we make in

this suite – an obvious one – is to consider only traces whose

all proper prefixes are valid traces of P . This way only the

first occurrence of forbidden behaviour in a trace is included.

TS
ℓ
0
(P ) , {σ.X ∈ RTℓ \ RTℓ(P ) |σ ∈ RTℓ(P )}

∪ {σ.a ∈ RTℓ \ RTℓ(P ) |σ ∈ RTℓ(P )}

Since in our case tests are the traces themselves, the

soundness of the above test suite for refusal traces follows

immediately from the definition.

Proposition 1: Test suite TS
ℓ
0

is sound for RT ℓ.

Moreover, as every test suite considered in the remainder

of this work is a subset of TS0, the above proposition

immediately yields soundness of all those test suites.

Before stating the completeness property, we can apply our

first optimisation. We restrict the first group of traces (ending

with refusals) by including only those for which the forbidden

refusals X at the end of the trace are minimal. We note that

this is a standard method in testing failure semantics [4], [17].

TS
ℓ
1
(P ) , {σ.X ∈ TS

ℓ
0
|X ∈ min6⊆(R(P ||σ))}

∪ {σ.a |σ.a ∈ TS
ℓ
0
}

where for any family of refusals X ⊆ P(Act)

min 6⊆(X) , min{Y ⊆ Act | ∀X ∈ X. Y 6⊆ X}

Lemma 1: Test suite TS
ℓ
1

is complete for RT ℓ.

Our goal is to investigate which refusal traces can be

removed safely from the test suite; ideally, we wish to arrive at

a minimal suite that does not contain any redundant traces. In

the remainder of the paper, we shall identify different sources

of redundancies in a test suite.

IV. FUNDAMENTAL EQUIVALENCE

Redundancies of the first type are particularly interesting,

have a neat characterisation and are potentially the most attrac-

tive from the algorithmic perspective. They can be identified

due to a natural equivalence relation between local refusals

(i.e. refusals of a process after a specific trace / step). The

theory developed in this section gets well into the heart of

refusal trace semantics, identifying a special class of refusals

that determine the entire semantics.

A. Basic definitions and properties

The aforementioned class of refusals that will prove to be of

paramount importance are intersections of state refusals. We

shall call them fundamental refusals:

FR(P ) , {X1 ∩ · · · ∩Xk |Xi ∈ SR(P )}

The definition is extended to fundamental refusal traces:

FRT(P ) , {ǫ} ∪ {X0a1 . . . Xn ∈ RT(P ) |X0 ∈ FR(P )
∧∀i : Xi ∈ FR(P ||X0a1 . . . ai)}

Observe that in particular all state refusals are fundamental

refusals. However, while refusal trace equivalent processes

may differ on their state refusals, fundamental refusals are

invariant under refusal trace semantics, which can be explained

through the following neat syntactic characterisation.

Proposition 2: A refusal X of a process P [after σ] is

fundamental if and only if no action outside X is explicitly

forbidden by the semantics directly after X:

X ∈ FR(P ) ⇐⇒ X ∈ R(P )
∧ ∀a ∈ Act \X X.a ∈ RT(P )

X ∈ FR(P ||σ) ⇐⇒ X ∈ R(P ||σ)
∧ ∀a ∈ Act \X σ.X.a ∈ RT(P )

Proof: “=⇒”: Suppose that X ∈ FR(P ||σ). Let

X1, . . . , Xn ∈ SR(P ||σ) be such that X = X1 ∩ · · · ∩ Xn.

Take any a ∈ Act \X , and let Xi be such that a /∈ Xi. Since

Xi ∈ SR(P ||σ), there must be some state s ∈ P ||σ such that

SR(s) = Xi ⊇ X . We have s
a

−! and hence σ.X.a ∈ RT(P ).
“⇐=”: Suppose that ∀a ∈ Act \ X σ.X.a ∈ RT(P ). Let

YX = {Y ∈ SR(P ||σ) |X ⊆ Y }. YX is nonempty since

X ∈ R(P ||σ); moreover, X ⊆
⋂
YX . For any a /∈ X , we

have σ.X.a ∈ RT(P ), and from the definition of YX there

must be some Ŷ ∈ YX such that a /∈ Ŷ . Hence
⋂
YX ⊆ X

and thus X =
⋂
YX , from which X ∈ FR(P ||σ) follows.



Fig. 3. A detailed breakdown of all refusals of the process P ′ = P ||{b, c, d, e, f}.a, where P is the process from Fig. 2, with the state refusals SR(P ′)
denoted with large black circles. Additional fundamental refusals, that is, belonging to FR(P ′) \ SR(P ′), are depicted with large circles labeled with “∩”.
The remaining refusals in R(P ′) are denoted with small circles. There are three nontrivial fundamental clusters, and in each such cluster elements of its
minimum base are represented with small bold black circles. From the perspective of our test generation algorithm, the “grey” refusals will not appear in the
generated traces (even though they are exhibited by the process).

{a} {b} {c} {d} {e} {f}

{a, b, c, d} {c, d, e, f}

∩

∅

∩

{c, d}
{a, c} {a, d} {a, b} {b, c} {b, d}

{a, b, c} {a, b, d} {a, c, d} {b, c, d}

{c, e} {c, f} {e, f} {d, e} {d, f}

{c, d, e} {c, d, f} {c, e, f} {d, e, f}

Nontrivial clusters:

top min-base other refusals in cluster

{a, b, c, d} {a, c}, {a, d}, {b} {a, b}, {b, c}, {b, d}, {a, c, d}, {b, c, d}, {a, b, c}, {a, b, d}
{c, d} {d}
{c, d, e, f} {e}, {f} {c, e}, {c, f}, {d, e}, {d, f}, {e, f}, {c, d, e}, {c, d, f}, {c, e, f}, {d, e, f}

As a corollary, we obtain the following preservation prop-

erty for fundamental refusals and their traces.

Corollary 1: Suppose P ⊑ℓ
RT Q

[
P =ℓ

RT Q
]
. We have:

1) ∀σ ∈ RTℓ(P ) X ∈ FRℓ(Q||σ) =⇒ X ∈ FRℓ(P ||σ)[
X ∈ FRℓ(P ||σ) ⇐⇒ X ∈ FRℓ(Q||σ)

]

2) FRTℓ(Q) ⊆ FRTℓ(P )
[
FRTℓ(P ) = FRTℓ(Q)

]

For any refusal of a process, we define the so-called top

refusal as the intersection of all state refusals that include X .

topP (X) ,
⋂

Y ∈SR(P ): X⊆Y

Y

Note that topP (X) is the least element of {Y ∈ FR(P ) | X ⊆
Y } – the least fundamental refusal that subsumes X . In

addition, observe that FR(P ) = {topP (X) |X ∈ R(P )}. Top

refusals play a special role – as we shall prove, if P refuses

X , then it must be in a state where it can refuse all elements

of topP (X).
The related notions of fundamental equivalence and its

equivalence classes called fundamental clusters (or simply

clusters), are defined below:

X ∼P Y
def
⇐⇒ topP (X) = topP (Y )

[X]P , {Y ∈ R(P ) |X ∼P Y }

Also of relevance will be the set of minimal refusals in

a fundamental cluster – we call it its minimum base. Note

that while topP (X) is a single refusal, min-baseP (X) may

consist of several refusals.

min-baseP (X) , min {Y ∈ R(P ) | Y ∼P X}

Example 2: An example illustrating the introduced notions

is given in Fig.3.

The crucial role of fundamental refusals and clusters is visi-

ble in the following proposition which characterises forbidden

continuations.

Proposition 3: Suppose σ.X ∈ RT(P ) and a ∈ Act. Then

σ.X.a /∈ RT(P ) ⇐⇒ a ∈ topP ||σ(X)

Proof: “=⇒”: Follows immediately from Proposition 2.

“⇐=”: Take any a ∈ topP ||σ(X). Since

a ∈
⋂

Y ∈SR(P ||σ): X⊆Y

Y,

for any s ∈ P ||σ such that X ⊆ SR(s), we have s 6
a

−!. Hence

σ.X.a /∈ RT(P ).

As a corollary, we obtain the following property: for a

conforming system, either all refusal sets in a fundamental



cluster are refused, or none of them is. This is an interesting

insight into refusals – while refusals are obviously downward-

closed, the proposition describes a circumstance when a refusal

entails the presence of a larger refusal in the conforming

system. A more general property of refusal traces will be later

provided by Proposition 4.

Corollary 2: Let P be a reference process, and σ ∈ RT(P ).
Suppose X ∼P ||σ Y . Then for each Q such that P ⊑RT Q:

X ∈ R(Q||σ) ⇐⇒ Y ∈ R(Q||σ)

Proof: We shall prove the statement by showing that

X ∈ R(Q|σ) ⇐⇒ topP ||σ(X) ∈ R(Q|σ)

The implication from right to left is immediate as X ⊆
topP ||σ(X) and refusals of a process are downward-closed. For

the other direction, suppose that X ∈ R(Q|σ). Let s ∈ Q||σ be

such that X ∈ R(s). From Proposition 3 and RT(Q) ⊆ RT(P )
it follows that for all a ∈ topP ||σ(X), s 6

a
−!, from which in turn

we obtain topP ||σ(X) ∈ R(s). Hence topP ||σ(X) ∈ R(Q|σ).

B. Fundamental equivalence and test suites

Proposition 3 provides us with a full characterisation of

forbidden continuations, thanks to which we are able to update

our test suite TS1 with a more accurate description.

TS
ℓ
1
(P ) = {σ.X ∈ TS

ℓ
0
| X ∈ min6⊆(R(P ||σ))}

∪ {σ.X.a ∈ TS
ℓ
0
| a ∈ topP ||σ(X) \X}

Obviously, forbidden continuations for a ∈ topP ||σ(X)∩X
are not included, as we only consider well-formed traces.

Furthemore, traces ending in forbidden continuations can be

restricted to only those where the last refusal belongs to the

minimum base of a (nontrivial) cluster:

TS
ℓ
2
(P ) , {σ.X ∈ TS

ℓ
1
}

∪ {σ.X.a ∈ TS
ℓ
1
| a ∈ topP ||σ(X) \X

∧X ∈ min-baseP ||σ(X)}

Lemma 2: TS
ℓ
2

is complete for RT ℓ.

Proof: Suppose P 6⊑ℓ
RT Q. From the completeness of

TS
ℓ
1
(P ), there is some trace σ.X.a ∈ RTℓ(Q) ∩ TS

ℓ
1
(P ).

From the definition of the minimum base, there is a refusal

Xm ∈ min-baseP ||σ(X) such that Xm ⊆ X . This, combined

with topP ||σ(Xm) = topP ||σ(X), yields a ∈ topP ||σ(X)\X ⊆

topP ||σ(Xm) \ Xm, from which σ.Xm.a ∈ TS
ℓ
2
(P ) follows.

Since refusals of a process are downward-closed, we have

σ.Xm.a ∈ RTℓ(Q), hence σ.Xm.a ∈ RTℓ(Q) ∩ TS
ℓ
2
(P )

At this point, we have managed to restrict the test suite

by analysing locally forbidden observations (single events and

refusals) and their immediate context at the last step of a trace.

There is still a potentially much larger scope for reduction,

since the test suite TS2 may contain a lot of traces that

are equivalent due to fundamentally equivalent intermediate

refusals along the trace.

In what follows, we explain how to remove those redundan-

cies by including only traces in which the intermediate refusals

are fundamental refusals. We start with formally lifting the

topP operator to (valid) refusal traces of the reference process:

topP (X0a1 . . . an[Xn]) , topP0
(X0)a1 . . . an[topPn

(Xn)]

where: X0a1 . . . Xn−1an[Xn] ∈ RT(P ), P0 = P and

Pi = P ||X0a1 . . . ai for i ∈ {1, . . . , n}.

The definition is extended to traces with a forbidden final

observation, in which case the final refusal is not affected by

the operator:

topP (σ.X) , topP (σ).X if σ ∈ RT(P ) ∧ σ.X /∈ RT(P )

topP (σ.X.a), topP (σ).X.a if σ.X ∈ RT(P )
∧σ.X.a /∈ RT(P )

X0a1X1 . . . an[Xn] ∼P Y0a1Y1 . . . an[Yn]
def
⇐⇒ ∀i ∈ {0, . . . , n− 1, [n]} Xi ∼Pi

Yi

where X0a1X1 . . . an[Xn], Y0a1Y1 . . . an[Yn] ∈ RT(P ), P0 =
P and Pi = P ||X0a1 . . . ai for i ∈ {1, . . . , n− 1}.

For traces with a forbidden final observation it is in addition

required that the final refusals are identical (regardless of the

type of the final observation):

σ.X.a ∼P σ′.X.a if σ ∼P σ′ ∧ σ.X, σ′.X ∈ RT(P )
∧σ.X.a, σ′.X.a /∈ RT(P )

σ.X ∼P σ′.X if σ ∼P σ′ ∧ σ, σ′ ∈ RT(P )
∧σ.X, σ′.X /∈ RT(P )

The following key proposition states that fundamentally equiv-

alent refusal traces are indistinguishable from the perspective

of a correct refinement.

Proposition 4: Suppose P ⊑ℓ
RT Q. For any σ ∈ RTℓ:

1) σ ∈ RTℓ(Q) ⇐⇒ topP (σ) ∈ RTℓ(Q)
2) Q||σ = Q||topP (σ)

Proof: The implication from right to left in statement 1,

as well as inclusion from right to left in statement 2 above

are both immediate due to smaller refusals occurring in σ as

compared to topP (σ). We therefore focus on showing that:

1) σ ∈ RTℓ(Q) =⇒ topP (σ) ∈ RTℓ(Q)
2) Q||σ ⊆ Q||topP (σ)

The above properties are proved simultaneously by induc-

tion on the length of σ. Proof of statement 2 makes the

assumption that σ ∈ RTℓ(Q) – the other case is trivial.

Base. In the base case, the trace σ is either empty (trivial)

or has the form σ = X for some refusal X:

1) If X ∈ RT0(Q), then X ∈ R(Q); from Corollary 2 we

have topP (X) ∈ R(Q), and hence topP (X) ∈ RT0(Q).
2) Take any s ∈ Q||X , i.e. any s ∈ Q such that X ∈

R(s). Since SR(s) ∈ FR(Q), from Corollary 1 we have

SR(s) ∈ FR(P ). Moreover, since X ⊆ SR(s), and

topP (X) is the smallest fundamental refusal in FR(P )
that includes X , we have topP (X) ⊆ SR(s). Hence

topP (X) ∈ R(s), which finally yields s ∈ Q||topP (X).

Inductive step. We assume that the conjunction of state-

ments 1 and 2 holds for all σ of length not exceeding k. Let

σ ∈ RTk+1. There are two cases:



• σ = X0a1 . . . Xkak+1: Since σ ∈ RTk+1(Q), there must

be some s ∈ Q||X0a1 . . . Xk and q ∈ Q||X0a1 . . . Xkak+1

such that s
ak+1

−! q. From the inductive hypothesis,

we know that (1) topP (X0a1 . . . Xk) ∈ RTk(Q) and

moreover (2) s ∈ Q||topP (X0a1 . . . Xk). Hence

Q
topP (X0a1...Xk)
−−−−−−−−−−! s

ak+1

−! q,

which entails topP (σ) = topP (X0a1 . . . Xkak+1) =
topP (X0a1 . . . Xk)ak+1 ∈ RTk+1(Q), proving statement

1. Since the above reasoning holds for an arbitrary

choice of q ∈ Q||X0a1X1 . . . Xkak+1, we have q ∈
Q||topP (X0a1X1 . . . Xkak+1), which proves statement 2.

• σ = X0a1 . . . ak+1Xk+1:

Let s ∈ Q||X0a1 . . . ak+1Xk+1. From the proof of the

case above, we already know that topP (X0a1 . . . ak+1) ∈
RTk+1(Q) and s ∈ Q||topP (X0a1 . . . ak+1). In or-

der to prove statements 1 and 2, it suffices to

show that topPk+1
(Xk+1) ∈ R(s), where Pk+1 =

P ||X0a1 . . . ak+1. This can be done similarly as in

base case (2): we have Xk+1 ⊆ SR(s); from Corol-

lary 1 we also have SR(s) ∈ FR(Pk+1), and finally

topPk+1
(Xk+1) is the smallest fundamental refusal in

Pk+1 that includes Xk+1, yielding topPk+1
(Xk+1) ⊆

SR(s). Hence topPk+1
(Xk+1) ∈ R(s).

Proposition 4 allows us to considerably restrict our test

suite by including only traces whose intermediate refusals (i.e.

excluding the last one) are fundamental. Our new test suite

based on fundamental equivalence is defined as:

TS
ℓ
3
(P ) , {topP (σ) |σ ∈ TS

ℓ
2
}

We conclude this section with an equivalent, self-contained

inductive definition of the test suite TS
ℓ
3

. We have

TS
0
3
(P ) =

⋃

X∈min 6⊆ R(P )

{X}

while for ℓ ≥ 0:

TS
ℓ+1
3

(P ) =
⋃

X∈min 6⊆ R(P ){X}

∪
⋃

X∩ ∈ FR(P )(⋃
Xm ∈ min-baseP (X∩)

⋃
a∈ (X∩\Xm){Xm.a}

∪
⋃

a∈Act\X∩

⋃
σ∈TSℓ

3
(P ||X∩.a){X∩.a.σ}

)

The first component of the sum (line 1 above) are re-

fusals locally forbidden in P . Furthermore, iterating over all

fundamental refusals X∩, the test suite includes all traces

“contributed” by each fundamental cluster: locally forbidden

continuations (line 3), as well as longer traces prefixed with a

fundamental refusal and relevant actions (line 4).

V. A SMALL AND SIMPLE TEST SUITE

In this section, we present a further refinement of our test

suite which, while not necessarily minimal, has a reasonable

balance between the size and ease/efficiency of construction.

A. Strictly smaller refusal traces

In the previous section, we have dealt with redundancies in

test suites resulting from clusters of equivalent traces which

represent the same behaviour. There is a further possible

source of redundancy which is reasonably easy to remove – we

do not need to include a forbidden trace in a test suite, if the

suite also contains a certain “smaller” trace. Here, by smaller

we mean the natural order on refusal traces which combines

pointwise prefix and inclusion order.

X0a1 . . . an[Xn] � Y0a1 . . . am[Ym]
def
⇐⇒ n ≤ m ∧ ∀i ∈ {0, . . . , n− 1, [n]}Xi ⊆ Yi

X0a1 . . . an[Xn] ≺ Y0a1 . . . am[Ym]
def
⇐⇒ X0a1 . . . an[Xn] � Y0a1 . . . am[Ym] ∧ ∃i : Xi ( Yi

It is immediate to see that if a trace is exhibited by a process,

then so are all traces below it w.r.t. �. Hence a forbidden trace

σ is redundant in a test suite, if the test suite contains a trace σ′

such that σ′ ≺ σ. As an example, consider the following LTS

representing a reference model (assuming Act = {a, b}):

s0
{b}

s1
∅ s2 {b}

s3
{a, b}

s4
{a, b}

s5
{a, b}

a a

b a a

Our test suite TS3 contains in particular traces

{b}.a.{b}.a.∅.a, and {b}.a.∅.a.∅.a. Clearly, if a faulty

implementation fails the test {b}.a.{b}.a.∅.a, then it must

also fail the test {b}.a.∅.a.∅.a, hence the former trace

(larger w.r.t. ≺) can be removed from the suite without

affecting completeness. This observation gives rise to another

important optimisation – our test suite can be restricted so

that it contains only minimal traces w.r.t. ≺.

TS
ℓ
4
(P ) , min≺ TS

ℓ
3

B. Test generation algorithm

We shall now briefly describe an effective procedure to

construct our test suite TS4. It takes as input an LTS-based

reference process P , from which information such as state

refusals can be readily obtained. The test suite is stored in a

global object TS, whose insertion operation TS.Add() must

ensure that a refusal trace is added only if TS contains no

larger trace w.r.t. ≺.
The number of all refusal traces of length ≤ ℓ is bounded

by O(2|Act| · (|Act| · 2|Act|)ℓ) = O(2|Act|ℓ+1

). If we assume

that a bound on the maximal number of fundamental refusals

after every refusal trace is given by Max∩, then the size of

our test suite is O
(
(|Max∩| · |Act|)

ℓ · 2|Act|
)
= O(|Act|ℓ ·

|Max∩|
ℓ · 2|Act|). We note that |Max∩| can be polynomial

w.r.t. |Act| for instance if refusals have hierarchical structure

(linear order), or are disjoint.



Fig. 4. A reference process P for which the forbidden trace σ = {b, c}.a.{b, c}.a may be removed from the test suite, since its presence will be detected
indirectly through longer traces.

s0
{b, c}

s1
{b}

s2
{c}

s3
{a, b, c}

s4
{a, b}

s5
{a, b, c}

s6
{a, c}

s7
{a, b, c}

a a a

a c a b

c b

GenerateTests(k, ℓ, σ,P )

//I: generate forbidden refusals

1) for all (X ∈ min 6⊆(R(P ))) TS.Add(σ.X)
2) if (k > ℓ) return;

//II: add forbidden continuations and recursively generate

longer tests with extensions of current trace

3) compute FR(P ) and min-baseP

4) for each X∩ ∈ FR(P ) in non-decreasing order
//II.1 if the cluster is nontrivial then we need

to add forbidden continuations

a) if (|[X∩]|P > 1)

Y := min-baseP (X∩)
for all (Y ∈ Y)

for all (a ∈ X∩ \ Y ) TS.Add(σ.Y.a)
// II.2 recursively generate longer tests with

extensions of current trace

b) for all (a ∈ Act \X∩)
GenerateTests(k + 1, ℓ, σ.X∩.a, P )

Algorithm 1: Test case generation algorithm

VI. ADDITIONAL SOURCES OF REDUNDANCIES

In this section, we identify two additional types of redun-

dancy in the test suite TS4. The first type concerns refusals

directly preceding a forbidden continuation, the other a rather

counter-intuitive possibility of detecting a violation through a

different violation occurring at a later stage of computation.

A. Redundant continuation contexts

Suppose that the structure of refusals of some reference pro-

cess P̂ is exactly as illustrated in Fig .3. The test suite TS4(P̂ )
will contain in particular traces {a, c}.b, {a, c}.d, {a, d}.b.
Observe that the first trace can be removed: any state s that

exhibits {a, c}.b will either exhibit {a, c}.d (in case s
d

−!),

or {a, d}.b (in case s 6
d

−!). Note that this pattern occurs for

any X.b whenever there is an action d such that X.d ∈ TS,

and some Y ⊆ X such that Y ∪ {d}.b ∈ TS.

We can characterise this type of redundancy with a rather

broad definition: a test suite TS contains a redundant contin-

uation context if there is a trace σ.X.a ∈ TS of length k and

a corresponding set TSσ.X.a ⊆ TS such that each trace in

TSσ.X.a has length at most k and for each process Q such

that σ.X.a ∈ RT(Q), there is some π ∈ TSσ.X.a ∩ RT(Q).
We stress that TSσ.X.a may not contain traces longer that k
– redundancies due to longer traces will be described in the

following section.

At the moment, apart from a somewhat brute force method

described in Section VII, we have not found a more ele-

gant/efficient technique to characterise and handle this type

of redundancies – we leave it as a potential research question.

We note that the problem is more complex than finding a

minimal number of “locally complete” tests which would

cover every violation within a fixed cluster (i.e. caused by

state refusals X̂ that belong to the same cluster). This is

because one may obtain additional material for inference from

outside the cluster, in particular from a smaller trace context

i.e. σ′.Y.a ≺ σ.X.a.

B. Longer traces make a shorter one redundant

We now arrive at the trickiest source of redundancy, al-

though it can be debated if it is a true redundancy at all.

Namely, it can happen that certain refusal traces can be

safely removed from a test suite due to, somewhat surprising,

distinguishing power of longer traces.

Consider the LTS representing a reference model P (as-

suming Act = {a, b, c}), depicted in Fig. 4. A forbidden trace

σ = {b, c}.a.{b, c}.a appears in our test suite TS4 – this is

because, in particular, {b, c} ∈ min-baseP ||{b,c}.a({a, b, c}),
and a ∈ {a, b, c} \ {b, c}, and moreover, there are no smaller

traces (w.r.t. ≺) than σ in our test suite.

However, it turns out that removing σ from our test suite

does not affect completeness. This is because any system that

exhibits σ will also exhibit certain longer forbidden traces,

which are present in the suite.

Indeed, suppose that a system Q exhibits the trace σ =
{b, c}.a.{b, c}.a. Let sσ be an arbitrary state in Q||σ.

• if sσ
b

−!, then Q exhibits in particular {b, c}.a.{b}.a.∅.b,
forbidden by P

• if sσ 6
b

−!, then Q exhibits in particular {b, c}.a.{c}.a.{b},

forbidden by P



Hence the lack of σ in the test suite will always be compen-

sated by longer traces, whose prefixes of length |σ| coincide

with σ on every index except the last refusal in σ.

The key question is whether we really wish to remove σ
from our test suite in the scenario above. It gives the shortest

and most accurate counterexample for a violation. From an

application perspective, one strives to have the clearest, most

succinct explanation of an error, and it appears undesirable to

detect violations in such a roundabout way (through longer

traces). In view of that, we introduce a sanity condition on a

test suite called uniform completeness – the lack of “gaps” in

completeness for all lengths smaller or equal to the length of

interest ℓ.
Formally, a test suite TS for a reference model P [and

length bound ℓ] is uniformly complete (u.c.) for ⊑ℓ
RT whenever

for all k ≤ ℓ it is complete for ⊑k
RT.

VII. MINIMAL TEST SUITES

We now proceed to present an enumerative method that

allows to remove the redundancies described in the previous

section. We establish two families of test suites: the first one

consists of minimal uniformly complete suites, whereas the

other contains potentially smaller suites which are minimal

and complete, but may provide suboptimal (i.e. long) coun-

terexamples.

A. Minimal uniformly complete test suites

To accomplish minimality, we employ a method that utilises

a slightly different perspective on incorrect behaviour – rather

than looking solely at traces, we focus on causes of forbidden

behaviours in terms of “wrong” state refusals.

The set of state refusal violatons w.r.t. a reference process

P contains traces composed of a fundamental trace σ of P
followed by a refusal that cannot occur as a state refusal after

σ in any refinement of P (or, equivalently, refusal that is not

fundamental in P ||σ).

VSRP , {σ.X̂ ∈ RT |σ ∈ FRT(P ) ∧ X̂ /∈ FR(P ||σ)}

VSR
ℓ
P , VSRP ∩ (RTℓ−1 ∪ {σ.X̂ /∈ RTℓ(P )})

The latter class VSR
ℓ
P are state refusal violations which result

in forbidden traces2 of length ≤ ℓ. The set of violations w.r.t.

P exhibited by an implementation Q is defined as:

VSR
[ℓ]
P (Q) , {σ.X̂ ∈ VSR

[ℓ]
P

|σ ∈ RT(Q) ∧ X̂ ∈ SR(Q||σ)}

In the above, [l] is simply a shorthand to allow both VSRP (Q)
and VSR

ℓ
p(Q) to be defined. Note that we only consider

violations that can be reached by fundamental traces. This is

sufficient due to Proposition 4, and witnessed by the following

lemma – a lack of refinement is always caused by some state

refusal violation:

Lemma 3: P 6⊑ℓ
RT Q ⇐⇒ VSR

ℓ
P (Q) 6= ∅

2Observe that if σ.X̂ ∈ VSRℓ
P ∩ RTℓ(P ) has length ℓ, then the resulting

action-terminated forbidden trace has length ℓ+ 1, hence we do not include
these violations in VSRℓ

P .

For each process P , its state refusal violation σ.X̂ ∈ VSRP ,

and a test suite TS ⊆ RT\RT(P ), the set of detectors of σ.X̂
in TS contains traces in TS, smaller or equivalent3 to σ.X̂
w.r.t. preorder �, which can always “detect” σ.X̂ – that is,

traces exhibited by any process Q such that X̂ ∈ SR(Q||σ).

detectorsP (σ.X̂,TS)

,

{
{σ′.Y.a ∈ TS | a /∈ X̂ ∧ σ′.Y.a � σ.X̂.a} if σ.X̂ ∈ RT(P )

{σ′.Y ∈ TS |σ′.Y � σ.X̂} if σ.X̂ /∈ RT(P )

Lemma 4: Take any test suite TS for P , violation σ.X̂ ∈
VSR

ℓ
P , and any of its detectors ρ ∈ detectorsP (σ.X̂,TS).

For any Q such that σ.X̂ ∈ VSR
ℓ
P (Q), we have ρ ∈ RTℓ(Q).

The detector cover of a test suite is the family of detector

sets of all conceivable violations (with legnth bound ℓ):

DetCovP (TS, ℓ) , {detectorsP (σ.X̂,TS)

|σ.X̂ ∈ VSR
ℓ
P }

Using detector cover, we can state a straightforward sufficient

condition for uniform completeness.

Lemma 5: Any test suite TS for P such that

DetCovP (TS, ℓ) does not contain an empty set, is uniformly

complete for P w.r.t. ⊑ℓ
RT.

Observe that TS
ℓ
4

meets the above sufficient condition.

Indeed, for any violation σ.X̂ ∈ VSR
ℓ
P :

• if σ.X̂ /∈ RTℓ(P ), then σ.Y ∈ TS
ℓ
4

, where Y is a

minimal refusal such that Y ⊆ X̂ and σ.Y /∈ RTℓ(P )
• otherwise we have σ.Xm.a ∈ TS

ℓ
4

, where Xm ∈
min-baseP ||σ(X̂), Xm ⊆ X̂ and a /∈ X̂

This suggests an idea of obtaining minimal test suites using

the so-called minimum hitting sets. For a family of sets A,

a hitting set for A is any set H ⊆
⋃
A such that ∀A ∈

A. H ∩ A 6= ∅. The family minHit A consists of all hitting

sets of A with the smallest size.

We define the following family of test suites:

T Suni
min(P, ℓ) , minHit DetCovP (TS

ℓ
4
, ℓ)

The key question is whether the above suites are really

minimal: while detector sets suffice to prove a given violation,

we have not shown yet if they exhaust all means of detecting

the violation. We will show that T Suni
min indeed contains

minimal uniformly complete test suites.

As an intermediate step, we shall prove an important prop-

erty of fundamental traces. Namely, for any valid fundamental

trace σ ∈ FR(P ), we can construct a process P%σ that is

refusal trace equivalent to the original process P , but in which

the trace σ is a state refusal trace

Proposition 5: Fix a process P . A trace σ ∈ RT is a

fundamental refusal trace of P (σ ∈ FRT(P )) if and only if

one can construct a process, denoted with P%σ, such that

1) P%σ =RT P , and

2) σ is a state refusal trace of P%σ.

3Formally speaking, they are smaller or equal w.r.t. � than the maximal

detectors of σ.X̂ , defined in the proof of Theorem 1.



Proof: “⇐=”: If σ is a state refusal trace of P%σ, then in

particular σ ∈ FRT(P%σ), from P%σ =RT P and preservation

of fundamental refusals we obtain σ ∈ FRT(P ).
“=⇒”: Let σ = X0a1X1 . . . anXn[an+1]. We endow the

LTS underlying P with n + 1 fresh states s0, s1, . . . , sn. For

each i ∈ {0, . . . , n−1, [n]}, and each a ∈ Act\Xi, we define

transitions: si
a

−! q iff ∃sY
a

−! q, where sY ∈ P ||X0a1 . . . ai
such that Xi ⊆ SR(sY ). This ensures that the state refusals of

each si are equal to Xi. We also create a chain of transitions

between the states i.e. si
ai+1

−! si+1 for i ∈ {0, . . . , n − 1}.

Finally, we set up the initial states as: P%σ = P ∪ {s0}.

As a side remark, we note that Proposition 5 offers an

insight into the relationship between refusal trace semantics

and the finer ready trace semantics induced by state refusals

(state refusals are duals of ready sets). For instance, one may

use it to describe different processes in ready trace semantics

that give rise to the same process modulo =RT.

Theorem 1: For any process P , T Suni
min(P, ℓ) is a family

of minimal test suites (with the smallest number of traces)

which are uniformly complete for P w.r.t. ⊑ℓ
RT.

Proof: We first establish that:

(*) Any test suite TS
uc
4 ⊆ TS

ℓ
4

uniformly complete for P
and ⊑ℓ

RT, is a hitting set of DetCovP (TS
ℓ
4
, ℓ).

Fix a process P , length ℓ ∈ N, and assume that a test suite

TS
uc
4 ⊆ TS

ℓ
4

is uniformly complete for ⊑ℓ
RT. Suppose, towards

contradiction, that there is some violation σ.X̂ ∈ VSR
ℓ
P such

that detectorsℓP (σ.X̂,TS
uc
4 ) = ∅, and let k ≤ ℓ be the

minimal integer for which σ.X̂ ∈ VSR
k
P . We will show that

TS
uc
4 is not complete for ⊑k

RT.

We shall need the auxiliary definitions of maximal detectors

of a violation and their downward closure:

maxdetsP (ρ.Ŷ )

,

{
{ρ.Ŷ .a | a ∈ topP ||ρ(Ŷ ) \ Ŷ } if ρ.Ŷ ∈ RT(P )

{ρ.Ŷ } if ρ.Ŷ /∈ RT(P )

#� maxdets
P
(ρ.Ŷ ) , {λ | ∃π ∈ maxdetsP (ρ.Ŷ ) |λ � π}

Observe that for any ρ.Ŷ ∈ VSRP and test suite TS
′
, we

have detectorsP (ρ.Ŷ ,TS
′) = TS

′ ∩ #� maxdets
P
(ρ.Ŷ ).

We will construct a process P̂fault that exhibits σ.X̂ ,

but differs from P (w.r.t. ⊑k
RT) only on traces contained in

#� maxdets
P
(σ.X̂), i.e. P̂fault is such that

(
RTk(P̂fault) \

RTk(p)
)

⊆ #� maxdets
P
(σ.X̂). This suffices to show that

TS
uc
4 is not complete for ⊑k

RT, since for such P̂fault we have:

TS
uc
4 ∩

(
RTk(P̂fault)\RTk(p)

)
⊆ TS

uc
4 ∩#� maxdets

P
(σ.X̂)

= detectorsℓP (σ.X̂,TS
uc
4 ) = ∅.

Since σ ∈ FRT(P ), according to Proposition 5 there is a

process P%σ refusal trace equivalent to P , and containing σ
as a state refusal trace. Our new process P̂fault is constructed

by modifying the LTS underlying the process P%σ.

We add a fresh state snew to the LTS ensuring that it appears

in the new process after state refusal trace σ – this way snew
will be contained in P̂fault||σ, but not in P̂fault||σ

′ for any

σ ≺ σ′. This can be done as follows: if σ = ǫ, then snew is

simply included as an initial state of P̂fault. Otherwise σ is

P

σ
fundamental

refusal trace

P%σ

σ
state

refusal trace

P̂fault

σ

X̂

=RT 6⊑RT

of the form σ′.b, and we add a b-transition into snew from the

final state of the chain which realises the state refusal trace σ,

as described in the proof of Proposition 5. Finally, we endow

snew with outgoing transitions: for each b ∈ (Act \ X̂) we

add a transition snew
b

−! snew, so that SR(snew) = X̂ .

We have thus constructed a process P̂fault such that:

• σ.X̂ ∈ VSR
k
P (P̂fault), and

• RTk(P̂fault) \ RTk(P ) ⊆ #� maxdets
P
(σ.X̂).

This shows that TS
uc
4 is not complete w.r.t. ⊑k

RT, contradicting

uniform completeness of TS
uc
4 ; we have thus proved (*).

Statement (*) entails that test suites in T Suni
min(P, ℓ) are

uniformly complete and minimal w.r.t. size among the subsets

of TS4. We will now show that no uniformly complete test

suite has smaller size than those in T Suni
min(P, ℓ).

Take any test suite TS
uc

uniformly complete for P w.r.t.

⊑ℓ
RT. Let us define the following function4 f : TS

uc
! TS4:

• f(σ.X) , topP (σ).X
f
min where Xf

min is a minimal

refusal such that Xf
min ⊆ X and σ.Xf

min /∈ RT(P )
• f(σ.X.a) , topP (σ).Xm.a

where Xm ∈ min-baseP ||σ(X) and Xm ⊆ X

Observe that for every σ ∈ TS
uc

, f(σ) /∈ RTk(P ), where

k is the length of σ. Moreover, for any implementation Q and

σ ∈ TS
uc

, we have σ ∈ RT(Q) =⇒ f(σ) ∈ RT(Q), and

thus uniform completeness of the test suite f(TS
uc) ⊆ TS4

follows from the uniform completeness of TS
uc

. Hence for

an arbitrary uniformly complete test suite one can construct

a uniformly complete test suite of no larger size contained in

TS4. Combined with (*) and the definition of T Suni
min, this

proves the main statement.

B. Minimality beyond uniform completeness

We have argued that redundancies due to longer traces are

not actual redundancies: their omission would yield singularly-

behaved test suites, undesirable from a practical perspective.

Still, determining the “absolutely” minimal test suites remains

an interesting theoretical challenge. Here, we consider this

general case (non-uniform completeness).

The key insight is that when considering violations after a

trace ρ, we only need to take care of those that can be caused

by state refusals X̂ that are realisably hidden, that is, for which

extensions consistent with further behaviour of P exist. For

4A fully formal definition of f would require an unambiguous selection of

refusals Xf
min/Xm e.g. based on some ordering of actions.



such state refusals, it is possible to endow the original system

with a fresh state exhibiting a disallowed behaviour X̂ in a way

that does not violate any longer obligations. Such violations

will always be “hidden” when inspecting longer traces.

The above considerations lead us to the formal definition of

realisable hidden violations [with length bound ℓ] of a process:

rhv ℓ(P ) ,
{
σ.X̂ ∈ VSR

ℓ
P |(

(|σ| < ℓ) =⇒
(
∀b ∈ Act \ X̂

∃Qb. ∀Y  X̂ P ||σ.Y.b ⊑
ℓ−|σ|−1
RT Qb

))}

where we define P ⊑−1
RT Q as true for all processes P,Q.

The statement in lines 2-3 implies that one can construct

a process which has a state after σ with state refusal X̂ , but

whose further behaviours are compatible with P for every

relevant continuation, hence the violation σ.X̂ is undetectable

through longer traces.

Example 3: Consider the process P in Fig. 4. We have:

• {b, c}.a.{a, b} ∈ rhvℓ(P ) (for any ℓ): the 2nd line of

definition of rhvℓ requires to check only one action c,
hence we just need to show existence of a process that

would refine both P ||{b, c}.a.{a}.c and P ||{b, c}.a.{b}.c.
This is straightforward since P ||{b, c}.a.{a}.c yields an

empty set, refined by any process, and therefore we can

use Qc = P ||{b, c}.a.{b}.c.
• {b, c}.a.{b, c} /∈ rhvℓ(P ) for ℓ > 2: as explained in

Section VI-B, there is no process Qa that would refine

both P ||{b, c}.a.{a}.a and P ||{b, c}.a.{b}.a.

In our new test suite, among all local forbidden behaviours

after σ, only realisable hidden violations need to be targeted

directly by the test suite. The detection of the remaining

violations will be ensured by longer traces in the suite.

Formally, we define the detector cover of a test suite

restricted to realisable hidden violations as:

DetCov
rhv
P (TS, ℓ) , {detectorsP (σ.X̂,TS) |

σ.X̂ ∈ rhvℓ(P )}

We can now define a family of test suites T Smin in a similar

manner as T Suni
min.

T Smin(P, ℓ) , minHit DetCov
rhv
P (TS

ℓ
4
, ℓ)

It transpires that T Smin consists of minimal complete test

suites (though not necessarily uniformly complete).

Theorem 2: For any process P , T Smin(P, ℓ) contains

minimal test suites which are complete for P w.r.t. refusal

trace semantics ⊑ℓ
RT.

We remark that test suites in T Smin are likely of purely

theoretical significance. Apart from the clarity of feedback in

debugging, also computational complexity of their generation

appears to be immense, and we refrain from pursuing more

exact estimates in this work.

VIII. CHARACTERISTIC FORMULAE FOR REFUSAL TRACE

REFINEMENT

In this section, we address a problem from the realm of

modal logic that is intimately related to complete test suites:

devising a formula through which refinement checking can

be reduced to model checking. Formally, given some logical

language L, and a process P , a formula ΦP ∈ L is a

characteristic formula for P if for all processes Q:

P ⊑RT Q ⇐⇒ Q |= ΦP

A similar idea as in our test case generation method can

be used to construct characteristic formulae for refusal trace

semantics. To this end, we use a recursive variant of Hennessy-

Milner logic, a simple propositional modal logic on labelled

transition systems. Recursion allows one to specify obligations

for processes of an arbitrary length, while the universal syntax

below facilitates expressing forbidden behaviours of systems

(akin to test suites).

The recursive formulae Φ and modal formulae ψ are defined

as follows:

Φ ::= (νZ = ψ) | ǫ

ψ ::= F | X̃ | ψ ∧ ψ | [a]ψ | [X̃]ψ | Z

The language HMLRT+ν
✷

consists of all recursive formulae.

The syntax contains some standard constructs from proposi-

tional logic (F,∧), as well as the standard modal box operator

[a]φ, signifying that a formula holds for all a-successors of

a state. For brevity, and to keep the syntax closer to the

observations that define refusal trace semantics, we use the

construct X̃ , signifying the presence of refusal X , as well

as [X̃]ψ, equivalent to X̃ =⇒ ψ (note that monotonicity

of the formulae is maintained). Recursion is expressed by

the presence of recursive variables, ranged over with Z, and

recursive equations νZ = ψZ .

Since our logic contains only greatest fixpoints (no alter-

nation), and moreover is interpreted over finite models, its

semantics can be defined in a straightforward manner. Namely,

we can annotate the satisfaction relation with an environment

E ⊆ Var × S to store the pairs of (fixpoint variable, state)

already visited along the proof path – when a dependency is

encountered again, the subformula is assumed to hold (greatest

fixpoint coinductive principle).

Formally, semantics of a HMLRT+ν
✷

formula is defined in the

context of an LTS L = 〈S, s0,!, Act〉 and an environment

E ⊆ Var × S as follows:

s 6|=Φ,E F

s |=Φ,E X̃
def
⇐⇒ X ∈ R(s)

s |=Φ,E φ ∧ ψ
def
⇐⇒ s |=Φ,E φ ∧ s |=Φ,E ψ

s |=Φ,E [a]ψ
def
⇐⇒ ∀q ∈ S. (s

a
−! q =⇒ q |=Φ,E ψ)

s |=Φ,E [X̃]ψ
def
⇐⇒ X ∈ R(s) =⇒ s |=Φ,E ψ

s |=Φ,E Z if (Z, s) ∈ E

s |=Φ,E Z
def
⇐⇒ s |=E∪{(Z,s)} ψZ

if (Z, s) /∈ E and (Z = ψZ) ∈ Φ

To complete the semantics, we also define:

s |= Φ
def
⇐⇒ s |=Φ,∅ Z

where Φ = (Z = ψZ)Φ
′

P |= Φ
def
⇐⇒ ∀s∈P s |= Φ



The characteristic formula ΦP
RT for a process P consists

of equations in the form presented below. Recursive variables

are annotated with processes; the initial variable is ZP , and an

equation for ZQ occurs whenever Q (that ranges over relevant

processes reachable from P ) appears on the right-hand side of

some preceding equation:

νZQ =
∧

X∈min 6⊆ R(Q)[X̃]F

∧
∧

X∩ ∈ FR(Q)(∧
Xm ∈ min-baseQ(X∩)[X̃m] X̃∩

∧
∧

a∈Act\X∩
[X̃∩] [a]ZQ||X∩.a

)

Note that since processes are subsets of state spaces, given

a finite LTS the construction always yields a finite formula.

Observe that the structure of the formula ΦP
RT closely resem-

bles the test generation algorithm (Section V), a modification

of which can be used to generate characteristic formulae.

Theorem 3: ΦP
RT is a characteristic formula for P w.r.t.

refusal trace refinement, i.e. ∀Q Q |= ΦP
RT ⇐⇒ P ⊑RT Q

Proof: We sketch the key parts of the proof.

I. We first show that for all processes P , Q:

(∗)
P ⊑

[ℓ]
RT Q ⇐⇒ [∀k ∈ 0, . . . , ℓ] ∀σ ∈ RT[k](P ) .

P ||σ ⊑
[ℓ−k]
RT Q ||σ

The nontrivial direction is from left to right. Observe that

for any process P̂ , and trace σ = τ.X of length k, the set

RT(P̂ || τ.X) can be expressed as a function of RT(P̂ ):

RT[ℓ−k](P̂ || τ.X) = {Z.λ | ∃Y ⊇ Z : τ.Y.λ ∈ RT[ℓ](P̂ )
∧ X ⊆ Y }

Using the above identity we can establish that if RT[ℓ](Q) ⊆
RT[ℓ](P ), then RT[ℓ−k](Q || τ.X) ⊆ RT[ℓ−k](P || τ.X).

II. Observe that Q 6|= Φ if and only if it can be proved

with a finite falsification path, i.e. a finite path created by

starting with Q 6|= Φ and successively applying semantic rules

for HMLRT+ν
✷

, terminating in statements of the form either

s 6|=Ψ,E F, or s 6|=Ψ,E X̃ . If such a path exists, by its length

we will denote the number of occurrences of statements of the

form s 6|=Ψ,E [a]ψ, plus possibly the final s 6|=Ψ,E X̃ in the

path. The existence of a falsification path of length at most k
for a process Q and formula Φ will be denoted with Q 6|=k Φ.

III. Since characteristic formulae have very similar structure

to the complete test suites TS3, we can prove the main

statement by showing that:

∀P,Q
(
Q 6|=ℓ ΦP

RT ⇐⇒ (∃σ ∈ TS
ℓ
3
(P ). σ ∈ RT(Q))

)
.

The proof proceeds by induction on ℓ, assuming in IH

that the above bi-implication holds for ℓ, for all processes

P and Q. By juxtaposing the characteristic formula ΦP
RT

and the inductive characterisation of the test suite TS
ℓ+1
3

(P )
(end of Section IV), we observe that the subformula in the

first line of ΦP
RT does not hold precisely when Q exhibits a

trace of the form “X” given in the first line of the inductive

definition of TS
ℓ+1
3

. Similar observation can be made for the

correspondence of the third lines in both definitions (traces

“Xm.a”). Finally, that falsifying line 4 of the definition of

Fig. 5.
s0

{b}

s1 ∅ s2 {a, b}
s3

{a}

a a a

a, b

b

ΦP
RT in ≤ ℓ+ 1 steps is equivalent to exhibiting a trace from

line 4 in TS
ℓ+1
3

, follows from (*) and the inductive hypothesis.

Example 4: We apply our characteristic formula construc-

tion to the process P depicted in Fig. 5.

νZ{s0}
= [{̃a}]F

∧ [∅] {̃b}

∧[{̃b}] [a]Z{s1,s2,s3}

νZ{s1,s2,s3}
= [∅] [a]Z{s1}

∧[∅] [b]Z{s0,s1}

∧[{̃a}] [b]Z{s0}

∧[{̃b}] {̃a}

νZ{s1}
= [{̃a}]F ∧ [{̃b}]F

∧[∅̃] [a]Z{s1}

∧[∅̃] [b]Z{s1}

νZ{s0,s1}
= [{̃a}]F

∧[∅̃] [a]Z{s1,s2,s3}

∧[∅̃] [b]Z{s1}

∧[{̃b}] [a]Z{s1,s2,s3}

IX. FUTURE WORK

There are several potential lines of future work. Firstly,

we did not consider internal actions. We believe that while

including silent steps requires a few technical adjustments, the

essential part of our results should carry over to the extended

setting. The key difference in the context of internal actions

is that refusals can only be observed in stable states. To cater

for traces passing through transient states (having an outgoing

internal action), the refusals can be endowed with an additional

element •, corresponding to the minimal observation, which

can be recorded in any state. We also use an extended order

on refusals ❁, assuming that • ❁ X for all X ⊆ Act.
We can then adapt our framework by treating • as a

(potential) state refusal – whenever a specification process P
has a transient state after a trace σ, • is included in SR(P ||σ).
Our definitions regarding clusters from Section IV can then

be extended in a natural way, using • as a special case of

state/fundamental refusal, for instance:

topP (•) ,

{
• if • ∈ SR(P )⋂

Y ∈SR(P ) Y if • /∈ SR(P )



An interesting open question is whether redundancies in

continuation contexts described in Section VI-A can be char-

acterised in a more productive manner. In particular, it would

be desirable to reduce the test suite TS4 with a more efficient

method than those described in Section VII.

Another possible direction of research is to adapt our work

to distinguish between input and output actions. The basic

difference is that, since the environment cannot block output,

it is only possible to have a deadlock (and so observe a refusal)

if the state is quiescent (i.e. not capable of producing output

actions). As a result, we only need to consider refusals that

include all outputs.

Finally, we would like to explore the model-independent

perspective where specification is given only in the form a

language of refusal traces; such approach has been explored in

[14] for trace semantics. This line of research may potentially

lead to a language-based test generation algorithm, as well as

equivalence class testing techniques akin to [14] and test suites

with model-independent coverage properties.

X. CONCLUSIONS

This paper explored the problem of generating a complete

and minimal test suite for testing from an LTS P . We

considered the refusal (failure) trace semantics and used test

sequences defined by refusal traces that the system under test

should not have. In order to ensure that test suites are finite,

we assumed a bound ℓ on the length of refusal traces used.

We set off by defining a simple but bulky complete test

suite and then progressively kept refining it without reducing

its effectiveness. In particular, the first important reduction step

was a result of a few key insights into the distinct properties

of refusal trace semantics, which in turn helped develop

the fundamental equivalence on refusal traces – a test suite

requires one trace per equivalence class. We described how

to construct a simple and greatly reduced test suite which is

not minimal in general, and moreover, provided an exhaustive

method to remove any remaining redundant traces. We found

that it is sometimes possible to remove certain refusal traces

due to the presence of longer traces in the suite – such removal

may not be desirable, so we have investigated minimality with

either approach. Finally, we have also provided a characteristic

formula construction for refusal trace refinement.
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