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Abstract—Two families of denotational models have emerged
from the semantic analysis of linear logic: dynamic models,
typically presented as game semantics, and static models, typically
based on a category of relations. In this paper we introduce
a formal bridge between two-dimensional dynamic and static
models: we connect the bicategory of thin concurrent games
and strategies, based on event structures, to the bicategory of
generalized species of structures, based on distributors.

In the first part of the paper, we construct an oplax functor
from (the linear bicategory of) thin concurrent games to distrib-
utors. This explains how to view a strategy as a distributor,
and highlights two fundamental differences: the composition
mechanism, and the representation of resource symmetries.

In the second part of the paper, we adapt established methods
from game semantics (visible strategies, payoff structure) to
enforce a tighter connection between the two models. We obtain
a cartesian closed pseudofunctor, which we exploit to shed new
light on recent results in the bicategorical theory of the λ-calculus.

I. INTRODUCTION

The discovery of linear logic has had a deep influence

on programming language semantics. The linear analysis of

resources provides a refined perspective that leads, for in-

stance, to important notions of program approximation [1]

and differentiation [2]. Denotational models for higher-order

programming languages can be constructed from this resource-

aware perspective, exploiting the fact that every model of

linear logic is also a model of the simply-typed λ-calculus.

In this paper, we clarify the relationship between two

denotational models that arise in this way:

• Thin concurrent games, a framework for game semantics

introduced by Castellan, Clairambault, and Winskel [3],

in which programs are modelled as concurrent strategies.

• Generalized species of structures, a combinatorial model

developed by Fiore, Gambino, Hyland, and Winskel [4],

in which programs are interpreted as categorical distrib-

utors (or profunctors) over groupoids.

We carry out this comparison in a two-dimensional setting

also including morphisms between strategies and morphisms

between distributors. In the language of bicategory theory, our

first key contribution is an oplax functor of bicategories

games, strategies

and maps
groupoids, distributors and

natural transformations
(1)

which shows, in particular, that the symmetries of a strategy

can be explained using groupoid actions.

A. Static and dynamic models

This work fits in a long line of research on the relationship

between static and dynamic denotational models.

In a static model, programs are represented by their in-

put/output behaviour, or by collecting representations of com-

pleted executions. The simplest example is given by the

category of sets and relations: this is the relational model of

linear logic (§II-A or [5]). In a dynamic model, programs are

represented by their interactive behaviour with respect to every

possible execution environment. This includes game semantics

([6], [7]), which has proved incredibly proficient at modelling

various computational features or effects ([8], [9], [10]).

To illustrate the difference, the identity at type 1 ⊸ 1 in

game semantics is a strategy that represents an exchange of

information between the program and its environment:

1 ⊸ 1 ⊢ 1 ⊸ 1

In contrast, in the relational model, 1 ⊸ 1 is a one-element

set containing a single input/output pair. The identity relation

over it can be seen as a collapsed version of the strategy above:

1 ⊸ 1 ⊢ 1 ⊸ 1
(

,

) (
,

)

This suggests a simple equation

game semantics = relational model + time ,

so that going from game semantics to the relational model is

a simple matter of forgetting the temporal order of execution.

But this naive intuition hides a fundamental difference

between the composition mechanisms in static and dynamic

models: strategies may deadlock, while relations cannot. More

precisely, in game semantics, two strategies can synchronize

by performing the same actions in the same order, whereas
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in the collapsed version, only the actions matter and not the

order. Thus, as was quickly established [11], one cannot simply

forget time in a functorial way, and composition is usually only

preserved in an oplax manner, as in (1).

Static collapses of game semantics require an adequate

notion of position for a game. This is difficult to define in

traditional game semantics, but very natural with concurrent

games, because we can look at configurations of the underlying

event structure (§III-A, see also [12], [13]).

The subtle relationship between static and dynamic models

was refined by many authors over two decades ([13], [14],

[15], [16]), to identify settings in which functoriality can be

restored. Leveraging this, we show (in §V) how the oplax

functor (1) can be strictified to a pseudofunctor, that preserves

composition up to isomorphism.

B. Proof-relevant models and symmetries

Our aim here is to take the static-dynamic relationship

to a new level that takes into account the symmetries of

resource usage. Symmetry plays an important role in game

semantics (§IV, or [7], [12], [17], [18]), but so far connections

only exist with static models whose symmetries are implicit

or quotiented, like in the relational model. We argue that

generalized species, which represent combinatorial structures

in terms of their symmetries, provide a convenient target for

a static collapse of thin concurrent games.

The two models we consider are “proof-relevant” [19], in

the sense that the interpretation of a program provides, for

each possible execution, a set of proofs or witnesses that this

execution can be realized. This high degree of intensionality is

useful for modelling languages with non-deterministic features

[20], [21]. In a proof-relevant model, symmetries arise natu-

rally in the linear duplication of witnesses. In §II-B we discuss

the limitations of a proof-relevant model without symmetries.

Proof-relevant models are naturally organized into bi-

categories: programs are interpreted as structured objects

(e.g. strategies or distributors) which themselves support a

notion of morphism. By constructing functors of bicategories

we clarify the relationship at the two-dimensional level.

C. Bicategorical models of the λ-calculus

To motivate this further, we note that the two-dimensional

and proof-relevant aspects are significant on the syntactic side.

The interpretation of λ-terms in generalized species has a

presentation in terms of an intersection type system [22], that

takes into account the symmetries and can be exploited to

characterize computational properties and equational theories

of the λ-calculus [19]. More generally, the structural 2-cells in

a cartesian closed bicategory have a syntactic interpretation as

βη-rewriting steps in the simply-typed λ-calculus ([23], [24]).

In §V we connect to this line of work by constructing a

cartesian closed pseudofunctor, which preserves the semantics

of λ-terms in both typed and untyped settings.

D. Outline of the paper and key contributions

Review of static models: In §II we recall static semantics,

including a bicategory PRRel of proof-relevant relations,

and a bicategory Dist of distributors. One can view PRRel

as the sub-model of Dist with no symmetries, so there is

an embedding PRRel →֒ Dist. The bicategory Esp of

generalized species is defined in terms of Dist.

Collapsing concurrent games to static models: In §III we

introduce the bicategory CG of “plain” concurrent games

without symmetries, and we show that a collapse operation

gives an oplax functor CG → PRRel (Theorem 2).

Then in §IV we add symmetry: we define the bicategory

TCG of thin concurrent games, with CG →֒ TCG as the

sub-model with no symmetries. We show that every strategy

has a distributor of positive witnesses (Proposition 4), and that

this extends to an oplax functor TCG → Dist (Theorem 3).

Thus we have the following situation:

no
symmetries symmetries

dynamic CG TCG

static PRRel Dist

Cartesian closed structure and the λ-calculus: In §V we in-

troduce a refined version of TCG called Vis, using methods

from game semantics: payoff ([13], [25]) and visible strategies

[26]. Roughly speaking, this is to ensure that the composition

of strategies yields no deadlocks and this behaves like that of

distributors. Thus we obtain a pseudofunctor

Vis −→ Dist (Theorem 4)

and by also refining our categorical structure with a relative

pseudo-comonad, we derive a cartesian closed pseudofunctor

Vis! → Esp (Theorem 7). We apply this result to the

semantics of untyped λ-calculus: we build a reflexive object

in Vis and show that, under our pseudofunctor, this is sent to

an extensional, categorifed graph model D∗ in Esp [19].

II. A TOUR OF STATIC SEMANTICS

In this section we present three static models: the basic

relational model Rel (§II-A), a proof-relevant version of

it which we call PRRel (§II-B), and the model Dist of

groupoids and distributors (§II-C).

A. The relational model of linear logic

We start with the relational model, which gives a denota-

tional interpretation in the category Rel of sets and relations.

A type A is interpreted as a set JAK, and a program ⊢M : A is

interpreted as a subset JMK ⊆ JAK. The set JAK is often called

the web of A, and we think of its elements as representations

of completed program executions. The subset JMK contains

the executions that the program M can realize.

Example 1. The ground type for booleans is interpreted as

JBK = {tt, ff}, and the constant ⊢ tt : B as JttK = {tt}.

The interpretation of a program M is computed composi-

tionally, following the methodology of denotational semantics,

using the categorical structure we describe below.



1) Basic categorical structure: The category Rel is defined

to have sets as objects, and as morphisms the relations from

A to B, i.e. the subsets R ⊆ A×B, with the usual notions of

identity and composition for relations. Its monoidal product is

the cartesian product of sets. If Ri ∈ Rel(Ai, Bi) for i = 1, 2,

then the relation R1×R2 ∈ Rel(A1×A2, B1×B2) is defined

to contain the pairs ((a1, a2), (b1, b2)) with (ai, bi) ∈ Ri. The

unit I is a fixed singleton set, say {∗}. This monoidal structure

is closed, with linear arrow A⊸ B = A×B.

Moreover Rel has finite cartesian products: the product of

sets A and B is given by the disjoint union A+ B = {1} ×
A ⊎ {2} ×B, and the empty set is a terminal object.

2) The exponential modality: The exponential modality of

Rel is based on finite multisets. If A is a set, we write M(A)
for the set of finite multisets on A. To denote specific multisets

we use a list-like notation, as in e.g. [0, 1, 1] ∈ M(N) – we

write [] ∈ M(A) for the empty multiset.

Given a set A, its bang !A is the set M(A). This extends

to a comonad ! on Rel, satisfying the required conditions for

a model of intuitionistic linear logic: the Seely isomorphisms

M(A+B) ∼= M(A)×M(B) M(∅) ∼= I

make ! a symmetric monoidal functor from (Rel,+, ∅) to

(Rel,×, I), satisfying a coherence axiom [27, §7.3]. From

this, we obtain that the Kleisli category Rel! is cartesian

closed and thus a model of the simply-typed λ-calculus.

3) Conditionals and non-determinism: The category Rel!
also supports further primitives in a call-by-name setting.

Example 2. Considering the term ⊢M : B → B of PCF

⊢ λxB. ifx thenx
elseifx then ff else tt : B → B ,

then JMK = {([tt, tt], tt), ([tt, ff ], ff ), ([ff , ff ], tt)}, represent-

ing the possible executions given a multiset of values for x.

As a further example, Rel supports the interpretation of

non-deterministic computation: consider ⊢ choice : B a non-

deterministic primitive that may evaluate to either tt or ff .

Then we can set JchoiceK = {tt, ff} so that we have

Jif choice then tt else ttK = {tt} . (2)

The relational model is a cornerstone of static semantics,

and the foundation of many recent developments in denota-

tional semantics [28], [29], [30]. In this paper we are con-

cerned with its proof-relevant extensions – roughly speaking,

one motivation is to keep separate different execution paths

that lead to the same value, as with value tt in (2).

B. Proof-relevant relations

To showcase this, we consider a notion of proof-relevant

relation between sets (e.g. [31], [32]). The idea is to record not

only the executions that a program may achieve, but also the

distinct ways in which each execution is realized. We replace

relations JMK ⊆ A×B with proof-relevant relations

JMK : A×B → Set ,

so that each point of the web has an associated set of witnesses.

In this model, Jif choice then tt else ttK(tt) from (2) should

be a set {∗1, ∗2} containing two witnesses, because there are

two possible paths to the value tt.

Formally, the model is organized as a categorical structure

with sets as objects, functors α : A×B → Set (with A×B
viewed as a discrete category ) as morphisms, composed with

(β ◦ α)(a, c) =
∑

b∈B

α(a, b)× β(b, c) (3)

and with identity morphisms given by idA(a, a
′) = {∗} if

a = a′ and empty otherwise1. An important observation is that

this does not form a category. Categorical laws are only iso-

morphisms, with for instance (idB◦α)(a, b) = α(a, b)×{∗} ∼=
α(a, b). We obtain a bicategory: a two-dimensional structure

incorporating 2-cells – morphisms between morphisms – with

categorical laws holding only up to coherent invertible 2-cells.

We call this bicategory PRRel. This model shares (in a

bicategorical sense) much of the structure of Rel, and may

be used to interpret e.g. the linear λ-calculus. We use PRRel

as a static collapse of a basic dynamic model in §III-C.

Limitations of a proof-relevant model without symmetry:

Unfortunately, the finite multiset functor on Rel does not seem

to extend to PRRel. Intuitively, the objective of keeping

track of individual execution witnesses is in tension with

the quotient involved in constructing finite multisets, which

blurs out the identity of individual resource accesses. 2 Proof-

relevant models that do support an exponential modality do

so by replacing finite multisets with a categorification, such

as finite lists related by explicit permutations – symmetries.

C. Distributors and generalized species of structures

Distributors are symmetry-aware proof-relevant relations –

here we consider distributors on groupoids, i.e. small cate-

gories in which every morphism is invertible.

1) The bicategory of groupoids and distributors: If A and

B are groupoids, a distributor from A to B (also known as

a profunctor or bimodule) is a functor

α : Aop ×B → Set .

Thus, for every a ∈ A and b ∈ B we have a set α(a, b) of

witnesses, but unlike in PRRel we also have symmetries,

in the form of an action by morphisms in A and B. If x ∈
α(a, b) and g ∈ B(b, b′), we write g · x for the functorial

action α(id, g)(x) ∈ α(a, b′). Similarly, if f ∈ A(a′, a), we

write x ·f ∈ α(a′, b) for α(f, id). The actions must commute,

so we can write g ·x · f for (g · x) · f = g · (x · f) ∈ α(a′, b′).
We define a bicategory Dist with groupoids as objects,

distributors as morphisms, and natural transformations as 2-

cells ([33], [34]). The identity distributor on A is

idA = A[−,−] : Aop ×A→ Set ,

1A more standard presentation of this model is via the bicategory of spans
of sets, with sets as objects and spans A← S → B as morphisms.

2In technical terms, the functor M(−) on Set is not cartesian – does not
preserve pullbacks – and so does not preserve the composition of spans.



the hom-set functor. The composition of two distributors α :
Aop × B → Set and β : Bop × C → Set is obtained as a

categorified version of (3), defined in terms of a coend:

(β • α)(a, c) =

∫ b∈B

α(a, b)× β(b, c) .

Concretely, (β •α)(a, c) consists in pairs (x, y), where x ∈
α(a, b) and y ∈ β(b, c) for some b ∈ B, quotiented by (g ·
x, y) ∼ (x, y ·g) for x ∈ α(a, b), g ∈ B(b, b′) and y ∈ β(b′, c).

The bicategory Dist has a symmetric monoidal structure

given by the cartesian product A×B of groupoids, extended

pointwise to distributors. There is a closed structure given by

A ⊸ B = Aop × B. Finally, Dist has cartesian products

given by the disjoint union A+B of groupoids.

2) The exponential modality: In this model with explicit

symmetries, the exponential modality is not given by finite

multisets, but instead by finite lists with explicit permutations.

Definition 1. For a groupoid A, there is a groupoid Sym(A)
with as objects the finite lists (a1 . . . an) of objects of A,

and as morphisms (a1 . . . an) −→ (a′1 . . . a
′
m) the pairs

(π, (fi)1≤i≤n), where π : {1, . . . , n} ∼= {1, . . . ,m} is a

bijection and fi ∈ A(ai, a
′
π(i)) for each i = 1, . . . , n.

More abstractly, Sym(A) is the free symmetric (strict)

monoidal category over A. This extends to a pseudo-comonad

on Dist, where pseudo means that the comonad laws only

hold up to coherent invertible 2-cells [4], [35].

3) Generalized species of structures: The Kleisli bicategory

DistSym is denoted Esp, and the morphisms in Esp are

called generalized species of structures [4]. Concretely, Esp

has the same objects as Dist; morphisms are generalized

species3, defined as distributors from Sym(A) to B; and 2-

cells are natural transformations. Equipped with

Sym(A+B) ≃ Sym(A) × Sym(B) Sym(∅) ≃ I

the Seely equivalences, Dist is a bicategorical model of linear

logic. In particular, the bicategory Esp is cartesian closed.

Any functor F : A → B determines a pair of (adjoint)

species F̂ ∈ Esp[A,B] and qF ∈ Esp[B,A], defined as

F̂ ((a1, . . . , an), b) = Sym(B)((F (a1), . . . , F (an)), (b)) and
qF ((b1, . . . , bn), a) = Sym(B)((b1, . . . , bn), (F (a))).

4) Relationship with PRRel: Distributors conservatively

extend the proof-relevant relations of §II-B: if we regard sets

as discrete groupoids, we get an embedding PRRel →֒ Dist

that preserves the symmetric monoidal closed structure and

the cartesian structure. Explicit symmetries appear essential

in defining an exponential modality in a proof-relevant model:

even when A is a a discrete groupoid, Sym(A) is not discrete.

III. CONCURRENT GAMES AND STATIC COLLAPSE

We now construct a dynamic model based on concurrent

games and strategies, without symmetries. We show that it has

a static collapse in the model PRRel introduced in §II-B.

3If A = B = 1, then this corresponds to a species in the classical
combinatorial sense [36]. Note that this can be further generalized to arbitrary
small categories A and B [4], but we do not need this generality.

A. Rudiments of concurrent games

Game semantics presents computation in terms of a two-

player game: Player plays for the program under scrutiny,

while Opponent plays for the execution environment. So a

program is interpreted as a strategy for Player, and this strategy

is constrained by a notion of game, specified by the type. The

framework of concurrent games ([37], [38], [39]) is not merely

a game semantics for concurrency, but a deep reworking of

the basic mechanisms of game semantics using causal “truly

concurrent” structures from concurrency theory [40].

1) Event structures: Concurrent games and strategies are

based on event structures. An event structure represents the

behaviour of a system as a set of possible computational events

equipped with dependency and incompatibility constraints.

Definition 2. An event structure is E = (|E|,≤E ,#E), where

|E| is a (countable) set of events, ≤E is a partial order called

causal dependency and #E is an irreflexive symmetric binary

relation on |E| called conflict, satisfying the two conditions:

(1) ∀e ∈ |E|, [e]E = {e′ ∈ |E| | e′ ≤E e} is finite,

(2) ∀e1 #E e2, ∀e2 ≤E e′2, e1 #E e′2 .

Operationally, an event can occur if all its dependencies

are met, and no conflicting events have occurred. A finite set

x ⊆f |E| down-closed for ≤E and comprising no conflicting

pair is called a configuration – we write C (E) for the set

of configurations on E, naturally ordered by inclusion. If x ∈
C (E) and e ∈ |E| is such that e 6∈ x but x∪{e} ∈ C (E), we

say that e is enabled by x and write x ⊢E e. For e1, e2 ∈ |E|
we write e1 _E e2 for the immediate causal dependency,

i.e. e1 <E e2 with no event strictly in between.

There is an accompanying notion of map: a map of event

structures from E to F is a function f : |E| → |F | such

that: (1) for all x ∈ C (E), the direct image fx ∈ C (F ); and

(2) for all x ∈ C (E) and e, e′ ∈ x, if fe = fe′ then e = e′.
There is a category ES of event structures and maps.

2) Games and strategies: Throughout this paper, we will

gradually refine our notion of game. For now, a plain game is

simply an event structure A together with a polarity function

polA : |A| → {−,+} which specifies, for each event a ∈ A,

whether it is positive (i.e. due to Player / the program) or

negative (i.e. due to Opponent / the environment). Events are

often called moves, and annotated with their polarity.

A strategy is an event structure with a projection map to A:

Definition 3. Consider A a plain game. A strategy on A,

written σ : A, is an event structure σ together with a map

∂σ : σ → A called the display map, satisfying:

(1) for all x ∈ C (σ) and ∂σx ⊢A a−,

there is a unique x ⊢σ s such that ∂σs = a.

(2) for all s1 _σ s2, if polA(∂σ(s1)) = +
or polA(∂σ(s2)) = −, then ∂σ(s1) _A ∂σ(s2).

Informally, the two conditions (called receptivity and cour-

tesy) ensure that the strategy does not constrain the behaviour

of Opponent any more than the game does. They are essential



for the bicategorical structure we describe below [41], but they

do not play a major role in this paper.

As a simple example, the usual game B for booleans is

q

tt ff

drawn from top to bottom (Player moves are blue, and Oppo-

nent moves are red): Opponent initiates computation with the

first move q, to which Player can react with either tt or ff .

The wiggly line indicates that tt and ff are in conflict.

Strategies are proof-relevant, in the sense that moves of the

game can have multiple witnesses in the strategy. For example,

on the left below, b and c are mapped to the same move tt:

a

b c

q

tt ff
=:

q

tt tt

Note that we denote immediate causality by _ in strategies,

while we use dotted lines for games. This lets us represent the

strategy in a single diagram, as on the right above.

3) Morphisms between strategies: For σ and τ two strate-

gies on A, a morphism from σ to τ , written f : σ ⇒ τ , is a

map of event structures f : σ → τ preserving the dependency

relation ≤ (we say it is rigid) and s.t. ∂τ ◦ f = ∂σ .

4) +-covered configurations: We now describe a useful

technical tool: a strategy is completely characterized by a

subset of its configurations, called +-covered.

For a strategy σ on a game A, a configuration x ∈ C (σ)
is +-covered if all its maximal events are positive, so every

Opponent move has at least one Player successor. We write

C+(σ) for the partial order of +-covered configurations of σ.

Lemma 1. Consider a plain game A, and strategies σ, τ : A.

If f : C+(σ) ∼= C+(τ) is an order-isomorphism such that

∂τ ◦ f = ∂σ , then there is a unique isomorphism of strategies

f̂ : σ ∼= τ such that for all x ∈ C +(σ), f̂ = f(x).

B. A bicategory of concurrent games and strategies

We now define our bicategory of concurrent games.

1) Strategies between games: If A is a plain game, its dual

A⊥ has the same components as A except for the reversed

polarity. In particular C (A) = C (A⊥). The tensor A⊗B of

A and B is simply A and B side by side, with no interaction –

its events are the tagged disjoint union |A⊗B| = |A|+ |B| =
{1}×|A|⊎{2}×|B|, and other components inherited. We write

xA ⊗ xB for the configuration of A⊗B that has xA ∈ C (A)
on the left and xB ∈ C (B) on the right, so

−⊗− : C (A)× C (B) ∼= C (A⊗B).

Finally, the hom A ⊢ B is A⊥⊗B; as above its configura-

tions are denoted xA ⊢ xB for xA ∈ C (A) and xB ∈ C (B).

Definition 4. A strategy from A to B is a strategy on the

game A ⊢ B. If σ : A ⊢ B and xσ ∈ C (σ), by convention we

write ∂σ(x
σ) = xσA ⊢ xσB ∈ C (A ⊢ B).

U ⊸ U

q

q

X

X

U ⊸ U ⊢ N

q

q

q

X

X

0

Fig. 1. An example of matching but causally incompatible configurations,
in the composition of σ : U ⊸ U and τ : U ⊸ U ⊢ N. The underlying
games are left undefined, but can be recovered by removing the arrows _.
The configurations are matching on U ⊸ U, but the arrows _ impose
incompatible orders (i.e. a cycle) between the two occurrences of X.

Our first example of a strategy between games is the

copycat strategy ccA, which is the identity morphism on A in

our bicategory. Concretely, copycat on A has the same events

as A ⊢ A, but adds immediate causal links between copies of

the same move across components. By Lemma 1, the following

characterizes copycat up to isomorphism.

Proposition 1. If A is a game, there is an order-isomorphism

cc (−) : C (A) ∼= C
+( ccA)

such that for all x ∈ C (A), ∂ ccA
( cc x) = x ⊢ x.

2) Composition: Consider σ : A ⊢ B and τ : B ⊢ C. We

define their composition τ ⊙ σ : A ⊢ C. This is a dynamic

model, and to successfully synchronize, σ and τ must agree

to play the same events in the same order.

We say that configurations xσ ∈ C (σ) and xτ ∈ C (τ) are

• matching, if they reach the same configuration on B, i.e.

xσB = xτB = xB ; and

• causally compatible if, additionally, the synchronization

is deadlock-free, in the sense that combining the causal

dependencies in xσ and xτ gives an acyclic relation. (We

state this formally in Appendix A, or see e.g. [41].)

We illustrate a deadlock situation in Figure 1.

The composition of σ and τ is a strategy whose +-covered

configurations are causally compatible pairs of +-covered con-

figurations. Write CC(σ, τ) for the set of causally compatible

pairs (xσ , xτ ) ∈ C +(σ)× C +(τ), ordered componentwise.

Proposition 2 ([26]). There is a strategy τ ⊙ σ : A ⊢ C,

unique up to isomorphism, with an order-isomorphism

−⊙− : CC(σ, τ) ∼= C +(τ ⊙ σ)

s.t. for all xσ ∈ C +(σ) and xτ ∈ C +(τ) causally compatible,

∂τ⊙σ(x
τ ⊙ xσ) = xσA ‖ xτC .

This description of composition emphasizes the conceptual

difference between a static model, in which composition is

based on matching pairs as in (3), and a dynamic model, based

on causal compatibility and sensitive to deadlocks.



Theorem 1. There is a bicategory CG with: objects, plain

games; morphisms from A to B, strategies on A ⊢ B; and

2-cells, morphisms between strategies.

C. A static collapse of concurrent games

We describe an oplax functor ‖−‖ : CG → PRRel –

oplax because composition is not preserved: instead we have

a coherent, non-invertible 2-cell ‖τ ⊙ σ‖ → ‖τ‖⊙ ‖σ‖ which

embeds the causally compatible pairs into the matching pairs.

The image of a plain game A is the set C (A). To a strategy

σ : A ⊢ B, we associate the proof-relevant relation

‖σ‖(xA, xB) = {xσ ∈ C
+(σ) | ∂σ(x

σ) = xA ⊢ xB}

and to f : σ ⇒ σ′ we associate the function which to any

xσ ∈ ‖σ‖(xA, xB) associates f(xσ) ∈ ‖σ′‖(xA, xB).
Proposition 1 induces an isomorphism of ‖ ccA‖ with the

identity proof-relevant relation. From Proposition 2 we obtain

a function ‖τ ⊙ σ‖ → ‖τ‖ ⊙ ‖σ‖, not invertible in general

because some matching pairs are not causally compatible.

Theorem 2. The above data determines an oplax functor of

bicategories ‖−‖ : CG → PRRel.

In summary, we can regard CG as a dynamic version of

PRRel, where the witnesses in PRRel are reached over

time and composition is sensitive to deadlocks.

IV. ACCOMMODATING SYMMETRY

In this section, we look at a model of concurrent games

enriched with symmetry, known as thin concurrent games

[3]. We start by explaining the basics of event structures

with symmetry and thin concurrent games (§IV-A). Then

we explain how strategies in thin concurrent games can be

viewed as distributors (§IV-B). We then define the bicategory

TCG (§IV-C) and construct an oplax functor TCG → Dist

(§IV-D). Finally we discuss the exponential modality (§IV-E).

A. Symmetry and thin concurrent games

Recall that we went from PRRel to Dist by replacing

sets with groupoids. We now go from CG to TCG by

replacing the set of configurations C (A) with a groupoid of

configurations G (A) whose morphisms are chosen bijections

called symmetries, that behave well w.r.t. the causal order.

1) Event structures with symmetry: Our model is based on

the following notion of event structure with symmetry [42]:

Definition 5. An isomorphism family on an event structure

E is a groupoid S (E) of bijections between configurations,

satisfying the conditions:

restriction: for all θ : x ≃ y ∈ S (E) and x ⊇ x′ ∈ C (E),
there is θ ⊇ θ′ ∈ S (E) such that θ′ : x′ ≃ y′.

extension: for all θ : x ≃ y ∈ S (E), x ⊆ x′ ∈ C (E),
there is θ ⊆ θ′ ∈ S (E) such that θ′ : x′ ≃ y′.

We call (E,S (E)) an event structure with symmetry (ess).

We refer to elements of S (E) as symmetries, and write

θ : x ∼=E y if θ : x ≃ y with θ ∈ S (E). The domain dom(θ)
of θ : x ∼=A y is x, and likewise its codomain cod(θ) is y.

A map of ess E → F is a map of event structures that

preserves symmetry: for every θ : x ∼=E y, the bijection

fθ
def
= fx

f
≃ x

θ
≃ y

f−1

≃ fy,

is in S (F ). (Recall that f restricted to any y is bijective.)

This makes f : S (E) → S (F ) a functor of groupoids.

We can define a 2-category ESS of ess, maps of ess,

and natural transformations between the induced functors. For

f, g : E → F such a natural transformation is necessar-

ily unique [42], and corresponds to the fact that for every

x ∈ C (E) the bijection θx = {(fs, gs) | s ∈ x} : fx ≃ gx is

in S (F ). So this is really an equivalence, denoted f ∼ g.

2) Thin games: We define games with symmetry. To match

the polarized structure, a game is an ess with two sub-

symmetries, one for each player (see e.g. [3], [18], [43]).

Definition 6. A thin concurrent game (tcg) is a game

A with isomorphism families S (A),S+(A),S−(A) s.t.

S+(A),S−(A) ⊆ S (A), symmetries preserve polarity, and

(1) if θ ∈ S+(A) ∩ S−(A), then θ = idx for x ∈ C (A),
(2) if θ ∈ S−(A), θ ⊆− θ′ ∈ S (A), then θ′ ∈ S−(A),
(3) if θ ∈ S+(A), θ ⊆+ θ′ ∈ S (A), then θ′ ∈ S+(A),

where θ ⊆p θ′ is θ ⊆ θ′ with (pairs of) events of polarity p.

Elements of S+(A) (resp. S−(A)) are called positive

(resp. negative); they intuitively correspond to symmetries

carried by positive (resp. negative) moves, and thus introduced

by Player (resp. Opponent). We write θ : x ∼=−
A y (resp.

θ : x ∼=+
A y) if θ ∈ S−(A) (resp. θ ∈ S+(A)).

Each symmetry has a unique positive-negative factorization:

Lemma 2 ([3]). For A a tcg and θ : x ∼=A z, there are unique

y ∈ C (A), θ− : x ∼=−
A y and θ+ : y ∼=+

A z s.t. θ = θ+ ◦ θ−.

Sketch. Existence is proved by induction on θ, using condi-

tions (2) and (3); uniqueness follows from (1) with the fact

that S−(A) and S+(A) are groupoids.

We extend with symmetry the basic constructions on games:

• The dual A⊥ has the same symmetries as A, but

S+(A
⊥) = S−(A) and S−(A

⊥) = S+(A).
• The tensor A1⊗A2 has symmetries of the form θ1⊗θ2 :
x1⊗x2 ∼=A1⊗A2

y1⊗ y2, where each θi : xi ∼=Ai
yi, and

similarly for positive and negative symmetries.

• As before, the hom A ⊢ B is A⊥ ⊗B.

3) Thin strategies: We now define strategies on thin con-

current games, as an extension of strategies on plain games.

Definition 7. Consider A a tcg. A strategy onA, written σ : A,

is an ess σ equipped with a morphism of ess ∂σ : σ → A
forming a strategy in the sense of Definition 3, and such that:

(1) if θ ∈ S (σ) and ∂σθ ⊢A (a−, b−), there are

unique θ ⊢σ (s, t) s.t. ∂σs = a and ∂σt = b.
(2) if θ : x ∼=σ y, ∂σθ ∈ S+(A), then x = y and θ = idx.

As before, a strategy from A to B is a strategy on σ : A ⊢ B.



The first condition forces σ to acknowledge Opponent

symmetries in A; the notation θ ⊢A (a, b) means (a, b) 6∈ θ
and θ ∪ {(a, b)} ∈ S (A). The second condition is thinness:

it means that any non-identity symmetry in the strategy must

originate from an Opponent symmetry.

4) Comparison with the “saturated” approach: The “thin”

approach is only one possible way of adding symmetry to

games. Other models (e.g. [17], [44], [45]) follow a different

approach, where strategies satisfy a saturation condition.

We explain the difference in the language of concurrent

games. Consider a strategy σ : A on a tcg, in the sense of

Definition 7 without conditions (1) and (2). The saturation

condition [17] corresponds to a fibration property of the

functor ∂σ : G (σ) → G (A): for x ∈ G (σ) and ψ : ∂σx ∼=A y,

there is a unique ϕ : x ∼=σ z such that ∂σϕ = ψ:

G (σ) x z

G (A) ∂σx y

ϕ

ψ

∂σ (4)

In contrast, thin strategies satisfy a different lifting property:

a unique lifting exists, up to a positive symmetry.

Lemma 3. Let σ : A be a strategy as in Definition 7.

For all x ∈ C (σ) and ψ : ∂σx ∼=A y, there are unique

ϕ : x ∼=σ z and θ+ : ∂σz ∼=
+
A y such that θ+ ◦ ∂σϕ = ψ:

G (σ) x z

G (A) ∂σx y ∂σz

ϕ

ψ

∂σ

θ+

∂σϕ

Sketch. Existence is proved first for ψ positive, by induction

on x using condition (1) of Definition 7 and properties of

isomorphism families; and then generalized to arbitrary ψ.

Uniqueness follows from condition (2) of Definition 7.

Below, we will use this to construct a distributor from a thin

strategy. We note that saturated strategies are closer to distrib-

utors, because the saturation property (4) directly induces a

functorial action of the groupoid G (A). However, saturated

strategies are more difficult to understand operationally, and

have not achieved the precision of thin strategies for languages

with state, concurrency, or non-determinism.

B. Strategies to distributors

For tcgs A and B, we show how to to construct a distributor

‖σ‖ : G (A)op × G (B) → Set

from a strategy σ : A ⊢ B. The key idea is to use witnesses “up

to positive symmetry” and use the lifting property in Lemma 3.

For xA ∈ C (A) and xB ∈ C (B) we define the set of

positive witnesses of (xA, xB), written ‖σ‖(xA, xB), as the

set of all triples (θ−A , x
σ, θ+B) such that xσ ∈ C+(σ) and

θ−A : xA∼=
−
Ax

σ
A θ+B : xσB

∼=+
BxB

are positive symmetries in A⊥ and B. The groupoid actions

of A and B on this set is determined by the uniqueness result:

Proposition 3. Consider (θ−A , x
σ, θ+B) ∈ ‖σ‖(xA, xB).

For each ΩA : yA ∼=A xA and ΩB : xB ∼=B yB , there are

unique ϕ : xσ ∼=σ yσ and ϑ−A : yA ∼=−
A xσA, ϑ−B : yσB

∼=+
B yB

such that the following two diagrams commute:

xA
θ−A //

OO

ΩA

xσA

ϕσ
A

��
yA

ϑ−
A

// yσA

xσB
θ+B //

ϕσ
B

��

xB

ΩB

��
yσB

ϑ+
B

// yB

Proof. Existence by Lem. 3, uniqueness by (2) of Def. 7.

Thus we may set ‖σ‖(ΩA,ΩB)(θ
−
A , x

σ, θ+B) as the positive

witness (ϑ−A, y
σ, ϑ+B) above. This is a distributor.

Proposition 4. We have defined ‖σ‖ : G (A)op×G (B) → Set.

C. The bicategory of thin concurrent games

We now define the bicategory TCG of thin concurrent

games – note that we have already defined the objects (Defi-

nition 6) and the morphisms (Definition 7).

Morphisms of strategies: The 2-cells of TCG are more

liberal than those in CG, because there should be an isomor-

phism between two strategies which play symmetric moves.

Recall the 2-dimensional structure in ESS, given by the

equivalence relation ∼ on morphisms (§IV-A1). For two maps

f, g : E → A into a tcg, we write f ∼+ g if f ∼ g and for

every x ∈ C (E) the symmetry θx : fx ∼=A gx is positive.

For strategies σ, τ : A on a tcg, a positive morphism of

strategies f : σ ⇒ τ is a rigid map of ess s.t. ∂τ ◦ f ∼+ ∂σ .

Composition and identity: The composition of thin strate-

gies σ : A ⊢ B and τ : B ⊢ C is obtained by equipping

τ⊙σ (Proposition 2) with an adequate isomorphism family. If

S +(σ) is the restriction of S (σ) to +-covered configurations,

then we can write CC(S +(σ),S +(τ)) for the pairs (ϕσ, ϕτ )
of symmetries which are matching, i.e. ϕσB = ϕτB and whose

domain (and necessarily, codomain) are causally compatible.

Proposition 5. There is a unique symmetry on τ ⊙ σ with

(− ⊙−) : CC(S +(σ),S +(τ)) ≃ S
+(τ ⊙ σ)

a bijection commuting with dom and cod, and compatible with

display maps, i.e. (ϕτ ⊙ ϕσ)A = ϕσA and (ϕτ ⊙ ϕσ)C = ϕτC .

For the identity in TCG, we equip copycat ccA : A ⊢ A
(Proposition 1) with the unique symmetry that has an iso

cc (−) : S (A) ≃ S
+( ccA)

commuting with dom and cod, such that ∂ ccA
( cc θ) = θ ⊢ θ.

Proposition 6 ([46]). There is a bicategory TCG, and an

embedding CG →֒ TCG that preserves all structure.

Proof note. Most of the effort is spent on the difficulty of

composing 2-cells “horizontally”, i.e. proving that if σ, σ′ :
A ⊢ B and τ : B ⊢ C, then we can turn positive morphisms



f : σ ⇒ σ′ and g : τ ⇒ τ ′ into a positive map τ⊙f : τ⊙σ ⇒
τ⊙σ′, using an inductive construction based on thin-ness. We

summarize the key property in Appendix B.

In summary, we have defined a dynamic model with sym-

metries. This model embeds the basic model CG from §III-A,

and supports an exponential modality (§IV-E).

D. An oplax functor TCG → Dist

We give the components of a pseudofunctor TCG → Dist.

We have already explained the action on objects and mor-

phisms, by turning every strategy into a distributor (§IV-B).

From positive morphisms to natural transformations: We

show that f : σ ⇒ τ : A ⊢ B gives a natural transformation

of distributors ‖σ‖ ⇒ ‖τ‖. Its components are the functions

‖f‖xA,xB
: ‖σ‖(xA, xB) → ‖τ‖(xA, xB)

(θ−A , x
σ, θ+B) 7→ (θxA ◦ θ−A , f(x

σ), θ+B ◦ θxB
−1)

for xA ∈ C (A) and xB ∈ C (B), where θxA : xσA
∼=−
A f(xσ)A

and θxB : xσB
∼=+
B f(xσ)B come from ∂τ ◦ f ∼+ ∂σ (§IV-C).

This is natural, as an application of Proposition 3.

The unitor and compositor: We now explain in what sense

the operation ‖−‖ is functorial, by giving the appropriate

structural 2-cells for an oplax functor. We start with the unitor:

Proposition 7. Consider A a tcg. Then, there is a natural iso

pidA : ‖ ccA‖
∼=
⇒ G (A)[−,−] : G (A)op × G (A) → Set .

Proof. Consider (θ−, cc z, θ
+) ∈ ‖ ccA‖(x, y), with θ− : x ∼=−

A

z and θ+ : z ∼=+
A y. We set pidA(θ−, cc z, θ

+) = θ+ ◦ θ−;

naturality and invertibility follow from Lemma 2.

Now, we focus on the preservation of composition. For two

strategies σ : A ⊢ B and τ : B ⊢ C, we have the compositor:

Proposition 8. There is a natural transformation:

pcompσ,τ : ‖τ ⊙ σ‖ ⇒ ‖τ‖ • ‖σ‖ : G (A)op × G (B) → Set .

Proof. Consider (θ−A , x
τ ⊙ xσ, θ+C ) ∈ ‖τ ⊙ σ‖(xA, xC); this

is sent by pcompσ,τxA,xC
to (the equivalence class of) the pair

((θ−A , x
σ, idxB

), (idxB
, xτ , θ+C )) ∈ (‖τ‖ • ‖σ‖)(xA, xC)

for xσB = xτB = xB . For naturality, see Appendix C1a.

Altogether, the operation ‖−‖ equipped with this satisfies:

Theorem 3. We have an oplax functor ‖−‖ : TCG → Dist.

Proof. See Appendix C2 and C2a.

E. Difficulties with the exponential modality

1) An exponential modality in polarized TCG: We show

how to construct an exponential modality on TCG. For an ess

E, the ess !E is an infinitary symmetric tensor product, where

the elements of the indexing set are called copy indices:

Definition 8. Consider E an ess.

Then !E has: events, |!E| = N× |E|; causality and conflict

inherited transparently. The isomorphism family comprises all

θ : Σi∈Nxi ≃ Σi∈Nyi

such that there is a bijection π : N ≃ N and for every i ∈ N,

a symmetry θi : xi ∼=A yπ(i), such that θ(i, a) = (π(i), θi(a)).

To extend this to tcgs, we must treat the positive and

negative symmetries. Intuitively, symmetries that only change

the copy indices of negative moves should be negative, and

likewise for positive moves – but this naive definition does

not yield a tcg in general [3]. We must restrict to a polarized

setting in which tcgs are negative, meaning that all minimal

events are negative. For a negative tcg A, a symmetry θ ∈
S (!A) is in the sub-familiy S−(!A) if each θi in Definition 8

is negative in S (A), whereas θ is in S+(!A) if each θi is

in S+(A) and additionally π is the identity bijection. This

extends to a pseudo-comonad, see [3] for details.

2) Our functor does not preserve the modality: For a

negative tcg A, the two groupoids G (!A) and Sym(G (A))
are not equivalent in general. This can be seen even if A
is the empty game: then !A is empty and G (!A) is the

singleton groupoid, while Sym(G (A)) has countably many

non-isomorphic objects ∅, ∅∅, ∅∅∅, and so on. Intuitively,

like the relational model, Esp records how many times we “do

nothing”, whereas TCG only records when we do something.

Thus, although one can construct a cartesian closed Kleisli

bicategory from the restriction of TCG to negative games

[46], the functor ‖−‖ will not preserve cartesian closed

structure – we shall resolve this in the next section.

V. A CARTESIAN CLOSED PSEUDOFUNCTOR

TCG is fairly agnostic to the programming language or

system being represented, but to close up the distance to Esp

we must specialise the games and strategies to those involved

in the interpretation of pure functional languages. We con-

struct a refined bicategory Vis (§V-A), and a pseudofunctor

Vis → Dist (Theorem 4) that we extend to a cartesian closed

pseudofunctor between the Kleisli bicategories (§V-B-V-D).

A. The Bicategory Vis of Winning Visible Strategies

1) Arenas: The objects of our refined model are called

arenas. Arenas are defined to achieve two goals: firstly, narrow

down the causal structure to an alternating forest, required

for the definition of visible (deadlock-free) strategies later on;

secondly, introduce a notion of payoff to distinguish between

incomplete and complete executions in a game, since only

the latter are represented in Dist. As we will see, complete

executions have payoff 0, and if the payoff is 1 (resp. −1) then

the execution is incomplete because Opponent (resp. Player)

is stalling. We adapt definitions from [25] (see also [13]):

Definition 9. An arena is a tcg A such that

(1) if a1, a2 ≤A a3 then a1 ≤A a2 or a2 ≤A a1,

(2) if a1 _A a2, then polA(a1) 6= polA(a2),

equipped with a function κA : C (A) → {−1, 0,+1} called

the payoff, preserved by all symmetries.

Moreover, A is called a −-arena if A is negative as a tcg

and κA(∅) ≥ 0. It is strict if it is negative, κA(∅) = 1 and all

its minimal events are in pairwise conflict.



⊗ −1 0 1
−1 −1 −1 −1
0 −1 0 1
1 −1 1 1

` −1 0 1
−1 −1 −1 1
0 −1 0 1
1 1 1 1

Fig. 2. Payoff tables for operations on arenas, with A`B = (A⊥⊗B⊥)⊥ .

The dual of an arena A has κA⊥(xA) = −κA(xA). The

tensor of tcgs extends to arenas with κA⊗B(xA ⊗ xB) =
κA(xA) ⊗ κB(xB) with ⊗ described in Figure 2. Its De

Morgan dual, the par A ` B of arenas, is also based on the

tensor tcg (written A ` B for disambiguation, with action

on configurations written xA ` xB ∈ C (A ` B)), and

κA`B(xA ` xB) = κA(xA) ` κB(xB). Finally, the hom of

A and B is defined as A ⊢ B = A⊥ `B.

2) Winning strategies: As mentioned above, configurations

with null payoff are those appearing in Dist. The others are

intermediate stages, that only appear in the dynamic model. A

strategy is winning if Player never stalls:

Definition 10. Consider A an arena. A strategy σ : A is

winning if for all xσ ∈ C+(σ), κA(∂σx
σ) ≥ 0.

Winning strategies compose, and copycat is winning [25].

3) Visible strategies: Visibility captures a property of

purely-functional parallel programs, in which threads may

fork and join but each should be a well-formed stand-alone

sequential execution. In an event structure E, a thread is

formalized as a grounded causal chain (gcc), i.e. a finite set

ρ ⊆f |E| on which ≤E is a total order, forming a sequence

ρ1 _E . . . _E ρn

where ρ1 is minimal in E. We write gcc(E) for the set of gccs.

A gcc need not be a configuration (although it will always be

if the strategy interprets a sequential program). A strategy is

visible if gccs only reach valid states of the arena:

Definition 11 ([47]). Consider A a −-arena, and σ : A. Then

σ is visible if it is negative, i.e. all minimal events of σ display

to a negative event, and for all ρ ∈ gcc(σ), ∂σρ ∈ C (A).

This definition is analogous to visibility in Hyland-Ong

games [6]. The key property of visible strategies for this paper

is that their composition is always deadlock-free [26]:

Lemma 4. Consider visible σ : A ⊢ B and τ : B ⊢ C.

If xσ ∈ C+(σ), xτ ∈ C +(τ) are matching, then they are

necessarily also causally compatible (§III-B2).

4) A pseudofunctor: The results of this section take place in

the bicategory Vis with objects: −-arenas; morphisms from

A to B: winning visible strategies on A ⊢ B; and 2-cells:

positive morphisms f : σ ⇒ τ .

We define a pseudofunctor Vis → Dist by restricting

the collapse functor TCG → Dist (§IV-D) to complete

configurations: if A is an arena, we write T (A) for the full

sub-groupoid of S (A) whose objects are restricted to the

x ∈ C (A) with null payoff, i.e. such that κA(x) = 0.

It is straightforward that for σ ∈ Vis[A,B], the distributor

‖σ‖ restricts to a distributor T (A)op ×T (B) → Set, which

we still write ‖σ‖. By the deadlock-freeness property, this

gives a functor which is not oplax but pseudo:

Theorem 4. There is a pseudofunctor ‖−‖ : Vis → Dist,

with ‖A‖ = T (A) the configurations of null payoff.

Proof. The natural transformation pcompσ,τ : ‖τ ⊙ σ‖ ⇒
‖τ‖ • ‖σ‖ for preservation of composition is still valid, as

witnesses of complete configurations in τ⊙σ must synchronize

on complete configurations (see Appendix D1).

We show that pcompσ,τ (xA, xC) is surjective. Consider

wσ = (θ−A , x
σ, θ+B) ∈ ‖σ‖(xA, xB)

wτ = (θ−B , x
τ , θ+C) ∈ ‖τ‖(xB, xC)

composable witnesses. By Lemma 4, (xσ , θ−B ◦ θ+B, x
τ ) is

causally compatible. So by Proposition 13 in Appendix B,

there are unique yτ ⊙ yσ ∈ C +(τ ⊙ σ) along with

ϕσ, ϕτ , ϑ−A, ϑ
+
C such that:

xσA xσB xB xτB xτC

xA xC

yσA yσB yB yτB yτC

ϕσ
A ϕσ

B

θ+
B

θ−
B

ϕτ
B ϕτ

C

θ+
C

θ−
A

ϑ−
A

ϑ+
C

which, writing ΘB = ϕσB ◦ θ+B
−1

= ϕτB ◦ θ−B , entails

vσ = (ϑ−A, y
σ, idyB ) = ΘB · (θ−A , x

σ, θ+B)
vτ = (idyB , y

τ , ϑ+C) = (θ−B , x
τ , θ+C) ·ΘB

so (vσ, vτ ) = (ΘB ·wσ, vτ ) ∼ (wσ, vτ ·ΘB) = (wσ,wτ ). Now

(vσ, vτ ) = pcompσ,τ (ϑ−A, y
τ ⊙ yσ, ϑ+C), showing surjectivity.

Likewise, injectivity is a fairly direct consequence of

uniqueness in Proposition 13, see Appendix D1 for details.

B. Kleisli bicategories, and relating them

Next, we compare the exponential modalities in Vis (writ-

ten !) and in Dist (written Sym).

1) The exponential modality for arenas: The construction

of !A as a countable symmetric tensor of copies of A (§IV-E)

can be extended to arenas. Note that any configuration of

!A has a representation as Σi∈Ixi for I ⊆f N, and this

representation is unique if we insist that every xi is non-empty.

Using that, we set (all xi below are non-empty):

κ!A : C (!A) → {−1, 0,+1}
Σi∈Ixi 7→

⊗
i∈I κA(xi)

that is well-defined because ⊗ is associative on {−1, 0,+1}.

2) Strict arenas: To precisely capture the relationship be-

tween ! and Sym we use strict arenas (Def. 9), where ∅ has

payoff 1 and is not considered complete. The situation with the

empty configuration was at the heart of the issue in §IV-E2.

We now state the following key property: for strict arenas,

the two constructions Sym and ! are equivalent:

Proposition 9. Consider a strict arena A.



There is an adjoint equivalence of categories:

L!
A : T (!A) ≃ Sym(T (A)) : R!

A.

Proof. For a strict arena A, we can identify the objects of

T (!A) with families (xi)i∈I of objects of T (A), where I is

a finite subset of natural numbers.

Thus, from left to right, L!
A sends (xi)i∈I to the sequence

xi1 . . . xin for I = {i1, . . . , in} sorted in increasing order.

From right to left, R!
A sends x0 . . . xn to (xi)i∈{0...n}.

Although this equivalence only holds for strict arenas, it is

all we need for a cartesian closed pseudofunctor.

3) Relative pseudocomonads: The pseudofunctor Vis →
Dist does not preserve the exponential modality as a pseudo-

comonad on Vis, but as a pseudocomonad relative to the sub-

bicategory of strict arenas. We recall the categorical notions.

Recall that a monad on category C relative to a functor

J : D → C is a functor T : D → C with a restricted monadic

structure, which we can use to form a Kleisli category CT
with objects those of D. (Often, D is a sub-bicategory of C
and J is the inclusion functor.) This generalizes to relative

pseudomonads [48] and pseudocomonads:

Definition 12. Consider J : C → D a pseudofunctor between

bicategories. A relative pseudocomonad T over J consists of:

(1) an object TX ∈ D, for every X ∈ C,

(2) a family of functors (−)∗X,Y : D[TX, JY ] → D[TX, TY ],
(3) a family of morphisms iX ∈ D[TX, JX ],
(4) a natural family of invertible 2-cells,

µf,g : (g ◦ f
∗)∗

∼=
⇒ g∗ ◦ f∗

for f ∈ D[TX, JY ] and g ∈ D[TY, JZ],
(5) a natural family of invertible 2-cells, for f ∈ D[TX, JY ]:

ηf : f
∼=
⇒ iX ◦ f∗

(6) a family of invertible 2-cells θX : i∗X
∼=
⇒ idTX ,

where X,Y, Z range over objects of C. This is subject to

coherence conditions that appear in Appendix D2.

Those conditions are exactly what is needed to form a

Kleisli bicategory written DT , with objects those of C, mor-

phisms and 2-cells from X to Y the category D[TX, JY ].
We can compose f ∈ D[TX, JY ] and g ∈ D[TY, JZ] as

g ◦T f = g ◦ f∗, and the identity on X is iX .

4) The exponential relative pseudocomonad: Here, C is the

sub-bicategory Viss of strict arenas, and J : Viss →֒ Vis

the embedding. Note that even if A is strict, !A is not strict,

and so ! : Viss → Vis.

We now outline the components in Definition 12. For the

component (2), we must introduce some additional notions.

Fix an injection 〈−,−〉 : N2 → N. If I ⊆f N and Ji ⊆f N

for all i ∈ I , write Σi∈IJi ⊆f N for the set of all 〈i, j〉 for

i ∈ I and j ∈ Ji. Then, we may define:

Definition 13. Consider σ ∈ Vis[!A,B]. Its promotion σ!

has ess !σ, and display map the unique map of ess such that

∂σ!((xσ,i)i∈I) = (xσ,iA,j)〈i,j〉∈Σi∈IJi
⊢ (xσ,iB )i∈I (5)

where ∂σ(x
σ,i) = (xσ,iA,j)j∈Ji

⊢ xσ,iB .

For (3), the dereliction derA ∈ Vis[!A,A] on strict A has

ess ccA, and display map ∂derA( cc x) = (x){0} ⊢ x. Then

joinσ,τ : (τ ⊙ σ!)!
∼=
⇒ τ ! ⊙ σ!

sends (xτi ⊙ (xσi,j)j∈Ji
)i∈I to (xτi )i∈I ⊙ (xσi,j)〈i,j〉∈Σi∈IJi

, a

positive iso providing (4). For (5), given B strict and σ ∈
Vis[!A,B] we have a positive iso runitσ : σ ∼= derB ⊙ σ!

sending xσ ∈ C+(σ) to cc xσ
B
⊙ (xσ){0} ∈ C +(derB ⊙ σ!).

Finally, for (6) we have a positive iso lunitA : der!A
∼= cc !A

sending ( cc xi
)i∈I to cc (xi)i∈I

. Altogether, this gives us:

Theorem 5. The components described above define a pseu-

docomonad ! relative to the embedding of Viss into Vis.

Proof. See Appendix D2 for additional details.

In particular, there is a Kleisli bicategory Vis! whose

objects are strict arenas. (In the next section we show this

is a cartesian closed bicategory.)

5) Lifting of ‖−‖ to the Kleisli bicategories: Recall that

we write Esp for the Kleisli bicategory DistSym. We show

how to lift ‖−‖ to a pseudofunctor ‖−‖! : Vis! → Esp. (We

give a direct proof, although one could write down a notion

of pseudofunctor between relative pseudocomonads that lifts

to the Kleisli bicategories [49].)

Theorem 6. We have a pseudofunctor ‖−‖! : Vis! → Esp.

Proof. For A a strict arena, we have ‖A‖! = ‖A‖ = T (A).

If A,B are strict and σ ∈ Vis[!A,B], we ‖σ‖! to be

Sym(T (A))op×T (B)
R

op

A ×T (B)
→ T (!A)op×T (B)

‖σ‖
→ Set

using R!
A : Sym(T (A))op → T (!A) from Proposition 9.

For preservation of identities, from the definition we have

‖derA‖!((x
0
A . . . x

n
A), yA) = ‖derA‖((x

i
A){0≤i≤n}, yA)

i.e. the set comprising all triples (θ−A , cc xA
, θ+A) such that

θ−A : (xiA){0≤i≤n}
∼=−

!A (xA){0} , θ+A : xA∼=
+
AyA

but by definition of negative symmetries on !A, θ−A forces

n = 0 and boils down to a symmetry x0A
∼=−
A xA so that such

triples are in bijection with T (A)[x0A, yA] as in Esp.

The analysis for preservation of composition is a more elab-

orate version of Theorem 4, postponed to Appendix D3.

C. Cartesian closed structure

We show the bicategory Vis! is cartesian closed, using typ-

ical constructions for cartesian closed structure in concurrent

games, in sufficient detail to keep the paper self-contained.

For a precise definition of the structure of cartesian closed

bicategories we refer to [50].



1) Cartesian products in Vis!: The empty arena ⊤, with

κ⊤(∅) = 1, is strict, and it is direct that ⊤ is a terminal object

in Vis!, since any negative strategy A ⊢ ⊤ must be empty.

Now if A,B are strict, the product arena A&B is defined

as A ⊗ B, except that all events of A are in conflict with

events of B. This means that configurations of A & B are

either empty, or of the form {1} × x for x ∈ C (A) (written

i1(x)) or {2}×x for x ∈ C (B) (written i2(x)). For the payoff,

we set κA&B(∅) = 1 and κA1&A2
(ii(x)) = κAi

(x), making

A&B a strict arena. By strictness, we have an isomorphism

L&
A,B : T (A&B) ∼= T (A) + T (B) : R&

A,B

which reflects the definition of binary products in Esp.

The first projection πA ∈ Vis[!(A & B), A] has ess ccA,

with display map the map of ess characterized by

∂( cc x) = (i1(x)){0} ⊢ x ,

with the second projection defined symmetrically.

If σ ∈ Vis[!Γ, A] and τ ∈ Vis[!Γ, B], their pairing has ess

σ & τ and display map the unique such that

∂(i1(x
σ)) = xσ!Γ ⊢ i1(x

σ
A) ∈ C (!Γ ⊢ A&B) ,

and likewise for ∂(i2(x
τ )), yielding 〈σ, τ〉 ∈ Vis[!Γ, A&B].

This extends to a functor 〈−,−〉 : Vis![Γ, A]×Vis![Γ, B] →
Vis![Γ, A&B] in a straightforward way.

Proposition 10. For any strict arenas Γ, A and B, there is

Vis![Γ, A&B] ≃ Vis![Γ, A]×Vis![Γ, B]

(πA⊙(−)!,πB⊙(−)!)

〈−,−〉

an adjoint equivalence providing the data to turn A&B into

a cartesian product in the bicategorical sense.

2) Closed structure in Vis!: Recall that the objects of

Vis! are strict arenas, and observe that any strict arena B
is isomorphic to &i∈IBi where the Bi are pointed, meaning

that they have exactly one minimal event. We first define a

linear arrow for a −-arena A and a pointed strict arena B,

by setting A ⊸ B to be A ⊢ B with a stricter dependency

order, so that all events in A causally depend on the unique

minimal move in B. This is generalized for any strict B as

A⊸ &i∈IBi = &i∈I(A⊸ Bi)

whose configurations have a convenient description:

Lemma 5. For any −-arena A, and strict arena B, we have

(− ⊸ −) : C (A) × C
6=∅(B) ∼= C

6=∅(A⊸ B)

where C 6=∅(E) is the set of non-empty configurations.

Now for A,B strict, we define the arrow A⇒ B as !A⊸

B. This is equipped with an evaluation strategy

evA,B ∈ Vis[!((!A⊸ B) &A), B]

consisting of the ess cc !A⊸B , and where ∂( cc (xi
A
)i∈I⊸xB

) is

∅ if xB = ∅, and γ ⊢ xB otherwise, with

γ = (i1((x
i
A)i∈I ⊸ xB)){〈0,0〉} ⊎ (i2(x

i
A))〈1,i〉∈Σ{1}I .

Likewise, the currying of σ ∈ Vis[!(Γ&A), B] is a strategy

Λ(σ) with ess σ and display map

∂Λ(σ)(x
σ) = (xiΓ)i∈I ⊢ (xjA)j∈J ⊸ xB

for xσ 6= ∅, where ∂σ(x
σ) = (i1(x

i
Γ))i∈I ⊎ (i2(x

j
A))j∈J ⊢ xB .

This gives a functor Λ : Vis![Γ &A,B] → Vis![Γ, A⇒ B].

Proposition 11. For any strict Γ, A and B, there is

Vis![Γ, A⇒ B] ⊥ Vis![Γ &A,B]

evA,B⊙〈−⊙π!
Γ,πA〉!

Λ(−)

an adjoint equivalence, providing the data to turn A ⇒ B
into an exponential object in the bicategorical sense.

D. A cartesian closed pseudofunctor

We show that the pseudofunctor ‖−‖! : Vis! → Esp

preserves cartesian closed structure.

The terminal object is preserved in a strict sense, since

T (⊤) is empty. For preservation of the binary product, note

that for A and B strict arenas, the map

〈‖πA‖!, ‖πB‖!〉 ∈ Esp[T (A&B),T (A) + T (B)]

is naturally isomorphic to L̂&
A,B, and is thus easily completed

with q×A,B = R̂&
A,B ∈ Esp[T (A) + T (B),T (A & B)]

forming an equivalence. This establishes:

Proposition 12. Equipped with those equivalences, the pseud-

ofunctor ‖−‖! : Vis! → Esp preserves finite products.

1) Preservation: Observe that we have an equivalence

L⇒
A,B : T (A⇒ B) ≃ Sym(T (A))op × T (B) : R⇒

A,B

using first Lemma 5 as since B is strict, its complete configu-

rations are non-empty, and observing that this decomposition

also holds for symmetries; followed by Proposition 9.

Now, for A and B strict we consider Λ(‖evA,B‖! •! q×) in

Esp[T (A⇒ B),Sym(T (A))op × T (B)]

and verify it is naturally isomorphic to L̂⇒
A,B; thus completed

to an equivalence in Esp with q⇒A,B = R̂⇒
A,B .

Altogether this completes the proof of our main theorem:

Theorem 7. We have a cartesian closed pseudofunctor

‖−‖! : Vis! → Esp .

VI. SOME CONSEQUENCES FOR THE λ-CALCULUS

We illustrate this pseudofunctor by relating a dynamic and

a static model of the pure (untyped) λ-calculus.



T (U) D∗

T (U ⇒ U) Sym(D∗)op × D∗

Sym(T (U))op × T (U)

LU

T (unfU) unfD∗

L⇒
U,U Sym(LU)op×LU

Fig. 3. Compatibility with unfoldings

A. Two models of the pure λ-calculus

1) A reflexive object in Vis!: Our bicategory of games

contains a universal arena U with an isomorphism of arenas

unfU : U ∼= U ⇒ U : fldU

making U an extensional reflexive object [51]. Concretely, U

is constructed corecursively as ⊗N!U ⊸ o, where o is the

arena with one negative move ∗, κo(∅) = 1 and κo({∗}) = 0.

Following the interpretation of the λ-calculus in a reflexive

object, we have, for every closed λ-term M , a strategy JMK :
U. This strategy has a clear interpretation: it is a representation

of the Nakajima tree of M (see e.g. [52], [53]).

2) The Pure λ-Calculus in Esp: Likewise, one can con-

struct models of the λ-calculus in Esp [4], [19], [22].

We consider a groupoid D∗, defined as a “categorified graph

model” in [19], equipped with an equivalence

unfD∗ : D∗ ≃ Sym(D∗)op ×D∗ : fldD∗

in Esp [19, Theorem 5.2]. The interpretation of a closed λ-

term M in D∗ is a presheaf JMKD
∗

Esp : D∗ → Set, which can

be explained using an intersection type system. More precisely,

objects of D∗ may be presented as intersection types, and for

each a ∈ D∗, JMKD
∗

Esp(a) is (up to a canonical isomorphism)

the set of derivations of the judgement ⊢ M : a in the

type system. The construction of this intersection type system

reflects the corresponding operations on distributors: in partic-

ular derivations carry explicit symmetries, JMKD
∗

Esp(a) is really

the set of derivations quotiented by an equivalence relation

letting symmetries flow though the concrete derivation.

B. Relating the Interpretations

Using a straightforward analysis based on the above de-

scriptions, we can define an equivalence of groupoids

LU : T (U) ≃ D∗ : RU

which is compatible with unfoldings in the sense that the

diagram of Figure 3 commutes, and compatible with folding

in the same way. Using our Theorem 7, it follows that:

Theorem 8. For any closed term M , we have a natural iso

JMKD
∗

Esp
∼= ‖JMKUVis!

‖! ◦R
U

This shows that, for a ∈ U, the set JMKD
∗

Esp(a) described

by Olimpieri as a set of derivations up to congruence may be

equivalently described, up to canonical isomophism, as a set

of positive witnesses of the form

(x ∈ C
+(JMKUVis!

), θ+ : ∂(x) ∼=+
U RU(a)).

In other words, the interpretation of pure λ-terms as species

computes the set of +-covered configurations equipped with a

positive symmetry. Interestingly, this set is constructed without

quotient, and thus provides canonical representatives for the

equivalence classes of derivations in Olimpieri’s model.

In what follows, we show how our cartesian closed pseud-

ofunctor allows us to transfer results from game semantics to

generalized species. It is known that the game semantics of

the λ-calculus captures the maximal sensible λ-theory H∗,

because strategies coincide with the corresponding normal

forms, Nakajima trees [52]. Using Theorem 8, we can deduce

a result on the λ-theory induced by D∗. Given a model D of

λ-calculus in an arbitrary bicategory, the theory induced by D
is the λ-theory induced by the following relation on λ-terms:

{(M,N) | M,N ∈ Λ s.t. JMKD ∼= JNKD.}.

The correspondence established in this paper allows us to

derive the following new result:

Corollary 1. The theory of D∗ is H∗.

Proof. Consider two λ-terms M and N . If M ≡H∗ N , then

JMKUVis!
∼= JNKUVis!

and by Theorem 8, JMKD
∗

Esp
∼= JNKD

∗

Esp.

Reciprocally, isomorphisms in Esp form a sensible λ-

theory (see [19], Corollary 6.14). As H∗ is the greatest

sensible λ-theory, it must include isomorphisms in Esp.

This is a simple application, but recent work suggests that

there is much to explore in the bicategorical semantics of the

λ-calculus [19].

VII. CONCLUSION

In this paper, we have mapped out the links between thin

concurrent games and generalized species of structures, two

bicategorical models of linear logic and programming lan-

guages. By giving a proof-relevant and bicategorical extension

of the relationship between dynamic and static models, we

have established the new state of the art in this line of work.

This bridges previously disconnected semantic realms. In

the past, such bridges have proved fruitful for transporting

results between dynamic and static semantics ([21], [25], [53]).

This opens up many perspectives: bicategorical models are a

very active field, and several recent developments may be re-

examined in light of this connection ([22], [25], [54]).

Moreover, this work exposes fundamental phenomena re-

garding symmetries. Symmetries lie at the heart of both thin

concurrent games and generalized species, but they are treated

completely differently: in Esp, witnesses referring to multiple

copies of a resource are closed under the action of all sym-

metries (“saturated”), whereas TCG relies on a mechanism

for choreographing a choice of copy indices, providing an

address for individual resources (“thin”). Beyond semantics,

this approach to managing symmetries hints at an alternative

to Joyal’s species [36] for representing combinatorial objects.
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Institut de Mathématique Pure et Appliquée, rapport, vol. 33, 1973.

[35] S. Lack, “A coherent approach to pseudomonads,” Advances in Mathe-

matics, vol. 152, no. 2, pp. 179–202, 2000.
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APPENDIX

A. Formal definition of causally compatible configurations

To define the composition of strategies σ : A ⊢ B and

τ : B ⊢ C, we must define what it means for the interaction

of matching configurations xσ ∈ C (σ) and xτ ∈ C (τ) to be

deadlock-free. To do that, we compute the actual synchroni-

sation of events of xσ and xτ , using the fact that they are

matching. If all events of xσ and xτ were in B, this would

take the form of a bijection xσ ≃ xτ . But some moves of xσ

are in A and some moves of xτ are in C, so instead we form

the bijection

ϕ[xσ, xτ ] : xσ ‖ xτC
∂σ‖x

τ
C

≃ xσA ‖ xB ‖ xτC
xσ
A‖∂−1

τ

≃ xσA ‖ xτ

where x ‖ y is the tagged disjoint union. This uses the fact that

from the conditions on maps of event structures, ∂σ : xσ ≃
xσA ⊢ xσB is a bijection and likewise for ∂τ .

Now that the synchronisation is formed, we import the

causal constraints of σ and τ to (the graph of) ϕ[xσ , xτ ], via:

(m,n) ⊳σ (m′, n′) ⇔ m <σ‖C m′

(m,n) ⊳τ (m′, n′) ⇔ n <A‖τ n
′

letting us finally say that matching xσ and xτ are causally

compatible if ⊳ = ⊳σ ∪ ⊳τ on (the graph of) ϕ[xσ, xτ ] is

acyclic. In particular, xσ and xτ in Figure 1 are not causally

compatible.

B. Horizontal composition of positive maps

Consider f : σ ⇒ σ′ : A ⊢ B, and g : τ ⇒ τ ′ : B ⊢ C.

Recall from below Theorem 1 that in CG, g ⊙ f : τ ⊙ σ ⇒
τ ′⊙σ′ is characterised by (g⊙f)(xτ ⊙xσ) = g(xτ )⊙f(xσ).
In TCG this simple description is no longer possible, as we

may not have f(xσ)B = g(xτ )B – we only have a symmetry

θf,gxσ,xτ : f(xσ)B ∼=B g(xτ )B

obtained as θf,gxσ,xτ = θx
τ

B ◦(θx
σ

B )−1. Fortunately, interaction of

thin strategies supports synchronisation up to symmetry [26]:

Proposition 13. Consider xσ ∈ C +(σ), θB : xσB
∼=B

xτB, x
τ ∈ C+(τ) causally compatible, i.e. the relation ⊳

induced on

xσ ‖ xτC
∂σ‖x

τ
C

≃ xσA ‖ xσB ‖ xτC
xσ
A‖θ‖xτ

C
≃ xσA ‖ xτB ‖ xτC

xσ
A‖∂−1

τ
≃ xσA ‖ xτ

by <σ‖C and <A‖τ as in §III-B2, is acyclic.

Then, there are unique yτ⊙yσ ∈ C +(τ⊙σ) with symmetries

ϕσ : xσ ∼=σ yσ and ϕτ : xτ ∼=τ yτ , such that ϕσA ∈ S−(A)
and ϕτC ∈ S+(C), and ϕτB ◦ θ = ϕσB .

In that case, we write yτ ⊙ yσ = xτ ⊙θ xσ . With that

notation, there is a unique positive morphism g⊙ f : τ ⊙σ ⇒
τ ′ ⊙ σ′ such that (g ⊙ f)(xτ ⊙ xσ) = g(xτ )⊙

θ
f,g

xσ,xτ
f(xσ).

https://arxiv.org/abs/2007.00624
https://doi.org/10.4230/LIPIcs.CSL.2018.16


C. Proofs for Section IV

1) Pseudofunctor from TCG to Dist: The compositor we

introduced in Proposition 8:

pcompσ,τ : ‖τ ⊙ σ‖ ⇒ ‖τ‖ • ‖σ‖ : G (A)op × G (B) → Set

for σ : A ⊢ B and τ : B ⊢ C, by describing the function

pcompσ,τ (xA, xC) for all xA ∈ C (A) and xC ∈ C (C).

a) Naturality in xA, xC : It is the following lemma:

Lemma 6. The function pcompσ,τ (xA, xC) : ‖τ ⊙
σ‖(xA, xC) → (‖τ‖ • ‖σ‖)(xA, xC) is natural in xA, xC .

Proof. Consider wτ⊙σ ∈ ‖τ ⊙ σ‖(xA, xC), written as

wτ⊙σ = (ψ−
A , x

τ ⊙ xσ, ψ+
C ) ,

hence with pcomp(wτ⊙σ) = (wσ,wτ ) where we write wσ =
(ψ−
A , x

σ, idxσ
B
) and wτ = (idxτ

B
, xτ , ψ+

C ).

Now consider θA : yA ∼=A xA, θC : xC ∼=C yC , then by

definition of θC · wτ⊙σ · θA, it must be given as (ν−A , y
τ ⊙

yσ, ν+C ) as in the bottom of the following diagram:

xA
ψ−

A //

θ−1
A

��

xσA
ϕσ

A ��

xσB =

ϕσ
B��

xB

=

= xτB
ϕτ

B ��

xτC
ϕτ

C��

ψ+
C // xC

θC
��

yA
ν−
A

// yσA yσB = yB = yτB yτC
ν+
C

// yC

for ϕσ : xσ ∼=σ yσ and ϕτ : xτ ∼=τ yτ . But it also follows

wσ · θA = (ν−A , y
σ, idyσ

B
) , θC · wτ = (idyτ

B
, yτ , ν+C )

by definition of these functorial actions, so that

pcomp(θC · wτ⊙σ · θA) = (wσ · θA, θC · wτ )

as required for the naturality of pcompσ,τ .

2) Naturality in σ and τ : It is the following lemma:

Lemma 7. The following diagram commutes for all positive

morphisms f : σ ⇒ σ′ and g : τ ⇒ τ ′:

‖τ ⊙ σ‖
pcompσ,τ

//

‖g⊙f‖

��

‖τ‖ • ‖σ‖

‖g‖•‖f‖

��
‖τ ′ ⊙ σ′‖

pcompσ
′,τ′

// ‖τ ′‖ • ‖σ′‖

Proof. Consider a positive witness wτ⊙σ = (θ−A , x
τ ⊙

xσ, θ+C) ∈ ‖τ ⊙ σ‖(xA, xC). For all xσ ∈ C (σ),

xσ
∂σ //

f

��

xσA ⊢ xσB

f [xσ]A⊢f [xσ]B

��
f(xσ)

∂σ′

// f(xσ)A ⊢ f(xσ)B

and likewise for g : τ ⇒ τ ′. With these notations, by

Proposition 13, there are unique ϕσ
′

, ϕτ
′

and ϑ−A, ϑ
+
C such

that

f(xσ)A

ϕσ′

A

��

f(xσ)B

ϕσ′

B

��

f [xσ]−1
B// xB

g[xτ ]B// g(xτ )B

ϕτ′

B

��

g(xτ )C

ϕτ′

C

��

g[xτ ]−1
C

%%❑❑
❑❑

❑

xA

f [xσ]A 99sssss

ϑ−
A

$$❏❏
❏❏

❏
xC

yσ
′

A yσ
′

B
= yB = yτ

′

B yτ
′

C

ϑ+
C

::ttttt

commutes (the line on the top is secured since f, g are rigid);

and by definition g ⊙ f : τ ⊙ σ → τ ′ ⊙ σ′ is the unique map

such that (g ⊙ f)(xτ ⊙ xσ) = yτ
′

⊙ yσ
′

. Thus

pcompσ
′,τ ′

◦ ‖g ⊙ f‖(wτ⊙σ) = ((ϑ−A, y
σ′

, id), (id, yτ
′

, ϑ+C)) .

Now, likewise, we have

‖f‖(θ−A , x
σ, idxσ

B
) = (f [xσ]A ◦ θ−A , f(x

σ), f [xσ]−1
B )

‖g‖(idxτ
B
, xτ , θ+C) = (g[xτ ]B, f(x

τ ), θ+C ◦ g[xτ ]−1
C )

but by the diagram above, writing ΘB = ϕσ
′

B ◦ f [xσ]B =
ϕτ

′

B ◦ g[xτ ]B , we have the two equalities

(ϑ−A, y
σ′

, idyB ) = ΘB · ((f [xσ]A ◦ θ−A , f(x
σ), f [xσ]−1

B )

(idyB , y
τ ′

, ϑ+C) ·ΘB = (g[xτ ]B, g(x
τ ), g[xτ ]−1

C )

so that we may now compute

((ϑ−A , y
σ′

, id), (id, yτ
′

, ϑ+C))

= (ΘB · (f [xσ]A ◦ θ−A , f(x
σ), f [xσ]−1

B ), (id, yτ
′

, ϑ+C))

∼ ((f [xσ ]A ◦ θ−A , f(x
σ), f [xσ]−1

B ), (id, yτ
′

, ϑ+C) ·ΘB)

= ((f [xσ ]A ◦ θ−A , f(x
σ), f [xσ]−1

B ), (g[xτ ]B, g(x
τ ), g[xτ ]−1

C ))

as required to establish the desired commutation.

a) An oplax functor: There are three coherence diagrams

to check. For the preservation of the associator, this is straight-

forward. For the preservation of the unitor, we establish

‖ ccB ⊙ σ‖
ρσ //

pcomp

��

‖σ‖

‖ ccB‖ • ‖σ‖
pid•‖σ‖

// idB • ‖σ‖

ρ‖σ‖

OO

for any σ : A ⊢ B. For that, consider

w = (θ−A , cc xσ
B
⊙ xσ, θ+B) ∈ ‖ ccB ⊙ σ‖(xA, xB) .

We have pcomp(w) = ((θ−A , x
σ, id), (id, cc xσ

B
, θ+B)), sent in

turn by pid • ‖σ‖ to ((θ−A , x
σ, id), θ+B). But now

((θ−A , x
σ, id), θ+B) = ((θ−A , x

σ, id), idxB
· θ+B)

∼ (θ+B · (θ−A , x
σ, idxσ

B
), idxB

)

= ((θ−A , x
σ, θ+B), idxB

)

satisfying ρ((θ−A , x
σ, θ+B), idxB

) = (θ−A , x
σ, θ+B) as required.

The other coherence diagram for the unitor is symmetric.



D. Proofs for Section V

1) Pseudofunctor from Vis to Dist: We start by showing

that the oplax functor ‖−‖ : TCG → Dist adapts to

‖−‖ : Vis → Dist

another oplax functor. For that, we need:

Lemma 8. Consider σ ∈ Vis[A,B] and τ ∈ Vis[B,C].

Then, if xτ ⊙ xσ ∈ C+(τ ⊙ σ) satisfies xσA ∈ T (A) and

xτC ∈ T (C), it follows that xσB = xτB ∈ T (B) as well.

Proof. Seeking a contradiction, assume that κB(xB) = 1. But

then κB`C(∂τ (x
τ )) = −1 ` 0 = −1, which is impossible

since xτ ∈ C +(τ) and τ is winning. Symmetrically if

κB(xB) = −1 then this contradicts that σ is winning since

xσ ∈ C+(σ). Hence, κB(xB) = 0 as required.

This ensures that if (θ−A , x
τ ⊙ xσ, θ+C ) ∈ ‖τ ⊙ σ‖(xA, xC),

then there is xB ∈ T (σ) and we have composable witnesses

(θ−A , x
σ, id) ∈ ‖σ‖(xA, xB) , (id, xτ , θ+C) ∈ ‖τ‖(xB, xC)

as required. The rest of the construction is unchanged, ensuring

that we have ‖−‖ : Vis → Dist as desired.

To establish Theorem 4, it only remains to prove:

Lemma 9. Consider σ ∈ Vis[A,B], τ ∈ Vis[B,C], xA ∈
T (A) and xC ∈ T (C). Then, pcompσ,τ (xA, xC) is injective.

Proof. Consider two witnesses

(θ−A , x
τ ⊙ xσ, θ+C) ∈ ‖τ ⊙ σ‖(xA, xC)

(ϑ−A , y
τ ⊙ yσ, ϑ+C) ∈ ‖τ ⊙ σ‖(xA, xC)

such that pcomp(θ−A , x
τ⊙xσ, θ+C) ∼ pcomp(ϑ−A , y

τ⊙yσ, ϑ+C).
This means, w.l.o.g., that there are components such that

((θ−A , x
σ, id), (id, xτ , θ+C )) = ((θ−A , x

σ, id), (id, yτ , ϑ+C) ·ΘB)

((ϑ−A , y
σ, id), (id, yτ , ϑ+C)) = (ΘB · (θ−A , x

σ , id), (id, yτ , ϑ+C))

which by definition of the functorial action, means that

xσA

ϕσ
A

��

xσB

ϕσ
B

��

= xB =

ΘB

��

xτB

ϕτ
B

��

xτC

ϕτ
C

��

θ+C

""❉
❉❉

❉

xA

θ−A <<③③③③

ϑ−
A

""❉
❉❉

xC

yσA yσB = yB = yτB yτC
ϑ+
C

<<③③③

commutes for some ϕσ : xσ ∼=σ yσ and ψτ : xτ ∼=τ yτ . So

ϕτ ⊙ ϕσ : xτ ⊙ xσ ∼=τ⊙σ y
τ ⊙ xσ

has a positive display, hence is an identity symmetry by

condition (2) of Definition 7 – thus from the diagram,

(θ−A , x
τ ⊙ xσ, θ+C) = (ϑ−A, y

τ ⊙ yσ, ϑ+C)

as needed to conclude injectivity of pcompσ,τ (xA, xC).

2) Relative pseudocomonad structure: Here we detail the

structure of the exponential as a pseudocomonad on Vis

relative to the inclusion Viss →֒ Vis.

For this, we must provide the following components [48]:

(1) For every A ∈ Viss, an object !A ∈ Vis,

(2) A family of functors, for every A,B ∈ Viss:

(−)! : Vis[!A,B] → Vis[!A, !B] ,

(3) A family of strategies, for all A ∈ Viss:

derA ∈ Vis[!A,A] ,

(4) A natural family of positive isos, for all σ ∈ Vis[!A,B],
τ ∈ Vis[!B,C] with A,B,C strict:

joinσ,τ : (τ ⊙ σ!)! ∼= τ ! ⊙ σ! ,

(5) A natural family of positive isos, for all A,B strict and

σ ∈ Vis[!A,B]:

runitσ : σ ∼= derB ⊙ σ! ,

(6) A family of positive isos, for all A strict:

lunitA : der!A
∼= cc !A ,

such that for all A,B,C strict, σ ∈ Vis[!A,B], τ ∈
Vis[!B,C] and δ ∈ Vis[!C,D], the diagrams

(δ ⊙ (τ ⊙ σ!)!)!

join
τ⊙σ!,δ

((◗◗
◗◗

◗◗
◗◗

◗◗
◗◗

◗
(δ⊙joinσ,τ)

!

vv♠♠♠
♠♠
♠♠
♠♠
♠♠
♠♠

(δ ⊙ (τ ! ⊙ σ!))!

∼=

��

(δ! ⊙ (τ ⊙ σ!)!)

δ!⊙joinσ,τ

��
((δ ⊙ τ !)⊙ σ!)!

join
σ,δ⊙τ!

��

δ! ⊙ (τ ! ⊙ σ!)

∼=

��
(δ ⊙ τ !)! ⊙ σ!

joinδ,τ⊙σ
!

// (δ! ⊙ τ !)⊙ σ!

σ!
runit!σ //

∼= --

(derB ⊙ σ!)!
joinσ,derB // (der!B ⊙ σ!)

lunitB⊙σ!

��
cc !B ⊙ σ!

commute. Most components have been defined in the main

text. The others are defined by their action

joinσ,τ (((x
σ,i,j)j∈Ji

⊙ xτ,i)i∈I) = (xτ,i)i∈I ⊙ (xσ,i,j)〈i,j〉∈Σi∈IJi

runitσ(x
σ) = cc xσ

B
⊙ (xσ){0}

lunitA(( cc xi
A
)i∈I) = cc (xi

A)i∈I

on +-covered configurations. Naturality and coherence dia-

gram follow from lengthy verifications, which we omit.

3) Pseudofunctor between Kleisli categories: Rather than

directly construct a pseudofunctor, we describe components

for preservation of the exponential modality – even though it

is not a comonad but a relative comonad.



a) Actions of pseudofunctors on distributors: We shall

use some additional notations on distributors. Consider

F ∈ Dist[A,B]

a distributor, i.e. F : Aop × B → Set, and consider also

S : A′ → A and T : B′ → B two functors. Then we set

F [S] ∈ Dist[A′, B] [T ]F ∈ Dist[A,B′]

respectively as F ◦ (Sop × B) : A′op × B → Set and as

F ◦ (Aop × T ) : Aop ×B′ → Set. This extends to functors

−[S] : Dist[A,B] → Dist[A′, B] ,
[T ]− : Dist[A,B] → Dist[A,B′]

in the obvious way. We shall use:

Lemma 10. Consider F ∈ Dist[A,B], G ∈ Dist[B,C] and

functors S : A′ → A and T : B′ → B.

Then we have natural isomorphisms

(G • F )[S] ∼= G • F [S]
[T ](G • F ) ∼= [T ]G • F ,

additionally natural in F and G.

Proof. In fact, given the canonical set-theoretic definition

of the composition of distributors, these isomorphims are

equalities. Indeed, for a ∈ A and c ∈ C′, we have

(G⊙ F )[S](a, c) = (G⊙ F )(Sa, c)

= Πb∈BF (Sa, b)×G(b, c)/ ∼

= Πb∈BF [s](a, b)×G(b, c)/ ∼

= (G⊙ F [S])(a, c)

and likewise for the other equality – naturality is direct.

In the sequel, we shall treat these isomorphisms as equali-

ties. A more subtle situation that will show up in our proof is

when distributors are composed through an equivalence:

Lemma 11. Consider F ∈ Dist[A,B] and G ∈ Dist[B′, C]
distributors, with S : B ≃ B′ : T an adjoint equivalence e.

Then, we have a natural isomorphism

ξF,G,e : G[S] • F ∼= G • [T ]F ,

additionally natural in F and G.

Proof. Consider (b, f, g) ∈ (G[S] ⊙ F )(a, c), i.e. b ∈ B, f ∈
F (a, b) and g ∈ G(Sb, c). To this triple, we associate

ξF,G,e(b, f, g) = (Sb, F (a, ηb)(f), g) ∈ (G⊙ [T ]F )(a, c) ,

where ηb ∈ B[b, TSb] and ǫb′ ∈ B[STb′, b′] are the compo-

nents of the equivalence S : B ≃ B′ : T . Symmetrically,

ξF,G,e(b
′, f, g) = (Tb′, f, G(ǫb′ , c)(g)) ∈ (G[S]⊙ F )(a, c)

for (b′, f, g) ∈ (G ⊙ [T ]F )(a, c). It is a routine verification

that this yields a natural isomorphism as required.

Note that we could obtain this same natural isomorphism

through lifting of functors to distributors and associativity of

composition of distributors, but it will be convenient for the

forthcoming calculations to have the above description.

We introduce one additional lemma:

Lemma 12. Take S : B ≃ B′ : T an adjoint equivalence e.

Then, we have a natural isomorphism

χe : idB′ [S] ∼= [T ]idB ∈ Dist[B,B′] .

Proof. Consider b ∈ B and b′ ∈ B′. By definition,

(idB′ [S])[b, b′] = B′[Sb, b′] , ([T ]idB)[b, b
′] = B[b, T b′]

which area clearly isomorphic; and this is natural.

b) Additional conventions and notations: If I is a finite

subset of natural numbers, let I = {0, . . . , |I| − 1} and κI :
I ≃ I be the unique monotone bijection. If (xi)i∈I is a family,

we write (xi)i∈I for the reindexing (xκ−1
I (i))i∈I .

In the sequel, we shall often treat objects of Sym(X) as

families (xi)i∈I indexed by initial segments of N, so as to

ensure a uniform notation with Fam(X). We also introduce an

alternative notation for morphisms in Fam(C) (and Sym(C),
viewed as a full subcategory): we shall sometimes write

〈fj · π(j)〉j∈J

for the element of Fam(C)[(xi)i∈I , (yj)j∈J ] normally written

(π−1 : I ≃ J, (fπ−1(i) ∈ C[xi, yπ(i)])i∈I) ,

notice that the family is indexed by its target index set instead

of the source, and that the permutation π−1 is given pointwise

by the action of π on all j ∈ J .

c) Preservation of exponentials: With these notations, we

may finally show that the pseudofunctor ‖−‖ preserves the

exponential. This takes the form of two natural isomorphisms,

first for preservation of dereliction:

Lemma 13. For any arena A, there is a natural isomorphism

pderA : ‖derA‖[R
!
A]

∼= derT (A) ∈ Dist[Sym(T (A)),T (A)]

Proof. From the definition, ‖derA‖[R!
A]((xi)i∈I , y) is non-

empty iff (xi)i∈I = (y){0}, in which case its only witness is

cc y – likewise, derT (A)((xi)i∈I , y) is also non-empty exactly

for (xi)i∈I = (y){0}, in which case it is also a singleton.

Likewise, for preservation of promotion:

Lemma 14. For any σ ∈ Vis[!A,B], there is a natural iso

ppromσ : ‖σ!‖[R!
A]

∼= [L!
B](‖σ‖[R

!
A])

! ,

between distributors in Dist[Sym(T (A)),T (!B)].
Furthermore, it is natural in σ.

Proof. Recall that (xσ,i)i∈I ∈ C +(σ!) displays to

(xσ,iA,j)〈i,j〉∈Σi∈IJi
⊢ (xσ,iB )i∈I

where for i ∈ I , ∂(xσ,i) = (xσ,iA,j)j∈Ji
.



For K = Σi∈IJi, a witness in ‖σ!‖[R!
A] has components





〈θ−i,j · π(i, j)〉〈i,j〉∈Σi∈IJi

(xσ,i)i∈I ∈ C+(σ!)

(θ+i : xσ,iB
∼= xi)i∈I

witnessing ((xk)k∈K , (xi)i∈I). This is sent by ppromσ to

(〈θ−i,j · π(i, j)〉j∈Ji
, xσ,i, θ+i )i∈I

noticing the abuse of notation consisting of having the notation

θ−i,j ·π(i, j) inside the family (−)i∈I . One can verify that this

yields a natural isomorphism as required.

This natural isomorphism is compatible with the promotion

of dereliction, in the sense of the following lemma:

Lemma 15. For any arena A, the following diagram

‖ cc !A‖[R!
A]

//

��

idT (!A)[R
!
A]

��
‖der!A‖[R

!
A]

��

[L!
A]idSym(T (A))

��
[L!
A](‖derA‖[R

!
A])

! // [L!
A]der

!
T (A)

commutes, where all arrows are the obvious structural maps

or obtained by Lemmas 11, 12, 13 and 14.

Proof. If (zi)i∈I ∈ Sym(T (A)) and (yi)i∈I ∈ T (!A), an

element of ‖ cc !A‖[R!
A]((zi)i∈I , (yi)i∈I) is composed of





〈θ−i · π(i)〉i∈I : (zi)i∈I
∼=−

!A (xi)i∈I ,
cc (xi)i∈I

∈ C+( cc !A) ,
(θ+i : xi ∼=

+
A yi)i∈I

which, computing alongside both paths, is sent to

〈θ+i ◦ θ−i · π(i)〉i∈I ∈ der!T (A)((zi)i∈I , (yi)i∈I) .

Next, this natural isomorphism is compatible with the right

cancellation of dereliction, in the sense that we have:

Lemma 16. Consider σ ∈ Vis[!A,B]. Then the diagram

‖derB ⊙ σ!‖[R!
A]

//

��

‖σ‖[R!
A]

// derT (B) • (‖σ‖[R
!
A])

!

(‖derB‖ • ‖σ!‖)[R!
A]

��

‖derB‖[R!
B] • (‖σ‖[R

!
A])

!

OO

‖derB‖ • (‖σ!‖[R!
A])

// ‖derB‖ • [L!
B](‖σ‖[R

!
A])

!

OO

commutes, where all arrows are the obvious structural maps

or obtained by Lemmas 11, 12, 13 and 14.

Proof. Start with the upper-left corner. This is a dia-

gram involving natural isomorphisms between distributors in

Dist[Sym(T (A)),T (B)], thus unfolding the definitions, a

witness in the upper-left corner corresponds to components




〈θ−i · π(i)〉〈0,i〉∈Σ{0}I : (xA,i)i∈I
∼=−

!A (xσA,i)〈0,i〉∈Σ{0}I

cc xσ
B
⊙ (xσ){0} ∈ C+(derB ⊙ σ!) ,

θ+ : xσB
∼=+
B xB

witnessing the pair ((xA,i)i∈I , xB).
Following the upper path in the diagram, this is sent to the

pair with the singleton sequence comprising the witness




〈θ−i · π(i)〉i∈I : (xA,i)i∈I
∼=−

!A (xσA,i)i∈I ,

xσ ∈ C+(σ) ,
θ+ : xσB

∼=+
B xB ,

in (‖σ‖[R!
A])

!((xA,i)i∈I , (xB)), along with the witness idxB
∈

derT (B)((xB), xB). Following the lower path, we get





〈θ−i · π(i)〉i∈I : (xA,i)i∈I
∼=−

!A (xσA,i)i∈I ,

xσ ∈ C+(σ) ,
idxσ

B
: xσB

∼=+
B xσB

in (‖σ‖[R!
A])

!((xA,i)i∈I , (x
σ
B)), along with the witness θ+ ∈

derT (B)((x
σ
B), xB) – a pair equivalent to the former.

Finally, we have compatibility with the last of the compo-

nents of a relative pseudocomonad, i.e. joinσ,τ , expressed via:

Lemma 17. If σ ∈ Vis[!A,B] and τ ∈ Vis[!B,C], then

‖τ ! ⊙ σ!‖[R!
A]

uu❦❦❦❦
❦❦

))❙❙❙
❙❙❙

‖(τ ⊙ σ!)!‖[R!
A]

��

(‖τ !‖ • ‖σ!‖)[R!
A]

��
[L!
C ](‖τ ⊙ σ!‖[R!

A])
!

��

‖τ !‖ • (‖σ!‖[R!
A])

��
[L!
C ]((‖τ‖ • ‖σ

!‖)[R!
A])

!

��

‖τ !‖ • [L!
B](‖σ‖[R

!
A])

!

��
[L!
C ](‖τ‖ • ‖σ

!‖[R!
A])

!

��

‖τ !‖[R!
B] • (‖σ‖[R

!
A])

!

��
[L!
C ](‖τ‖ • [L

!
B](‖σ‖[R

!
A])

!)!

��

[L!
B](‖τ‖[R

!
B])

! • (‖σ‖[R!
A])

!

��
[L!
C ](‖τ‖[R

!
B] • (‖σ‖[R

!
A])

!)! // [L!
B]((‖τ‖[R

!
B ])

! • (‖σ‖[R!
A])

!)

commutes, where all arrows are the obvious structural maps

or obtained by Lemmas 11, 12, 13 and 14.

Proof. A witness on the top distributor has components





〈θ−i,j,k · π(i, j, k)〉〈〈i,j〉,k〉 : (xA,i)i∈I
∼=−

!A (xσ,i,jA,k )〈〈i,j〉,k〉
(xτ,i)i∈I ⊙ (xσ,i,j)〈i,j〉∈Σi∈IJi

∈ C +(τ ! ⊙ σ!)

(θ+i )i∈I : (x
τ,i
C )i∈I ∼=

+
C (xC,i)i∈I

Following the left path of the diagram, this is sent to the

pair with first component the sequence of positive witnesses




θ−i,j,k · π(i, j, k))k ,
xσ,i,j ,
idxσ,i,j

B




i∈I,j∈Ji

where the two indices produce a sequence by ranging in the

lexicographic ordering; the second component is the sequence




〈idxτ,i

B,j
· κJi

(j)〉j∈Ji

xτ,i ∈ C +(τ)
θ+i




i∈I

.



On the other hand, following the right hand side path of the

diagram, we get the pair with first component the sequence



θ−i,j,k · π(i, j, k))k ,
xσ,i,j ,
idxσ,i,j

B




〈i,j〉∈Σi∈IJi

and with second component the sequence



〈idxτ,i
B,j

· κ(i, j)〉j∈Ji

xτ,i ∈ C+(τ)
θ+i




i∈I

,

but the two are equivalent, via Σi∈IJi ≃ Σi ∈IJi.

d) Preservation of Kleisli composition: Finally, we are

equipped to show how ‖−‖ lifts to the Kleisli bicategories.

Recall from the main text that for σ ∈ Vis[!A,B], we have

‖σ‖! = ‖σ‖[R!
A] ∈ Dist[Sym(T (A)),T (B)] .

Thus, we may set:

pid!A = pderA : ‖derA‖! ∼= derT (A)

for the natural isomorphism witnessing preservation of iden-

tity. Likewise, for σ ∈ Vis[!A,B] and τ ∈ Vis[!B,C], we set

the natural iso witnessing preservation of composition as

pcomp!σ,τ : ‖τ ⊙ σ!‖! = ‖τ ⊙ σ!‖[R!
A]

pcompσ,τ

∼= (‖τ‖ • ‖σ!‖)[R!
A]

∼= ‖τ‖ • ‖σ!‖[R!
A]

ppromσ∼= ‖τ‖ • [L!
B](‖σ‖[R

!
A])

!

∼= ‖τ‖[R!
B] • (‖σ‖[R

!
A])

!

= ‖τ‖! • ‖σ‖!!

These definitions provide the necessary components for:

Theorem 9. This provides the data for a pseudofunctor

‖−‖! : Vis! → Esp .

Proof. Naturality of pcomp!σ,τ in σ and τ is direct by compo-

sition of natural isomorphisms. The coherence diagrams follow

by diagram chasing, relying on Lemmas 15, 16 and 17.
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