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Fixpoint operators for 2-categorical structures

Zeinab Galal

LIP6, Sorbonne University

Abstract—Fixpoint operators are tools to reason on recursive
programs and data types obtained by induction (e.g. lists, trees)
or coinduction (e.g. streams). They were given a categorical
treatment with the notion of categories with fixpoints. A theorem
by Plotkin and Simpson characterizes existence and uniqueness
of fixpoint operators for categories satisfying some conditions
on bifree algebras and recovers the standard examples of the
category Cppo (ω-complete pointed partial orders and continuous
functions) in domain theory and the relational model in linear
logic.

We present a categorification of this result and develop
the theory of 2-categorical fixpoint operators where the 2-
dimensional framework allows to model the execution steps for
languages with (co)inductive principles. We recover the standard
categorical constructions of initial algebras and final coalgebras
for endofunctors as well as fixpoints of generalized species and
polynomial functors.

INTRODUCTION

Fixpoints operators play an important role to model infinite

computation in a wide range of computer science disciplines:

design of programming languages, verification, model check-

ing, databases, concurrency theory, type theory, etc. A fixpoint

for a program t is an input x such that there is a calculation

sequence between x and t(x). For example, a fundamental

property of untyped λ-calculus is the existence of fixpoint

combinators i.e. terms Y such that for any λ-term t, there

is a reduction path connecting the terms Yt and t(Yt).
From a set-theoretic viewpoint, the standard notion of

fixpoint for an endomap f ∶ A → A is an element x ∈ A
such that f(x) = x and it was axiomatized with the notion

of categories with fixpoint operators [1]. There is however no

notion of categorical fixpoint operator taking into account the

computational reduction steps and not collapsing them into

strict equalities.

The objective of this paper is to work in a 2-dimensional

framework to model explicitly the reductions of languages

with fixpoints and study their coherences i.e. the equations

satisfied by the program computations steps. It fits into the

line of research of categorifying models of computation by

replacing semantics where types are sets or preorders with

richer categorical structures to establish stronger mathematical

invariants.

Categories in dimension one have objects and morphisms

that can be composed. We can consider an additional dimen-

sion with the notion of 2-categories or bicategories which have

objects, 1-morphisms that can be composed and 2-morphisms

that can be composed in two different ways that verify

compatibility conditions. These 2-morphisms are thought of

as morphisms between 1-morphisms. When using bidimen-

sional categorical structures to model computations, we can

study program execution steps as primitive objects as they

become explicit 2-morphisms carrying information on program

reductions. It has seen many applications in concurrency, game

semantics, type theory, higher dimensional rewriting [2], [3],

[4], [5], [6], [7], [8], [9], [10].

When generalizing preorder semantics to richer categorical

semantics, least fixpoints become initial algebras and greatest

fixpoints become final coalgebras. In both cases, strict equal-

ities for fixpoints t(x) = x are now represented by explicit

isomorphisms

t(x)
algebra
ÐÐÐ→ x x

coalgebra
ÐÐÐÐ→ t(x)

capturing the dynamic aspect of fixpoint reductions. Initial

algebras correspond to recursive definition with induction

as a logical reasoning principle. They are typically used to

model finite data types (such as finite lists and trees) with a

constructor operation.

Dually, final coalgebras are the counterpart of corecursion

and coinduction where structures are described with a de-

structor or observer operation. They are now widely used in

computer science to model state-based systems with circular or

non-terminating behavior (automata, transitions systems, net-

work dynamics etc.). The categorical coalgebraic framework

is also a standard tool to study notions such as bisimilarity and

trace equivalence. It has been used in functional programming

to model lazy datatypes in languages such as Haskell or

reactive programs in proof assistants such as Coq and Agda.

Settings where initial algebra and final coalgebras coincide

because of limit-colimit coincidence arguments have also been

studied to solve equations with mixed variance variables (such

as reflexive objects D ≅D ⇒D for λ-calculus models [11]).

These algebras are called bifree and they provide a framework

where inductive and coinductive arguments are equivalent. An

important result by Plotkin and Simpson in this area states that

provided some conditions on bifree algebras are satisfied, we

obtain the existence of a unique uniform fixpoint operator for

1-categories [1].

While using initial algebra or final coalgebra semantics to

model infinite computations are now well-established tradi-

tions in computer science, there is no counterpart axiomati-

zation of fixpoint operators for 2-categorical structures and

the goal of this paper is develop their theory. In order to

axiomatize the notion of 2-dimensional fixpoint operator, the

main difficulty is to understand what axioms and coherences

the rewriting 2-morphisms should satisfy. We both need to
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ensure that the equations are correct, i.e. that they hold in

concrete models, and we also need completeness properties,

i.e. we want to ensure that we have stated them all.

We proceed in two steps: we first categorify the restricted

case of the Plotkin-Simpson theorem characterizing the exis-

tence of a unique uniform fixpoint operator for 1-categories

to extract an axiomatization of pseudo-fixpoint operator for 2-

categories. These operators form a category and uniqueness of

the fixpoint operator is replaced by a contractibility property:

there is a unique isomorphism between any two fixpoint

operators. The second step is to generalize to models where

fixpoints are not unique to verify that our axiomatization

holds. Our motivation for choosing this approach is that

the Plotkin-Simpson proof constructs explicitly a canonical

fixpoint operator using the bifree algebras and then uses the

fixpoint axioms to show that it is in fact unique. In the

2-dimensional case, the pseudo-bifree algebras allow us to

construct a canonical pseudo-fixpoint operator and in order

to obtain a contractibility property, we need to impose certain

coherence equations on the structural reduction 2-morphisms

which provides a guideline for the axiomatization of general

pseudo-fixpoint operators.

Related works

Categorification of recursive domain theory has an estab-

lished history with the work of Lambek, Freyd, Lehmann,

Adamek, Taylor, Fiore, Winskel and Cattani [12], [13], [14],

[15], [16], [17], [18]. In this paper, we mostly use results

by Cattani, Fiore and Winskel generalizing the notion of

algebraically compact categories for enriched categories to

enriched bicategories and proving limit-colimit coincidence

theorems in this setting with applications to presheaf models

of concurrency [17], [18]. From a syntactic viewpoint, Pitts

presented a candidate 2-dimensional type theory for fixpoints

which can serve to prove coherence theorems for our notion

of pseudo-fixpoint operators [19].

Ponto and Shulman have also studied a categorification of

the notion of fixpoint and trace for bicategories in a different

direction [20], [21]. They consider the trace of endo-2-cells

α ∶ f ⇒ f for a 1-cell f ∶ A → B; whereas in our case we

still want to compute the trace or fixpoint of endo-1-cells but

up to explicit rewriting 2-cells. We aim to investigate whether

the two approaches can be compared for the cartesian closed

setting in future work.

Plan of the paper

● We start in Section I by recalling the standard theory of

1-categorical fixpoint operators and give examples from

domain theory and linear logic that can be recovered by

the Plotkin-Simpson theorem.

● In Section II, we state the definitions of pseudo-fixpoint

operators for 2-categories with uniformity and dinatural-

ity axioms.

● We prove in Section III a generalization of the Plotkin-

Simpson theorem for 2-categories where pseudo-fixpoint

operators now form a category and uniqueness of the

fixpoint operator is replaced by a contractibility property.

● We show in Section V how the notion of 2-categorical

fixpoint we developed in Section II is verified in well-

known 2-categorical models.

I. FIXPOINT OPERATORS FOR 1-CATEGORIES

Definition I.1. Let D be a category with a terminal ob-

ject 1, a fixpoint operator on D is a family of functions

(−)∗ ∶ D(A,A) → D(1,A) indexed by the objects A of D

verifying that for all morphisms f ∶ A→ A,

f∗ = ff∗. (fix)

We can further require additional axioms such as uniformity

and dinaturality which are usually satisfied in concrete models

and can serve to characterize uniqueness properties of fixpoint

operators [22]. We can also consider parametrized axioms

giving the connection with traced monoidal categories [23] but

we leave the parametrized case for an accompanying paper.

For a category with fixpoints, the uniformity principle

(also called Plotkin’s axiom) is relative to a subcategory of

“strict maps” and is used to characterize the fixpoint operator

uniquely without relying on order-theoretic arguments [24],

[25]. For domain-like structures, strict maps are usually the

ones which preserve bottom elements � whereas general maps

are just assumed to be Scott-continuous. Another possibility is

to consider linear maps instead of strict maps, i.e. maps which

commute with all suprema not just directed ones and these

are the typical examples in linear logic models with fixpoints.

Freyd has also considered the case of a reflective subcategory

for the subcategory of strict maps [26].

Definition I.2. Let C,D be categories with terminal objects

and J ∶ C → D be an identity-on-objects functor preserving

terminal objects.

● A fixpoint operator (−)∗ on D is said to be uniform with

respect to J if for every s ∶ A → B in C and f ∶ A →
A,g ∶ B → B in D, we have:

J(s)f = gJ(s) implies J(s)f∗ = g∗. (unif)

● A fixpoint operator (−)∗ on D is dinatural if for every

f ∶ A→ B and g ∶ B → A in D,

(fg)∗ = f(gf)∗. (dinat)

Remark 1. We can in fact consider bijective-on-objects func-

tors for J ∶ C → D but we restrict to identity-on-objects

functors to make the notation less cumbersome.

As mentioned in the introduction, our approach is to use a

categorification of the Plotkin-Simpson theorem which char-

acterizes existence and uniqueness of fixpoint operators for 1-

categories that are obtained as Kleisli categories of comonads

satisfying some conditions on bifree algebras [1].

Recall that for an endofunctor T ∶ D→ D, a bifree T -algebra

(also called dialgebra, compact algebra or free bialgebra) is an

initial T -algebra (A,a ∶ TA → A) such that the inverse of a

is a final T -coalgebra (A,a−1 ∶ A→ TA).
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Theorem I.3 (Plotkin-Simpson [1]). Let C be a category

equipped with a comonad (T, δ, ε) and a terminal object. We

denote by D the co-Kleisli category CT and by J ∶ C→ D the

free functor induced by the comonadic adjunction.

1) If the endofunctor T has a bifree algebra, then D has a

unique uniform (with respect to J) fixpoint operator.

2) If C is cartesian and the endofunctor TT has a bifree

algebra, then D has a unique uniform (with respect to

J) dinatural fixpoint operator.

We proceed to give the general recipe to obtain bifree alge-

bras for endofunctors in a suitable preorder-enriched setting

in order to motivate the generalizations to dimension 2 in

Section V.

We denote by Cpo the category whose objects are ω-

complete partial orders and morphisms are Scott-continuous

functions (monotone maps preserving colimits of ω-chains). If

we restrict the objects to pointed cpo’s (with a bottom element

�), we denote this subcategory Cppo. We can further restrict

the morphisms to Scott-continuous functions that are strict

(preserving bottom elements) and we denote by Cppo� the

category of pointed cpo’s and strict Scott-continuous functions.

We are interested in Cppo�-enriched categories since they

provide a well-behaved setting to compute bifree algebras

as we will see below. Explicitly, a category C is Cppo�-

enriched if each homset C(A,B) is a cpo with a bottom

element � and composition C(A,B) × C(B,C) → C(B,C)
is Scott-continuous and strict in both components. Examples

of Cppo�-enriched categories include the category Cppo�
which is enriched over itself and the category Rel whose

objects are sets and morphisms are binary relations. Another

example is the category Lin of preorders and ideal relations

(binary relations R ⊆ A × B between preorders that are up-

closed in A and down-closed in B). The category Rel can

be viewed as the subcategory of Lin containing discrete

preorders.

The following theorem is a consequence of the limit-colimit

coincidence theorem by Smyth and Plotkin [27] which was

generalized by Fiore [16]:

Theorem I.4. Let C be a Cppo�-enriched category. If C

has an initial object and ω-colimits of chains of embeddings,

then C is Cpo-algebraically compact. It means that for every

endofunctor T ∶ C → C, if T is Cpo-enriched, i.e. for all

A,B, the induced map

C(A,B) Ð→ C(TA,TB)

preserves colimits of ω-chains, then T has a bifree algebra.

We proceed to give examples of well-known fixpoint opera-

tors that can be recovered from the Plotkin-Simpson theorem.

Consider the lifting comonad (−)� on Cppo�: this comonad

freely adjoins a bottom element and its co-Kleisli category

is isomorphic to Cppo. Since the endofunctors (−)� and

(−)�(−)� are Cppo-enriched, the category Cppo has a

unique dinatural fixpoint operator uniform with respect to the

free functor Cppo� →Cppo and it is given by the standard

formula

f∗ = ⋁
n∈ω

fn(�)

for f ∶ A → A in Cppo. We can also consider the finite

multiset comonad Mfin on the category Rel. It leads to a

quantitative model of linear logic where multisets allow to

count multiplicities of the inputs for a term [28]. As Mfin

and MfinMfin have bifree algebras, we recover the fixpoint

operator in the relational model [29] and obtain that it is

unique.

Lastly, the category Lin (also called the linear Scott

category ScottL) can be equipped with the ∨-semi-lattice

comonad yielding a qualitative model of linear logic where

substitution allows for duplication and erasure. This comonad

also verifies the necessary enrichment conditions to obtain a

unique uniform dinatural fixpoint operator.

II. BIDIMENSIONAL FIXPOINTS OPERATORS

We state in this section the definition of fixpoint operators

for 2-categories. We will show in the remaining sections how

the axioms we present arise from the generalization of the

Plotkin-Simpson construction in dimension 2 and how they

are verified in concrete examples. When moving to a higher

dimension, we have several possibilities depending on the

degrees of strictness and direction of the 2-morphisms (strict,

pseudo, (op)lax).

In this paper, for space considerations, we will focus on

one case: pseudo-fixpoint operators for 2-categories and leave

the remaining cases and the bicategorical weakening for the

long version. Even if we only consider the pseudo case where

the 2-cells are invertible, we will still provide a direction for

the arrows to give a better understanding of where they come

from and provide a guideline for the directed lax and oplax

cases.

Definition II.1. Let D be a 2-category with a terminal

object 1. A pseudo-fixpoint operator on D consists of a family

of functors indexed by the objects A of D :

(−)∗A ∶ D(A,A) → D(1,A)

together with a family of natural isomorphisms fixA (we will

omit the subscripts for objects to simplify the notation) with

components:

A

1

A

f∗

f∗

f⇗ fixf

for a 1-cell f ∶ A → A in D . Naturality means that for an

invertible 2-cell α ∶ f ⇒ g in D , we have:

3



A

1

A

f∗

g∗

g∗

g

⇗ α∗

⇗ fixg

=

A

1

A

f∗

f∗

g∗

f g

⇗ fixf

⇒
α

⇖ α∗

Remark 2. Strictly speaking, our pseudo-fixpoint operators act

on the sub-2-category of D where we only consider invertible

2-cells. Indeed, for a general 2-cell α ∶ f ⇒ g, α∗ is not

defined unless α is invertible and we need to consider (op)lax-

fixpoint operators to act on non-invertible 2-cells. In order to

lighten the notation, for a 2-category D , we implicitly use the

same notation for D and its sub-2-category containing only

invertible 2-cells for the rest of the paper.

In the preordered case, we can compare fixpoint operators

pointwise and we are usually interested in the least and greatest

fixpoints. In the categorified setting, fixpoint operators form a

category so there can be more than one way of comparing two

fixpoint operators. Morphisms of pseudo-fixpoint operators are

transformations that commute with the structural 2-cells fix.

Initial objects in this category correspond to least fixpoints

while terminal objects correspond to greatest fixpoints. The

uniqueness property for fixpoint operators in the preorder

setting now becomes a contractibility property for the category

of fixpoint operators. A category is contractible when it is not

empty and for any two objects, there is a unique isomorphism

between them (in particular, it is a groupoid).

Definition II.2. Let ((−)∗,fix∗) and ((−)†,fix†) be two

pseudo-fixpoint operators on a 2-category D . A pseudo-

morphism of pseudo-fixpoint operators ((−)∗,fix∗) →
((−)†,fix†) consists of a family of natural isomorphisms

δA ∶ (−)
∗
A⇒ (−)

†
A ∶ D(A,A) → D(1,A)

indexed by the objects A of D that commutes with the

structural 2-cells fix, i.e. it satisfies the following coherence

for every f ∶ A→ A:

A

1

A

f∗

f †

f † f
⇗ fix

†
f

⇗ δf

=

A

1

A

f∗

f †

f∗ f
⇗ fix

∗
f

⇖ δf

We denote by Fix(D) the category of pseudo-fixpoint oper-

ators on D .

Dinatural transformations are used to model mixed variance

operators using their argument both covariantly and contravari-

antly. The typical examples arising from semantics occur with

(cartesian or monoidal) closed structure where the evaluation

map is dinatural and with fixpoint operators. In our setting,

we use the notion of pseudo-dinatural transformation for 2-

functors.

Definition II.3. A pseudo-dinatural fixpoint operator on D

consists a pseudo-fixpoint operator ((−)∗,fix) on D together

with a family of invertible 2-cells

B

1

A

(fg)∗

(gf)∗

f⇗ dinat
f
g

for 1-cells f ∶ A → B and g ∶ B → A in D satisfying the

following axioms:

1) pseudo-dinaturality axioms:

a) Unity axiom: for a 1-cell f ∶ A→ A, we have

A

1

A

f∗

f∗

1A⇗ dinat
1A
f

= idf∗

b) 1-naturality axiom: for all 1-cells f ∶ A → B, g ∶
B → C and h ∶ C → A in D :

A

C

1 B

(gfh)∗

(fhg)∗

(hgf)∗

g

f

⇗ dinat
g
fh

⇗ dinat
f
hg

=

A

C

1 B

(gfh)∗

(hgf)∗

g

f

⇗ dinat
gf
h

c) 2-naturality axiom: for an invertible 2-cell α ∶ f ⇒
f ′ ∶ A→ B in D and a 1-cell g ∶ B → A in D , we

have

B

1

A

(fg)∗

(f ′g)∗

(gf ′)∗

f ′

⇗ (αg)∗

⇗ dinat
f ′

g

=

B

1

A

(fg)∗

(gf)∗

(gf ′)∗

f f ′

⇗ dinat
f
g

⇒
α

⇖ (gα)∗

these three axioms induce a pseudo-dinatural transfor-

mation:

dinat ∶ D(−,−)
.
Ô⇒ D(1,−) ∶ Dop ×D →CAT

2) coherence between dinat and fix: for all 1-cells f ∶
A→ B and g ∶ B → A in D , we have:
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B

B

1 A

(fg)∗

(gf)∗

(fg)∗

f

g

⇗ dinat
f
g

⇗ dinat
g
f

=

B

B

1 A

(fg)∗

(fg)∗

f

g

⇗ fixfg

Remark 3. Note that the coherence axiom between dinat and

fix above implies that

A

1

A

f∗

f∗

f⇗ dinat
f
1A

=

A

1

A

f∗

f∗

f⇗ fixf

since dinat
1A
f = idf∗ . In the 1-categorical setting, if the

axiom for dinaturality f(gf)∗ = (fg)∗ holds, the fixpoint

axiom ff∗ = f∗ becomes redundant (it suffices to take

g = idA). In the 2-dimensional case, the 2-cells fix are entirely

determined by the 2-cells dinat and we therefore just write

((−)∗,dinat) for a pseudo-dinatural fixpoint operator instead

of ((−)∗,fix,dinat).

Definition II.4. Let ((−)∗,dinat∗) and ((−)†,dinat†) be

two pseudo-dinatural fixpoint operators on a 2-category D .

A pseudo-morphism of pseudo-dinatural fixpoint operators

((−)∗,dinat∗) → ((−)†,dinat†) consists of a family of

natural isomorphisms

δA ∶ (−)
∗
A⇒ (−)

†
A
∶ D(A,A) → D(1,A)

indexed by the objects A of D that commutes with the struc-

tural 2-cells dinat, i.e. it satisfies the following coherence for

every f ∶ A→ B and g ∶ B → A:

B

1

A

(fg)∗

(gf)†

(fg)† f
⇗ dinat

f †
g

⇗ δfg

=

B

1

A

(fg)∗

(gf)†

(gf)∗ f

⇗ dinat
f ∗
g

⇖ δgf

We denote by DinFix(D) the category of pseudo-dinatural

fixpoint operators on D .

Dinatural transformations do not compose in general and

therefore they do not form a category. In order to make the

notion compositional, strong dinatural transformations were

introduced. It was noted by Mulry that the uniformity axiom

for fixpoints (Definition I.2) can be reformulated by requiring

(−)∗ to be part of a strong dinatural transformation with re-

spect to strict maps [30] and we use this characterization when

moving to dimension 2. While generalizations of dinatural

and extranatural transformations for 2-categorical structures

have been considered before [31], [32], [33], [34], [35], to

our knowledge, there is no existing notion of strong dinatural

transformations in dimension 2.

Definition II.5. Let J ∶ C → D be an identity-on-objects

2-functor (strictly) preserving terminal objects. A pseudo-

fixpoint operator on D that is uniform with respect to J

consists of a pseudo-fixpoint operator ((−)∗,fix) as in Defi-

nition II.1 together with a family of 2-cells

B

1

A

g∗

f∗

Js⇙ unifγ

for every 1-cells s ∶ A → B in C , f ∶ A → A and g ∶ B → B

in D and invertible 2-cell γ as below:

B B

A A

Js

g

f

Js⇙ γ

satisfying the following axioms:

1) strong pseudo-dinaturality:

a) Unity axiom: we have

A

1

A

f∗

f∗

J1A⇙ unif idf
= idf∗

b) 1-naturality: for two squares in D

B B

A A

Js

g

f

Js⇙ γ

C C

B B

Jr

h

g

Jr⇙ ρ

we have:

A

C

1 B

h∗

f∗

Jr

Js

⇙ unifγ∗vρ =

A

C

1 B

h∗

g∗

f∗

Jr

Js

⇙ unifρ

⇙ unifγ

where γ ∗v ρ denotes the 2-cell corresponding to

stacking the two squares vertically as follows:
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C C

A A

∶=Jrs

h

f

Jrs⇙ γ ∗v ρ B B

C C

A A

Js

Jr

g

h

f

Js

Jr

⇙ γ

⇙ ρ

c) 2-naturality: for every invertible 2-cell θ ∶ s⇒ r in

C such that

B B

A A

Jr Js

g

f

Js⇐
Jθ

⇙ γ =

B B

A A

Jr

g

f

JsJr ⇐
Jθ

⇙ ρ

we have

B

1

A

=

g∗

f∗

Js⇙ unifγ

B

1

A

g∗

f∗

Jr Js⇙ unifρ ⇐
Jθ

d) If the following equality holds,

B B

A A

=Js

k

f

h
Js

⇙ ρ

⇓ α

B B

A A

Js

k

f

g
Js

⇙ γ

⇓ β

then we have:

B

1

A

k∗

f∗

h∗ Js
⇙ unifρ

⇘ α∗

=

B

1

A

k∗

f∗

g∗ Js
⇙ unifγ

⇙ β∗

These four axioms induce a strong pseudo-dinatural

transformation:

unif ∶ D(J(−), J(−))
. .
Ô⇒ D(1, J(−)) ∶ C op×C →CAT

2) coherence between fix and unif : for an invertible 2-

cell as below

B B

A A

J(s)

g

f

J(s)⇙ γ

we have:

A
B

1 B

g∗

g∗

f∗

Js

g

⇗ fixg

⇗ unifγ =

A
B

1

A
B

f∗

Js

f∗ Js

g∗

f

g
⇗ fixf ⇗ γ

⇑ unifγ

Definition II.6. Let ((−)∗,fix∗,unif∗) and

((−)†,fix†
,unif

†) be two pseudo-fixpoint operators

uniform with respect to J ∶ C → D . A pseudo-morphism

of uniform fixpoint operators from ((−)∗,fix∗,unif∗)
to ((−)†,fix†

,unif
†) is a pseudo-morphism of fixpoint

operators δ ∶ ((−)∗,fix∗) → ((−)†,fix†) as in Definition II.2

satisfying the additional coherence for every square in D :

B B

A A

J(s)

g

f

J(s)⇙ γ

we have:

B

1

A

g†

f∗

g∗ Js
⇙ unif

∗
γ

⇙ δg

=

B

1

A

g†

f∗

f †
Js

⇙ unif
†
γ

⇘ δf

We denote by Fix(D , J) the category of pseudo-fixpoint

operators on D uniform with respect to J .

Definition II.7. Let J ∶ C → D be a identity-on-objects

2-functor (strictly) preserving terminal objects. A pseudo-

dinatural fixpoint operator uniform with respect to J consists

of a pseudo-dinatural fixpoint operator ((−)∗,dinat) on D

together with a strong dinatural transformation

unif ∶ D(J(−), J(−))
. .
Ô⇒ D(1, J(−), ) ∶ C op × C →CAT

satisfying the following additional coherence between dinat

and unif : for two squares in D of the form

C D

A B

C

A

Js

h

f

Jr⇙ γρ ⋆ γ =

g

k

Js⇙ ρ

we have:

6



B
D

1 C

(hk)∗

(kh)∗

(fg)∗

Jr

h

⇗ dinat
h
k

⇗ unifγ⋆ρ
=

B

D

1

A

C

(fg)∗

Jr

(gf)∗
Js

(kh)∗

f

h⇗ dinat
f
g ⇗ γ

⇑ unifρ⋆γ

where γ ⋆ ρ corresponds to the following 2-cell:

D C

B A

D

B

Jr

k

g

Js⇙ ργ ⋆ ρ =

f

h

Jr⇙ γ

Note that if we restrict to the case where A = B, C = D,

g = 1A, k = 1C , r = s and ρ = id, we obtain the coherence

axiom between fix and unif in Definition II.5. Pseudo-

fixpoint operators uniform with respect to J are therefore a

special case of pseudo-dinatural fixpoint operators uniform

with respect to J as expected.

Definition II.8. Let ((−)∗,dinat∗,unif∗) and

((−)†,dinat†,unif †) be two pseudo-dinatural fixpoint

operators uniform with respect to J ∶ C → D . A

pseudo-morphism of uniform dinatural fixpoint operators

from ((−)∗,dinat∗,unif∗) to ((−)†,dinat†,unif †)
is a pseudo-morphism of dinatural fixpoint operators

δ ∶ ((−)∗,dinat∗) → ((−)†,dinat†) as in Definition II.4 that

is also a pseudo-morphism of uniform fixpoint operators as

in Definition II.6, i.e. δ commutes with both the dinaturality

and uniformity structural 2-cells dinat and unif .

We denote by DinFix(D , J) the category of pseudo-

dinatural fixpoint operators on D uniform with respect to J .

Before stating the main theorem of the paper, we recall the

notion of pseudo-bifree algebras for 2-functors.

Definition II.9. For a 2-functor ! ∶ C → C , a pseudo-initial

algebra is a 1-cell R ∶ !Φ → Φ such that for every 1-cell f ∶
!A→ A, there exists a pseudo-morphism of algebras (uf , µf) ∶
R → f , i.e. a 1-cell uf ∶ Φ → A and a 2-cell

!A A

!Φ Φ

!uf

f

R

uf⇙ µf

verifying the following universal property: for any pseudo-

algebra 1-cells (v, ν), (w,ω) ∶ R → f , there is a unique

invertible algebra 2-cell φ ∶ (v, ν) ⇒ (w,ω), i.e. a unique

invertible 2-cell φ ∶ v⇒ w in C such that:

!A A

!Φ Φ

!w !v

f

R

v⇐
!φ ⇙ ν =

!A A

!Φ Φ

!w

f

R

vw ⇐
φ⇙ ω

We can similarly define a dual notion of pseudo-final !-

coalgebra. Lambek’s theorem stating that an initial algebra or

a final coalgebra is an invertible morphism is generalized to

an adjoint equivalence:

Lemma II.10 ([18]). If R ∶ !Φ → Φ is a pseudo-initial !-

algebra, then it is part of an adjoint equivalence (R ∶ !Φ →

Φ, L ∶ Φ→ !Φ, η ∶ id
≅
Ô⇒ RL,ε ∶ LR

≅
Ô⇒ id).

Definition II.11. We say that R ∶ !Φ → Φ is a pseudo-

bifree algebra if R is a pseudo-initial algebra and its (uniquely

determined) left adjoint L is a pseudo-final coalgebra.

We can now state the main theorem of this paper which is

categorification of Theorem I.3:

Theorem II.12. Let C be a 2-category equipped with a (strict)

2-comonad (!, δ, ε) and a (strict) terminal object 1. We denote

by D the co-Kleisli 2-category C! and by J ∶ C → D the free

functor induced by the comonadic adjunction.

1) If the endofunctor ! has a pseudo-bifree algebra, then

the category Fix(D , J) of pseudo-fixpoint operators on

D uniform with respect to J is contractible.

2) If C is cartesian and the endofunctor !! has a pseudo-

bifree algebra, then the category DinFix(D , J) of

pseudo-dinatural fixpoint operators on D uniform with

respect to J is contractible.

We proceed to prove this theorem in the next section by

first constructing an explicit pseudo-fixpoint operator from the

bifree algebras and showing that it verifies the required axioms

and then proving the contractibility property i.e. for any

other pseudo-fixpoint operator, there is a unique isomorphism

between them.

III. THE PLOTKIN-SIMPSON THEOREM FOR 2-CATEGORIES

In this section, we fix a 2-category C equipped with a

(strict) 2-comonad (!, δ, ε) and a (strict) terminal object 1. We

denote by D the co-Kleisli 2-category C! and by J ∶ C → D

the free functor induced by the comonadic adjunction. We

assume further that the endofunctor ! has a pseudo-bifree

algebra R ∶ !Φ → Φ.

The following lemma is simply a reformulation of Defini-

tion II.9 from C to the co-Kleisli D :

Lemma III.1. For any 1-cell f ∶ A → A in D , there exists a

1-cell uf ∶ Φ→ A in C and a 2-cell µf

7



A A

Φ Φ

J(uf)

f

R

J(uf)⇙ µf

in D verifying the following property: for any 1-cells v,w ∶
Φ → A in C and 2-cells ν ∶ J(v)R ⇒ fJ(v) and

ω ∶ J(w)R ⇒ fJ(w) in D , there exists a unique invertible

φ ∶ v⇒ w in C such that

A A

Φ Φ

Jw Jv

f

R

Jv⇐
Jφ

⇙ ν ==

A A

Φ Φ

Jw

f

R

JvJw ⇐
Jφ

⇙ ω

The next lemma uses the fact that R is pseudo-bifree and

therefore part of an adjoint equivalence where the left adjoint

L is pseudo-final.

Lemma III.2. There exists a 1-cell t ∶ 1→ Φ and an invertible

2-cell τ ∶ t⇒ Rt in D

Φ

1

Φ

t

t

R⇗ τ

satisfying the following property: for any 1-cells v,w ∶ 1 → Φ

in D and invertible 2-cells ν ∶ v⇒ Rv and ω ∶ w⇒ Rw, there

exists a unique invertible 2-cell ψ ∶ v⇒ w in D such that

Φ

1

Φ

v

w

w R
⇗ ω

⇗ ψ

=

Φ

1

Φ

v

w

v R
⇗ ν

⇖ ψ

Using these two lemmas, we can now construct the pseudo-

fixpoint operator on D . We define a family of functors indexed

by the objects A ∈ D

(−)∗A ∶ D(A,A) → D(1,A)

mapping a 1-cell f ∶ A→ A to

f∗ ∶= 1 Φ A
J(uf)t

where uf and t are obtained from Lemmas III.1 and III.2. For

a 2-cell α ∶ f ⇒ g in D(A,A), define α∗ ∶ f∗⇒ g∗ as

1 Φ A

J(ug)

J(uf)

t
⇓ Jφ

where φ is the unique 2-cell uf ⇒ ug in C such that

A A

Φ Φ

Jug Juf

f

g

R

Juf⇐
Jφ

⇙ µf

⇓ α

=

A A

Φ Φ

Jug

g

R

JufJug ⇐
Jφ

⇙ µg

which exists by Lemma III.1.

We can now define the fixpoint 2-cell fixf ∶ ff
∗⇒ f∗ for

a 1-cell f ∶ A→ A in D as:

A

1

A

f∗

f∗

f⇗ fixf ∶=

Φ

1

Φ A

At

t

R⇗ τ

Juf

f

Juf

⇗ µf

where µf and τ are obtained from Lemmas III.1 and III.2. To

obtain that ((−)∗,fix) is a pseudo-fixpoint operator on D , it

only remains to show that fix is natural:

Lemma III.3 (Naturality of fix). For a 2-cell α ∶ f ⇒ g in

D , we have fixg α
∗ = (α ⋅α∗)fixf .

Now that we have a constructed a pseudo-fixpoint operator

on D , we want to show that it is uniform with respect to the

free functor J ∶ C → D from the base 2-category C to the

co-Kleisli D = C!.

Assume that there exist a 1-cell s ∶ A → B in C and f ∶

A→ A, g ∶ B → B in D and a 2-cell

B B

A A

J(s)

g

f

J(s)⇙ γ

in D . By Lemma III.1, there exists a unique 2-cell φ ∶ suf ⇒
ug in C such that:

A A

B B

Φ Φ

Jug

Juf

Js

f

g

R

Juf

Js

⇐
Jφ

⇙ µf

⇙ γ

=

B B

Φ Φ

AJug

g

R

Juf

Js

Jug
⇐
Jφ⇙ µg

Define unifγ as:

B

1

A

g∗

f∗

Js⇙ unifγ ∶= 1 Φ

A

B
Jug

Juf

Js
t

⇙ Jφ
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Proposition III.4. The 2-cells unifγ we constructed yield

a strong pseudo-dinatural transformation and they verify the

coherence axiom between fix and unif .

We have constructed a uniform pseudo-fixpoint operator

showing that the category Fix(D , J) is inhabited, it remains

to show that it is contractible.

Assume that there exists another pseudo-fixpoint operator

((−)†,fix†
,unif

†) on D that is uniform with respect to J ∶

C → D . We want to show that there is a unique isomorphism

of uniform pseudo-fixpoint operators δ ∶ ((−)∗fix∗,unif∗) →
((−)†,fix†

,unif
†).

By Lemma III.2, there exists a unique invertible 2-cell δ0 ∶

t⇒ R† such that

Φ

1

Φ

t

R†

R†

R

⇗ δ0

⇗ fix
†
R

=

Φ

1

Φ

t

t

R†

R

⇗ τ

⇖ δ0

Now, for every 1-cell f ∶ A→ A, there exists by Lemma III.1

a 1-cell uf ∶ Φ→ A in C and a 2-cell

A A

Φ Φ

J(uf)

f

R

J(uf)⇙ µf

in D . Since (−)† is uniform with respect to J , we have a

2-cell unif
†
µf
∶ JufR

† ⇒ f † and we define δf ∶ f
∗⇒ f † as:

δf ∶=

B

1

A

f †

t

R† Juf
⇙ unif

†
µf

⇘ δ0

Proposition III.5. The category Fix(D , J) is contractible i.e.

δ is an isomorphism of uniform pseudo-fixpoint operators and

it is unique.

IV. DINATURALITY

To obtain that the pseudo-fixpoint operator is pseudo-

dinatural, we want to construct an invertible dinaturality 2-cell

for every 1-cell f ∶ A→ B in D ,

D(B,A)

D(B,B) D(1,B)

D(A,A) D(1,A)

D(B,f)

(−)∗B

(−)∗A
D(f,A)

D(1, f)⇗ dinat
f

with components

B

1

A

(fg)∗

(gf)∗

f⇗ dinat
f
g

for g in D(B,A). To do so, we need to assume further that the

endofunctor !! ∶ C → C has a pseudo-bifree algebra and that

2-category C is cartesian. Note that it implies that co-Kleisli

D is cartesian as well and that the free functor J ∶ C → D

preserves the cartesian structure.

The following lemma uses the same argument as the strict

case by Freyd [26].

Lemma IV.1. Assume that !! ∶ C → C has a pseudo bifree

algebra. Then, if R ∶ !Φ→ Φ is a pseudo bifree !-algebra,

!!Φ
!R
Ð→ !Φ

R
Ð→ Φ

is a pseudo bifree !!-algebra.

Lemma IV.2. For 1-cells v,w ∶ 1→ Φ in D and 2-cells

Φ

1

Φ

v

v

RR⇗ ν and

Φ

1

Φ

w

w

RR⇗ ω

in D , there exists a unique invertible 2-cell λ ∶ w ⇒ v in D

such that

Φ

1

Φ

w

v

v RR
⇗ ν

⇗ λ

=

Φ

1

Φ

w

v

w RR
⇗ ω

⇖ λ

To construct the dinaturality 2-cells, we first start by con-

structing a 2-cell din ∶ t ⇒ (RR)∗. Let din be the unique

invertible 2-cell from t to J(uRR)t (obtained from Lemma

IV.2) such that:

Φ

Φ

1

Φ

Φ

t

t

JuRR

t

R

RR

⇗ τ ⇗ µRR

⇗ din

JuRR

=

Φ

Φ

1 Φ

Φ

t

t

t

R

R

⇗ τ

⇗ τ

JuRR

t ⇗ din

Once this isomorphism is obtained, we construct the dinatu-

rality 2-cells dinat
f
g using uniformity. Consider the following

endo-1-cell:
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A ×B B ×A A ×B
σf × g

where σ is the symmetry obtained in the standard way as the

pairing ⟨π1, π2⟩. Using Lemma III.1, there is a 1-cell uσ(f×g) ∶

Φ→ A ×B in C and a 2-cell µσ(f×g):

A A

Φ Φ

J(uσ(f×g))

f

R

J(uσ(f×g))⇙ µσ(f×g)

From the two squares

Φ Φ

A ×B

A

A ×B

Φ

A ×B

A B

Juσ(f×g)

R

f

Juσ(f×g) ⇙ µσ(f×g) Juσ(f×g)

π1π1 π2

g

σ(f × g)σ(f × g)

R

⇙ µσ(f×g)

Π
1
σ(f×g) ∶=

Φ Φ

A ×B

B

A ×B

Φ

A ×B

B A

Juσ(f×g)

R

g

Juσ(f×g) ⇙ µσ(f×g) Juσ(f×g)

π2π2 π1

f

σ(f × g)σ(f × g)

R

⇙ µσ(f×g)

Π
2
σ(f×g) ∶=

we obtain uniformity 2-cells

A

1

Φ

A ×B

(gf)∗

(RR)∗

Juσ(f×g)

Jπ1

⇙ unifΠ1

σ(f×g) and

B

1

Φ

A ×B

(fg)∗

(RR)∗

Juσ(f×g)

Jπ2

⇙ unifΠ2

σ(f×g)

We can now construct the general dinaturality 2-cell dinat
f
g

as in Figure 1.

Note that for fix and unif , we wrote the direction of 2-

cells without needing to take inverses whereas for dinaturality,

a back-and-forth is needed to construct the 2-cells. It means

that for the general directed case, we need both the lax and

oplax directions in order to obtain dinaturality.

Proposition IV.3. The 2-cells dinat
f
g we constructed yield a

pseudo-dinatural transformation and they verify the coherence

axiom between dinat and unif .

We have now shown that the category of uniform pseudo-

dinatural fixpoint operators DinFix(D , J) is inhabited, it

remains to show that it is contractible to complete the proof

of Theorem II.12.

Assume that there is another uniform pseudo-dinatural

fixpoint operators ((−)†,dinat†
,unif

†). By Proposition

III.5, we already have a constructed morphism of uni-

form pseudo-fixpoint operators δ ∶ ((−)∗,fix∗,unif∗) →
((−)†,fix†

,unif
†) where the 2-cells fix are induced from the

2-cells dinat. Therefore, it only remains to show:

Proposition IV.4. The category DinFix(D , J) is con-

tractible i.e. δ commutes with the dinaturality 2-cells and it is

unique.

V. EXAMPLES

We start by presenting examples where the pseudo-fixpoint

operators are obtained as instances of Theorem II.12 and

therefore for which the category of pseudo-fixpoint operators

is contractible. In particular, the least and greatest fixpoint

(i.e. the initial and final object of the category of pseudo-

fixpoints) are isomorphic. We consider afterwards the example

of polynomial functors which are not an instance of our

theorem but where the axioms for pseudo-fixpoints presented

in Section II are verified.

A. Limit-colimit coincidence theorem for 2-categorical struc-

tures

We give a brief reminder of the general recipe to obtain

pseudo-bifree algebras for endofunctors on 2-categories using

the machinery developed by Cattani, Fiore and Winskel [16],

[17], [18]. Instead of considering preorder-enriched categories,

we move to 2-categories or bicategories whose hom-categories

have colimits of ω-chains and initial objects. The colimits

of ω-chains of embedding-projection pairs in the preorder-

enriched setting are generalized to pseudo-colimits of ω-

chains of co-reflections (adjunctions with invertible unit) in

the categorified setting.

We say that a 2-category or bicategory C is Catω-enriched

(Catω,�-enriched) if for all objects A and B, its hom-category

C (A,B) have colimits of ω-chains (and initial objects) and

whose composition functors

C (A,B) ×C (B,C) → C (B,C)

preserve of colimits ω-chains (and initial objects) in both

variables. The analogue of the category Cppo is the 2-

category Catω given by

● 0-cells: categories with colimits of ω-chains and initial

objects;

● 1-cells: functors preserving colimits of ω-chains;
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Figure 1. Construction of the dinaturality 2-cells

B

1

A

(fg)∗

(gf)∗

f⇗ dinat
f
g ∶= 1 B ×A

A ×B BΦ

Φ A ×B A

Juσ(f×g) π2

Juσ(f×g) π1

f × g

σ

fR ⇗ µσ(f×g) =

⇑ unifΠ1

σ(f×g)

⇑ unif−1Π2

σ(f×g)

(RR)∗

t

t

(RR)∗

⇗ τ

⇗ din
−1

⇖ din

(gf)∗

(fg)∗

● 2-cells: natural transformations.

and its sub-2-categoryCatω,� which restricts the 1-morphisms

to those preserving initial objects (corresponding to the cate-

gory Cppo� in the preorder setting).

In order to obtain pseudo-bifree algebras, we make use of

the following theorem:

Theorem V.1 ([18]). Let C be a Catω,�-enriched 2-category.

If C has a pseudo-initial object and pseudo-ω-colimits of

chains of coreflections (adjunctions with invertible units), then

C is Catω-pseudo-algebraically compact. It means that for

every pseudo-functor T ∶ C → C , if T is Catω-enriched, i.e.

for all A,B, the induced functor

C (A,B) Ð→ C (TA,TB)

preserves colimits of ω-chains, then T has a pseudo-bifree

algebra.

B. Categorical domain theory

The canonical example is the 2-category Catω,� with the

lifting 2-comonad (−)� ∶ Catω,� → Catω,� which freely

adjoins initial objects. Both (−)� and (−)�(−)� are Catω-

enriched and therefore the coKleisli 2-category (which is

equivalent to Catω) verifies that its category of pseudo-

dinatural fixpoint operators uniform (with respect to the free

functor Catω,� → Catω) is contractible. The standard Lam-

bek construction for initial algebras for a finitary endofunctor

f ∶ A → A on a category A with an initial object � and ω-

colimits by calculating the colimit of the diagram

�→ f(�) → f2(�) → . . .

provides both the initial and final pseudo-fixpoint opera-

tors [36]. As a consequence of Theorem II.12, Lambek’s

construction verifies the dinaturality axioms and is uniform

with respect to sub-2-category of functors preserving initial

objects up to isomorphism.

We can also recover Adamek’s result for Scott-complete

categories which can be viewed as a categorification of Scott

domains [14]. He considers the 2-category SCC given by

● 0-cells: Scott-complete categories (i.e finitely accessible

category such that every diagram with a cocone has a

colimit);

● 1-cells: functors preserving directed colimits;

● 2-cells: natural transformations.

and its sub-2-category SCC� whose 1-cells are restricted to

functors preserving directed colimits and initial objects. The

lifting 2-comonad on SCC� has the required bifree algebras

so that the co-Kleisli SCC has a contractible category of

pseudo-dinatural fixpoint operators uniform with respect to the

free 2-functor SCC� → SCC.

C. Profunctors and linear logic models

Another example of Catω,�-enriched bicategory is the

bicategory of profunctors denoted by Prof [37]. For small

categories A and B, a profunctor P from A to B is a

functor P ∶ A × B
op → Set or equivalently a functor from

A to the presheaf category B̂. Profunctors can be seen as a

categorification of Rel as a relation R ⊆ A ×B corresponds

to a profunctor between discrete categories such that each

component is either the empty set or a singleton.

Many pseudo-comonad structures were considered on Prof

leading to models of linear logic with various notion of

substitution [3], [4], [38]. In particular, the free symmetric

monoidal completion comonad on Prof yields the model of

generalized species of structures which encompasses Joyal’s

combinatorial species and is also a categorification of the

relational model of linear logic [4]. The morphisms in the co-

Kleisli bicategory correspond to the notion of analytic functors

which are generalized power series with quotients [39]. We

can also consider the pseudo-comonads freely adjoining finite

coproducts or finite colimits to generalize the category Lin

with the ∨-semi-lattice comonad in Section I or simply the

comonad freely adjoining an initial object. We refer the reader
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to [40] for a general treatment of pseudo-(co)-monads on Prof

and to [9] for other examples with applications to intersection

typing systems.

The pseudo-comonads we consider verify the necessary

conditions on bifree algebras as they are all Catω-enriched

and Theorem V.1 has been extended to bicategories and

pseudo-functors [18]. For the colimit-completion cases, it is

a straightforward consequence of the commutation of colimits

and it only needs to be checked by hand for the free symmetric

strict monoidal case.

Strictly speaking, we have only provided the notion of

pseudo-fixpoint operators for 2-categories and not for bicate-

gories. Even if we strictify the bicategory Prof to its biequiv-

alent 2-category Cocont (concontinuous functors between

presheaf categories), the comonads we consider are pseudo

and their corresponding co-Kleisli are therefore bicategories

and not 2-categories.

For space considerations, we do not give the proof of

Theorem II.12 for bicategories in this paper but only state

that we obtain as a corollary that species with the free

symmetric strict monoidal completion, initial object, finite

coproduct, finite colimit pseudo-comonads are all instances of

this construction and therefore all have a contractible category

of pseudo-dinatural fixpoint operators uniform with respect to

the inclusion of profunctors into these generalized species.

D. Polynomial functors

Initial algebras (well-founded trees) and final coalgebras

(non-well-founded trees) for polynomial functors have been

extensively studied [41], [42], [43], [44] and are standard tools

to model (co)inductive types in dependent type theories. If we

fix a locally cartesian closed category C, for objects I and J

in C a polynomial from I to J is a diagram of shape

I

E B

J

p

s t

in the category C. It induces a polynomial functor C/I → C/J
between the slice categories which form a 2-category with 2-

cells given by cartesian transformations. We say that C has

W-types if all polynomial endofunctors have initial algebras

and that it has M-types if they have final coalgebras.

It is well-known that W-types and M-types do not coincide

and they are therefore not an instance of the contractibility

property of Theorem II.12. This example is therefore an

adequate test to verify that the axioms we stated in Section II

are not just valid in the restricted contractible case but provide

a general notion of pseudo-fixpoint operators.

The 2-naturality axiom of the operator computing initial

algebras (or final coalgebras) is well known and is sometimes

called the “functoriality property”. Dinaturality for the initial

algebra or final coalgebra operators is also known in the

literature [26]. The statement is that for functors F ∶ A → B,

G ∶ B → A such that GF and FG have initial algebras,

if GFA
a
Ð→ A is GF -initial, then FGFA

Fa
Ð→ FA is FG-

initial. To our knowledge, the axioms of a pseudo-dinatural

transformation, while straightforward to check, have not been

stated explicitly.

Uniformity on the other hand depends on how the initial

algebras (or final coalgebras) are computed in the ambiant 2-

category. In general, if initial algebras are obtained as colimit

constructions, then natural candidates for the 2-category of

strict maps are functors preserving initial objects or cocontin-

uous functors whenever these notions are well-defined. Dually,

if the pseudo-fixpoint operator is obtained by computing final

coalgebras as certain limits then we can consider terminal

object preserving functors or continuous functors as strict

maps. In the case of polynomial functors over Set, W-types

are uniform with respect to spans i.e. polynomial functors of

shape

I

E B

J

≅
s t

and M-types are uniform with respect to monomials which

are polynomial functors of shape

I

E 1

J

!

s t

where 1 is a singleton set.

CONCLUSION

We have presented the theory of fixpoint operators for 2-

categories using a categorification of Plotkin-Simpson’s the-

orem as a guideline to derive the equations on the structural

2-cells in dimension 2. The concrete 2-categorical examples

allow us to confirm that theses equations are verified.

In future work, we aim to extend our theory to parametrized

and guarded fixpoint operators. Adding parameters allows to

consider richer contexts for terms and guardedness restricts

the possible infinite behavior of fixpoints to ensure proper-

ties such as solvability or productivity are satisfied. Since a

parametrized fixpoint operator verifying the Conway axioms

is equivalent to a traced monoidal category with the cartesian

product as the chosen tensor, we aim to use our formalism

to develop the theory of traced monoidal bicategories and

establish new connections with cyclic λ-calculi [45], [46]. We

also want to formulate the theory of 2-dimensional fixpoints in

a cartesian closed framework where the fixpoint operator is ex-

pressed internally as a family of 1-cells of type (A⇒ A) → A

bringing us closer to the intuition of fixpoint combinators for

λ-calculus.
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[42] P. Aczel, J. Adámek, and J. Velebil, “A coalgebraic view of infinite
trees and iteration,” Electronic Notes in Theoretical Computer Science,
vol. 44, no. 1, pp. 1–26, 2001.

[43] N. Gambino and M. Hyland, “Wellfounded trees and dependent poly-
nomial functors,” in International Workshop on Types for Proofs and

Programs. Springer, 2004, pp. 210–225.
[44] B. van den Berg and F. De Marchi, “Non-well-founded trees in cate-

gories,” Annals of Pure and Applied Logic, vol. 146, no. 1, pp. 40–59,
2007.

[45] M. Hasegawa, “Recursion from cyclic sharing: traced monoidal cate-
gories and models of cyclic lambda calculi,” in International Conference

on Typed Lambda Calculi and Applications. Springer, 1997, pp. 196–
213.

[46] N. Benton and M. Hyland, “Traced premonoidal categories,” RAIRO-

Theoretical Informatics and Applications, vol. 37, no. 4, pp. 273–299,
2003.

13

http://dx.doi.org/10.1112/jlms/jdm096
https://doi.org/10.1109/LICS52264.2021.9470617
https://doi.org/10.1145/3571201
http://eudml.org/doc/170906
https://doi.org/10.1016/0304-3975(87)90045-4
https://www2.mathematik.tu-darmstadt.de/~streicher/FIBR/DiWo.pdf


APPENDIX

A. Dinatural and strong dinatural transformations for 2-categories

We start by recalling the 1-categorical notions of dinatural and strong dinatural transformations and proceed with the 2-

categorical generalizations.

1) Dinatural transformations:

Definition A.1. For categories C, D and functors F,G ∶ Cop
×C → D, a dinatural transformation θ ∶ F

.Ô⇒ G consists of a

family of 1-cells {θc ∶ F (c, c) → G(c, c)}c∈C indexed by the objects c in C such that for every morphism f ∶ c → d in C, the

following hexagon commutes:

F (d, c)

F (d, d) G(d, d)

G(c, d)

F (c, c) G(c, c)

F
(d, f)

θd

θc

G
(f
, d
)

F
(f
, c
) G

(c, f)

Definition A.2. For 2-categories C , D and 2-functors F,G ∶ C op
× C → D , a lax dinatural transformation θ ∶ F

.
Ô⇒ G

consists of:

● a family of 1-cells {θc ∶ F (c, c) → G(c, c)}c∈C indexed by the objects c in C ;

● for every 1-cell f ∶ c→ d in C , a 2-cell:

F (d, c)

F (d, d) G(d, d)

G(c, d)

F (c, c) G(c, c)

F
(d, f)

θd

θc

G
(f
, d
)

F
(f
, c
) G

(c, f)

⇓ θf

satisfying the following axioms:

1) unity: for every object c ∈ C , θ1c = idθc ,

2) 1-naturality: for every 1-cells f ∶ c → d and g ∶ d→ e in C ,

θgf = F (e, c)

F (d, c)

F (e, d)

F (d, d) G(d, d)

G(e, e)

G(c, d)

G(d, e)

F (e, e)

G(c, e)

F (c, c) G(c, c)

F (d, f)

F (e, g)

θd

θe
G
(g
, e
)

θc

G
(f
, d
)

F
(g
, c
) G(c, g)

G(d, g)

F (e, f) G
(f
, e
)

F
(g
, d
)

F
(f
, c
) G(c, f)

⇓ θf

⇓ θg

==

3) 2-naturality: for every 2-cell α ∶ f ⇒ f ′ in C :
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F (d, c)

F (d, d) G(d, d)

G(c, d)

F (c, c) G(c, c)

F
(d, f ′
)

θd

θc

G
(f
′ , d
)

F
(f
, c
)

F
(f
′ , c
)

G
(c, f)

G
(c, f ′
)

⇓ θf ′

F
(α
, c)⇘ ⇙G

(c
,α
)

= F (d, c)

F (d, d) G(d, d)

G(c, d)

F (c, c) G(c, c)

F
(d, f ′
)

θd

θc

G
(f
′ , d
)

F
(f
, c
)

F
(d, f)

G(c, f)

G
(f
, d
)

⇓ θf G
(α
, d)⇘⇙F

(d
,α
)

For an oplax dinatural transformation, the 2-cells θf go in the opposite direction. When the 2-cells θf are invertible, we obtain

the notion of pseudo dinatural transformation and when they are strict identities, we obtain strict dinatural transformations.

Definition A.3. A modification between lax dinatural transformation Φ ∶ θ⇛ δ ∶ F
.Ô⇒ G ∶ C op

×C → D consists of a family

of 2-cells {Φc ∶ θc ⇒ δc}c∈C such that for every 1-cell f ∶ c → d in C the following equality holds:

F (d, c)

F (d, d) G(d, d)

G(c, d)

F (c, c) G(c, c)

F
(d, f)

δd

θd

θc

G
(f
, d
)

F
(f
, c
) G

(c, f)

⇓ θf

⇓ Φd

= F (d, c)

F (d, d) G(d, d)

G(c, d)

F (c, c) G(c, c)

F
(d, f)

δd

θc

δc

G
(f
, d
)

F
(f
, c
) G

(c, f)

⇓ δf

⇓ Φc

Similarly to the 1-categorical case, we cannot compose lax dinatural transformations horizontally and therefore the following

data

● 0-cells: mixed variance 2-functors F,G ∶ C op
×C → D ;

● 1-cells: lax dinatural transformations θ ∶ F
.Ô⇒ G;

● 2-cells: modifications Φ ∶ θ⇛ δ between them.

does not constitute a 2-category and we need the notion of strong lax dinatural transformation to make it compositional.

2) Strong dinatural transformations:

Definition A.4. For categories C, D and functors F,G ∶ Cop
×C→ D, a strong dinatural transformation γ ∶ F

. .
Ô⇒ G consists

of a family of 1-cells {γc ∶ F (c, c) → G(c, c)}c∈C indexed by the objects c in C such that for every morphism f ∶ c → d in C

and for every span F (c, c)
qc
←ÐQ

qd
Ð→ F (d, d) in D, if the square

Q

F (d, d)

F (c, d)

F (c, c)

qd
F
(f
, d
)

qc
F (c, f)

commutes, then so does the hexagon:

Q

F (d, d) G(d, d)

G(c, d)

F (c, c) G(c, c)

qd
γd

γc

G
(f
, d
)

qc
G
(c, f)
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For functors F,G,H ∶ Cop
×C→ D and strong dinatural transformations γ ∶ F

.
Ô⇒ G and δ ∶ G

.
Ô⇒H , the transformation

{δcγc ∶ F (c, c) →H(c, c)}c∈C

is also strongly dinatural so that strong dinatural transformations form a category. To obtain the 2-dimensional analogue, we

first need to consider the notion of lax wedge [31], [32], [33], [34], [35]:

Definition A.5 (lax wedge). Let C ,D be 2-categories and F ∶ C op
× C → D be a 2-functor. For an object Q of D , a lax

wedge of Q over F consists of:

● a family of 1-cells {qc ∶ Q→ F (c, c)}c∈C indexed by the objects c in C ;

● for every 1-cell f ∶ c→ d in C , a 2-cell:

Q

F (d, d)

F (c, d)

F (c, c)

qd
F
(f
, d
)

qc
F (c, f)

⇓ qf

satisfying the following axioms:

1) unity: q1c = idqc

2) 1-naturality: for 1-cells f ∶ c→ d and g ∶ d → e,

Q

F (e, e)

F (c, e)

F (c, c)

qe
F
(g
f,
d)

qc
F
(c, gf)

⇓ qgf =

F (d, e)

F (c, e)Q

F (e, e)

F (d, d)

F (c, d)

F (c, c)

qe

F (g, e)

F
(f
, e
)

qd

F
(f
, d
)

qc

F (c, f
)

F
(d
, g)

F
(c, g)

⇓ qg

⇓ qf

3) 2-naturality: for every 2-cell α ∶ f ⇒ f ′,

Q

F (d, d)

F (c, d)

F (c, c)

qd
F (

f
′ , d
)

qc
F (c, f)

F (c, f ′)⇓ qf ′

⇙F
(c
,α
)

= Q

F (d, d)

F (c, d)

F (c, c)

qd
F (

f
′ , d
)

F (
f,
d)

qc
F (c, f)

F
(α
, d)⇘

⇓ qf

Definition A.6 (morphism of lax wedges). For two lax conwedges (Q,q) and (P, p) over F ∶ C op
×C → D , a lax morphism

from (P, p) to (Q,q) consists of

● a 1-cell u ∶ P →Q in D ,

● a family of 2-cells {Γc ∶ pc → qcu}c∈C indexed by the objects c in C

such that for all f ∶ c→ d in C , the following two diagrams are equal:
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P Q

F (d, d)

F (c, d)

F (c, c)
pc

u

qd

F (
f,
d)

qc

F (c, f)

⇓ qf

⇘ Γc

= P

Q
F (d, d)

F (c, d)

F (c, c)

pd

pc

u

qd F (
f,
d)

F (c, f)

⇓ pf

⇙ Γd

Definition A.7 (strong lax dinatural transformation). For 2-categories C , D and 2-functors F,G ∶ C op
×C → D , a strong lax

dinatural transformation γ ∶ F
. .
Ô⇒ G consists of:

● a family of 1-cells {γc ∶ F (c, c) → G(c, c)}c∈C indexed by the objects c in C ;

● for every lax wedge (Q,q) over F and for every 1-cell f ∶ c→ d in C , a 2-cell:

Q

F (d, d) G(d, d)

G(c, d)

F (c, c) G(c, c)

qd
γd

γc

G
(f
, d
)

qc
G
(c, f)

⇓ γq,f

satisfying the following axioms:

1) unity: for every object c ∈ C , γq,1c = idγcqc ,

2) 1-naturality: for every 1-cells f ∶ c→ d and g ∶ d → e,

γq,gf = Q F (d, d) G(d, d)

G(e, e)

G(c, d)

G(d, e)

F (e, e)

G(c, e)

F (c, c) G(c, c)

qd γd

γe G
(g
, e
)

γc

G
(f
, d
)

qc

G(c, g)

G(d, g)

qe

G
(f
, e
)

G(c, f)

⇓ γq,f

⇓ γq,g

=

3) 2-naturality: for every 2-cell α ∶ f ⇒ f ′ in C :

Q

F (d, d) G(d, d)

G(c, d)

F (c, c) G(c, c)

qd
γd

γc

G
(f
′ , d
)

q c
G
(c, f)

G
(c, f ′
)

⇓ γq,f ′

⇙G
(c
,α
)

= Q

F (d, d) G(d, d)

G(c, d)

F (c, c) G(c, c)

qd

γd

γc

G
(f
′ , d
)

qc

G(c, f)

G
(f
, d
)

⇓ γq,f G
(α
, d)⇘

4) for every morphism of lax wedges (u,Γ) ∶ (P, p) → (Q,q) over F and for every f ∶ c→ d,
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P Q

F (d, d) G(d, d)

G(c, d)

F (c, c) G(c, c)

qd
γd

γc

G
(f
, d
)

qc

pc

u

G
(c, f)

⇓ γq,f

⇘ Γc

=

⇙ Γd

P

Q F (d, d) G(d, d)

G(c, d)

F (c, c) G(c, c)

u

qd

pd

γd

γc

G
(f
, d
)

pc
G
(c, f)

⇓ γp,f

Definition A.8. A modification between strong lax dinatural transformation Φ ∶ γ ⇛ δ ∶ F
. .
Ô⇒ G consists of a family of

2-cells {Φc ∶ γc ⇒ δc}c∈C such that for every lax wedge (Q,q) over F and 1-cell f ∶ c→ d in C the following equality holds:

Q

F (d, d) G(d, d)

G(c, d)

F (c, c) G(c, c)

qd

δd

γd

γc

G
(f
, d
)

qc
G
(c, f)

⇓ γq,f

⇓ Φd

= Q

F (d, d) G(d, d)

G(c, d)

F (c, c) G(c, c)

qd
γd

γc

δc

G
(f
, d
)

qc
G
(c, f)

⇓ δq,f

⇓ Φc

Definition A.9. For 2-categories C and D , we denote by StDin(C ,D) the following data:

● 0-cells: mixed variance 2-functors F,G ∶ C op
×C → D ;

● 1-cells: strong lax dinatural transformations γ ∶ F
. .
Ô⇒ G;

● 2-cells: modifications Φ ∶ γ ⇛ δ between them.

Proposition A.10. For 2-categories C and D , StDin(C ,D) defined above forms a 2-category.

B. Proofs of Section III

Lemma III.2. There exists a 1-cell t ∶ 1→ Φ and an invertible 2-cell τ ∶ t⇒ Rt in D

Φ

1

Φ

t

t

R⇗ τ

satisfying the following property: for any 1-cells v,w ∶ 1→ Φ in D and invertible 2-cells ν ∶ v⇒ Rv and ω ∶ w⇒ Rw, there

exists a unique invertible 2-cell ψ ∶ v⇒ w in D such that

Φ

1

Φ

v

w

w R
⇗ ω

⇗ ψ

=

Φ

1

Φ

v

w

v R
⇗ ν

⇖ ψ

Proof. By Lemma II.10, R is part of an adjoint equivalence (R ∶ !Φ → Φ, L ∶ Φ → !Φ, η ∶ id
≅
Ô⇒ RL,ε ∶ LR

≅
Ô⇒ id) where

L ∶ Φ→ !Φ is pseudo-final. Therefore, there exists a 1-cell t ∶ !1 → Φ and a 2-cell ξ in C as below:

Φ !Φ

!1 !!1

t

L

δ1

!t⇗ ξ

and we define τ as the following 2-cell in C

18



Φ !Φ Φ

!1 !!1

τ ∶= t

L

1

R

δ1

!t⇗ ξ

⇑ η

which corresponds to a 2-cell with boundaries t⇒ Rt in D as desired.

Assume now that we have 2-cells ν ∶ v⇒ Rv and ω ∶ w⇒ Rw in D . By the universal property of L, there exists a unique

2-cell ψ ∶ v⇒ w such that

Φ

!Φ

!Φ

!1 !!1

w

R

!w

L

1

δ1

v
ψ
⇒ ⇗ ω

ε
⇒

=

Φ

!Φ

!Φ

!1 !!1

v

R

!w

L

1

δ1

!v !ψ
⇒

⇗ ν

ε
⇒

in C . Cancelling the 2-cells ε on both sides using the adjunction identities

Φ

Φ

!Φ

!Φ

!1 !!1

w

R

R

!w

L

1

1

δ1

v
ψ
⇒ ⇗ ω

ε
⇒

η
⇒

=

Φ

Φ

!Φ

!Φ

!1 !!1

v

R

R

!w

L

1

1

δ1

!v !ψ
⇒

⇗ ν

ε
⇒

η
⇒

and rewriting the equality above in D , we obtain that there exists a unique invertible 2-cell ψ ∶ v⇒ w in D such that:

Φ

1

Φ

v

w

w R
⇗ ω

⇗ ψ

=

Φ

1

Φ

v

w

v R
⇗ ν

⇖ ψ

Lemma III.3 (Naturality of fix). For a 2-cell α ∶ f ⇒ g in D , we have fixg α
∗ = (α ⋅α∗)fixf .

Proof. Immediate unfolding of the corresponding 2-cells.

Proposition III.4. The 2-cells unifγ we constructed yield a strong pseudo-dinatural transformation and they verify the

coherence axiom between fix and unif .

Proof. For the strong pseudo-dinatural axioms, we will only prove the 2-naturality axiom, as the other cases work similarly.

Assume that we have the following equality in D :
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B B

A A

Jr Js

g

f

Js⇐
Jθ

⇙ γ =

B B

A A

Jr

g

f

JsJr ⇐
Jθ

⇙ ρ

Let φ ∶ ruf ⇒ ug be the unique 2-cell in C such that:

A A

B B

Φ Φ

Jug

Juf

Jr

f

g

R

Juf

Jr

⇐
Jφ

⇙ µf

⇙ ρ

=

B B

Φ Φ

AJug

g

R

Juf

Jr

Jug
⇐
Jφ⇙ µg

so that unifρ = Jφ ⋅ t ∶ J(r)J(uf)t⇒ J(ug)t. We want to show that unifγ = unifρ(Jθ ⋅(J(uf)t)) which is immediate from

the equality below:

A A

B B

Φ Φ

Jug

Juf

Jr
Js

f

g

R

Juf

Js

⇐Jφ

⇐
Jθ

⇙ µf

⇙ γ

=

B B

Φ Φ

AJug

g

R

Juf

Jr Js

Jug⇐
Jφ

⇐
Jθ

⇙ µg

To prove that the operator ((−)∗,fix,unif) we constructed is a pseudo-fixpoint operator on D uniform with respect to J ,

it only remains to show the coherence axiom between fix and unif i.e. that for a 2-cell

B B

A A

J(s)

g

f

J(s)⇙ γ

in D , we have:

A
B

1 B

g∗

g∗

f∗

Js

g

⇗ fixg

⇗ unifγ =

A
B

1

A
B

f∗

Js

f∗ Js

g∗

f

g
⇗ fixf ⇗ γ

⇑ unifγ

The left-hand side is equal to:
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Φ

1

Φ

Φ

A

At

Juf Js

t

R⇗ τ

Jug

g

Jug

⇗ µg

⇑ J(φ)

where φ ∶ suf ⇒ ug is the unique invertible 2-cell in C such that:

A A

B B

Φ Φ

Jug

Juf

Js

f

g

R

Juf

Js

⇐
Jφ

⇙ µf

⇙ γ

=

A A

Φ Φ

Jug

g

R

JufJug⇐
Jφ⇙ µg

so that the left-hand side is equal to the diagram below

1

A

BΦ

Φ

A

B

Juf Js

Juf Js

Jug

f

gR
⇗ µf ⇗ γ

⇑ J(φ)

t

t

⇗ τ

which corresponds to the right-hand side of the desired equality.

Proposition III.5. The category Fix(D , J) is contractible i.e. δ is an isomorphism of uniform pseudo-fixpoint operators and

it is unique.

Proof. We first show that δ is a morphism of pseudo-fixpoint operators by proving that it commutes with the fix 2-cells:

A

1

A

f∗

f †

f † f
⇗ fix

†
f

⇗ δf

=

A

1

A

f∗

f †

f∗ f
⇗ fix

∗
f

⇖ δf

The left hand diagram is equal to:

Φ

A

1

A

t

R†

Juf

f †

f †

f

⇗ unif
†
µf⇗ δ0

⇗ fix
†
f

=

Φ

A

1 Φ

A

t

R†

Juf

R†

Juf

f †

R

f
⇗ fix

†
R

⇗ µf⇗ δ0

⇑ unif †
µf
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where the equality above follows from the coherence between fix
†

and unif
†
. By definition of δ0, the right-hand diagram is

equal to:

Φ

A

1 Φ

A

t

Juf

t

Juf
R†

f †

R

f

⇗ τ ⇗ µf

⇑ δ0

⇑ unif †
µf

=

Φ

A

1 Φ

A

t

R†

Juf

R†
Juf

f †

R

f
⇗ fix

†
R

⇗ µf⇗ δ0

⇑ unif †
µf

and we obtain the desired equality. We now need to show that δ is a morphism of uniform pseudo-fixpoint operators, i.e. for

every square in D :

B B

A A

J(s)

g

f

J(s)⇙ γ

we have:

B

1

A

g†

f∗

g∗ Js
⇙ unif

∗
γ

⇙ δg

=

B

1

A

g†

f∗

f †
Js

⇙ unif
†
γ

⇘ δf

By definition of unif
∗
γ and the 2-naturality axiom for unif

†
, the left hand diagram is equal to:

B

1

Φ

A

g†

t

R†
Juf

Js

Jug
⇙ unif

†
µg

⇘ δ0

Jφ
⇐

= A

1

Φ

B
g†

t

R†
Juf

Js

⇙ unif
†
γ∗vµf

⇘ δ0

where φ is the unique 2-cell suf ⇒ ug such that:

A A

B B

Φ Φ

Jug

Juf

Js

f

g

R

Juf

Js

⇐
Jφ

⇙ µf

⇙ γ

=

A A

Φ Φ

Jug

g

R

JufJug⇐
Jφ⇙ µg

The right hand diagram is equal to
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A

1

Φ

B
g†

f †

t

R†
Juf

Js

⇙ unif
†
µf

⇙ unif
†
γ

⇘ δ0

= A

1

Φ

B
g†

t

R†
Juf

Js

⇙ unif
†
γ∗vµf

⇘ δ0

where the equality above follows from the 1-naturality axiom for unif
†
.

For uniqueness, assume that there exists another morphism of uniform pseudo-fixpoint operators β ∶ (−)∗ → (−)†. We

proceed to show that for every f ∶ A→ A, δf = βf . Let φ0 be the unique invertible 2-cell 1Φ ⇒ uR in C such that:

Φ Φ

Φ Φ

JuR 1Φ

R

R

1Φ⇐
Jφ0

= =

Φ Φ

Φ Φ

JuR

R

R

1ΦJuR ⇐
Jφ0

⇙ µR

which we obtain from Lemma III.1. We show that

δ0 = 1 Φ Φ

1Φ

JuR

R†

t
⇑ Jφ0

⇑ βR

by proving the following equality:

Φ

Φ

1 Φ

Φ

t

1Φ

t
1Φ

JuR

R†

R

R
⇗ τ

=

⇑ Jφ0
⇑ βR

=

Φ

Φ

1

A

t JuR

1Φ

R†

R†

R

⇗ βR

⇑ Jφ0

⇗ fix
†
R

and using the universal property of δ0. By definition of φ0, the left-hand side is equal to:

Φ

Φ

1 Φ

Φ

t

JuR

1Φ

t
JuR

R†

R

R
⇗ τ

⇗ µR

⇑ Jφ0

⇑ βR

23



Since β is a morphism of pseudo fixpoint operators, the right-hand side is equal to:

Φ

Φ

1 Φ

Φ

t

JuR

1Φ

t
JuR

R†

R
⇗ fix

∗
R

⇑ Jφ0

⇑ βR

so both sides are equal as desired by definition of fix
∗
R. We therefore obtain that

δf = 1 Φ Φ

A
f †

JuR

1Φ

R†

t
⇓ Jφ0

⇓ βR

⇓ unif†
µf

Juf

Since β is a morphism of uniform pseudo-fixpoint operators, δf is equal to:

δf = 1 Φ Φ

A
f †

f∗
JuR

1Φ

t
⇓ Jφ0

⇙ βf

⇙ unif
∗
µf

Juf

Using the universal property of unif
∗
µf

, we obtain that unif
∗
µf
(Jφ0 ⋅ t) = id giving us the desired conclusion.

Lemma IV.2. For 1-cells v,w ∶ 1→ Φ in D and 2-cells

Φ

1

Φ

v

v

RR⇗ ν and

Φ

1

Φ

w

w

RR⇗ ω

in D , there exists a unique invertible 2-cell λ ∶ w⇒ v in D such that

Φ

1

Φ

w

v

v RR
⇗ ν

⇗ λ

=

Φ

1

Φ

w

v

w RR
⇗ ω

⇖ λ
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Proof. The 2-cell ν in D has the following boundary in C :

!1

!Φ

!!1 !!!1

!!Φ

!Φ

Φ

v

δ1

!v

⇗ ν

δ!1

!!v

!R

R

δΦ

=

Since !LL is a pseudo-final !!-coalgebra, there is a unique isomorphism λ ∶ w⇒ v such that:

!1

!Φ

!!1 !!!1

!!Φ

!!ΦΦ !Φ

!Φw v

δ1

1R
⇗ ε

⇗ ν

δ!1

!!v

1!R

!LL

!R

⇗ !ε

λ
⇒ =

!1

!Φ

!!1 !!!1

!!Φ

!!ΦΦ !Φ

!Φw

δ1

1R
⇗ ε

⇗ ω

δ!1

!!w !!v

1!R

!LL

!R

⇗ !ε

!!λ
⇒

=

Cancelling the 2-cells ε and !ε on both sides using the adjunction identities and rewriting the equality above in D , we obtain

the desired equality in D .

Proposition IV.3. The 2-cells dinat
f
g we constructed yield a pseudo-dinatural transformation and they verify the coherence

axiom between dinat and unif .

Proof. Coherence between dinat and unif : for two squares in D of the form

C D

A B

C

A

Js

h

f

Jr⇙ γρ ⋆ γ =

g

k

Js⇙ ρ

we have:

B
D

1 C

(hk)∗

(kh)∗

(fg)∗

Jr

h

⇗ dinat
h
k

⇗ unifγ⋆ρ
=

B

D

1

A

C

(fg)∗

Jr

(gf)∗
Js

(kh)∗

f

h
⇗ dinat

f
g ⇗ γ

⇑ unifρ⋆γ
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where γ ⋆ ρ corresponds to the following 2-cell:

D C

B A

D

B

Jr

k

g

Js⇙ ργ ⋆ ρ =

f

h

Jr⇙ γ

The right-hand diagram is equal to:

1 B ×A

A ×B

D

BΦ

Φ A ×B A

C

Juσ(f×g) π2

Juσ(f×g) π1

f × g

σ

f

Jr

Js

h

R ⇗ µσ(f×g) =
⇗ γ

⇑ unifΠ1

σ(f×g)

⇑ unifρ⋆γ

⇑ unif−1Π2

σ(f×g)

(RR)∗

t

t

(RR)∗

⇗ τ

⇗ din
−1

⇖ din

(gf)∗

(kh)∗

(fg)∗

and the left-hand diagram is equal to:

1 D ×C

C ×D

B

DΦ

Φ C ×D C

Juσ(h×k) π2

Juσ(h×k) π1

h × k

σ

hR ⇗ µσ(h×k) =

⇑ unifΠ1

σ(h×k)

⇑ unifγ⋆ρ

⇑ unif−1Π2

σ(h×k)

(RR)∗

t

t

(RR)∗

⇗ τ

⇗ din
−1

⇖ din

(kh)∗

(fg)∗ Jr

(hk)∗
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Let φ ∶ (s × r)uσ(f×g) ⇒ uσ(h×k) be the unique invertible 2-cell in C such that

Φ

A ×B

C ×D

A ×B

Φ

B ×A

C ×D D ×C

R

h × k

Juσ(f×g)

Juσ(h×k)

⇙ γ × ρ

⇐
Jφ

Juσ(f×g)

J(s × r)J(s × r) J(r × s)

σ

σf × g

⇙ µσ(f×g)

=

Φ

A ×B

C ×D

Φ

C ×D D ×C

R

h × k

Juσ(h×k) Juσ(h×k) ⇐
Jφ

Juσ(f×g)

J(s × r)

σ

⇙ µσ(h×k)

The left-hand diagram of the desired equality is then equal to

1 D ×CD ×C

C ×D C ×D

B

DΦ

Φ C ×D C ×D C

Juσ(f×g)

π2

J(s × r)

Juσ(f×g) J(s × r)

J(r × s)

π1

f × g h × k

σ σ

h

(kh)∗

(fg)∗

Jr

(hk)∗

R ⇗ µσ(f×g)

⇗ γ × ρ

⇑ Jφ

⇑ Jφ−1

⇑ unifΠ1

σ(h×k)

⇑ unif−1Π2

σ(h×k)

(RR)∗

t

t

(RR)∗

Juσ(h×k)

Juσ(h×k)

⇗ τ

⇗
din

−1

⇖
din

⇑ unifγ⋆ρ

From the universal property of unif , we can now verify that

unifΠ1

σ(h×k)
(π1 ⋅ Jφ ⋅ (RR)

∗) = unifρ⋆γ(Js ⋅ unifΠ1

σ(f×g)
) and

(π2 ⋅ Jφ
−1
⋅ (RR)∗)unif−1Π2

σ(h×k)
unifγ⋆ρ = Jr ⋅ unif

−1
Π2

σ(f×g)

to obtain the desired equality.

Coherence between dinat and fix: for 1-cells f ∶ A→ B and g ∶ B → A in D , we want to show:

B

B

1 A

(fg)∗

(gf)∗

(fg)∗

f

g

⇗ dinat
f
g

⇗ dinat
g
f

=

B

B

1 A

(fg)∗

(fg)∗

f

g

⇗ fixfg
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The right-hand diagram is equal to:

Φ

1

Φ B

Bt

t

R⇗ τ

Jufg

fg

Jufg

⇗ µfg

and the left-hand diagram is equal to:

1

A ×B

B ×A

B ×A

A ×B

A ×B

A

B

Φ

Φ

(fg)∗

(fg)∗

Φ

Φ

B ×A

B

Juσ(g×f)

Juσ(f×g)

Juσ(f×g)

π1

π2

π2

Juσ(g×f) π1
g × f

f × g

σ

σ

g

f

R

R

⇗ µσ(g×f)

⇑ unif−1Π2

σ(g×f)

⇑ unifΠ1

σ(f×g)

⇗ µσ(f×g)

⇑ unifΠ1

σ(g×f)

⇑ unif−1Π2

σ(f×g)

(RR)∗

t

t
t

(gf)∗

t
t

t

(RR)∗

⇗ τ

⇗ τdin
−1

⇗

din
⇖

din
−1

⇖

din
⇗

We use a similar reasoning as before and let Let φ ∶ σuσ(g×f) ⇒ uσ(f×g) be the unique invertible 2-cell in C such that

Φ

B ×A

A ×B

B ×A

Φ

A ×B

A ×B B ×A

R

f × g

Juσ(g×f)

Juσ(f×g) ⇐
Jφ

Juσ(g×f)

σσ σ

σ

σg × f

⇙ µσ(g×f)

=

Φ

B ×A

A ×B

Φ

A ×B B ×A

R

f × g

Juσ(f×g) Juσ(f×g) ⇐
Jφ

Juσ(g×f)

σ

σ

⇙ µσ(f×g)

so that we can rewrite the previous diagram as:
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1

A ×B

B ×A

B ×A

A ×B

B ×A

B ×A

A ×B

A

B

Φ

Φ

(fg)∗

(fg)∗

Φ

Φ

B ×A

B

Juσ(g×f)

Juσ(f×g)

Juσ(g×f)

σ

Juσ(f×g)

Juσ(g
×f)

σ

π1

π2

π2

Juσ(g×f) π1
g × f

f × g

σ(g × f)

σ

σ

g

f

R

R

⇗ µσ(g×f)

⇑ unif−1Π2

σ(g×f)

⇑ unifΠ1

σ(f×g)

⇑ Jφ

⇑ Jφ−1

⇗ µσ(g×f)

⇑ unifΠ1

σ(g×f)

⇑ unif−1Π2

σ(f×g)

(RR)∗

t

(RR)∗

(RR)∗
(gf)∗

t

t

t

(RR)∗

⇗ τ

⇗ τdin
−1

⇗

din
⇖

din
−1

⇖

din
⇗

Using the universal property of unif , we can show that unif
−1
Π2

σ(g×f)
unifΠ1

σ(f×g)
(π1 ⋅ Jφ ⋅ t) = id so that we can simplify the

diagram to

1

B ×AΦ

Φ B ×A A ×B B
Φ

Φ

Φ B ×A B

A

JuRR
Juσ(g×f)

JuRR
Juσ(g×f)

Juσ(g×f)

π1

R σ(g × f)

R σ(g × f)

g

f

(fg)∗

π1

σ π2

(fg)∗

R ⇗ µRR

⇗ µσ(g×f)

⇗ µσ(g×f)

⇑ Jφ−1

⇑ unifΠ1

σ(g×f)

⇑ unif−1Π2

σ(f×g)

(RR)∗

t

t

t

Juσ(f×g)

⇗ τ

⇗ din

⇗ din
−1

Using the definition of unifΠ1

σ(g×f)
and the coherence between unif and fix we rewrite the diagram above as:
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1

Φ
A ×B

B ×A

BΦ

Φ B

A

Jufg

Juσ(g×f)

Jufg

g

f

σ

π2

(fg)∗

R ⇗ µfg

⇑ unifΠ1

σ(g×f)

⇑ unif−1Π2

σ(f×g)

(RR)∗

t

t

Juσ(f×g)

⇗ τ

⇑ Jφ−1

It remains to verify that unifΠ1

σ(g×f)
(π2 ⋅ Jφ

−1
⋅ (RR)∗)unif−1Π2

σ(f×g)
= id and we obtain the desired equality.

Pseudo-dinaturality axioms for dinat: We only show the unity axiom as the others work similarly. We want to show that

for all f ∶ A → A, dinat
1A
f = idf∗ . We start by proving it for f = R and obtain the general statement by uniformity. We first

note that the two diagrams below

Φ

1

Φ Φ

Φ
t

t

R∗

R⇗ τ

JuR

R

JuR

⇑ dinat1ΦR

⇗ µR and

Φ

1

Φ Φ

Φt

t

R∗

R⇗ τ

JuR

R

JuR

⇗ µR

⇑ dinat1ΦR

are both equal to:

1

B ×A

B ×A

B ×A

A ×B

A ×B

A ×B

B

A

B

Φ

Φ

R∗

R∗

Φ

Φ

A ×B A

Juσ(1Φ×R)

Juσ(1Φ×R)

Juσ(1Φ×R)

π1

π2

π2

Juσ(1Φ×R)
π1

1Φ ×R

1Φ ×R

1Φ ×R

σ

σ

σ

1Φ

1Φ

R

R

R

R

⇗ µσ(1Φ×R)

⇗ µσ(1Φ×R)

⇗ µσ(1Φ×R)

=

=

=

⇑ unifΠ1

σ(1Φ×R)

⇑ unif−1Π2

σ(1Φ×R)

(RR)∗

t

t

t

t

(RR)∗

⇗ τ

⇗ τ

⇗ τ
din

−1
⇗

din
⇖

Using Lemma III.2, we conclude that dinat
1Φ
R = idR∗ .

30



For a general f ∶ A→ A in D , to show that dinat
1A
f = idf∗ , we make use of the coherence axiom between unif and dinat

we proved previously. Consider the two squares:

A A

Φ Φ

A

Φ

Juf

1A

1Φ

Juf=

R

f

Juf⇙ µf

we obtain:

Φ
A

1 A

f∗

f∗

R∗

Juf

1A

⇗ dinat
1A
f

⇗ unifµf

=

Φ

A

1

Φ

A

R∗

Juf

R∗
Juf

f∗

1Φ

1A⇗ dinat
1Φ
R =

⇑ unifµf

since we have shown that dinat
1Φ
R = idR∗ , we obtain that dinat

1A
f = idf∗ from the equality above.

Lemma A.11. For the pseudo-bifree algebra R, the 2-cell dinat
R
R is equal to:

dinat
R
R = 1

Φ

Φ

(RR)∗

t

t

(RR)∗

R⇗ τ

⇗
din

−1

⇖din

Proof. Using Lemma III.2, there exists a unique invertible 2-cell ψ ∶ t⇒ (RR)∗ such that:

Φ

1

Φ

t

(RR)∗

(RR)∗ R
⇗ dinat

R
R

⇗ ψ

=

Φ

1

Φ

t

(RR)∗

t R
⇗ τ

⇖ ψ

It suffices to shat that ψ = din by proving that the equality below holds:

Φ

Φ

1

Φ

Φ

t

t
JuRR

t

R

RR

⇗ τ ⇗ µRR

⇗ ψ

JuRR

=

Φ

Φ

1 Φ

Φ

t

t

t

R

R

⇗ τ

⇗ τ

JuRR

t ⇗ ψ
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By definition of ψ and the coherence axiom between dinat and fix, the left-hand diagram is equal to

Φ

Φ

1 Φ

(RR)∗

t

(RR)∗

(RR)∗

R

R

⇗ dinat
R
R

⇗ dinat
R
R

⇗ ψ

=

Φ

Φ

1 Φ

(RR)∗

t

(RR)∗

R

R

⇗ fixRR

⇗ ψ

and we obtain the desired equality.

Proposition IV.4. The category DinFix(D , J) is contractible i.e. δ commutes with the dinaturality 2-cells and it is unique.

Proof. Let ((−)†,dinat†
,unif

†) be another pseudo-dinatural fixpoint operators uniform with respect to J on D . We show that

the morphism δ ∶ ((−)∗,unif∗) → ((−)†,unif †) we defined in Section III also commutes with the structural 2-cells dinat,

i.e. it satisfies the following coherence for every f ∶ A→ B and g ∶ B → A:

B

1

A

(fg)∗

(gf)†

(fg)† f
⇗ dinat

f †
g

⇗ δfg

=

B

1

A

(fg)∗

(gf)†

(gf)∗ f

⇗ dinat
f ∗
g

⇖ δgf

As before, we first show it for f = g = R

Φ

1

Φ

(RR)∗

(RR)†

(RR)† R

⇗ dinat
R †
R

⇗ δRR

=

Φ

1

Φ

(RR)∗

(RR)†

(RR)∗ R

⇗ dinat
R∗
R

⇖ δRR

and obtain the general result using the coherence between unif and dinat. Using Lemma A.11, the right-hand diagram is

equal to:

1

Φ

Φ

(RR)∗

t

t

(RR)∗

(RR)∗

R⇗ τ

⇗
din

−1

⇖δRR

⇖
din

=

Φ

Φ

1

Φ

Φ

t

JuR

1Φ

t

JuR

1Φ
(RR)∗

(RR)†

(RR)∗

R

R

⇗ τ

⇗ µR

⇑ Jφ0

⇑ Jφ−10⇑ din

⇑ din−1

⇑ δRR

where φ0 ∶ 1Φ⇒ J(uR) is the unique invertible 2-cell such that R ⋅ Jφ0 = µR(Jφ0 ⋅R) (see proof of Proposition III.5).
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Let ζ ∶ R†⇒ (RR)† be the unique invertible 2-cell (obtained from Lemma IV.2) such that

Φ

Φ

1 Φ

R†

R†

R†

R

R

⇗ fix
†
R

⇗ fix
†
R

(RR)†

⇗ ζ

=

Φ

1

Φ

R†

(RR)†

(RR)† RR

⇗ fix
†
RR

⇗ ζ

It plays a similar role as din ∶ t⇒ (RR)∗ for the operator (−)† as we can show that:

dinat
R †
R = 1

Φ

Φ

(RR)†

R†

R†

(RR)†

R⇗ fix
†
R

⇗
ζ−1

⇖
ζ

We can also prove that:

1

Φ

Φ

JuR

(RR)†

(RR)∗

1Φ

t

⇖ Jφ−10

⇑ δRR

⇑ din

= 1

Φ

Φ

JuR

(RR)†

R†

t

⇑ ζ

⇑ δR

1 Φ Φ

JuR

1Φ

R†

(RR)∗

t
⇑ Jφ0

⇑ δR

⇑ din−1

= 1 Φ

R†

(RR)†

(RR)∗

⇑ ζ−1

⇑ δRR

We can now conclude:

Φ

Φ

1

Φ

Φ

t

JuR

1Φ

t

JuR

1Φ
(RR)∗

(RR)†

(RR)∗

R

R

⇗ τ

⇗ µR

⇑ Jφ0

⇑ Jφ−10⇑ din

⇑ din−1

⇑ δRR

= 1

Φ

Φ

Φ

=

JuR

1Φ

t

(RR)∗

R†

R†

(RR)†

R
⇗ δR

⇗ fix
†
R

⇗
din

−1 ⇑ Jφ0

⇖
ζ

Φ

1

Φ

(RR)∗

(RR)†

(RR)† R

⇗ dinat
R †
R

⇗ δRR
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For general morphisms f ∶ A→ B and g ∶ B → A in D , we consider the squares:

Φ Φ

A ×B

A

A ×B

Φ

A ×B

A B

Juσ(f×g)

R

f

Juσ(f×g) ⇙ µσ(f×g) Juσ(f×g)

π1π1 π2

g

σ(f × g)σ(f × g)

R

⇙ µσ(f×g)

and obtain from the coherence between unif and dinat:

Φ

B

1 A

(fg)†

(gf)†

(RR)†

Jπ2(uσ(f×g))

f

⇗ dinat
f †
g

⇗ unif
†

Π2

σ(f×g)

=

Φ
A ×B

B

1

Φ
A ×B

A

(RR)†

Juσ(f×g)

π2

(RR)†

Juσ(f×g)

π1

(gf)†

R
σ(f × g)

f

⇗ dinat
R †
R ⇗ µσ(f×g)

⇑ unif †

Π1

σ(f×g)

Therefore, we have:

B

1

A

(fg)∗

(gf)†

(fg)† f
⇗ dinat

f †
g

⇗ δfg

= 1 B ×A

A ×B BΦ

Φ A ×B A

Juσ(f×g)
π2

Juσ(f×g)
π1

f × g

σ

fR ⇗ µσ(f×g)

⇑ unif †

Π1

σ(f×g)

⇑ δfg

⇑ unif †−1
Π2

σ(f×g)

(RR)†

(RR)†

⇗ dinat
R †
R

(gf)†

(fg)†

(fg)∗
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1 B ×A

A ×B BΦ

Φ A ×B A

==

Juσ(f×g)

π2

Juσ(f×g) π1

f × g

σ

fR ⇗ µσ(f×g)

⇑ unif †

Π1

σ(f×g)

⇑ unif∗−1Π2

σ(f×g)

(RR)∗

(RR)†

(RR)†

⇗ dinat
R †
R

⇗ δRR

(gf)†

(fg)∗

1 B ×A

A ×B BΦ

Φ A ×B A

Juσ(f×g)
π2

Juσ(f×g)
π1

f × g

σ

fR ⇗ µσ(f×g)

⇑ unif †

Π1

σ(f×g)

⇑ unif∗−1Π2

σ(f×g)

(RR)∗

(RR)∗

(RR)†

⇗ dinat
R∗
R

⇖ δRR

(gf)†

(fg)∗

1 B ×A

A ×B BΦ

Φ A ×B A

=

Juσ(f×g)
π2

Juσ(f×g)
π1

f × g

σ

fR ⇗ µσ(f×g)

⇑ unif∗Π1

σ(f×g)

⇑ δgf

⇑ unif∗−1Π2

σ(f×g)

(RR)∗

(RR)∗

⇗ dinat
R∗
R

(gf)†

(fg)†

(gf)∗

B

1

A

=

(fg)∗

(gf)†

(gf)∗ f

⇗ dinat
f ∗
g

⇖ δgf

35


	Fixpoint operators for 1-categories
	Bidimensional fixpoints operators
	The Plotkin-Simpson theorem for 2-categories
	Dinaturality
	Examples
	Limit-colimit coincidence theorem for 2-categorical structures
	Categorical domain theory
	Profunctors and linear logic models
	Polynomial functors

	References
	Appendix
	Dinatural and strong dinatural transformations for 2-categories
	Dinatural transformations
	Strong dinatural transformations

	Proofs of Section III


