
ar
X

iv
:2

10
4.

14
09

8v
2 

 [
cs

.L
O

] 
 2

8 
Ju

n 
20

21

A Normal Form Characterization for Efficient

Boolean Skolem Function Synthesis

Preey Shah, Aman Bansal, S. Akshay and Supratik Chakraborty

Department of Computer Science and Engineering

Indian Institute of Technology Bombay, Mumbai, India.

Email: {preeyshah, aman0456b}@gmail.com; {akshayss, supratik}@cse.iitb.ac.in

Abstract—Boolean Skolem function synthesis concerns syn-
thesizing outputs as Boolean functions of inputs such that a
relational specification between inputs and outputs is satisfied.

This problem, also known as Boolean functional synthesis, has
several applications, including design of safe controllers for
autonomous systems, certified QBF solving, cryptanalysis etc.
Recently, complexity theoretic hardness results have been shown
for the problem, although several algorithms proposed in the
literature are known to work well in practice. This dichotomy
between theoretical hardness and practical efficacy has motivated
research on normal forms of specification representation that
guarantee efficient synthesis, thus partially explaining the efficacy
of some of these algorithms.

In this paper we go one step further and ask if there
exists a normal form representation of the specification that
precisely characterizes “efficient” synthesis. We present a normal
form called SAUNF that answers this question affirmatively.
Specifically, a specification is polynomial time synthesizable iff
it can be compiled to SAUNF in polynomial time. Additionally,
a specification admits a polynomial-sized functional solution iff
there exists a semantically equivalent polynomial-sized SAUNF
representation. SAUNF is exponentially more succinct than well-
established normal forms like BDDs and DNNFs, used in the
context of AI problems, and strictly subsumes other more recently
proposed forms like SynNNF. It enjoys compositional properties
that are similar to those of DNNF. Thus, SAUNF provides
the right trade-off in knowledge representation for Boolean
functional synthesis.

I. INTRODUCTION

The history of Skolem functions can be traced all the way

back to the 1920’s when Thoralf Skolem provided a simplified

proof of the celebrated Löwenheim Skolem theorem in first

order logic. A key step in the proof showed that any first order

logic formula can be converted into Skolem normal form, that

has no existential quantifiers, while preserving satisfiability.

This process, called Skolemization, involves replacing exis-

tentially quantified variables by terms constructed out of new

function symbols, called Skolem functions. Skolemization has

been an immensely influential technique in logic, and is now

used routinely in many applications, viz. automated theorem

proving. While it suffices for some applications to merely

know that desired Skolem functions exist, others require us

to efficiently synthesize such Skolem functions.

Algorithmic synthesis of Skolem functions has been studied

extensively in the Boolean setting. Given disjoint sequences

This work was partly supported by DST/CEFIPRA/INRIA project EQuaVE,
SERB Matrices grant MTR/2018/000744 and MHRD IMPRINT-1 grant
(Project 6537) of Government of India.

of Boolean variables I = (i1, . . . in) and X = (x1, . . . xm),
representing inputs and outputs respectively of a system, and

given a Boolean formula ϕ(X, I) specifying a desired relation

between the system inputs and outputs, the Boolean Skolem

function synthesis (BFnS) problem asks us to synthesize

a sequence of formulas Ψ(I) = (ψ1(I), . . . , ψm(I)) that

can be substituted for X to satisfy the specification, i.e.,

∀I
(
ϕ(Ψ(I), I

)
⇔ ∃X ϕ(X, I)

)
. The formulas in Ψ indeed

represent Boolean Skolem functions for X in ∃Xϕ(X, I)1.

The above problem, also referred to as Boolean functional

synthesis in the literature, has several applications; we will just

mention two here. Skolem functions (and their counterparts,

called Herbrand functions) can be thought of as ”certificates”

that help us independently verify the results of satisfiability

checking for Quantified Boolean Formulas, as done in [1].

QBF-satisfiability solving is used today in diverse applications,

from planning to program repair to reactive synthesis and

the like [2]. Having certificates not only helps in verifying

correctness of QBF-satisfiability results, but also has other

benefits like providing a feasible plan in a planning problem.

Yet another application of Skolem functions is motivated

by cryptanalysis. Consider a system with a single 2n-bit

unsigned integer input I, and two n-bit unsigned integer

outputs X1 and X2. Suppose the relational specification is

given as ϕfact (X1,X2, I) ≡ ((I = X1 ×[n] X2) ∧ (X1 6=
1) ∧ (X2 6= 1)), where ×[n] denotes n-bit unsigned integer

multiplication and 1 denotes an n-bit representation of the

integer 1. This specification can be represented as a Boolean

formula of size O(n2) over the variables in I, X1 and X2.

Finding Skolem functions for X1 and X2 in terms of I

effectively asks us to solve the (n-bit) factorization problem.

Note that if I represents a prime number, there are no values of

X1,X2 that satisfy the specification. Hence the specification is

technically unrealizable; yet, it is of significant interest (e.g. in

cryptanalysis) to synthesize Skolem functions for X1,X2 that

can be evaluated efficiently. Note that it is an open question

whether there are polynomial time algorithms or even non-

uniform polynomial sized circuits for integer factorization.

Given its significance, the Boolean Skolem function syn-

thesis problem has received considerable attention over the

last two decades, with a lot of work focussed towards design

1We are conflating functions and formulas here for simplicity, the distinc-
tion will be made clear later.

http://arxiv.org/abs/2104.14098v2


of practically efficient algorithms [3], [4], [5], [6], [7], [8],

[9], [10], [11], [12], [13]. These algorithms, using techniques

ranging from CEGAR to decision tree learning, empirically

work well on large collections of benchmarks, but fail re-

markably for some small benchmarks. Further, and somewhat

surprisingly, each tool seems to work well on a different

set of benchmarks, often incomparable across tools. What is

common among the approaches, however, is that it is difficult

to predict reliably the set of benchmarks, i.e., the class of for-

mulas, on which a particular algorithm will be efficient (other

than simple cases or heuristic guesses). On a related note,

a theoretical study undertaken in [12] showed that Boolean

Skolem function synthesis requires super-polynomial space

and time unless some well-regarded complexity-theoretic con-

jectures are falsified. In fact, [12] also showed that under some

weaker assumptions, there cannot exist even sub-exponential

algorithms for this problem.

This leads to a curious dichotomy of theoretical worst-case

hardness vs practical (sometimes unreasonable) efficiency. To

resolve this dichotomy, researchers have searched for structure

in the input specification that can result in provably efficient

synthesis. It turns out that the representation used for input

specification and Skolem functions indeed has a bearing on

the complexity of synthesis. For example, if the specification

is given as a ROBDD [14] with input-first variable ordering

(see [7] for details), there exists a polynomial-time algorithm

that generates Skolem functions as ROBDDs [7]. In [15],

a new normal form for specifications, called SynNNF, was

proposed, which ensures polynomial-time synthesis, assuming

both the specification and Skolem functions are represented as

arbitrary Boolean circuits. However, these earlier studies only

provide sufficient but not necessary conditions for efficient

Skolem function synthesis. Significantly, it is not the case

that every class of specifications that admit efficient Skolem

function synthesis can be efficiently compiled to ROBDDs

with input-first variable ordering, or even to SynNNF. Indeed,

[15] gives (counter-)examples of specifications that are not in

SynNNF but admit efficient Skolem function synthesis.

In this paper, we address the above dichotomy, by presenting

a normal form for Boolean circuits, called SAUNF (acronym

for Subset-And-Unrealizable Normal Form), that characterizes

polynomial-time and polynomial-sized Boolean Skolem func-

tion synthesis. By a characterization, we mean that for every

class C of circuits (i) Skolem functions can be synthesized in

polynomial-time for specifications represented by circuits in C
iff these circuits can be compiled to semantically equivalent

ones in SAUNF in polynomial-time, and (ii) specifications

represented by circuits in C admit polynomial-sized Skolem

functions iff they can be compiled into polynomial-sized

semantically equivalent circuits in SAUNF. This notion is

made precise later in Section III. We also explore the proposed

normal form in depth, and present several interesting results.

Our main contributions are the following.

• We show that SAUNF is (often exponentially) more suc-

cinct and strictly subsumes several other sub-classes (viz.

DNNF, dDNNF [16], wDNNF [12], ROBDD, SynNNF).

• We present a polynomial-time algorithm to synthesize

polynomial-sized Skolem functions from specifications in

SAUNF.

• We study compositional properties of SAUNF including

disjunction and conjunction operations.

• We show that checking membership in SAUNF is Co-

NP hard and is in the second level of the polynomial

hierarchy.

• We present a novel algorithm for compiling a Boolean

relational specification in CNF to SAUNF.

Finally, we show an interesting application of SAUNF. Specif-

ically, we show that in the context of the n-bit factoriza-

tion problem mentioned earlier, there exist polynomial-sized

SAUNF circuits relating specific bits of the input I to the out-

puts X1 and X2. While this does not solve the n-bit factoriza-

tion problem, it is worth noting that some of these bit relations

are known to require exponentially large ROBDDs [17], and

sub-exponential sized circuits using normal forms like DNNF,

dDNNF, SynNNF are not yet known.

Normal forms for Boolean functions, or knowledge repre-

sentation in general, have been investigated extensively over

the last few decades [18], [19], [20], [21]. While a problem

compiled to a normal form may allow the problem to be

solved efficiently, compilation to the normal form may not

always be easy. For instance, dDNNF allows polynomial-

time model counting, but converting to dDNNF cannot always

be done in polynomial time unless P = #P. Despite the

worst-case complexity of the compilation process, research

in normal forms offers several benefits, such as better under-

standing of compositionality and other structural properties,

explanations for practical performance of algorithms (e.g., on

benchmarks in a normal form that permits efficient analysis)

etc. Furthermore, the study of normal forms also feeds into

research on normal form compilers, that have significant

practical use. For example, multiple dDNNF compilers have

been developed since the introduction of dDNNF as a useful

normal form. We also point out that different types of normal

forms have been studied earlier. For example, syntactic or

purely structural normal forms like CNF, DNF, DNNF allow

efficient membership checking, while semantic normal forms

like dDNNF require propositional satisfiability checks to deter-

mine membership. The proposed normal form (SAUNF) falls

in the latter category, but like dDNNF, is worth studying for

the good properties it exhibits.

The remainder of this paper is organized as follows. We

start with preliminaries in Section II and problem statement in

Section III. In Section IV, we introduce SAUNF and compare

it with other normal forms in Section V. In Section VI we ex-

plain how Skolem functions can be efficiently computed from

SAUNF specifications, and discuss compositionality properties

in Section VII. Next, in Section VIII, we describe an algorithm

to compile a CNF formula to SAUNF. Finally, we show

applications to n-bit factorization in Section IX and conclude

in Section X.



II. PRELIMINARIES

Let V = (v1, . . . , vr) be a finite sequence of Boolean

variables. We use set(V) to denote the underlying set of the

sequence and |V| to denote the length of the sequence. A

literal ℓ over V is either v or ¬v, where v ∈ set(V). The set

of all literals over V is denoted lits(V). We use ⊤ and ⊥ to

represent the Boolean constants true and false respectively.

A Boolean formula ϕ over V is defined by the grammar:

ϕ ::= ¬ϕ | (ϕ) | ϕ ∧ ϕ | ϕ ∨ ϕ | ⊤ | ⊥ | v1 | · · · | vr .

We write ϕ(V) to denote that the formula ϕ is defined over

the sequence of variables V. Special cases of formulas

include clauses or disjunctions of literals, and cubes or

conjunctions of literals. A formula is in conjunctive normal

form (CNF) if it is a conjunction of clauses. Similarly, it is in

disjunctive normal form (DNF) if it is a disjunction of cubes.

A Boolean function f(V) is a mapping {⊥,⊤}|V| → {⊥,⊤}.

The semantics of the Boolean formula ϕ(V) is given by a

Boolean function JϕK(V) : {⊥,⊤}|V| → {⊥,⊤}. It is easy

to see that every Boolean function f corresponds to at least

one Boolean formula ϕ such that JϕK = f .

Let U be a sub-sequence of V (this includes the possibility

U = V), and let V \ U denote the sequence obtained by

removing from V all variables present in U. An assignment of

U is a mapping σ : set(U) → {⊥,⊤}. We use JϕKσ to denote

the Boolean function {⊥,⊤}|V\U| → {⊥,⊤} obtained by

substituting σ(vj) for every variable vj ∈ set(U) in JϕK. We

say that the formula ϕ(V) reduces to the formula ϕ′(V \U)
under the assignment σ of U iff Jϕ′K = JϕKσ . We say that σ
satisfies ϕ if JϕKσ always evaluates to ⊤.

We choose to represent both Boolean functions and Boolean

formulas (modulo semantic equivalence) by Boolean circuits.

For purposes of this paper, a Boolean circuit (or simply a

circuit) is a rooted directed acyclic graph (DAG) G in which

nodes with incoming edges, also called internal nodes, are

labeled by ∨, ∧ and ¬ operators, and nodes with no incoming

edges, also called leaves, are labeled either by variables in

V or by constants in {⊥,⊤}. Every internal node labeled ∧
or ∨ has incoming edges from exactly two children, while

every internal node labeled ¬ has an incoming edge from

exactly one child. In order to ensure that a circuit doesn’t

have superfluous nodes, we require all nodes in a circuit to be

descendants of the root. The size of a circuit G, denoted |G|,
is the number of nodes in G. A circuit G represents a Boolean

formula ϕG (alternatively, a Boolean function JϕGK, if G is

used to represent a Boolean function) defined as follows: (i)

if G consists of a single leaf labeled λ, then ϕG = λ; (ii) if

the root of G is labeled op ∈ {∧,∨} and if the sub-circuits

rooted at its children are G1 and G2, then ϕG = ϕG1 op ϕG2 ;

(iii) if the root of G is labeled ¬ and if the sub-circuit rooted

at its (only) child is H , then ϕG = ¬ϕH .

A Boolean formula is said to be in negation normal form (or

NNF) if the application of ¬ is restricted to only the variables.

Motivated by this, a circuit in which every ¬ labeled node

has a leaf labeled by a variable as its child is said to be an

NNF circuit. It is well-known that every Boolean formula is

semantically equivalent to a formula in NNF. Since we wish

to reason about Boolean formulas/functions modulo semantic

equivalence, it suffices to restrict our attention to NNF circuits.

For convenience of exposition, all circuits in the remainder of

the paper are assumed to be in NNF, unless stated otherwise.

It is easy to see that an arbitrary Boolean circuit G can be

converted to an NNF circuit G′ such that JϕGK = JϕG′K, and

|ϕG′ | ≤ 2 × |ϕG|. For notational convenience, we treat a ¬
labeled node with a child labeled v in a NNF circuit, as a

new leaf labeled ¬v. Thus, an NNF circuit can be viewed as a

rooted DAG with ∧- and ∨-labeled internal nodes and leaves

labeled by literals over V. Note that popular representations of

Boolean functions, viz. lists of (implicitly conjoined) clauses,

lists of (implicitly disjoined) cubes, and-inverter graphs [22],

ROBDDs [14], DNNF/dDNNF circuits [19], [16] etc. can all

be translated to NNF circuits in linear time. Figure 1 shows an

example of an NNF circuit. In this figure, the annotations G,

G1 and G2 represent the (sub-)circuits rooted at the nodes

adjacent to the annotations. The leaves are designated L0

through L15 from left to right. As is the case in this figure,

multiple leaves of a circuit may have the same literal label.

Let L be a subset of leaves of circuit G. We say L is

literal-consistent in G if every leaf in L is labeled by the same

literal. For a literal-consistent set L of leaves in G, and for

b ∈ {⊥,⊤}, we use G |L:b to denote the circuit obtained by re-

labeling each leaf of G in the set L with b. For a literal ℓ over

V, we use the term ℓ-leaves of G to denote the set of all leaves

of G labeled ℓ. For a set of distinct literals {ℓ1, . . . , ℓr} and

(possibly same) labels b1, . . . , br, we abuse notation and use

G |ℓ1=b1,...,ℓr=br to denote the circuit obtained by re-labeling

all ℓj-leaves of G by bj , for all j ∈ {1, . . . , r}. Note that

since ℓ and ¬ℓ are different literals, the notation G |ℓ=b,¬ℓ=b

is meaningful (and useful), and represents the circuit obtained

by re-labeling all ℓ-leaves and ¬ℓ-leaves of G by b.

Let I = (i1, . . . , in) and X = (x1, . . . , xm) be dis-

joint sequences of Boolean variables representing inputs and

outputs, respectively, of a hypothetical system. For clarity

of exposition, we use ”system inputs” to refer to I, and

”system outputs” to refer to X. Consider a circuit G with

leaves labeled by lits(X) and lits(I). The formula ϕG(X, I)
represents a relational specification over the system inputs I

and system outputs X. Given G, the Boolean Skolem Function

Synthesis or BFnS problem requires us to find a sequence

of Boolean formulas Ψ(I) =
(
ψ1(I), . . . , ψm(I)

)
such that

∀I
(
ϕG(Ψ(I), I

)
⇔ ∃X ϕG(X, I)

)
. As seen earlier, this is an

important problem with diverse applications. We call ψj(I) a

Skolem function2 for xj in ϕG(X, I), and the sequence (or

vector) of all such Skolem functions for x1, . . . , xm a Skolem

function vector for X in ϕG(X, I). Since we have chosen to

represent all Boolean formulas and functions as circuits, we

require each ψj(I) to be presented as a circuit.

2Technically, JψjK is the Boolean Skolem function for xj in ϕG. However,
since we represent both Boolean functions and formulas as circuits, we use ψj

and JψjK interchangeably for Boolean Skolem functions, to keep the notation
simple.



Example 1. Let X = (x1, x2) and I = (i). Let G be the circuit

shown in Figure 1. Then ϕG(X, I) is a relational specification

over I and X, and one (of possibly many) Skolem function

vectors for X in ϕG is Ψ(I) =
(
ψ1(I), ψ2(I)

)
, where ψ1(I) =

¬i = ψ2(I). Indeed, it can be verified that ∀I
(
ϕG(Ψ(I), I) ⇔

∃XϕG(X, I)
)
.

III. PROBLEM STATEMENT

Earlier work [12] has established (conditional) time and

space lower bounds for BFnS; therefore it is unlikely that

efficient algorithms exist for solving this problem in general.

Yet, several recent works [12], [7], [5], [23], [13], [24] have

shown that BFnS indeed admits practically efficient solutions

for several non-trivial benchmarks. This motivates us to ask

the following question, where we are interested in Boolean

circuit representations of relational specifications and Skolem

functions.

Does there exist a class, say C⋆, of circuits such that the

following hold?

P0: For every circuit G, there is a semantically equivalent

circuit G⋆ ∈ C⋆, i.e. JϕGK = JϕG⋆K. In other words, C⋆

is not semantically constraining.

P1: BFnS is solvable in polynomial-time for the class C⋆.

P2: For every class C of circuits,

P2a: BFnS is solvable in polynomial-time for the class

C iff circuits in C can be compiled to semantically

equivalent ones in C⋆ in polynomial-time.

P2b: Relational specifications represented by circuits in

C admit polynomial-sized Skolem function vectors

iff circuits in C admit polynomial-sized semantically

equivalent circuits in C⋆.

We answer the above question positively in this paper,

effectively providing a circuit normal form characterization

of efficient Boolean Skolem function synthesis. In light of our

characterization, the hardness results of [12] translate to the

hardness of computing G⋆ ∈ C⋆ such that JϕG⋆K = JϕGK.

IV. A NORMAL FORM FOR SYNTHESIS

Let G be a circuit with leaves labeled by lits(I) and lits(X).
Let ℓ be a literal labeling a leaf of G, and let vℓ be the

underlying variable of ℓ. Throughout this section, we assume

that w,w′ are fresh variables not in I or X.

Definition 1. We say that ℓ is ∧-realizable in G iff there is an

assignment σ : (set(I) ∪ set(X)) \ {vℓ} → {⊥,⊤} such that

JG |ℓ=w,¬ℓ=w′Kσ = J(w ∧w′)K. Furthermore, we say that ℓ is

∧-unrealizable in G iff it is not ∧-realizable in G.

Intuitively, ℓ is ∧-realizable in G if ϕG reduces to w ∧ w′

under some assignment of variables other than vℓ, after ℓ and

¬ℓ are replaced by w and w′ respectively in the leaves of G.

It is easy to see that if ℓ is ∧-realizable (resp. ∧-unrealizable)

in G, then so is ¬ℓ.

Example 2. Consider circuit G in Figure 1, and let G1 and

G2 denote the sub-circuits rooted at the left and right child,

respectively of the root node. Then x1 is ∧-realizable in G2

and G (use σ(i) = σ(x2) = ⊥) but is ∧-unrealizable in G1.

We now extend the notion of ∧-(un)realizability to that of

sets of literal-consistent leaves. If S is the set of all ℓ-leaves of

G, the notion of S being ∧-realizable (resp. ∧-unrealizable) in

G naturally coincides with that of literal ℓ being ∧-realizable

(resp. ∧-unrealizable) in G. However, if S does not contain all

ℓ-leaves of G, we must specify what to do with leaves labeled

ℓ but not in S. The following definition does exactly that.

Definition 2. Let S be a literal-consistent set of leaves of G,

and let ℓ be the literal labeling each leaf in S. Let S′ be the

set of all ℓ-leaves of G. We say that S is ∧-realizable (resp.

∧-unrealizable) in G if ℓ is ∧-realizable (resp. ∧-unrealizable)

in G |S′\S:⊥

Thus, all ℓ-leaves that are not in S must be labeled ⊥ before

we check whether ℓ is ∧-realizable in the resulting circuit.

Example 3. Referring back to Figure 1, we wish to check the

∧-(un)realizability of S = {L3} in G. The literal labeling L3

is x1 and the set of all x1-leaves is S′ = {L3, L10}. Hence

S′ \ S = {L10}. To check the ∧-(un)realizability of S, we re-

label L10 with ⊥, and L3 with a fresh variable w. Additionally,

all leaves labeled ¬x1, i.e. L1 and L14 are re-labeled with a

fresh variable w′.

Let G′ denote the resulting circuit. We now ask if there is

an assignment σ : {i, x2} → {⊥,⊤} such that JϕG′Kσ =
Jw ∧ w′K. From the circuit structure of G′, we can see that

there is only one leaf, viz. L3, labeled w. Hence, in order to

have JϕG′Kσ = Jw ∧ w′K, the assignment σ must not mask

the value of L3 from “propagating” up to the root of G′. This

implies that L2 must be labeled ⊤, i.e. σ(i) = ⊥, and σ(x2) =
¬σ(i) = ⊤. With this σ, it is now easy to verify that JϕG′Kσ =
JwK 6= Jw∧w′K. Hence, there is no assignment of x2 and i that

renders the formula represented by G′ semantically equivalent

to w ∧ w′. It follows that S = {L3} is ∧-unrealizable in

the circuit shown in Figure 1. A similar exercise shows that

Ŝ = {L10} is ∧-realizable in the same circuit (use σ(i) =
σ(x2) = ⊥).

Finally, we use the above definitions to introduce a new

normal form for circuits that precisely characterizes efficient

Boolean Skolem Function Synthesis. We show in subsequent

sections that this normal form defines a class C⋆ of circuits

that satisfies properties P0, P1 and P2 described in Section III.

Definition 3. Let G be a circuit with leaves labeled by lits(I)
and lits(X). Let S = (S1, S2, ..Sk) be a non-empty sequence

of subsets of leaves of G. We say that G is in Subset And-

Unrealizable Normal Form (SAUNF, for short) w.r.t. set(X)
and S if the following hold:

1) Sj ∩ Sl = ∅ for all distinct j, l ∈ {1, . . . k}.

2) For each j ∈ {1, . . . k}, all leaves in Sj are labeled by

the same literal over X.

3) S1 is ∧-unrealizable in G.



∨ G

∧G1

∨

∧

i

L0

¬x1

L1

∧

¬i

L2

x1

L3

∨

∧

i

L4

¬x2

L5

∧

¬i

L6

x2

L7

∧ G2

∨

∧

i

L8

¬x2

L9

∧

x1

L10

¬x2

L11

∨

∧

i

L12

x2

L13

∧

¬x1

L14

¬x2

L15

Fig. 1: Example of an NNF circuit G, which is in SAUNF w.r.t. set(X) = {x1, x2} and ({L3}, {L7}, {L5}, {L1})

4) For each j ∈ {2 . . . k}, Sj is ∧-unrealizable in

G |S1:⊤,S2:⊤...Sj−1:⊤.

5) JϕG|S1:⊤,S2:⊤...Sk:⊤
K is semantically independent of X,

i.e. its value doesn’t depend on the assignment of X.

A few points about Definition 3 are worth noting.

• A circuit G may be in SAUNF w.r.t. set(X) and S, but

not in SAUNF w.r.t. a different set(X′) and/or S′.

• Conditions 3, 4 and 5 are semantic in nature. Normal

forms with such semantic conditions are not new. For

example, the widely used disjoint decomposable negation

normal form (dDNNF) uses a semantic condition in its

definition (see [16]).

• S1 ∪ · · ·Sk may not include all leaves of G, nor even all

leaves labeled by a literal over X.

• While the use of ⊤ as labels for leaves in S1, S2, . . .
in conditions 4 and 5 may seem arbitrary for now, we

will soon see the significance of this in the synthesis of

Boolean Skolem functions.

Example 4. Consider the circuit G in Figure 1 again, with

I = (i) and X = (x1, x2). Let S = ({L3}, {L7}, {L5}, {L1})
be a sequence of (singleton) subsets of leaves. As seen

above, {L3} is ∧-unrealizable in G. It can similarly be

verified that {L7} is ∧-unrealizable in G |{L3}:⊤, {L5} is ∧-

unrealizable in G |{L3}:⊤,{L7}:⊤ and {L1} is ∧-unrealizable

in G |{L3}:⊤,{L7}:⊤,{L5}:⊤. Finally, the function represented

by G |{L3}:⊤,{L7}:⊤,{L5}:⊤,{L1}:⊤ is semantically equivalent

to ⊤, and hence is independent of X. Therefore, the cir-

cuit G is in SAUNF w.r.t. set(X) = {x1, x2} and S =
({L3}, {L7}, {L5}, {L1}). However, G is not in SAUNF w.r.t.

{x1, x2} and S′ = ({L10}, {L7}, {L5}, {L1}), since we have

seen earlier that {L10} is ∧-realizable in G.

V. RELATION WITH OTHER NORMAL FORMS

Several normal forms for Boolean circuits studied in

the literature, viz. ROBDD [14], FDD [17], DNNF [19],

dDNNF [16], wDNNF [12], SynNNF [15], admit efficient

Boolean Skolem function synthesis, and satisfy properties P0

and P1 in our problem statement (see Section III). However,

none of these are known to satisfy property P2 in our problem

statement, thereby failing to provide a characterization of

efficient Boolean Skolem function synthesis. In contrast, as we

show in this paper, the class of SAUNF circuits satisfies all

the properties mentioned in our problem statement.

Among the various alternative normal forms, we discuss

SynNNF [15] first. We say that a circuit normal form (or class

of circuits) N1 is exponentially more succinct than another

normal form N2 if (i) for every circuit G2 ∈ N2, there exists a

circuit G1 ∈ N1 such that |G1| ≤ |G2| and JϕG1K = JϕG2K,

and (ii) there is a circuit G1 ∈ N1 such that every circuit

G2 ∈ N2 with JϕG1K = JϕG2K has |G2| ∈ 2O
(
|G1|

)
. The

notion of super-polynomial succinctness is similarly defined.

The authors of [15] showed a conditional succinctness result

for SynNNF, namely SynNNF is super-polynomially more

succinct than DNNF [19] and dDNNF [16], unless some long-

standing complexity theoretic conjectures are falsified. We

show the following stronger result for SAUNF.

Lemma 1. SAUNF is unconditionally exponentially more

succinct than DNNF and dDNNF.

Proof. We use a result from [25] to prove the lemma. In Propo-

sition 11 of [25], a family of Boolean functions {JSr | r ≥ 2}
is defined. The formula JSr, defined on O

(
r2
)

variables, as-

serts that for every triple (vj , vk, vl) of variables in a carefully

constructed set Ar of triples, at least one of vj , vk or vl must

be false. It is shown in [25] that |Ar| ∈ O
(
r2
)
. Therefore, a

CNFformula representing JSr has O
(
r2
)

clauses, with each

clause having three negated variables as literals. Since no non-

negated variables appear as literals in the formula, a circuit

representation of the CNF formula cannot have any literal-

consistent subset of leaves that is ∧-realizable. This implies

that JSr can be represented in SAUNF in size O
(
r2
)
. It is

also shown in [25] that any DNNF (and hence also dDNNF)

representation of JSr requires size 2Ω
(
r2
)

. Therefore, SAUNF

is unconditionally exponentially more succinct compared to

DNNF and dDNNF.

Next, we show that SynNNF is, in fact, a special case of

SAUNF. Towards this end, we recall the definition of SynNNF



from [15], re-cast in our terminology.

Definition 4. A circuit G with leaves labeled by lits(I) and

lits(X) is in SynNNF w.r.t. X iff the following hold:

• x1 is ∧-unrealizable in G.

• For 2 ≤ i ≤ |X|, xi is ∧-unrealizable in

G |x1=⊤,¬x1=⊤,...xi−1=⊤,¬xi−1=⊤.

The following lemma shows that SAUNF strictly subsumes

SynNNF.

Lemma 2. Every circuit G that is in SynNNF w.r.t. X is also

a SAUNF circuit w.r.t set(X) and a sequence S of 2 · |X|
∧-unrealizable subsets of leaves. However, there exist SAUNF

circuits that are not in SynNNF.

Proof. Suppose a circuit G is in SynNNF w.r.t. X, and let

|X| = r. We define a sequence of 2r literal-consistent subsets

of leaves of G as follows. For each j ∈ {1, . . . r}, we define

S2j−1 to be the set of xj -leaves of G, and S2j to be the set

¬xj -leaves of G. It can now be seen from Definition 4 and

Definition 3 that G is in SAUNF w.r.t. set(X) and the sequence

S = (S1, . . . S2n) of subsets of literal-consistent leaves. This

proves the first part of the lemma.

To show the second part, we must demonstrate a circuit that

is in SAUNF but not in SynNNF for any permutation of the

sequence of system outputs X. We claim that the circuit G
in Figure 1, already shown to be in SAUNF, suffices for this

purpose. This is because Definition 4 entails that for G to be

in SynNNF, at least one literal over X must be ∧-unrealizable

in G. However, none of x1,¬x1, x2,¬x2 are ∧-unrealizable

in the circuit G in Figure 1. Specifically, JϕG|x1=w,¬x1=w′ Kσ =

Jw ∧w′K when σ(i) = σ(x2) = ⊥, and JϕG|x2=w,¬x2=w′ Kσ′ =

Jw ∧ w′K when σ′(i) = σ′(x1) = ⊤. Therefore, the circuit in

Figure 1 is not in SynNNF w.r.t. any permutation of X.

It has been shown in [15] that every DNNF, dDNNF and

wDNNF circuit is also in SynNNF, and SynNNF is super-

polynomially more succinct than wDNNF unless P = NP.

Furthermore, every ROBDD and FDD can be converted to a

DNNF (hence SynNNF) circuit with at most linear blowup

in size, although SynNNF can be exponentially more succinct

than ROBDD or FDD [19], [15]. By virtue of Lemma 2, we

now have the following result.

Corollary 1. All subsumption and (conditional) succinctness

results for SynNNF circuits hold for SAUNF circuits as well.

Since every Boolean specification can be represented as

a SynNNF circuit [15], it also follows from Lemma 2 that

property P0 in our problem statement (see Section III) holds

for the class of SAUNF circuits.

VI. EFFICIENT SYNTHESIS OF SKOLEM FUNCTIONS FROM

SAUNF SPECIFICATIONS

We now show how a Skolem function vector can be effi-

ciently computed if the relational specification is given as a

SAUNF circuit. Informally, the process involves transforming

a given SAUNF circuit G with leaves labeled by lits(I) and

lits(X) to a semantically different but related circuit H with

leaves labeled by lits(I), lits(X) and lits(X′), where X
′ is a

sequence of fresh system outputs, also called auxiliary outputs.

The transformation is done in a way such that a Skolem

function vector for (X,X′) in H can be found efficiently, and

a projection of this Skolem function vector on the first |X|
components directly yields a Skolem function vector for X in

G. To formalize this notion, we begin with a few definitions.

Definition 5. [Equisynthesizable Under Projection] Let G be

a circuit representing a relational specification over system

inputs I and systems outputs X. Let H be another circuit

representing a relational specification over I and (X,X′),
where X

′ is a fresh sequence of system outputs or auxiliary

outputs. We say that G is equisynthesizable to H under

projection, denoted G! H , iff the following hold

• ∀I∀X
(
ϕG(X, I) ⇒ ∃X′ ϕH(X,X′, I)

)

• ∀I∀X∀X′
(
ϕH(X,X′, I) ⇒ ϕG(X, I)

)

It follows from Definition 5 that ! defines a transitive

relation on circuits representing relational specifications. The

following lemma is an easy consequence of Definition 5.

Lemma 3. If G! H holds and
(
Ψ(I),Ψ′(I)

)
is a Skolem

function vector for (X,X′) in ϕH(X,X′, I), then Ψ(I) is a

Skolem function vector for X in ϕG(X, I).

Proof. Since ∀I
(
ϕG(Ψ(I), I) ⇒ ∃XϕG(X, I)

)
holds triv-

ially, we only show below that ∀I
(
∃XϕG(X, I) ⇒

ϕG(Ψ(I), I)
)
.

From Definition 5 and from the definition of Skolem func-

tions, we have ∀I
(
∃XϕG(X, I) ⇒ ∃X∃X′ϕH(X,X′, I) ⇒

ϕH(Ψ(I),Ψ′(I), I) ⇒ ϕG(Ψ(I), I).

A. Role of auxiliary outputs

We now investigate how auxiliary outputs can be introduced

in a principled manner, so that they help in generating Skolem

functions. We start with a circuit G with leaves labeled by

lits(I) and lits(X). Let G1 and G2 be two sub-circuits of G
such that G1 is not a sub-circuit of G2 and vice versa. For a

fresh auxiliary variable p 6∈ set(X)∪set(I) and for j ∈ {1, 2},

define a circuit transformation τpj that replaces the sub-circuit

Gj in G with the circuit representing ϕGj
∧ p. The definition

of the circuit transformation τ¬p
j is similar.

Lemma 4. If ϕG1 ∧ ϕG2 is unsatisfiable, then G !

τp1 (τ
¬p
2 (G)).

Proof. Let H denote the circuit τp1 (τ
¬p
2 (G)), and let H1 and

H2 denote the newly introduced sub-circuits representing p ∧
ϕG1 and ¬p∧ϕG2 respectively in H . We show below that the

conditions for G! H (see Definition 5) are satisfied.

Let σ : set(X) ∪ set(I) → {⊥,⊤} be an assignment for

which JϕGK evaluates to ⊤. We have four cases to analyze

depending on what JϕG1K and JϕG2K evaluate to under σ.

• JϕG1K = ⊥ = JϕG2K: Then for any assignment to p,

JϕH1K and JϕH2K also evaluate to ⊥, and hence JϕHK
evaluates to the same value, viz. ⊤, as JϕGK.



• If JϕG1K = ⊤, JϕG2K = ⊥, then with p assigned ⊤,

JϕH1K = ⊤ and JϕH2K = ⊥, and hence JϕHK evaluates

to the same value, viz. ⊤, as JϕGK.

• By a similar argument, if JϕG1K = ⊥, JϕG2K = ⊤,

assigning p to ⊥ causes JϕHK to evaluate to ⊤.

• The case of JϕG1K = JϕG2K = ⊤ doesn’t arise since

ϕG1 ∧ ϕG2 is unsatisfiable.

This shows that ∀I∀X
(
ϕG(X, I) ⇒ ∃pϕH(X, p, I)

)
.

Consider any assignment σ′ : set(X) ∪ {p} ∪ set(I) →
{⊥,⊤} that renders JϕHK = ⊤. Let σ : set(X) ∪ set(I) →
{⊥,⊤} be the projection of σ′ on set(X) ∪ set(I). Note

that σ′ necessarily assigns one of p or ¬p to ⊥, while still

rendering JϕHK = ⊤. Therefore, since all internal gates

in H (i.e. ∧ and ∨ gates) are monotone, σ must render

JϕH|p=⊤,¬p=⊤
K = ⊤ as well. However, JϕH|p=⊤,¬p=⊤

K =
JϕGK by definition. Hence, σ satisfies JϕGK(X, I). This shows

that ∀I∀X∀p
(
ϕH(X, p, I) ⇒ ϕG(X, I)

)
.

The argument in the above proof can be easily generalized

to prove the following.

Lemma 5. Let G1 = {G1,1, . . . G1,s} and G2 =
{G2,1, . . .G2,t} be two sets of sub-circuits of G such that

(a) there are no distinct Gk,i and Gl,j where one is a sub-

circuit of the other, and (b)
∨s

i=1 ϕG1,i ⇒
∧t

j=1 ¬ϕG2,j . Let

τpGk
(resp. τ¬p

Gk
) denote the circuit transformation that replaces

every sub-circuit Gk,i ∈ Gk with a subcircuit representing

ϕGk,i
∧p (resp. ϕGk,i

∧¬p), where p is a fresh variable. Then

G! τpG1
(τ¬p

G2
(G)).

A particularly easy application of Lemma 5 is obtained by

choosing any literal ℓ that labels leaves of G, and by choosing

G1 and G2 to be subsets of ℓ-leaves and ¬ℓ-leaves, respectively.

Note that if L is a subset of ℓ-leaves of G, then τpL gives the

same circuit as G |L:p∧ℓ.

For the following theorem, consider a relational specifica-

tion over I and X specified by a circuit G. Let ℓ be a literal

over X, vℓ be the underlying variable in X, and let Sℓ be the

set of all ℓ-leaves of G.

Theorem 1. Suppose S ⊆ Sℓ is ∧-unrealizable in G. For a

fresh auxiliary variable p 6∈ set(X) ∪ set(I), let E denote the

circuit G |Sℓ\S:(p∧ℓ), S¬ℓ:(¬p∧¬ℓ) and let H denote the circuit

E |ℓ=⊤,¬ℓ=⊤. Note that the literals labeling leaves of G are

from lits(X) and lits(I), those labeling leaves of E are from

lits(X), lits(I) and {p,¬p}, while the literals labeling leaves

of H are from lits(X \ (vℓ)), lits(I) and {p,¬p}. Then the

following statements hold.

1) ∃vℓ ϕG ⇐⇒ ∃pϕH ⇐⇒ ∃vℓ ϕG|S:⊤

2) If ΨH(I) is a Skolem function vector for (X \ (vℓ), p)
in H , then the projection of ΨH on X\ (vℓ) augmented

with the Skolem function ϕE|ℓ=⊤,¬ℓ=⊥
(ΨH(I), I) for ℓ

gives a Skolem function vector ΨG(I) for X in G.

Proof. By Lemma 5, we have G! E. It then follows from

Definition 5 that ∃vℓ ϕG ⇐⇒ ∃vℓ∃pϕE . Furthermore, since

S is ∧-unrealizable in G, it follows from the definition of E
and from Definition 2 that ℓ is ∧-unrealizable in E. From this,

we will now show that ∃vℓϕE is equivalent to ϕE|
ℓ=⊤,¬ℓ=⊤

.

In one direction, we observe that ∃vℓϕ is always equivalent

to ϕE|
ℓ=⊤,¬ℓ=⊥

∨ϕE|
ℓ=⊥,¬ℓ=⊤

. This, in turn, logically implies

ϕE|ℓ=⊤,¬ℓ=⊤
as all internal gates in an NNF circuit are mono-

tone. In the other direction, ϕE|ℓ=⊤,¬ℓ=⊤
∧ ¬(ϕE|ℓ=⊤,¬ℓ=⊥

∨
ϕE|ℓ=⊥,¬ℓ=⊤

) is unsatisfiable if ℓ is ∧-unrealizable in E
(follows from definition of ∧-unrealizability). Therefore, we

have ∃vℓ ϕE ⇐⇒ ϕE|ℓ=⊤,¬ℓ=⊤
⇐⇒ ϕH . Hence,

∃vℓ∃pϕE ⇐⇒ ∃pϕH . Finally, from the definitions of

circuits E and H , we have ∃pϕH ⇐⇒ ∃pϕE|l=⊤,¬l=⊤

⇐⇒ ∃pϕG|S:⊤, Sℓ\S:p,S¬l:¬p
. By renaming p to vl in the last

formula, we get ∃vl ϕG|S:⊤
.

Since ∃vℓ ϕE ⇐⇒ ϕH , a Skolem function vector for

(X \ (vℓ), p) in E is obtained from ΨH(I). The Skolem

function for ℓ in E is then given by ϕE|ℓ=⊤,¬ℓ=⊥
(ΨH(I), I)).

To see why this works, note that ϕE with ΨH(I) substituted

for (X\(vℓ), p) represents a specification with a single system

output ℓ and system inputs I. Let us call this φ(ℓ, I). Then,

φ(⊤, I) serves as a Skolem function, say ψℓ(I), for ℓ in φ,

i.e., ∃ℓ φ(ℓ, I) ⇐⇒ φ(ψℓ(I), I). Indeed, suppose for some

I, ψℓ(I) = φ(⊤, I) = ⊤. Then φ(ψℓ(I), I) = φ(⊤, I) = ⊤.

Conversely, if ψℓ(I) = φ(⊤, I) = ⊥, we consider two cases:

(a) if φ(⊥, I) = ⊤, then φ(ψℓ(I), I) = ⊤; (b) if φ(⊥, I) = ⊥,

then we have ∀ℓ φ(ℓ, I) = ⊥. Therefore, in all cases, we have

∃ℓ φ(ℓ, I) ⇐⇒ φ(ψℓ(I), I). The above method of obtaining

a Skolem function for a single system output is also called

self-substitution [12], [1], [7].

The second part of the theorem now follows from the

observation that G! E.

B. Generating Skolem functions from SAUNF circuits

Theorem 1 suggests an efficient algorithm for generating a

Skolem function vector from a specification given as a SAUNF

circuit. Algorithm 1 presents the pseudo-code of algorithm

SkGen. The purpose of sub-routines used in SkGen is

explained in the comments.

We illustrate the running of SkGen by considering its

execution on the circuit G shown in Fig. 1. Here, X = (x1, x2)
and I = (i). As discussed earlier, we use L0 through L15 to

denote the leaves of the circuit G in left-to-right order. We

have also seen earlier that G is in SAUNF for the sequence

of subsets of leaves (S1, S2, S3, S4), where S1 = {L3},

S2 = {L7}, S3 = {L5} and S4 = {L1}.

As algorithm SkGen proceeds, labels of different leaves

of G need to be updated. For notational convenience, we use

G(r), H(r) and E(r) to refer to the circuits G, H and E in the

rth level of recursion of SkGen. Table I shows howG(r), H(r)

and E(r) are obtained by replacing the labels of suitable leaves

of G. Each entry in this table lists which leaf labels of G must

be updated, where L{i,j,k} : f denotes updation of the label

of each leaf in {Li, Lj, Lk} by f . All leaves whose label

updates are not specified are assumed to have the same labels

as in G. It can be verified that G with leaf labels updated

as in the table entry corresponding to H(4) simplifies to ⊤ by

constant propagation. Hence H(4) is semantically independent

of {x1, x2}. This is not a coincidence, but is guaranteed by the



Algorithm 1: SkGen(G,S, r)

Input: G: Relational spec in SAUNF;

S = (S1, S2...Sk): Sequence of ∧-unrealizable subsets

of lits(X)-labeled leaves of C; r: Recursion level

Output: ΨG(I): Skolem function vector for C

1 if r = k+1 then

2 ΨG(I) := GetAnyFuncVec(|X|, I);
// Returns an |X|−dim vector of

(arbitrary) functions of I

3 else

4 ℓ := Literal label of leaves in Sr;

5 pr := newOutputVar() ; // pr is auxiliary

output variable added at recursion

level r
6 E := GetCkt(G,Sr, ℓ, pr) ; // Replace all

ℓ-labeled leaves of G other than

those in Sr by ℓ ∧ pr, and replace

all ¬ℓ-labeled leaves by ¬ℓ ∧ ¬pr
7 S := GetNewSeq(S, r, ℓ, pr) ; // Replace ℓ by

pr and ¬ℓ by ¬pr in all elements

(leaves) of Sj for j > r
8 H := CPropSimp(E |ℓ=⊤,¬ℓ=⊤) ;

// CPropSimp propagates constants

and eliminates gates with constant

outputs

9 ΨH(I) = SkGen(H,S, r + 1);
10 ψℓ

E(I) := ϕE|ℓ=⊤,¬ℓ=⊥
(ΨH(I), I) ; // ψℓ

E

gives Skolem function for ℓ in ϕE

11 ΨG(I) =
(
ΨH(I) \ (ψpr

H ), ψℓ
E(I)

)
; // ψpr

H is

Skolem function for pr in ψH

12 return ΨG(I);

G
(r)

E
(r)

H
(r)

r=1: None L{1,14}:(¬x1 ∧ ¬p1),

L{10}:(x1 ∧ p1)
L{1,14}:¬p1 , L{3}:⊤,

L{10}:p1

r=2: Same as

in H(1)
L{1,14}:¬p1 ,

L{3}:⊤, L{10}:p1 ,

L{5,9,11,15} :¬x2∧¬p2,

L{13}:x2 ∧ p2

L{1,14}:¬p1 ,

L{3,7}:⊤, L{10}:p1 ,

L{5,9,11,15}:¬p2 ,

L{13}:p2

r=3: Same as

in H(2)
L{1,14}:¬p1 ,

L{3,7}:⊤, L{10}:p1 ,

L{9,11,15} :¬p2∧p3,

L{5}:¬p2 ,

L{13}:p2∧¬p3

L{1,14}:¬p1 ,

L{3,5,7}:⊤, L{10}:p1 ,

L{9,11,15}:p3 ,

L{13}:¬p3

r=4: Same as

in H(3)
L{1}:¬p1 ,

L{14}:¬p1∧p4 ,

L{3,5,7}:⊤,

L{10}:p1∧¬p4,

L{9,11,15} :p3,

L{13}:¬p3

L{14}:p4 ,

L{1,3,5,7}:⊤,

L{10}:¬p4 ,

L{9,11,15}:p3 ,

L{13}:¬p3

TABLE I: Run of Algorithm 1 on Fig. 1

definition of SAUNF. Hence, at recursion level 5 of SkGen,

any vector of functions
(
f3(i), f4(i)

)
can be returned in line

2 of Algorithm 1 as a Skolem function vector for (p3, p4) in

G(5) = H(4).

As the recursive calls return, we obtain E(4)(p3 =
f3(i), p4 = f4(i), p1 = ⊤, i) as Skolem function for p1 in

E(4). Call this function f1(i). Next, we get f2(i) = E(3)(p1 =

f1(i), p3 = f3(i), p2 = ⊤, i) as Skolem function for p2
in E(3). Continuing further, we obtain fx2(i) = E(2)(p1 =
f1(i), p2 = f2(i), x2 = ⊤, i) as Skolem function for b in

E(2), and fx1(i) = E(1)(x2 = fx2(i), p1 = f1(i), x1 = ⊤, i)
as Skolem function for x1 in E(1). The final return gives(
fx1(i), fx2(i)

)
as a Skolem function vector for (x1, x2) in

G. Note that different choices of f3(i), f4(i) yield different

Skolem function vectors of G, all of which are correct.

Theorem 2. Suppose Algorithm SkGen is invoked with a cir-

cuit G as input, that is in SAUNF w.r.t. set(X) and a sequence

S of subsets of leaves. Assuming the vector returned in line

2 of the algorithm can be constructed in time O
(
|S|2 · |G|

)
,

the algorithm returns a Skolem function vector of size in

O
(
|S|2 · |G|

)
in time O

(
|S|2 · |G|

)
.

Proof. We show that Algorithm SkGen generates a Skolem

function vector by an inductive application of Theorem 1.

Specifically, for each level i of recursion, if the Skolem

function ΨH returned in line 9 by the i+1st recursive call of

SkGen is correct for H , Theorem 1 ensures that the Skolem

function ΨG computed in lines 10 and 11 of the ith recursive

call is correct for G.

To see why the terminating case of this recursion yields

correct Skolem functions, note that when the recursion level

is k+1 (lines 1-2 of Algorithm 1), by Definition 3, the function

represented by G is semantically independent of X. Hence any

Skolem function vector for X suffices in line 2 of Algorithm 1.

Algorithm SkGen has exactly k + 1 recursive calls, and

in each of the first k calls, the steps in lines 4, 5, 6, 7 and 8
take time linear in |G| and generate circuits E and H that are

of size in O(|G|). Indeed, the circuit H in each recursion

level ≤ k is simply G with the literal labels of some of

its leaves replaced by other literals or by Boolean constants

(possibly followed by simplification via constant propagation).

Therefore, |H | ≤ |G| in each recursion level ≤ k. The circuit

E is similarly obtained by replacing some leaves of G with

Boolean constants, other literals or conjunctions of two literals.

Therefore, |E| ≤ 2 × |G| in each recursion level ≤ k. In the

k + 1th recursive call, line 2 is executed, and as discussed

above, we restrict it to take time in O
(
|S|2 · |G|

)
. This also

ensures that the size of the Skolem function vector returned

in line 2 is in O
(
|S|2 · |G|

)
.

Once the recursive calls start returning, lines 10 and 11
of Algorithm SkGen are executed. Note that in line 10, the

Skolem function for ℓ is obtained by feeding into the inputs

of circuit E (as obtained in the current level of recursion)

the outputs of Skolem functions computed in later (or higher)

levels of the recursion. We have already seen above that |E| is

at most 2×|G| in each recursion level ≤ k. A Skolem function

computed at recursion level j can potentially feed into E at

all recursion levels in {1, . . . j − 1}. Therefore, a maximum

of
∑|S|+1

j=2 (j − 1) ∈ O
(
|S|2

)
connections may need to be

created between the output of a Skolem function generated at

some recursion level and the input of E at a lower level of

recursion. Therefore, constructing the entire Skolem function

vector at recursion level 1 requires time (and, hence space) in



O
(
|S|2 · |G|

)
.

In the above analysis, we assumed that the vector of func-

tions used in line 2 of Algorithm 1 has size in O
(
|S|2 · |G|

)
.

Since an arbitrary vector of functions of I suffices in line

2, we can choose a |X|-dimensional constant function vector,

say (⊥, . . .⊥) as the output of GetAnyFuncVec. Hence, the

above assumption can always be satisfied. Note that Theorem 2

guarantees that SAUNF enjoys property P1 of Section III.

C. Generating SAUNF circuits from Skolem functions

Next, we show that if we already know one (out of possibly

many) Skolem function vector of a relational specification

G given as a circuit, we can easily derive a semantically

equivalent circuit in SAUNF.

Theorem 3. Let Ψ(I) be a Skolem function vector for X in

ϕG(X, I). Define G′ to be G with all labels xi (resp. ¬xi)
in lits(X) replaced by ψi(I) (resp. ¬ψi(I)), i.e. ϕG′(I) =
ϕG

(
Ψ(I), I). Define F to be the circuit representing the

formula
∧m

i=1

(
(xi∧ψi(I))∨(¬xi∧¬ψi(I))

)
, and H to be the

circuit representing
(
ϕF ∨ ϕG

)
∧ ϕG′ . Then H is in SAUNF

w.r.t. set(X) and a sequence of literal-consistent subsets of

leaves, and ϕG(X, I) ⇐⇒ ϕH(X, I).

Proof. We first show that ϕG(X, I) ⇐⇒ ϕH(X, I). This

involves showing two implications.

• ϕH(X, I) ⇒ ϕG(X, I) : We know from the defini-

tions that ϕG′(I) ⇔ ϕG(Ψ(I), I) ⇒ ∀X (ϕF (X, I) ⇒
ϕG(X, I)). The last implication follows from the observa-

tion that ϕF (X, I) simply asserts that
∧m

i=1

(
xi ⇔ ψi(I)

)

holds, and hence ϕG(Ψ(I), I) ⇒ ∀X
(
ϕF (X, I) ⇒

ϕG(X, I)
)
. We also know from the definition of H that

ϕH(X, I) ⇒ ϕG′(I) and ϕH(X, I) ⇒
(
ϕF (X, I) ∨

ϕG(X, I)
)
. However, since ϕG′(I) ⇒ ∀X

(
ϕF (X, I) ⇒

ϕG(X, I)
)
, it follows that ϕH(X, I) ⇒

(
ϕG′(I) ∧

ϕG(X, I)
)
. Hence ϕH(X, I) ⇒ ϕG(X, I).

• ϕG(X, I) ⇒ ϕH(X, I): We know that ϕG(X, I) ⇒
∃XϕG(X, I) ⇔ ϕG(Ψ(I), I) ⇔ ϕG′(I) by definition. It

follows that ϕG(X, I) ⇒
(
ϕG(X, I)∧ϕG′(I)

)
. However,

from the definition of H , we know that
(
ϕG(X, I) ∧

ϕG′(I)
)
⇒ ϕH(X, I). Hence, ϕG(X, I) ⇒ ϕH(X, I).

To show that H is in SAUNF w.r.t. set(X) and a suitably

defined sequence S of subsets of leaves, we first observe that

the circuit F that naturally represents
∧n

i=1

(
(xi ∧ ψi(I)) ∨

(¬xi ∧¬ψi(I))
)

has a ∧∨ ∧-structure with leaves labeled by

lits(X) and lits(I). It is easy to see from the structure of this

circuit that for i ∈ {1, . . .m}, literals xi (and ¬xi) are ∧-

unrealizable in F . Let S = (S1, S2, . . . S2m) be a sequence of

subsets of leaves of F , where S2i−1 is the set of all xi-labeled

leaves of F , and S2i is the set of all ¬xi-labeled leaves labeled

of F . Since the literals xi and ¬xi are ∧-unrealizable in F
for i ∈ {1, . . .m}, we also have that Sj is ∧-unrealizable in

F for every j ∈ {1, . . . 2m}. Finally, F |S1:⊤,...S2m:⊤ has no

literal in lits(X) labeling any leaf. Hence, F satisfies all the

conditions of Definition 3, and is in SAUNF w.r.t. set(X) and

S.

We now claim that the circuit, say R, representing
(
ϕF ∨

ϕG

)
∧ ϕG′ is in SAUNF w.r.t. set(X) and the sequence S of

subsets of leaves of F described above. To see why this is

so, observe that all subsets Sj ∈ S are mutually disjoint and

contain leaves labeled by lits(X). Hence the first 2 conditions

of Definition 3 are satisfied. To see why conditions 3 and 4 of

Definition 3 are satisfied, recall from Definition 2 that when

checking ∧-unrealizability of any Si ∈ S in R, all leaves of

the sub-circuit G (of the circuit R) that are labeled by the same

literal as leaves in Si, must be re-labeled ⊥. This, coupled with

the fact that Si is ∧-unrealizable in F , ensures that Si is ∧-

unrealizable in R as well. Finally, as we will see in Section VII

(see Lemma 7), ϕF |x1=⊤,¬x1=⊤,...xn=⊤,¬xn=⊤
⇔ ∃XϕF (X, I)

⇔ ⊤. The last equivalence follows from the definition of

F ; specifically ϕF (Ψ(I), I) = ⊤ for all assignments of I.

Therefore ϕR|S1:⊤,...S2m:⊤|
⇔ (⊤ ∨ ϕG) ∧ ϕG′ ⇔ ϕG′ . Since

ϕG′ is semantically independent of X by definition, condition

5 of Definition 3 is satisfied for R. Hence, R is in SAUNF

w.r.t. set(X) and the sequence S = (S1, S2, . . . S2m).

The proof of Theorem 3 gives the following corollary.

Corollary 2. Given G, and a Skolem function vector Ψ(I) for

X in ϕG(X, I), a SAUNF circuit H semantically equivalent

to G can be constructed in O
(
|G|+ |Ψ|

)
time. Furthermore,

|H | ∈ O
(
|G|+ |Ψ|

)
.

Finally, Corollary 2 and Theorem 2 immediately yield the

following theorem.

Theorem 4. For every class C of circuits representing rela-

tional specifications,

1) Boolean Skolem function synthesis can be solved in

polynomial-time for C iff every circuit in C can be

compiled to a semantically equivalent SAUNF circuit

in polynomial-time.

2) A Skolem function vector of polynomial size exists for

every specification in C iff every circuit in C can be

compiled to a polynomial-sized semantically equivalent

SAUNF circuit.

Thus, SAUNF satisfies properties P2a and P2b of Sec-

tion III. In other words, SAUNF truly characterizes efficient

Boolean functional synthesis. Note that Theorem 4 is signifi-

cantly stronger than sufficient conditions for efficient synthesis

given in [12], [15].

VII. OPERATIONS ON SAUNF

In this section, we discuss the application of basic opera-

tions like conjunction, disjunction and existential quantifica-

tion of variables on formulas represented by SAUNF circuits,

and also examine the complexity of checking if a given circuit

is in SAUNF. Throughout the section, we assume that all

specifications (circuits) are over system inputs set(I) and

system outputs set(X) unless otherwise specified. To reduce

notational clutter, given circuits G and H , we abuse notation

and use G ∨H (resp. G∧H) to denote the circuit consisting



of an ∨- (resp. ∧-)labeled root node with the roots of G and

H as its children.

Lemma 6. Suppose G is in SAUNF w.r.t set(X) and a

sequence SG, and H is in SAUNF w.r.t. set(X) and SH . Then

the circuit G ∨H is in SAUNF w.r.t set(X) and (SG, SH).

Proof. The proof follows from the claim that (SG, SH) is

a sequence of subsets of leaves of G ∨ H that satisfies the

conditions of Definition 3. To see why this is so, note that by

Definition 2, when considering a subset, say SG
i , of ℓ-labeled

leaves in SG, all ℓ-labeled leaves of H must be re-labeled ⊥.

Hence, H can only contribute ¬ℓ, and can, at worst, combine

with ℓ contributed by G at the ∨-labeled root of G∨H . Since

the set of ℓ-labeled leaves in SG
i are already ∧-unrealizable

in G, we find that SG
i is ∧-unrealizable in G∨H as well. By

repeating this argument, we find that conditions 1, 2, 3 and 4

of Definition 3 are satisfied by the circuit G∨H . To see why

condition 5 is also satisfied, observe that since G (resp. H) is

in SAUNF w.r.t set(X) and SG (resp. SH), when all subsets

of leaves in (SG, SH) are re-labeled to ⊤, the circuit G ∨H
represents the disjunction of two formulas, each of which is

semantically independent of X. Hence, G ∨H is in SAUNF

w.r.t set(X) and (SG, SH).

Significantly, Lemma 6 does not require any assumptions

on the relation between ordering of subsets in SG and SH .

Other popular normal forms do not enjoy this property. For

example, disjoining two ROBDDs constructed with different

ordering of variables does not always yield an ROBDD in

polynomial-time. Similarly, combining two SynNNF circuits

with an ∨ gate may not result in a SynNNF circuit unless

the ordering of output variables in both circuits are the same.

This shows that disjunction is more efficiently computable in

SAUNF than in ROBDDs or even in SynNNF.

Next, we observe that existential quantification of all system

outputs is easy for SAUNF representations.

Lemma 7. Suppose G is in SAUNF w.r.t set(X) and a

sequence S. Let L be the set of all leaves of G that are labeled

by a literal over X. Then ∃XG⇔ G |L:⊤.

Proof. Follows from Theorem 1(1) and Definition 3.

Next, we move to the more difficult case of conjunction.

Lemma 8. Suppose G is in SAUNF w.r.t set(X) and a

sequence SG, and H is in SAUNF w.r.t. set(X) and sequence

SH . If there is no literal ℓ over X such that G has an ℓ-
labeled leaf and H has a ¬ℓ-labeled leaf, the circuit G∧H is

in SAUNF w.r.t. set(X) and (SG, SH). Otherwise, a SAUNF

circuit semantically equivalent to G∧H cannot be constructed

in time polynomial in |G|, |H | unless P = NP. Further,

such a circuit cannot have size polynomial in |G|, |H | unless

ΠP
2 = ΣP

2 (i.e. unless the polynomial hierarchy collapses to

the second level).

Proof. If there is no literal ℓ over X such that G has an ℓ-
labeled leaf and H has a ¬ℓ-labeled leaf, it is easy to see that

a leaf of G and a leaf of H cannot participate together to

make any literal in lits(X) ∧-realizable in the circuit G ∧H .

Since G is in SAUNF w.r.t. set(X) and SG, and H is in

SAUNF w.r.t. set(X) and SH , it then follows that G ∧ H is

also in SAUNF w.r.t. set(X) and the sequence (SG, SH) (or

alternatively, (SH , SG)).
The proof for the remainder of the lemma is more intricate.

For this part of the discussion, we consider circuits G in which

the labels of all leaves are considered to be from lits(X).
In other words I is assumed to be empty. Let G− denote

the circuit G|¬x1=x′
1,...¬xm=x′

m
where X

′ = (x′1, . . . , x
′
m) is

a sequence of fresh variables. This is sometimes called the

positive form of the circuit.

Claim 1. For every circuit G, the circuit G− is in SAUNF

w.r.t. set(X) ∪ set(X′) for any sequence of literal-consistent

subsets of leaves.

Proof. There is no label of a leaf of G− whose negation is also

the label of some other leaf of G− (since there are no negated

output literals at all in the labels of leaves). This eliminates

the possibility of a subset of literal-consistent leaves being

∧-realizable in G−.

Further, given G, let G+ be the circuit representing the for-

mula ∧n
i=1((x

′
i∧¬xi)∨ (¬x′i∧xi)) where x′i are the variables

introduced in G−. Note that ϕG+ ⇔ ∧n
i=1(x

′
i ⇔ ¬xi)

Claim 2. For every circuit G, the circuit G+ is in SAUNF w.r.t.

set(X)∪ set(X′) and the sequence of literal-consistent leaves

S = (S1, . . . S2n, S
′
1, . . . S

′
2n), where S2i−1 (resp. S′

2i−1) is

the set of all leaves labeled xi (resp. x′i), and S2i (resp. S2i’)

is the set of all leaves labeled ¬xi (resp. ¬x′i) in G+.

Proof. It is easy to see that for the sequence (S1, S2, . . . S2n),
the first 4 conditions of Definition 3 are satisfied. More-

over ϕG+|S1:⊤,S2:⊤,...S2n:⊤
⇔ ⊤. Therefore, condition 5 of

Definition 3 is also satisfied, and G+ is in SAUNF w.r.t.

set(X) ∪ set(X′) and (S1, . . . S2n), and hence also w.r.t. the

sequence S = (S1, . . . S2n, S
′
1, . . . S

′
2n).

It is easy to see that ϕG− ∧ ϕG+ is equisatisfiable to ϕG.

Now, consider an arbitrary instance of the Boolean satisfi-

ability (SAT) problem, i.e., given a Boolean circuit G over

X = (x1, . . . xm), we must determine if ϕG is satisfiable. We

interpret ϕG as a relational specification over system outputs

X, with the system inputs I being absent.

By definition, |G−| and |G+| are in O
(
|G|

)
. Using Claims 1

and 2, each of these circuits is also in SAUNF w.r.t. set(X)∪
set(X′) and an appropriate sequence of subsets of leaves.

Suppose there exists a polynomial-time algorithm A that takes

two SAUNF circuits as inputs and produces a SAUNF circuit

semantically equivalent to the conjunction of the formulas

represented by the two circuits. We use algorithm A to obtain

a circuit Ĝ that is semantically equivalent to JϕG− ∧ ϕG+K.

Clearly, |Ĝ| must have size polynomial in |G−| and |G+|, and

therefore polynomial in |G|. Since every SAUNF circuit yields

Skolem functions for all outputs in time polynomial in the

size of the circuit (see Theorem 2), we can compute a Skolem

function for every output of Ĝ in time polynomial in |G|.



Since there are no inputs, each of these Skolem functions must

simplify to a Boolean constant. From the definition of Skolem

functions, we also know that Ĝ is satisfiable iff the Skolem

functions obtained above (Boolean constants for variables in

set(X)∪ set(X′)) cause JĜK to evaluate to ⊤. In other words,

we can determine if ϕ
Ĝ

, and hence ϕG−∧ϕG+ , is satisfiable in

time polynomial in |G|. Since ϕG− ∧ϕG+ is equisatisfiable to

ϕG, this effectively solves the Boolean satisfiability problem

in polynomial time. Therefore, algorithm A cannot run in

polynomial time unless P = NP.

Suppose for every two SAUNF circuits, there exists a poly-

nomial sized SAUNF circuit that is semantically equivalent

to the conjunction of the formulas represented by the two

circuits. Let G̃ be the circuit obtained in this manner for

JϕG− ∧ ϕG+K. By Theorem 2, Skolem functions synthesized

from G̃ must have size polynomial in |G|. By the same

argument as above, it now follows that Boolean satisfiability

must be in P/Poly. This implies that NP ⊆ P/Poly. By Karp-

Lipton Theorem, however, we know that this implies that

the polynomial hierarchy collapses to the second level, i.e.

ΠP
2 = ΣP

2 .

Finally, we ask how difficult it is to check if a given circuit

G is in SAUNF.

Theorem 5. 1) Given G and a sequence S of literal-

consistent disjoint subsets of leaves, checking if G is

in SAUNF w.r.t. set(X) and S is coNP-complete.

2) Given G, checking if G is in SAUNF w.r.t. set(X)
and some (unspecified) sequence of subsets of leaves

is coNP-hard and in ΣP
2 .

Proof. First, we show that identifying whether a given circuit

is in SAUNF for a given sequence of subsets of leaves is in

coNP. This is equivalent to asking whether the complement

problem, i.e. if the given circuit is not in SAUNF for the

given sequence of subsets of leaves, is in NP. We will define

a non-deterministic polynomial-time Turing machine M that

solves this complement problem. The machine M first checks

whether the input circuit (say G) is in NNF. This can be done

by checking if each internal node of G is labeled either ∧ or

∨, and if all negations (if any) are on the labels of leaves.

Clearly, this check can be done in time polynomial in the size

of G. If the circuit is found to be not in NNF, the machine M
accepts, since G cannot be in SAUNF in this case. Otherwise

(i.e. if G is in NNF), the machine M non-deterministically

chooses a subset Si of literal-consistent leaves in the given

sequence S and executes the following operations.

Suppose the literal labeling leaves in the subset Si is

ℓi. The machine M does the following: (a) it constructs

G† = G |S1:⊤...Si−1:⊤, (b) sets all leaves of G† that are not in

Si but are labeled ℓi to ⊥, (c) replaces all remaining labels ℓ
(resp. ¬ℓ) on leaves by w (resp. w′), (d) guesses an assignment

σ to all variables other than w and w′ labeling leaves in

the resulting circuit, and (e) checks if the resulting circuit

represents the Boolean function w ∧ w′ for the assignment

σ. Note that after step (d), the resulting circuit represents a

function of only w and w′. Hence the check in step (e) can be

performed by setting (w,w′) to each of (⊤,⊤), (⊤,⊥), (⊥,⊤)
and (⊥,⊥) and checking if the resulting circuit evaluates to

⊤, ⊥, ⊥ and ⊥ respectively. Clearly, all the steps above can be

done in time polynomial in |G|. If after step (e), the resulting

circuit is found to represent w∧w′, then machine M accepts.

In this case, G is not in SAUNF w.r.t. set(X) and the given

sequence S of subsets of leaves. Conversely, if the circuit is

not in SAUNF w.r.t. set(X) and the given sequence S, then

there is a subset Si of leaves in S that is ∧-realizable in G
for the assignment described above. Hence the problem of

identifying whether a circuit is not in SAUNF for a given

sequence of subsets of leaves is in NP. Thus, the problem of

identifying whether G is in SAUNF for a given sequence of

subsets of leaves is in coNP.

Next, we show that the problem is co-NP hard. We reduce

the problem of checking if a propositional formula represented

by a CNF circuit G is unsatisfiable to identifying whether an

appropriately constructed circuit is in SAUNF for a specific

sequence of subsets of literal-consistent leaves. For this, we

consider the specification G∧x∧¬x, where x is the sole output

of the specification, and the inputs are the variables labeling

leaves of G. Since there is only one output variable, there are

only two (equivalent) orderings of subsets of leaves labeled by

output literals. It is easy to see that x (equivalently, ¬x) is ∧-

realizable if and only if G is satisfiable. Hence, identifying

whether a problem is in SAUNF for a given sequence of

subsets of leaves is coNP-hard.

To prove the second part of the theorem, we show that

checking whether a given G is in SAUNF w.r.t. some (unspec-

ified) sequence of subsets of output literal-consistent leaves

can be solved by a non-deterministic polynomial-time Turing

machine M with access to an NP oracle, i.e. the problem is

in NPNP. Given a specification G with system inputs I and

system outputs X the machine M does the following:

(i) It guesses a sequence S of disjoint subsets of literal-

consistent leaves.

(ii) It then reduces the problem of deciding whether G is not

in SAUNF w.r.t set(X) and the sequence S to checking

the satisfiability of an appropriately constructed propo-

sitional formula ϕ. This reduction is similar to what we

discussed above in the proof of part (1).

(iii) Finally, it feeds ϕ to the NPoracle and accepts if and

only if the NPoracle rejects.

Therefore, M accepts if and only if there is a sequence S of

subsets of output literal-consistent leaves for which G is in

SAUNF w.r.t. set(X) and S. Hence, we have proved that our

problem is contained in NPNP, or equivalently in ΣP
2 . The

proof that the problem is coNP-hard uses arguments similar

to the earlier coNP hardness proof.

VIII. CONVERSION TO SAUNF

We now present an algorithm for compiling a circuit G
representing a CNF formula over X and I to a semantically

equivalent circuit in SAUNF. Algorithm GetSaunf (see

Algorithm 2) takes G as input and produces a circuit F and



Algorithm 2: GetSAUNF(G)

Input: G: Circuit representing a CNF formula

Output: F : SAUNF ckt semantically equivalent to G
S: Sequence of literal-consistent subsets of leaves of F

1 if JGK is semantically independent of X then

2 return
(
G, ∅

)
;

3 ℓ := ChooseLiteral(G) ; // Gives a literal

over X labeling a leaf in G
4 U := GetSubset(G, ℓ) ; // U is an

∧-unrealizable subset of ℓ-labeled
leaves in G

5 G′ := CktFromClausesWithLeaves(U ) ; // G′

represents conjunction of clauses (in

the CNF formula represented by G)
containing leaves in U

6 D := G |U :⊤;

7 if JDK is semantically independent of ℓ then

8 (G1, U1) := GetSAUNF(D);

9 return
(
G′ ∧G1,

(
U,U1

))
;

10 (G1, U1) := GetSAUNF(D|ℓ=⊤);

11 (G2, U2) := GetSAUNF(D|ℓ=⊥);

12 F := G′ ∧ ((ℓ ∧G1) ∨ (¬ℓ ∧G2));
13 Uℓ := {ℓ-leaf of F in sub-circuit for (ℓ ∧G1) };

14 U¬ℓ := {¬ℓ-leaf of F in sub-circuit for (¬ℓ ∧G2) };

15 return
(
F, (Uℓ, U, U¬ℓ, U1, U2)

)
;

sequence S of subset of leaves such that JϕGK = JϕF K and

F is in SAUNF w.r.t. set(X) and S. Algorithm GetSAUNF

uses a routine named GetSubset (shown in Algorithm 3)

to obtain an ∧-unrealizable subset U of leaves labeled by a

chosen literal ℓ. This set is used to decompose the problem

into two sub-problems: (i) a circuit G′ representing conjunc-

tion of all clauses that have ℓ-labeled leaves in U feeding

them, and (ii) a circuit representing conjunction of all other

clauses. While G′ does not require any recursive application

of GetSAUNF, the second sub-problem is recursively solved

using Shannon-style decomposition. Finally, the sequence S of

subsets of leaves is obtained by suitably interleaving the subset

U and the sequences obtained from recursive applications of

GetSAUNF.

To understand how subroutine GetSAUNF works, let vℓ
denote the underlying variable of the literal ℓ. We use D to

represent the current view of the circuit (formula) from which

we wish to extract the ∧-unrealizable subset of leaves. We also

use CurrS to denote a subset of clauses containing ℓ such that

there exists an assignment σ : set(X)\{vℓ}∪set(I) → {⊥,⊤}
for which all (and only) these clauses of the underlying CNF

formula evaluate to ℓ, and ℓ is ∧−realizable in G under σ
(see Definition 1). Such an assignment σ can be obtained by

effectively finding a satisfying assignment of ϕD|ℓ=⊤,¬ℓ=⊤
∧

¬ϕD|ℓ=⊤,¬ℓ=⊥
∧ ¬ϕD|ℓ=⊥,¬ℓ=⊤

∧ ¬ϕD|ℓ=⊥,¬ℓ=⊥
. To ensure

that CurrS in the current iteration does not include any such

set obtained in previous iterations of the loop, we conjoin D
with all clauses in CurrS after dropping ℓ. The sets CurrS

obtained in each iteration of the repeat-until loop are collected

in AllS. Finally when ℓ becomes ∧-unrealizable in circuit D,

we obtain a satisfiable minimal hitting set (set cover) HitS of

AllS, i.e. a subset of clauses that is jointly satisfiable with ℓ set

to ⊥ and that includes a clause from every set in AllS. Once

HitS is obtained, we exclude all ℓ-leaves that appear in the

clauses in HitS to obtain a (maximal) ∧−unrealizable subset

of ℓ-leaves, as required. Let us now formalize the correctness

and complexity for this algorithm.

Lemma 9. Algorithm GetSAUNF returns a SAUNF circuit F
semantically equivalent to the input circuit G, with a worst-

case running time exponential in |G|, and the worst-case size

of F also exponential in |G|.

Proof. Since the circuit G′ represents a conjunction of a subset

of clauses, each of which contains the literal ℓ, the circuit

D = G|U :⊤ obtained in line 6 of Algorithm GetSAUNF

simply represents the conjunction of all remaining clauses. In

the circuit F constructed in line 11 of Algorithm 2, the set Uℓ

containing only the leaf ℓ is ∧−unrealizable as it meets up ¬ℓ
at an ∨ gate. In F|Uℓ:⊤, we can show that the set U of ℓ−leaves

of G′ is ∧−unrealizable as it was already ∧−unrealizable in

the circuit G.

For U to be ∧-realizable in F |Uℓ:⊤, there must be an

assignment σ : set(X) \ {vℓ} ∪ set(I) → {⊥,⊤} such that

JϕG′K evaluates to ℓ, JϕG1K to ⊥ and JϕG2K to ⊤. However, if

this were possible, then U would have ∧-realizable in G (using

the same assignment σ). However, this is a contradiction, since

U is ∧-unrealizable in G. In F |Uℓ:⊤,U :⊤, all ℓ-leaves of

F have been re-labeled to ⊤, and therefore we can set the

only ¬ℓ-leaf (in set U¬ℓ) to ⊤. Finally, F |Uℓ:⊤,U :⊤,U¬ℓ:⊤ =

G1 ∨ G2, which is in SAUNF assuming the recursive calls

return correct representations and using Lemma 6. The base

condition is when G is independent of X , for which it already

returns the correct value.

Note that the sequence of subsets returned in line 15 of

Algorithm GetSAUNF is (Uℓ, U, U¬ℓ, U1, U2), which corre-

sponds to the sequence of setting leaves to ⊤ as discussed

above. The algorithm would be correct if it had returned

(Uℓ, U, U¬ℓ, U2, U1) as the sequence of subsets of leaves as

well.

In the worst-case, Algorithm GetSAUNF can reduce to

brute-force Shannon expansion if U computed in line 4 of the

algorithm always returns the empty set of leaves. In this case,

both the running time and the size of F can grow exponentially

with |G|.

It remains to discuss the sub-routine GetSubset. The

pseudo-code for this sub-routine is shown in Algorithm 3. Let

vℓ denote the underlying variable of the literal ℓ. CurrS is a

subset of clauses containing ℓ such that there exists an assign-

ment σ : set(X) \ {vℓ} ∪ set(I) → {⊥,⊤} for which all (and

only) these clauses of the underlying CNF formula evaluate

to ℓ, and ℓ is ∧−realizable in G under σ (see Definition 1).

Such an assignment σ can be obtained by effectively finding

a satisfying assignment of ∀w∀w′ (ϕD|ℓ=w,¬ℓ=w′ ⇔ (w∧w′)),



Algorithm 3: GetSubset(G, ℓ)

Input: G: circuit representing CNF formula, ℓ: Literal

Output: T : ∧−unrealizable subset of ℓ-leaves in G
1 AllS := CurrS := ∅;

2 D := G;

3 repeat

4 σ := GetAssignment(D, ℓ) ; // Assignment

of vars except vℓ for which ℓ is

∧−realizable in D
5 CurrS := GetClausesEvaluatingToL(G, σ, ℓ) ;

// Set of all clauses (of CNF

formula represented by G)
containing ℓ that do not become ⊤
under σ

6 AllS := AllS ∪ {CurrS};

7 D := D∧ DisjoinWithoutLit(CurrS, ℓ) ;

// DisjoinWithoutLit(CurrS, ℓ) gives

disjunction of clauses in CurrS
after dropping ℓ

8 until ℓ is ∧-unrealizable in D;

9 HitS := SatisfiableHittingSet(AllS);

10 T := Set of all ℓ-leaves of G that don’t feed into any

clause in HitS;

11 return T ;

and therefore ϕD|ℓ=⊤,¬ℓ=⊤
∧ ¬ϕD|ℓ=⊤,¬ℓ=⊥

∧ ¬ϕD|ℓ=⊥,¬ℓ=⊤

∧ ¬ϕD|ℓ=⊥,¬ℓ=⊥
. To ensure that CurrS in the current iteration

does not include any such set obtained in previous iterations

of the loop, we conjoin D with the clause returned by

DisjoinWithoutLit(CurrS, ℓ). All sets CurrS obtained as the

repeat-until loop iterates are collected in AllS. Finally when

ℓ becomes ∧-unrealizable in circuit D, we obtain a satisfiable

minimal hitting set (set cover) HitS of AllS, i.e. a subset

of clauses that is jointly satisfiable with ℓ set to ⊥ and that

includes a clause from every set in AllS. Given AllS, finding

a minimal HitS can be reduced to a MaxSAT problem. Once

HitS is as obtained, we exclude all ℓ-leaves that appear in

the clauses in HitS to obtain a (maximal) ∧−unrealizable

subset of ℓ-leaves. With this, we can state the correctness and

complexity of Algorithm 3.

Lemma 10. Algorithm GetSubset returns a

∧−unrealizable subset of ℓ-leaves of G, and takes worst-case

time exponential in |G|.

Proof. Suppose Algorithm GetSubset returned an ∧-

realizable subset of ℓ-leaves of G. Let σ be the corresponding

assignment of set(X) \ {vℓ} ∪ set(I). The set S of clauses of

ϕG that do not become ⊤ under σ must then be either equal

to or a superset of CurrS in some iteration of the repeat-until

loop of lines 3-7. Therefore, HitS must include some clause

from S. This implies that T contains at least one ℓ-labeled

leaf that feeds into a clause in HitS – a contradiction.

The worst-case running time is dominated by the product of

the number of times the repeat-until loop of lines 3–8 iterates

and the time required to obtain σ (line 4) and check the loop

termination condition (line 8). The count of loop iterations

can be as high as the count of all subsets of ℓ-labeled leaves.

This is exponential in |G| in the worst-case. Computing σ
and checking the loop termination condition also require time

exponential in |G| in the worst-case. Hence, the worst-case

running time of Algorithm GetSubset is exponential in |G|.

Note that we can modify the loop termination condition in

Algorithm GetSubset by incorporating a timeout. In case a

timeout happens, we conservatively return ∅ as T . This reduces

the worst-case running time, providing a tradeoff between

running time and precision of computation.

IX. SOME INTERESTING APPLICATIONS

In Section I, we described the n-bit factorization problem –

a problem of immense interest in cryptanalysis. We now show

some interesting partial results using SAUNF circuits. We start

with a relational specification R over inputs I and outputs

(X,Y) defined by (X×[n] Y = I) where ×[n] denotes n-bit

unsigned integer multiplication. This specification evaluates to

true iff the given product relation holds, where X,Y are n-bit

output vectors and I is a 2n bit input vector. For 1 ≤ l ≤ j ≤
2n, we define a parametrized specification R[l, j] over X, Y

and I that evaluates to true if and only if the bits from position

l to j of X×[n] Y match the corresponding bits of I.

Let 1 denote an n-bit representation of the integer 1. If

R[1, 2n] ∧ (X 6= 1) ∧ (Y 6= 1) can be represented as a

polynomial (in n) sized SAUNF circuit, our results show that

Skolem functions of size polynomial in n can be obtained

for n-bit factorization with non-trivial (i.e. 6= 1) factors. This

would have serious ramifications for cryptanalysis. While we

are not close to achieving such a result, our initial studies

show some interesting results in trying to represent R[l, j]
in SAUNF. Note that it is already known from [17] that

representing R[n, n] requires exponentially large ROBDDs,

and sub-exponential representations using DNNF, dDNNF,

wDNNF or SynNNF are not known. With SAUNF circuits

however, we obtain a significant improvement.

Theorem 6. For l ≤ j ≤ 2n, j − l < n,R[l, j] is

representable by a polynomial (in n) sized SAUNF circuit.

Proof. By Theorem 4, a polynomial-sized SAUNF circuit can

be generated from a polynomial-sized Skolem function vector.

Therefore, we focus on obtaining a polynomial-sized Skolem

function vector for R[l, j], l ≤ j ≤ 2n, j− l < n. We use the

notation Xl to denote the lth least significant bit of X and

Xl,j to denote the bit-slice of X from l to j (both included).

Using similar notations for Y and I, we consider two cases:

• l ≤ n: A Skolem function vector for (X,Y) is given by

ψxk = ⊥ (resp ⊤), if k 6= l (resp. k = l), and ψyk =
Ik+l−1 (resp. ⊥) if k ≤ j + 1− l (resp. k > j + 1− l).
Intuitively, X represents 2l−1 and Y = Il,j .

• l > n: Following similar logic, the Skolem function vec-

tor is given by ψxk = ⊥ (resp. ⊤) if k 6= n (resp. k = n),



and ψyk = Ik+n−1 (resp. ⊥) if l−n < k ≤ j+1−n
(resp. otherwise).

Intuitively, X represents 2n−1 and Y represents 2l−n×[n]

Il,j .

Having generated a polynomial-sized Skolem function vector

for R[l, j], j − l < n, we can generate a corresponding

polynomial-sized SAUNF circuit using Theorem 4.

Surprisingly, we can use Theorem 6 to also show that a

restricted version of division has a polynomial sized SAUNF

representation. Consider the same relational specification

X ×[n] Y = I considered earlier. For the division problem,

we treat (I,Y) as system inputs and X as system outputs,

and write the relation as X = I/Y and obtain the following

theorem.

Theorem 7. The relation X = I/Y, with inputs I,Y re-

stricted to odd numbers (i.e. the relation evaluates to ⊥ if I

or Y is even), is representable as a polynomial (in n) sized

SAUNF circuit.

Proof. For notational convenience, we use X, I and Y to

denote both sequences of Boolean variables, and also the un-

signed integers represented by the corresponding bit-vectors.

We use × instead of ×[n] to denote n-bit unsigned integer

multiplication, and + (resp. −) to denote n-bit unsigned

integer addition (resp. subtraction).

We give below a polynomial-sized Skolem function vector

for division, which can be used to obtain a SAUNF form by

Theorem 4.

Suppose we have inputs I and Y and we have to find X

such that X × Y = I. We first show that for odd valued

inputs, if (X ×Y)mod 2n = I mod 2n and if I is divisible

by Y then X×Y = I. Suppose there are two values X
1,X2

such that (X1 × Y) mod 2n = I mod 2n and (X2 ×
Y) mod 2n = I mod 2n. Then (X1−X

2)×Y ≡ 0 mod 2n.

However, Y is odd and therefore co-prime to 2n; hence

(X1 − X
2) ≡ 0 mod 2n. Since, X

1,X2 < 2n, we must

have X
1 = X

2. Therefore, the generated X from the Skolem

function vector is correct if there exists a solution that matches

the least significant n bits of I. Using the notation defined

above, denote Xl to be the lth least significant bit of X and

Xl,j to denote the bit vector from Xl to Xj (both included).

Now, since the inputs I and Y are odd, Y1 = ⊤, I1 = ⊤.

Therefore ψX1 = ⊤.

Now note that (X × Y)i = (X1,i × Y1,i)i = (X1,i−1 ×
Y1,i + Xi · Y1 ×

(
2i−1

)
i
= Xi · Y1 ⊕ (X1,i−1 × Y1,i)i

(using the structure of multiplication), where ”·” denotes 1-

bit multiplication and ⊕ denotes 1-bit addition modulo 2.

Therefore, Ii = Xi ⊕ (X1,i−1 × Y1,i)i, or equivalently,

Xi = Ii ⊕ (X1,i−1 ×Y1,i)i.
It is now easy to see that once we obtain a Skolem function

for ψX1 to ψXi−1 in this manner, we can recursively generate

the skolem function for Xi, giving the entire Skolem function

vector for X.

Note that while we have used a specific Skolem function

vector above, once the SAUNF form is obtained, it can be

used to generate other Skolem function vectors as well (from

Algorithm 1).

X. CONCLUSION

In this paper, we presented a normal form for Boolean

relational specifications that characterizes efficient Skolem

function synthesis. This is a significantly stronger characteriza-

tion than those used in earlier works. SAUNF is exponentially

more succinct than DNNF, dDNNF while enjoying similar

composability properties. It also strictly subsumes the recently

proposed SynNNF. As future work, we plan to improve the

compilation algorithm and apply it to challenging benchmarks.

It would also be interesting to see if similar characterizations

or normal forms exist and are efficiently computable for

Skolem functions for first order logic [26], i.e., beyond the

propositional case that we treated in this work.

REFERENCES

[1] J. R. Jiang, “Quantifier elimination via functional composition,” in CAV,
ser. LNCS, vol. 5643. Springer, 2009, pp. 383–397.

[2] A. Shukla, A. Bierre, M. Siedl, and L. Pulina, “A survey on applications
of quantified boolean formula,” in Proc. of 31st International Conference
on Tools with Artificial Intelligence (ICTAI), 2019, pp. 78–84.

[3] M. N. Rabe and L. Tentrup, “CAQE: A certifying QBF solver,” in Formal

Methods in Computer-Aided Design, FMCAD 2015, Austin, Texas, USA,
September 27-30, 2015., 2015, pp. 136–143.

[4] M. S. Marijn Heule and A. Biere, “Efficient Extraction of Skolem
Functions from QRAT Proofs,” in Formal Methods in Computer-Aided
Design, FMCAD 2014, Lausanne, Switzerland, October 21-24, 2014,
2014, pp. 107–114.

[5] M. N. Rabe and S. A. Seshia, “Incremental determinization,” in SAT,
ser. LNCS, vol. 9710. Springer, 2016, pp. 375–392.

[6] J.-H. R. Jiang and V. Balabanov, “Resolution proofs and Skolem func-
tions in QBF evaluation and applications,” in Proc. of CAV. Springer,
2011, pp. 149–164.

[7] D. Fried, L. M. Tabajara, and M. Y. Vardi, “BDD-based boolean
functional synthesis,” in Computer Aided Verification - 28th Interna-

tional Conference, CAV 2016, Toronto, ON, Canada, July 17-23, 2016,
Proceedings, Part II, 2016, pp. 402–421.

[8] S. Akshay, S. Chakraborty, A. K. John, and S. Shah, “Towards Parallel
Boolean Functional Synthesis,” in TACAS 2017 Proceedings, Part I,
2017, pp. 337–353.

[9] S. Chakraborty, D. Fried, L. M. Tabajara, and M. Y. Vardi, “Functional
synthesis via input-output separation,” in Formal Methods in Computer

Aided Design, FMCAD, 2018, pp. 1–9.
[10] A. John, S. Shah, S. Chakraborty, A. Trivedi, and S. Akshay, “Skolem

functions for factored formulas,” in FMCAD, 2015, pp. 73–80.
[11] V. Kuncak, M. Mayer, R. Piskac, and P. Suter, “Complete functional

synthesis,” SIGPLAN Not., vol. 45, no. 6, pp. 316–329, Jun. 2010.

[12] S. Akshay, S. Chakraborty, S. Goel, S. Kulal, and S. Shah, “What’s Hard
About Boolean Functional Synthesis?” in Proc. of 30th International
Conference on Computer Aided Verification, Part I, 2018, pp. 251–269.

[13] P. Golia, S. Roy, and K. S. Meel, “Manthan: A data-driven approach
for boolean function synthesis,” in Computer Aided Verification - 32nd
International Conference, CAV 2020, Los Angeles, CA, USA, July 21-24,

2020, Proceedings, Part II, ser. Lecture Notes in Computer Science, vol.
12225. Springer, 2020, pp. 611–633.

[14] R. E. Bryant, “Graph-based algorithms for boolean function manipula-
tion,” IEEE Trans. Comput., vol. 35, no. 8, pp. 677–691, Aug. 1986.

[15] S. Akshay, J. Arora, S. Chakraborty, S. N. Krishna, D. Raghunathan, and
S. Shah, “Knowledge compilation for boolean functional synthesis,” in
FMCAD. IEEE, 2019, pp. 161–169.

[16] A. Darwiche, “On the tractable counting of theory models and its
application to truth maintenance and belief revision,” Journal of Applied
Non-Classical Logics, vol. 11, no. 1-2, pp. 11–34, 2001.

[17] R. E. Bryant, “On the complexity of VLSI implementations and graph
representations of boolean functions with application to integer multi-
plication,” IEEE Trans. Computers, vol. 40, no. 2, pp. 205–213, 1991.



[18] M. Cadoli and F. M. Donini, “A survey on knowledge compilation,” AI

Commun., vol. 10, no. 3-4, pp. 137–150, 1997.
[19] A. Darwiche, “Decomposable negation normal form,” J. ACM, vol. 48,

no. 4, pp. 608–647, 2001.
[20] C. Muise, S. A. McIlraith, J. C. Beck, and E. Hsu, “DSHARP: Fast d-

DNNF Compilation with sharpSAT ,” in AAAI-16 Workshop on Beyond
NP, 2016.

[21] A. Darwiche and P. Marquis, “A knowledge compilation map,” J. Artif.

Intell. Res., vol. 17, pp. 229–264, 2002.
[22] A. Kuehlmann, V. Paruthi, F. Krohm, and M. K. Ganai, “Robust boolean

reasoning for equivalence checking and functional property verification.”
IEEE Trans. on CAD of Integrated Circuits and Systems, vol. 21, no. 12,
pp. 1377–1394, 2002.

[23] M. N. Rabe, L. Tentrup, C. Rasmussen, and S. A. Seshia, “Understand-
ing and extending incremental determinization for 2QBF,” in CAV (2),
ser. LNCS, vol. 10982. Springer, 2018, pp. 256–274.

[24] S. Akshay, S. Chakraborty, S. Goel, S. Kulal, and S. Shah, “Boolean
functional synthesis: hardness and practical algorithms,” Formal Meth-

ods in System Design, pp. 1–34, 2020.
[25] S. Bova, F. Capelli, S. Mengel, and F. Slivovsky, “Knowledge compi-

lation meets communication complexity,” in Proc. of 25th International

Joint Conference on Artificial Intelligence, IJCAI, 2016, pp. 1008–1014.
[26] S. Akshay and S. Chakraborty, “On synthesizing skolem functions for

first order logic formulae,” CoRR arXiv:2102.07463 [cs.LO], 2021.
[Online]. Available: https://arxiv.org/abs/2102.07463

https://arxiv.org/abs/2102.07463

	I Introduction
	II Preliminaries
	III Problem Statement
	IV A Normal Form for Synthesis
	V Relation with other normal forms
	VI Efficient synthesis of Skolem functions from SAUNF specifications
	VI-A Role of auxiliary outputs
	VI-B Generating Skolem functions from SAUNF circuits
	VI-C Generating SAUNF circuits from Skolem functions

	VII Operations on SAUNF
	VIII Conversion to SAUNF
	IX Some interesting applications
	X Conclusion
	References

