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Abstract—Higher-order abstract GSOS is a recent extension
of Turi and Plotkin’s framework of Mathematical Operational
Semantics to higher-order languages. The fundamental well-
behavedness property of all specifications within the framework
is that coalgebraic strong (bi)similarity on their operational
model is a congruence. In the present work, we establish a
corresponding congruence theorem for weak similarity, which is
shown to instantiate to well-known concepts such as Abramsky’s
applicative similarity for the λ-calculus. On the way, we develop
several techniques of independent interest at the level of abstract
categories, including relation liftings of mixed-variance bifunctors
and higher-order GSOS laws, as well as Howe’s method.

I. INTRODUCTION

Following the emergence of structural approaches to opera-

tional semantics (SOS), e.g. [28], [34], operational reasoning

has developed into a widely used methodology in formal

reasoning on higher-order languages. Numerous powerful op-

erational techniques have been developed, tested, and refined,

such as logical relations [36], [35], [33], [15] and Howe’s

method [24], [25], [14]. These methods have been found to be

quite robust, being capable of providing solutions to challeng-

ing problems such as congruence proofs and reasoning about

contextual equivalence, even in rather involved settings such

as effectful, e.g. nondeterministic, higher-order languages.

Unfortunately, such power comes at a price. Operational

methods are known to be both complex, requiring a daunt-

ing amount of machinery in order to be instantiated, and

specialized, in the sense that they need to be developed on

a per-case basis, and any small perturbation in the problem

setting may break earlier machinery. A key ingredient that

is needed to alleviate these issues is a sufficiently general

rigorous notion of SOS specification of programming language

semantics; without it, reasoning is inevitably bound to specific

instances of SOS specifications, and the only ‘free’ mathemat-

ical principle is induction on the structure of terms. Capturing

the essence of SOS in a single, precise definition in order to

reason at a greater level of generality has thus been a topic

of lasting interest. Rule formats such as GSOS [5] provide

a handle to reason about classes of languages, as opposed

to one language at a time. For instance, the property that
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bisimilarity is a congruence holds for any language adhering

to the GSOS format. On a more abstract and conceptual level,

Turi and Plotkin’s framework of Mathematical Operational

Semantics [37], a.k.a. abstract GSOS, shows that rule formats

such as GSOS are instances of a general principle, namely that

operational rules amount to certain natural transformations,

so-called GSOS laws. Abstract GSOS has been instantiated in

quite diverse settings [3], [29], [17], [32], [19].

In recent work [20] we have reconciled Turi and Plotkin’s

ideas, originally applicable only in first-order settings, with

higher-order languages. The main insight is that dinatural

transformations are able to express higher-order operational

rules in ways that the original approach based on naturality

could not. Like a classical GSOS law, a higher-order GSOS

law is a form of distributive law of a syntax functor Σ
over a behaviour functor B, but in the context of higher-

order languages, B in general needs to be a mixed-variance

bifunctor, in the sense that it depends covariantly on the set of

states or terms when these appear as results of functions, and

contravariantly when they are used as arguments of functions.

It is this phenomenon of mixed variance that necessitates the

use of dinatural transformations. The main result of [20] is

that the operational semantics of a higher-order GSOS law is

compositional: for the initial (term) model µΣ, coalgebraic

bisimilarity for the endofunctor B(µΣ, --) is a congruence.

For instance, in the case where B(X,Y ) is the behaviour

bifunctor for the λ-calculus, this instantiates to a strong vari-

ant of Abramsky’s applicative bisimilarity [1], which unlike

applicative bisimilarity proper makes β-reductions observable.

The main contribution of the present paper is a generaliza-

tion of our previous congruence result [20] from strong bisim-

ilarity to weak (bi)similarity. It applies to higher-order GSOS

laws whose initial model forms a higher-order lax bialgebra,

extending the corresponding first-order concept [6]. When

instantiated to the call-by-name λ-calculus, weak (bi)similarity

amounts to standard applicative (bi)similarity. Hence we obtain

a more useful general compositionality theorem, an instance

of which is the classical result that applicative bisimilarity

(rather than a previously unstudied notion of strong applicative

bisimilarity as in [20]) in the call-by-name λ-calculus is a

congruence [1]. Our approach is parameterized in such a way

that strong similarity is an instance of weak similarity, so our

main result subsumes that of [20].

The passage from strong to weak similarity comes with

a number of technical challenges; most notably, simple and
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well-established proof techniques such as coinduction up

to congruence now fail. To prove our main theorem, we

develop an abstract categorical version of Howe’s method

(Proposition VIII.5). The abstraction depends centrally on new

notions of bifunctorial graph and relation liftings (applied to

liftings of the mixed-variance behaviour functor), which may

in fact turn out to be of independent interest as generalizations

of relation liftings of functors [22], [27] to higher-order

behaviours.

For full proofs and additional details, see Appendix.

Related Work: Borthelle et al. [8] and Hirschowitz and

Lafont [23] have recently developed a framework for congru-

ence of applicative bisimilarity based on Howe’s method. Their

approach is conceptually quite different from ours: operational

rules are given as endofunctors on a presheaf category of

transition systems over models of a signature endofunctor,

and the initial algebra for the rule endofunctor represents the

induced transition system for the given semantics.

Dal Lago et al. [14] propose a generalization of Howe’s

method for call-by-value λ-calculi with algebraic effects,

based on the theory of relators. Their notion of a compu-

tational λ-calculus is parametrized over a signature Σ and

a monad T on sets, representing syntax and effects of the

language. The operational semantics is given in big-step form.

Bonchi et al. [6] employ lax bialgebras to establish up-

to techniques for weak bisimulations in the context of (first-

order) abstract GSOS. Besides the differences in scope, two

approaches diverge also in the way the are based on relation

liftings: Bonchi et al. lift endofunctors from sets to preorders

and further to up-closed relations, while we lift bifunctors

from an abstract category C to relations over C, the up-

closure being replaced with the abstract good-for-simulations

condition (Definition IV.5).

II. PRELIMINARIES

A. Category Theory

We assume familiarity with basic category theory. In the

following we recall some relevant terminology and notation.

Products and coproducts: Given objects X1, X2 in a cat-

egory C, we write X1×X2 for the product and 〈f1, f2〉 : X →
X1×X2 for the pairing of morphisms fi : X → Xi, i = 1, 2.

We let X1+X2 denote the coproduct, inl : X1 → X1+X2 and

inr : X2 → X1 +X2 the injections, [g1, g2] : X1 +X2 → X
the copairing of morphisms gi : Xi → X , i = 1, 2, and

∇ = [idX , idX ] : X +X → X the codiagonal.

Locally distributive categories: A category C is distribu-

tive if it has finite products and coproducts, and for each

X ∈ C the endofunctor X × (−) on C preserves finite

coproducts. It is locally distributive if for each X ∈ C the

slice category C/X is distributive. Recall that C/X has as

objects all pairs (Y, pY ) of an object Y ∈ C and a morphism

pY : Y → X , and a morphism from (Y, pY ) to (Z, pZ) is a

morphism f : Y → Z of C such that pY = pZ ·f . The coslice

category X/C is defined dually.

Example II.1. Examples of locally distributive categories

include the category Set of sets and functions, the category

SetC of presheaves on a small category C and natural trans-

formations, and the categories of posets and monotone maps,

nominal sets and equivariant maps, metric spaces and non-

expansive maps. In fact, they are all lextensive [11, Cor 4.9].

Algebras: Given an endofunctor F on a category C, an

F -algebra is a pair (A, a) which consists of an object A (the

carrier of the algebra) and a morphism a : FA → A (its

structure). A morphism from (A, a) to an F -algebra (B, b) is

a morphism h : A→ B of C such that h ·a = b ·Fh. Algebras

for F and their morphisms form a category Alg(F ), and an

initial F -algebra is simply an initial object in that category.

We denote the initial F -algebra by µF if it exists, and its

structure by ι : F (µF )→ µF . If C has binary products, initial

algebras entail a useful definition principle known as primitive

recursion: for every morphism a : F (µF×A)→ A there exists

a unique morphism pr a making the square below commute.

F (µF ) µF

F (µF ×A) A

ι

F 〈id, pr a〉 pr a

a

(II.1)

More generally, a free F -algebra on an object X of C is an F -

algebra (F ⋆X, ιX) together with a morphism ηX : X → F ⋆X
of C such that for every algebra (A, a) and every morphism

h : X → A in C, there exists a unique F -algebra morphism

h⋆ : (F ⋆X, ιX) → (A, a) such that h = h⋆ · ηX . If free

algebras exist on every object, their formation induces a monad

F ⋆ : C → C, the free monad generated by F . (Conversely,

in complete and well-powered categories, existence of a free

monad implies existence of free algebras [30, Thm. 4.2.15].)

For every F -algebra (A, a), we obtain an Eilenberg-Moore

algebra â : F ⋆A→ A as the free extension of idA : A→ A.

The most familiar example of functor algebras are algebras

for a signature. An algebraic signature consists of a set Σ of

operation symbols together with a map ar : Σ→ N associating

to every f ∈ Σ its arity ar(f). Symbols of arity 0 are

called constants. Every signature Σ induces the polynomial set

functor
∐

f∈Σ(--)
ar(f), which we denote by the same letter Σ.

An algebra for the functor Σ is precisely an algebra for the sig-

nature Σ, viz. a set A equipped with an operation fA : An → A
for every n-ary operation symbol f ∈ Σ. Morphisms of Σ-

algebras are maps respecting the algebraic structure. Given a

set X of variables, the free algebra Σ⋆X is the Σ-algebra of

Σ-terms with variables from X . In particular, the free algebra

on the empty set is the initial algebra µΣ; it is formed by all

closed terms of the signature. For every Σ-algebra (A, a), the

induced Eilenberg-Moore algebra â : Σ⋆A → A is given by

the map evaluating terms over A in the algebra.

A relation R ⊆ A × A on a Σ-algebra A is called a

congruence if for every n-ary f ∈ Σ and elements R(ai, a
′
i),

i = 1, . . . , n, one has R(fA(a1, . . . , an), f
A(a′1, . . . , a

′
n)).

Note that we do not require R to be an equivalence relation.
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Coalgebras: Dual to the notion of algebra, a coalgebra

for an endofunctor F on C is a pair (C, c) of an object C (the

carrier) and a morphism c : C → FC (its structure).

B. Higher-Order Abstract GSOS

We review the core principles behind higher-order abstract

GSOS [20], a categorical framework modelling the operational

semantics of higher-order languages. It is parametric in

(1) a category C with finite products and coproducts;

(2) an object V ∈ C of variables;

(3) two functors Σ: C → C and B : Cop × C → C, where

Σ = V +Σ′ for some functor Σ′ : C→ C, and free Σ-algebras

exist on every object (hence Σ generates a free monad Σ⋆).

Informally, the functors Σ and B represent the syntax and the

behaviour of a higher-order language. The initial algebra µΣ is

the object of programs, and the requirement that Σ = V +Σ′

asserts that variables are programs. An object of V/C, the

coslice category of V -pointed objects, is thought of as a set X
of programs with an embedding pX : V → X of the variables.

Example II.2. A simple instantiation is given by V = ∅, a

polynomial functor Σ and the bifunctor B0(X,Y ) = Y +Y X

on Set. A map γ0 : µΣ→ µΣ+µΣµΣ, that is, a B0(µΣ,−)-
coalgebra with carrier µΣ, can be thought of as a description

of the operational behaviour of deterministic higher-order

programs: every program p ∈ µΣ either performs a silent

computation step reducing p to γ(p) ∈ µΣ, or it acts as a

function γ(p) ∈ µΣµΣ mapping programs to programs.

In order to actually construct coalgebras γ0 as in the above

example, we use the following concept:

Definition II.3. A (V -pointed) higher-order GSOS law of Σ
over B is a family of morphisms

̺(X,pX ),Y : Σ(X ×B(X,Y ))→ B(X,Σ⋆(X + Y )) (II.2)

dinatural in (X, pX) ∈ V/C and natural in Y ∈ C.

Notation II.4. (1) We usually write ̺X,Y for ̺(X,pX),Y , as

the point pX : V → X will always be clear from the context.

(2) For every Σ-algebra (A, a), we regard A as V -pointed by

pA =
(
V

inl
−−→ V +Σ′A = ΣA

a
−−→ A

)
.

Definition II.5. The operational model of a higher-order

GSOS law ̺ in (II.2) is the B(µΣ,−)-coalgebra

γ : µΣ→ B(µΣ, µΣ)

obtained via primitive recursion as the unique morphism

making the diagram (II.3) in Figure 1 commute. Here we

regard the initial algebra µΣ as V -pointed as in Notation II.4,

and ι̂ is the Σ⋆-algebra corresponding to ι : Σ(µΣ)→ µΣ.

Remark II.6. The commutative diagram (II.3) states that

(µΣ, ι, γ) forms a bialgebra for the higher-order GSOS law ̺;

in fact, it is the initial such bialgebra [20, Prop. 4.20].

An important difference to first-order abstract GSOS [37]

is that a final bialgebra usually does not exist even for

simple deterministic behaviour functors [20, Ex. 4.21]. This

in part explains why higher-order compositionality results are

technically involved and first-order proof methods fail.

Let us illustrate the above concepts in the setting of

Example II.2. A higher-order GSOS law of a polynomial

functor Σ over B0(X,Y ) = Y + Y X is a family of maps

̺0X,Y : Σ(X × (Y + Y X))→ Σ⋆(X + Y ) + (Σ⋆(X + Y ))X

dinatural in X ∈ Set and natural in Y ∈ Set. Intuitively,

on input f((p1, b1), . . . , (pn, bn)) for f ∈ Σ, the map ̺0X,Y

specifies the behaviour of the program f(p1, . . . , pn) in terms

of the behaviours b1, . . . , bn ∈ Y + Y X of its subprograms

p1, . . . , pn. (Di)naturality of ̺0 ensures that the maps ̺0X,Y

are parametrically polymorphic, that is, they do not look into

the structure of their arguments. This can be made formal via

the following syntactic representation of higher-order GSOS

laws. Fix metavariables x, xi, yi and yzi for i ∈ N and z ∈
{x, x1, x2, x3, . . .}. An HO rule is an expression of the form

(II.4) or (II.5), where f ∈ Σ, n = ar(f), W ⊆ {1, . . . , n},
W = {1, . . . , n} r W , and t is a Σ-term in the variables

appearing in the premise, and additionally in x for (II.5).

(xj → yj)j∈W (xk
z
−−→ yzk)k∈W, z∈{x1,...,xn}

f(x1, . . . , xn)→ t
(II.4)

(xj → yj)j∈W (xk
z
−−→ yzk)k∈W, z∈{x1,...,xn,x}

f(x1, . . . , xn)
x
−−→ t

(II.5)

An HO specification is a complete set R of HO rules, that is,

for each n-ary operation symbol f ∈ Σ and W ⊆ {1, . . . , n}
there is exactly one rule of the form (II.4) or (II.5) in R.

Example II.7. The extended SKI calculus, previously termed

unary SKI calculus [20], is a combinatory logic expres-

sively equivalent to Curry’s SKI calculus [13], hence to

the untyped λ-calculus. Its signature is given by Σ =
{S/0,K/0, I/0, S′/1,K ′/1, S′′/2, ◦/2} with arities as indi-

cated. Informally, the operator -- ◦ -- corresponds to function

application (we write s t for s ◦ t), and the constants S,K, I
represent the functions (s, t, u) 7→ (s u) (t u), (s, t) 7→ s, and

s 7→ s. The operators S′, S′′,K ′ serve auxiliary purposes. The

operational semantics is given by an HO specification [20,

Fig. 1]. For instance, the rules for application are

x1 → y1
x1 x2 → y1 x2

x1
x2−−−→ xx2

1

x1 x2 → xx2
1

(II.6)

Remark II.8. By convention, a rule with incomplete premises

represents the set of HO rules obtained by adding missing

premises in every feasible way. For example, in the first rule of

(II.6) we can add x2 → y2, or x2
x1−−−→ yx1

2 and x2
x2−−−→ yx2

2 .

Proposition II.9 [20]. Higher-order GSOS laws of Σ over B0

correspond bijectively to HO specifications.

The bijection is based on the Yoneda lemma, and maps an HO
specification R to the higher-order GSOS law ̺0 defined as

follows. Given X,Y ∈ Set and

w = f((p1, b1), . . . , (pn, bn)) ∈ Σ(X ×B0(X,Y )),
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Σ(µΣ) µΣ

Σ(µΣ×B(µΣ, µΣ)) B(µΣ,Σ⋆(µΣ + µΣ)) B(µΣ,Σ⋆(µΣ)) B(µΣ, µΣ)

ι

Σ〈id,γ〉 γ

̺µΣ,µΣ B(id,Σ⋆∇) B(id,ι̂)

(II.3)

Fig. 1. Operational model of a higher-order GSOS law

consider the unique rule in R matching f and W = {j ∈
{1, . . . , n} : bj ∈ Y }. If the rule is of the form (II.4), then

̺0X,Y (w) ∈ Σ⋆(X + Y ) ⊆ B0(X,Σ⋆(X + Y ))

is the term obtained by taking the term t in (II.4) and applying

the following substitutions for i ∈ {1, . . . , n}, j ∈W , k ∈W :

xi 7→ pi, yj 7→ bj, yxi

k 7→ bk(pi).

If the rule is of the form (II.5), then

̺0X,Y (w) ∈ (Σ⋆(X + Y ))X ⊆ B0(X,Σ⋆(X + Y ))

is the map e 7→ te, where te is obtained by taking the term t
in (II.5) and applying the above substitutions along with

x 7→ e and yxk 7→ bk(e) (k ∈ W ).

Instantiating Definition II.5, the operational model of a higher-

order GSOS law ̺0 is the B0(µΣ,−)-coalgebra

γ0 : µΣ→ µΣ + µΣµΣ (II.7)

that runs programs in µΣ according to the rules in the

corresponding HO specification.

III. COMPOSITIONALITY FOR HO SPECIFICATIONS

Our eventual goal is to reason about weak simulations and

their congruence properties on operational models of higher-

order GSOS laws. The required categorical machinery is

developed from Section IV onwards. In the present section we

motivate the categorical abstractions by again investigating the

special case of HO specifications, that is, we continue to work

in the setting of Example II.2.

Notation III.1. (1) In addition to the polynomial functor Σ
and B0(X,Y ) = Y +Y X , we will also consider the bifunctor

B(X,Y ) = PB0(X,Y ) = P(Y +Y X) : Setop×Set→ Set,

where P : Set→ Set is the powerset functor.

(2) Given X ∈ Set, a coalgebra c : C → C + CX for the

functor B0(X,−) and p ∈ C, we write

p→ p if c(p) ∈ C and p = c(p),

p 6→ if c(p) 6∈ C (that is, c(p) ∈ CX ),

p
x
−−→ px if c(p) ∈ CX , x ∈ X , and px = c(p)(x).

In the first case, we say that p reduces. Moreover, we put

p⇒ p if ∃k ≥ 0. ∃p0, . . . , pk. p = p0 → · · · → pk = p,

p ⇓ p if p⇒ p and p 6→ .

The weak transition system of c : C → C + CX is the

coalgebra c̃ : C → P(C+CX) for the functor B(X,−) where

c̃(p) = { p ∈ C : p⇒ p } ∪ { c(p) : p ⇓ p }.

Definition III.2. A weak simulation on a B0(X,−)-coalgebra

c : C → C +CX is a relation R ⊆ C ×C such that for every

R(p, q) and p ∈ C, the following conditions hold:

p⇒ p =⇒ ∃q ∈ C. q ⇒ q ∧ R(p, q);

p ⇓ p =⇒ ∃q ∈ C. q ⇓ q ∧ ∀x ∈ X.R(px, qx).

Weak similarity is the greatest weak simulation on (C, c), viz.

the union of all weak simulations, denoted .(C,c) or just ..

Note that dropping the first condition leads to the same weak

similarity relation. We include it to match the abstract view

on weak simulations in Remark III.3(2) below.

Remark III.3. We make some observations that will be

key to our categorical generalization of weak simulations in

Section VI and VIII.

(1) From a conceptual perspective, weak simulations can

be understood in terms of relation liftings of the involved

functors. Let Rel denote the category whose objects are pairs

(X,R) of a set X and a binary relation R ⊆ X × X , and

whose morphisms h : (X,R) → (Y, S) are maps h : X → Y
such that (h×h)[R] ⊆ S. The functors P , B0 and B = P ·B0

lift to functors P , B0 and B on Rel making the diagram below

commute, where |−| is the forgetful functor (X,R) 7→ X .

Rel
op ×Rel Rel Rel

Setop × Set Set Set

B

|−|op×|−|

B0

|−|

P

|−|

B

B0 P

(a) The lifting P of P is given by

P(X,R) = (PX,SR), Ph = Ph,

where SR is the (one-sided) Egli-Milner relation on PX :

SR(U, V ) ⇐⇒ ∀u ∈ U. ∃v ∈ V.R(u, v).

(b) The lifting B0 of B0 is given by

B0((X,R), (Y, S)) = (B0(X,Y ), E0
R,S),

B0(h, k) = B0(h, k),

where E0
R,S(u, v) holds for u, v ∈ B0(X,Y ) = Y + Y X

whenever either of the following conditions is satisfied:

4



• u, v ∈ Y ∧ S(u, v);

• u, v ∈ Y X ∧ ∀x, x′ ∈ X. (R(x, x′) =⇒ S(u(x), v(x′))).

We note that ((X,R), (Y, S)) 7→ (Y X , E0
R,S ∩ Y X × Y X) is

the internal hom-functor of the cartesian closed category Rel.

(c) Finally, we put B = P · B0. More explicitly,

B((X,R), (Y, S)) = (B(X,Y ), ER,S), B(h, k) = B(h, k),

where ER,S is the relation on P(Y +Y X) defined as follows:

ER,S(U, V ) ⇐⇒ ∀u ∈ U. ∃v ∈ V.E0
R,S(u, v).

(2) A relation R ⊆ C × C forms a weak simulation on the

coalgebra c : C → C + CX iff there exists a map c̃R making

the diagram (III.1) commute, where outl and outr are the left

and right projections and ∆X ⊆ X×X is the identity relation.

C R C

P(C + CX) E∆X ,R P(C + CX)

c̃

outlR

c̃R

outrR

c̃

outl∆X,R outr∆X,R

(III.1)

(3) For a relation R ⊆ C × C to be a weak simulation, it

suffices to restrict the premises of the two weak simulation

conditions to strong transitions: for every R(p, q) and p ∈ C,

p→ p =⇒ ∃q ∈ C. q ⇒ q ∧ R(p, q);

p 6→ =⇒ ∃q ∈ C. q ⇓ q ∧ ∀x ∈ X.R(px, qx).

This amounts to the existence of a map c̃R making the

diagram (III.2) commute. Here we regard c : C → C+CX as

a map c : C → P(C +CX) by postcomposing with b 7→ {b}.

C R C

P(C + CX) E∆X ,R P(C + CX)

c

outlR

c̃R

outrR

c̃

outl∆X,R outr∆X,R

(III.2)

The compositionality theorem for HO specifications [20,

Prop. 3.2] asserts that strong similarity on the operational

model (II.7) is a congruence with respect to the operations

from the signature Σ. (It is worth noting here that strong simi-

larity coincides with strong bisimilarity because reductions are

deterministic.) However, for weak similarity that result fails:

Example III.4. Consider the signature Σ = {c, d, u} where

c, d are constants and u is unary, along with the HO specifi-

cation given by the following four rules:

c
x
−−→ c d→ c

x1 → y1
u(x1)→ u(x1)

x1
x1−−−→ yx1

1

u(x1)→ c

Then c . d but u(c) 6. u(d): we have u(c) ⇓ c while u(d)→
u(d)→ u(d)→ · · · , which means that u(d) ⇓ t holds for no

term t. Thus . is not a congruence on the initial algebra µΣ.

This example illustrates that unrestricted HO rules are

too liberal for our purposes: They allow operators to behave

completely differently depending on whether a given subterm

reduces or not, which is clearly against the spirit of weak

similarity where individual reduction steps are meant to be un-

observable. In the following we devise a natural condition on

HO specifications that avoids congruence-breaking behaviour.

Definition III.5. Suppose that R is an HO specification. We

say that a rule (II.4)/(II.5) of R is sound for weak transitions

if its corresponding weak rule (III.3)/(III.4) shown below

(xj ⇒ yj)j∈W (xj
z
=⇒ yzk)k∈W, z∈{x1,...,xn}

f(x1, . . . , xn)⇒ t
(III.3)

(xj ⇒ yj)j∈W (xj
z
=⇒ yzk)k∈W, z∈{x1,...,xn,x}

f(x1, . . . , xn)
x
=⇒ t

(III.4)

is sound in the operational model (II.7). This means that for

all p1, . . . , pn, p1, . . . , pn ∈ µΣ such that pj ⇒ pj for j ∈W

and pk ⇓ pk for k ∈W , there exists p ∈ µΣ where

• for (III.3), one has f(p1, . . . , pn)⇒ p and the term p ∈ µΣ
emerges from t via the substitutions

xi 7→ pi, yj 7→ pj , yxi

k 7→ (pk)pi
,

for i ∈ {1, . . . , n}, j ∈W , k ∈W ;

• for (III.4), one has f(p1, . . . , pn) ⇓ p and, for every e ∈ µΣ,

the term pe ∈ µΣ emerges from t via the substitutions

xi 7→ pi, x 7→ e, yj 7→ pj , yxi

k 7→ (pk)pi
, yxk 7→ (pk)e,

for i ∈ {1, . . . , n}, j ∈W , k ∈W .

Example III.6. In the specification of Example III.4 the last

rule is unsound for weak transitions: we have d ⇓ c but u(d) 6⇒
c since u(d) reduces to itself. The remaining rules are sound.

(For the first two note that all premise-free rules are sound.)

Remark III.7. The soundness condition can be expressed in

terms of the higher-order GSOS law ̺0 of Σ over B0(X,Y ) =
Y + Y X corresponding to the specification R. First, we turn

̺0 into a higher-order GSOS law ̺ of Σ over B(X,Y ) =
P(Y + Y X), where ̺X,Y is defined to be the composite

Σ(X × PB0(X,Y )) ΣP(X ×B0(X,Y ))

PΣ(X ×B0(X,Y )) PB0(X,Σ⋆(X + Y ))

ΣstX,B0(X,Y )

δX×B0(X,Y )

P̺0
X,Y

(III.5)

Here st is the canonical strength of the powerset functor P ,

stX,Z : X × PZ → P(X × Z), (x, U) 7→ { (x, u) : u ∈ U },

and δ : ΣP → PΣ is the natural transformation whose

component δZ : ΣPZ → PΣZ is given by

f(Z1, . . . , Zn) 7→ { f(z1, . . . , zn) : zi ∈ Zi for i = 1, . . . , n }.

The operational model of ̺ is easily seen to be the composite

µΣ
γ0−−−→ B0(µΣ, µΣ)

η
−−→ PB0(µΣ, µΣ) = B(µΣ, µΣ),

where γ0 is the operational model of ̺0 and η(b) = {b}.
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Then the rules of R are sound for weak transitions iff the

diagram (III.6) commutes laxly. Here γ̃ is the weak transition

system of γ, and the partial order � on a hom-set Set(X,PY )
is given by f � g iff f(x) ⊆ g(x) for all x ∈ X . In the

terminology introduced later (Definition VIII.4), ι and γ̃ thus

form a lax bialgebra for the higher-order GSOS law ̺.

Theorem III.8. For every HO specification whose rules are

sound for weak transitions, the weak similarity relation . on

the canonical model γ : µΣ→ µΣ+ µΣµΣ is a congruence.

The proof uses Howe’s method [25], a standard technique

for establishing higher-order congruence results.

Notation III.9. The Howe closure of a relation R ⊆ µΣ×µΣ
is the relation

R̂ =
⋃

m∈N

R̂m

on µΣ where R̂0 ⊆ R̂1 ⊆ R̂2 ⊆ · · · are defined inductively:

R̂0 = R and for every m ∈ N and p, r ∈ µΣ, one has

R̂m+1(p, r) whenever R̂m(p, r) or

∃f ∈ Σ, ~p, ~q ∈ (µΣ)ar(f). p = f(~p) ∧ R̂m(~p, ~q) ∧ R(f(~q), r).

Here R̂m(~p, ~q) means R̂m(pi, qi) for i = 1, . . . , ar(f).

Remark III.10. (1) If R is reflexive, then the Howe closure

R̂ is a congruence: put r = f(~q) in the definition of R̂m+1.

(2) If R is transitive, then R̂ satisfies a weak transitivity prop-

erty: R̂(p, r) and R(r, r′) implies R̂(p, r′) for all p, r, r′ ∈ µΣ.

This follows by induction on the least m such that R̂m(p, r).

(3) Thus, if R is both reflexive and transitive (in particular, if

it is some weak similarity relation), then R̂ is the least weakly

transitive congruence containing R.

Proof of Theorem III.8. Form the Howe closure .̂ of ..

Since .̂ is a congruence, it suffices to prove .̂ = .. The

inclusion . ⊆ .̂ is clear. For the inclusion .̂ ⊆ . we show

that .̂ is a weak simulation; then the inclusion holds because

. is the greatest weak simulation. By Remark III.3(3), we

need to establish the following for every p .̂ r and p ∈ µΣ:

p→ p =⇒ ∃r ∈ µΣ. r ⇒ r ∧ p .̂ r; (III.7)

p 6→ =⇒ ∃r ∈ µΣ. r ⇓ r ∧ ∀e ∈ µΣ. pe .̂ re. (III.8)

In lieu of (III.8) we will actually prove a stronger statement:

p 6→ =⇒ ∃r ∈ µΣ. r ⇓ r ∧ ∀d .̂ e. pd .̂ re. (III.9)

The proof is by induction on the least m such that p .̂m r.

Induction base (m = 0). Suppose that p .̂0 r, that is, p . r.

Proof of (III.7). If p→ p, since . is a weak simulation, there

exists r ∈ µΣ such that r ⇒ r and p . r, hence also p .̂ r.

Proof of (III.9). If p 6→, since . is a weak simulation, there

exists r ∈ µΣ such that r ⇓ r and pe . re for e ∈ µΣ. By

definition of the HO format, there exists a term tp(x) in a

single variable x such that pe = tp(e) for e ∈ µΣ. Since .̂ is

a congruence, it follows that, for d .̂ e,

pd = tp(d) .̂ tp(e) = pe . re

Thus pd .̂ re by weak transitivity of the relation .̂.

Induction step (m → m + 1). Suppose that p .̂m+1 r.

We only verify condition (III.9), the argument for (III.7) is

analogous. Thus suppose that p 6→. If p .̂m r, we are done

by induction. Otherwise, by definition of .̂m+1, there exists

an n-ary operation symbol f ∈ Σ and ~p, ~q ∈ (µΣ)n such that

p = f(~p), ~p .̂m ~q, q := f(~q) . r.

To avoid bulky notation, we consider the representative case

of a binary operator f where p1 reduces (say p1 → p1) and

p2 6→. Then we know by induction that

• ∃q1 ∈ µΣ. q1 ⇒ q1 ∧ p1 .̂ q1;

• ∃q2 ∈ µΣ. q2 ⇓ q2 ∧ ∀d .̂ e. (p2)d .̂ (q2)e.

Since p = f(p1, p2) 6→, the rule applying to p has the form

x1 → y1 x2
x1−−−→ yx1

2 x2
x2−−−→ yx2

2 x2
x
−−→ yx2

f(x1, x2)
x
−−→ t(x1, x2, x, y1, y

x1
2 , yx2

2 , yx2 )
.

Thus, for every d ∈ µΣ,

p
d
−−→ pd = t(p1, p2, d, p1, (p2)p1 , (p2)p2 , (p2)d).

The above rule is sound for weak transitions, and we have

q1 ⇒ q1 and q2 ⇓ q2, so there exists q ∈ µΣ such that

q ⇓ q and q
e
−−→ qe = t(q1, q2, e, q1, (q2)q1 , (q2)q2 , (q2)e)

for all e ∈ µΣ. Thus for d .̂ e we have pd .̂ qe because .̂ is

a congruence and the terms substituted in t for the variables

are related by .̂. Moreover, since . is a weak simulation and

q . r, there exists r ∈ µΣ such that r ⇓ r and qe . re
for all e ∈ µΣ. It follows that pd .̂ re for d .̂ e because

pd .̂ qe . re and the relation .̂ is weakly transitive.

Remark III.11. (1) The strengthening (III.9) of the induction

hypothesis is required, for otherwise the proof gets stuck: the

argument in the induction step showing pd .̂ qe for d .̂ e

(or even pe .̂ qe for e ∈ µΣ) relies on relations such as

(p2)p1 .̂ (q2)q1 , which only hold by (III.9), not by (III.8).

(2) The strengthened induction hypothesis (III.7) + (III.9) can

be expressed via the relation lifting of the bifunctor B, see

Remark III.3(1): It amounts to the existence of a map δ making

the diagram below commute.

µΣ .̂ µΣ

P(µΣ + µΣµΣ) Ê.,̂.
P(µΣ+ µΣµΣ)

γ

outl ̂.

δ

outr ̂.

γ̃

outl ̂., ̂.
outr ̂., ̂.

(3) The induction does not go through when the Howe clo-

sure .̂ is replaced with more obvious candidates. If .̂ is

taken to be the least congruence containing ., then already the
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Σ(µΣ) µΣ P(µΣ+ µΣµΣ)

Σ(µΣ× P(µΣ+ µΣµΣ)) P(Σ⋆(µΣ + µΣ) + (Σ⋆(µΣ + µΣ))µΣ) P(Σ⋆(µΣ) + (Σ⋆(µΣ))µΣ)

ι

Σ〈id,γ̃〉

γ̃

̺µΣ,µΣ

�

P(Σ⋆∇+(Σ⋆∇)µΣ)
P(ι̂+ι̂µΣ) (III.6)

induction base fails, as the argument requires weak transitivity

of .̂. If .̂ is taken to be the least transitive congruence

containing ., it is no longer clear how to construct .̂ as a

union of inductively defined relations .̂m in a way that makes

the induction step work. It thus appears that Howe’s method

is the simplest and most natural approach to the present result.

We conclude this section by identifying a natural class of

HO specifications, the cool HO specifications, whose rules

are sound for weak transitions. It resembles first-order formats

such as cool GSOS [4], [38] for labelled transition systems,

and cool stateful SOS [19] for stateful computations.

Definition III.12. (1) An n-ary operator f ∈ Σ is passive if

it is specified by a premise-free rule (cf. Remark II.8)

f(x1, . . . , xn)→ t
or

f(x1, . . . , xn)
x
−−→ t

(III.10)

where t is a term in the variables x1, . . . , xn or x1, . . . , xn, x,

resp. Thus the behaviour of f does not depend on the behaviour

of its subterms. An active operator is one which is not passive.

(2) An HO specification is cool if for every active n-ary

operator f there exists j ∈ {1, . . . , n} (called the receiving

position of f) such that all rules for f are of the form

xj → yj

f(x1, . . . , xj , . . . xn)→ f(x1, . . . , yj, . . . xn)
(III.11)

(xj
z
−−→ yzj )z∈{x1,...,xn}

f(x1, . . . , xn)→ t
or

(xj
z
−−→ yzj )z∈{x1,...,xn,x}

f(x1, . . . , xn)
x
−−→ t

where t is a term in the variables xi and yxi

j (i ∈ {1, . . . , n}r
{j}), and moreover in x and yxj for the third rule in (III.11).

Coolness thus asserts that for active f , a program p =
f(p1, . . . , pn) must run its j-th subprogram pj (for some

fixed j depending only on f) until it does not further reduce,

correctly propagate all reduction steps of pj to p, and continue

the computation as a program t that no longer refers to pj .

Proposition III.13. For cool HO specifications, all rules are

sound for weak transitions.

Thus, we obtain as an instance of Theorem III.8:

Corollary III.14. For cool HO specifications, the weak sim-

ilarity relation on the operational model is a congruence.

This generalizes corresponding congruence results for cool

first-order specifications [4], [38], [19].

Example III.15. The extended SKI calculus (Example II.7)

has application −◦− as its only active operator, whose rules

(II.6) are cool. Therefore weak similarity on the operational

model is a congruence. This means that, for instance, p . q
implies p r . q r and r p . r q for all r ∈ µΣ.

The aim of the following sections is to generalize the con-

gruence result of Theorem III.8 to the level of abstract higher-

order GSOS laws. The technical key lies in the construction of

relation liftings of bifunctors (Section V), along with a suitable

categorification of Howe’s method (Section VII).

IV. GRAPHS, RELATIONS, AND PREORDERS

For our categorical account of weak similarity we will need

to restrict to base categories where operations on relations,

such as union or composition, are well-behaved and interact

with each other in a way familiar from the category of sets.

Therefore, we work under the following global assumptions:

Assumptions IV.1. From now on, fix a category C such that

(1) C is complete, cocomplete, and well-powered;

(2) strong epimorphisms in C are pullback-stable: for every

pullback as shown below, if e is strongly epic then so is e;

• •

• •

e e

(3) C is locally distributive.

All categories of Example II.1 satisfy these assumptions.

Since C is complete and well-powered, the subobjects of a

fixed object form a complete lattice, and every morphism has a

(strong epi, mono)-factorization [7, Prop. 4.4.3]. All our results

easily generalize to arbitrary proper factorization systems.

A. Graphs and Relations

We review some terminology for the categorical version of

graphs (more precisely, directed multigraphs) and relations.

1) Graphs in a category: A graph in C is a quadruple

(X,R, outlR, outrR) given by two objects X,R ∈ C and a

parallel pair of morphisms outlR, outrR : R → X . A graph

is usually denoted by its pair (X,R) of objects. A morphism

from (X,R) to a graph (Y, S) is a pair h = (h0, h1) of C-

morphisms making the diagram below commute:

X R X

Y S Y

h0

outlR

h1

outrR

h0

outlS outrS

(IV.1)

We let Gra(C) denote the category of graphs in C and their

morphisms. For every X ∈ C we write GraX(C) →֒ Gra(C)
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for the non-full subcategory consisting of all graphs of the

form (X,R) and graph morphisms h such that h0 = idX .

2) Relations in a category: A graph (X,R) ∈ Gra(C) is a

relation if outlR and outrR are jointly monic, or equivalently

if the morphism 〈outlR, outrR〉 : R → X × X is monic.

We let Rel(C) →֒ Gra(C) and RelX(C) →֒ GraX(C)
denote the full subcategories given by relations; note that

RelX(C) is thin, i.e. an ordered set, and a complete lattice

when isomorphic relations are identified. Both subcategories

are reflective: The reflection of a graph (X,R) is given by

(idX , eR) : (X,R) ։ (X,R†) where eR and R† are obtained

via the (strong epi, mono)-factorization of 〈outlR, outrR〉:

R R† X ×X
eR

〈outlR, outrR〉

〈outl
R† , outrR† 〉

(IV.2)

The various categories are connected by the functors

GraX(C) RelX(C) C

Gra(C) Rel(C) C

|−|

(−)† |−|

|−|

(−)† |−|

where (−)† denotes the reflector and |−| is the projection

functor given by (X,R) 7→ X and h 7→ h0. We regard C

as a full subcategory of Rel(C) by identifying X ∈ C with

the identity relation (X,X, idX , idX) ∈ Rel(C), which we

simply denote by (X,X).
3) Limits and colimits: The categories Gra(C), GraX(C),

Rel(C), RelX(C) are complete and cocomplete. Coproducts

in Gra(C) and GraX(C), denoted by (X,R) + (Y, S) and

(X,R)+X(X,S), are formed using C-coproducts. Coproducts

in Rel(C) are given by (X,R)∨ (Y, S) = ((X,R)+ (Y, S))†

and in RelX(C) by (X,R)∨X (X,S) = ((X,R)+X (X,S))†.

Products (X,R)× (Y, S) in both Gra(C) and Rel(C) are

formed in C. The product (X,R)×X (X,S) in GraX(C) and

RelX(C) is the pullback of 〈outlR, outrR〉 and 〈outlS , outrS〉.
4) Composition of graphs and relations: The composite

(X,R);(X,R′) of two graphs (X,R) and (X,R′) is the graph

(X,R ; R′) defined via the following pullback:

R ; R′

R R′

X X X

πR;R′,R πR;R′,R′

outlR;R′ outrR;R′

outlR
outrR outlR′

outrR′

(IV.3)

The composite of two relations (X,R), (X,R′), given by

(X,R) • (X,R′) = ((X,R) ; (X,R′))†,

defines a bifunctor (−)•(−) on RelX(C) (that is, composition

is a monotone map on the ordered set of relations). Using

Assumptions IV.1(2),(3), relation composition can be shown to

distribute over coproducts. This is the key property of relations

needed for our account of Howe’s method in Section VII.

5) Reflexive and transitive relations: Given graphs (X,R)
and (X,R′) in GraX(C), we put (X,R) ≤ (X,R′) if there

exists a GraX(C)-morphism from (X,R) to (X,R′). For

relations, (X,R) ≤ (X,R′) ≤ (X,R) implies (X,R) ∼=
(X,R′). A relation (X,R) is reflexive if (X,X) ≤ (X,R),
and transitive if (X,R) • (X,R) ≤ (X,R).

6) Reindexing: Every morphism f : X → Y in C induces

a functor f⋆ : GraX(C)→ GraY (C) given by

(X,R, outlR, outrR) 7→ (Y,R, f · outlR, f · outrR).

Readers familiar with the language of fibrations may note that

|−| : Gra(C) → C is a bifibration with fibres GraX(C),
and f⋆ is the reindexing functor induced by opcartesian lifts.

B. Preorders

We extend some of the above terminology to graphs over

preordered objects. Recall that a preorder on a set X is

a reflexive and transitive relation � ⊆ X × X . Replacing

elements 1 → X with “generalized elements” Y → X , one

obtains a categorical notion of preorder.

1) Preorders in a category: A preordered object in C is a

pair (X,�) of an object X ∈ C and a family � = (�Y )Y ∈C

where �Y is a preorder on the hom-set C(Y,X) satisfying

f �Y g =⇒ f · h �Z g · h for all h : Z → Y .

We usually drop subscripts and write � for �Y , �Z , etc.

Example IV.2. (1) Every preordered set (X,�) in the usual

order-theoretic sense can be regarded as a preordered object

in Set by taking the pointwise preorder on Set(Y,X):

f � g ⇐⇒ ∀y ∈ Y. f(y) � g(y).

(2) On every X ∈ C, one has the discrete preordered object

(X,=), where = is the equality preorder.

2) Preordered functors: A preordered functor is a functor

F : D→ C equipped with a preorder (FD,�) for all D ∈ D.

Example IV.3. The powerset functor P : Set → Set is

preordered by taking the inclusion preorder ⊆ on PX .

3) Right-lax morphisms: Given a preordered object (Y,�),
a right-lax morphism from a graph (X,R) to a graph (Y, S)
is a pair h = (h0, h1) of C-morphisms such that

X R X

Y S Y

=
h0 �

outlR

h1

outrR

h0

outlS outrS

For preordered (X,�) we put (X,R) � (X,S) if there exists

a right-lax morphism h : (X,R)→ (X,S) where h0 = idX .

Example IV.4. Given relations (X,R), (X,S) on a pre-

ordered set (X,�), regarded as a preordered object as in

Example IV.2(1), we have (X,R) � (X,S) iff for x, y ∈ X ,

R(x, y) =⇒ ∃z ∈ X.S(x, z) ∧ z � y.
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Graphs over a fixed preordered object (X,�) and right-

lax morphisms h satisfying h0 = idX form a category, but in

contrast to the unordered case, the full subcategory of relations

is usually not reflective. This turns out to be the main technical

challenge for our preorder-based approach to simulations. The

key concept to overcome this issue is as follows:

Definition IV.5. Let (X,�) be a preordered object. A relation

(X,S) is good for simulations if, for all (X,R) ∈ GraX(C),

(X,R) � (X,S) =⇒ (X,R) ≤ (X,S).

Note that (X,R) ranges over graphs, not just relations,

and that the implication “⇐=” also holds trivially. The good-

for-simulations condition thus ensures that right-lax graph

morphisms into (X,S) can be turned into strict ones.

Example IV.6. For every relation (X,R), the relation

(PX,SR) is good for simulations, where PX is equipped

with the inclusion preorder and SR is the Egli-Milner relation

(Remark III.3(1)). This follows from the observation that SR

is up-closed: SR(A,B) and B ⊆ B′ implies SR(A,B
′).

V. LIFTING (BI-)FUNCTORS AND HIGHER-ORDER GSOS

LAWS

As pointed out in Remark III.11, the compositionality proof

for HO specifications implicitly relies on the fact that the

behaviour bifunctor B(X,Y ) = P(Y + Y X) admits a lifting

to the category of relations. We next study liftings of endo-

functors, mixed-variance bifunctors, and higher-order GSOS

laws on C to the categories Gra(C) and Rel(C) of graphs

and relations. We start with the case of endofunctors, which

is straightforward and well-known:

Definition V.1. Let Σ: C→ C be an endofunctor.

(1) A graph lifting of Σ is a functor Σ: Gra(C)→ Gra(C)
making the diagram on the left below commute.

(2) A relation lifting of Σ is a functor Σ: Rel(C)→ Rel(C)
making the diagram on the right below commute.

Gra(C) Gra(C)

C C

|−|

Σ

|−|

Σ

Rel(C) Rel(C)

C C

|−|

Σ

|−|

Σ

Construction V.2. Every functor Σ: C→ C admits a canoni-

cal graph lifting ΣGra : Gra(C)→ Gra(C) and a canonical

relation lifting ΣRel : Rel(C)→ Rel(C) defined as follows:

(1) The functor ΣGra is given on objects and morphisms by

(X,R) 7→ (ΣX,ΣR,ΣoutlR,ΣoutrR), h 7→ (Σh0,Σh1).

(2) The functor ΣRel is the composite

Rel(C) Gra(C) Gra(C) Rel(C).
ΣGra (−)†

(This is similar to the usual Barr extension [2], except that

relations are treated as objects rather than as morphisms.)

Example V.3. For a polynomial functor Σ on Set, the

canonical relation lifting is the restriction of the canonical

graph lifting to Rel. Thus ΣRel(X,R) = (ΣX,ΣR) where

ΣR(f(x1, . . . , xn), f(x
′
1, . . . , x

′
n)) iff R(xi, x

′
i) for all i.

Proposition V.4. Suppose that Σ: C → C preserves strong

epimorphisms and generates a free monad Σ⋆. Then ΣGra

and ΣRel generate free monads satisfying

(ΣGra)
⋆ = (Σ⋆)Gra and (ΣRel)

⋆ = (Σ⋆)Rel.

Next we turn to liftings of mixed-variance bifunctors.

Definition V.5. A relation lifting of a functor B : Cop×C→ C

is a functor B such that the diagram below commutes.

Rel(C)op ×Rel(C) Rel(C)

Cop × C C

|−|op×|−|

B

|−|

B

Every bifunctor admits a canonical relation lifting, generaliz-

ing the lifting B0 of Remark III.3(1). Since the construction is

more involved than for endofunctors, and our compositionality

result works with any lifting, we refer to the Appendix

(Section C). Finally, we lift higher-order GSOS laws:

Definition V.6. Let Σ: C → C and B : Cop × C → C be

functors with relation liftings Σ and B, respectively, where Σ
preserves strong epimorphisms and Σ = ΣRel is the canonical

lifting. Given a V -pointed higher-order GSOS law

̺X,Y : Σ(X ×B(X,Y ))→ B(X,Σ⋆(X + Y ))

of Σ over B, a relation lifting of ̺ is a (V, V )-pointed higher-

order GSOS law

Σ((X,R)×B((X,R), (Y, S)))

B((X,R),Σ
⋆
((X,R) ∨ (Y, S)))

̺(X,R),(Y,S)

of Σ over B such that

(̺(X,R),(Y,S))0 = ̺X,Y

for ((X,R), p(X,R)) ∈ (V, V )/Rel(C) and (Y, S) ∈ Rel(C).
Here we regard X as V -pointed by pX = (p(X,R))0 : V → X .

Remark V.7. (1) Recall that for a V -pointed higher-order

GSOS law ̺ we assume the functor Σ to be of the form V +Σ′.

This implies Σ = (V, V ) ∨Σ′, as required.

(2) The product × and coproduct ∨ in Rel(C) are formed

as explained in Section IV-A3, and we have Σ
⋆

= Σ⋆

by Proposition V.4. It follows that (̺(X,R),(Y,S))0 is a C-

morphism of type Σ(X ×B(X,Y ))→ B(X,Σ⋆(X + Y )).

(3) Since Rel(C)-morphisms are uniquely determined by

their (−)0-component, a higher-order GSOS law ̺ admits

at most one lifting ̺. The requirement that the morphisms

̺(X,R),(Y,S) form a higher-order GSOS law of Σ over B is

thus vacuous: the (di-)naturality of ̺ is implied by that of ̺.

For the canonical relation lifting B of B, every higher-order

GSOS law admits a relation lifting (see Appendix, Section D).
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VI. WEAK SIMULATIONS

We next introduce the notion of weak simulation featuring in

our abstract congruence result.

Notation VI.1. Fix a functor F : C → C and a relation

lifting F . We denote the relation F (X,R) by (FX,ER).

We recall the notion of (lifting) bisimulation [27] for coal-

gebras. We use the term simulation instead, as this is what

the concept amounts to in our applications, due to the use of

asymmetric liftings such as the one-sided Egli-Milner lifting.

An alternative approach to simulations uses lax liftings [26].

Definition VI.2. Let (C, c) be an F -coalgebra. A relation

(C,R) is a simulation on (C, c) if c⋆(C,R) ≤ F (C, c), that

is, there exists a morphism cR making (VI.1) commute.

C R C

FC ER FC

c

outlR

cR

outrR

c

outlER
outrER

(VI.1)

If it exists, the greatest simulation with respect to the partial

order ≤ on RelC(C) is called the similarity relation on (C, c).

Lemma VI.3. Suppose that the functor F satisfies the follow-

ing conditions for all X ∈ C and (X,R), (X,S) ∈ RelX(C):

(1) the relation F (X,X) is reflexive;

(2) F (X,R) • F (X,S) ≤ F ((X,R) • (X,S)).

Then for every F -coalgebra (C, c) the similarity relation

exists, and it is reflexive and transitive.

The conditions in the above lemma are similar to ones occur-

ring in work on lax extensions, e.g. by Marti and Venema [31].

In the setting ofHO specifications, where F = PB0(X,−),
a weak simulation on a B0(X,−)-coalgebra (C, c) as per

Definition III.2 is precisely a simulation on the weak transition

system (C, c̃). As observed in Remark III.3(3), in order to

check the weak simulation conditions for R(p, q), it suffices

to show that strong transitions from p are simulated by weak

transitions from q. This turns out to be the only property of

weak simulations needed for our categorical congruence proof,

and so we take it as our abstract definition:

Definition VI.4. A weakening of a coalgebra c : C → FC is

a coalgebra c̃ : C → FC such that for every relation (C,R)
the following two statements are equivalent:

(1) (C,R) is a simulation on (C, c̃);

(2) there exists a morphism c̃R making (VI.2) commute.

C R C

FC ER FC

c

outlR

c̃R

outrR

c̃

outlER
outrER

(VI.2)

A weak simulation on (C, c), with respect to a given weaken-

ing (C, c̃), is a relation (C,R) satisfying the two equivalent

properties above. If it exists, the greatest weak simulation is

called weak similarity, denoted .(C,c) or just ..

Remark VI.5. (1) For the trivial weakening c̃ = c, weak

simulations are just (strong) simulations.

(2) The above definition is agnostic about how the weak-

ening c̃ is actually constructed from c. The construction of

weak coalgebras has been studied in specific order-enriched

settings [9], [10], [21]. Our present abstract approach is

flexible in the choice of c̃. For example, the weak transition

system c̃ of Notation III.1 is an instance of the framework

of [9], but the choice c̃ = c as in part (1) above is not.

VII. HOWE’S METHOD, CATEGORICALLY

Next, we set up our version of Howe’s method, which regards

Howe closures abstractly as initial algebras. In a restricted

setting of presheaf categories, this idea already appears in the

work of Borthelle et al. [8] and Hirschowitz and Lafont [23].

Notation VII.1. Let Σ: C → C be an endofunctor with its

canonical relation lifting Σ = ΣRel (Construction V.2). For

every (X,R) ∈ RelX(C) and every Σ-algebra (X, ξ) with

monic structure ξ : ΣX  X , let

ΣR,ξ : RelX(C)→ RelX(C)

be the endofunctor (= monotone map) given by

(X,S) 7→ (X,R) ∨X
(
(ξ⋆Σ(X,S)) • (X,R)

)
,

see Section IV-A for the notation. (The assumption that ξ
is monic ensures that ξ⋆ maps relations to relations.) Since

RelX(C) is equivalent to a complete lattice, the initial algebra

of ΣR,ξ exists, and we denote it by

(X,R) ∨X
(
(ξ⋆Σ(X, R̂)) • (X,R)

) αR,ξ

−−−−→ (X, R̂). (VII.1)

The relation (X, R̂) is called the Howe closure of (X,R) with

respect to the algebra (X, ξ).

Remark VII.2. We will instantiate the above to the initial

algebra (X, ξ) = (µΣ, ι); note that the structure ι is an

isomorphism. For C = Set and Σ a polynomial functor, the

above definition of R̂ is equivalent to the one of Notation III.9.

Lemma VII.4 below establishes some basic properties of

Howe closures, generalizing Remark III.10. For that purpose

let us recall the notion of congruence for functor algebras:

Definition VII.3. A congruence on a Σ-algebra (A, a) is a

relation (A,R) such that a⋆ΣRel(A,R) ≤ (A,R).

For a polynomial functor Σ on Set, this matches the definition

of congruence from universal algebra (cf. Section II-A).

Lemma VII.4. Let Σ: C → C be an endofunctor. Then for

each (X,R) ∈ Rel(C) and each monic algebra ξ : ΣX  X ,

(1) if (X,R) is reflexive, then (X, R̂) is reflexive and a

congruence on (X, ξ);

(2) if (X,R) is transitive, then (X, R̂) is weakly transitive,

that is, (X, R̂) • (X,R) ≤ (X, R̂).
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VIII. COMPOSITIONALITY

We proceed to establish our main theorem, which asserts that

under natural conditions, weak similarity is a congruence on

the operational model of a higher-order GSOS law.

Assumptions VIII.1. In this section we fix the following data:

(1) a functor Σ = V + Σ′ : C → C that preserves strong

epimorphisms and generates a free monad Σ⋆;

(2) a preordered bifunctor B : Cop × C → C with a relation

lifting B that is good for simulations (Definition VIII.2);

(3) a V -pointed higher-order GSOS law ̺ of Σ over B that

admits a (necessarily unique) relation lifting ̺.

It remains to explain Assumption VIII.1(2):

Definition VIII.2. A relation lifting B of B is good for simu-

lations if, for X,Y ∈ C and (X,R), (Y, S), (Y, S′) ∈ Rel(C),

(G1) the relation B((X,R), (Y, S)) is good for simulations;

(G2) the relation B((X,X), (Y, Y )) is reflexive;

(G3) B((X,R), (Y, S)) •B((X,X), (Y, S′)) ≤
B((X,R), (Y, S) • (Y, S′)).

Remark VIII.3. To motivate Assumption VIII.1(3), let us

revisit the setting of HO specifications, where B(X,Y ) =
P(Y + Y X) and ̺ is given by (III.5). Existence of a relation

lifting of ̺ means that for (X,R), (Y, S) ∈ Rel the map ̺X,Y

is a Rel-morphism w.r.t. the lifting B of Remark III.3(1). In

the proof of Theorem III.8 (induction base for (III.9)) a syn-

tactic argument shows that pd .̂ pe for d .̂ e, which amounts

to the above property for (X,R) = (Y, S) = (µΣ, .̂). Hence,

the purpose of Assumption VIII.1(3) is to replace the syntactic

part of that proof by an abstract condition on the law ̺.

In the following we study weak simulations on the opera-

tional model (µΣ, γ) of the higher-order GSOS law ̺, under-

stood w.r.t. to the relation lifting B((µΣ, µΣ),−) : Rel(C)→
Rel(C) of the endofunctor B(µΣ,−) : C → C and a given

weakening (µΣ, γ̃) of (µΣ, γ). By (G2) and (G3) the lifted

endofunctor satisfies the conditions of Lemma VI.3, hence the

weak similarity relation on (µΣ, γ) exists.

The core ingredient for our congruence theorem is a higher-

order variation of lax models for monotone GSOS laws [6]:

Definition VIII.4. A lax ̺-bialgebra (X, a, c) is given by an

object X ∈ C and morphisms a : ΣX → X and c : X →
B(X,X) such that the diagram below commutes laxly. Note

that X is V -pointed; the point pX : V → X is induced by the

algebra a : ΣX → X (Notation II.4).

ΣX X B(X,X)

Σ(X ×B(X,X)) B(X,Σ⋆(X +X)) B(X,Σ⋆X)

a

〈id,c〉

c

̺X
,X

�

B(id
,Σ

⋆ ∇) B(id,â)

This generalizes the notion of ̺-bialgebra [20] which requires

strict commutativity of the above diagram.

Our congruence theorem rests on the assumption that

(µΣ, ι, γ̃) is a lax ̺-bialgebra. As indicated in Remark III.7,

this expresses in abstract terms that the operational rules

encoded by the higher-order GSOS law ̺ are sound for weak

transitions in the operational model. In the setting ofHO spec-

ifications, we proved that this entails the congruence property

for weak similarity (Theorem III.8). The next proposition is

key to our categorical generalization of that result.

Proposition VIII.5. Suppose that γ̃ is a weakening of the

operational model (µΣ, γ) such that (µΣ, ι, γ̃) is a lax

̺-bialgebra. Then for every reflexive and transitive weak

simulation (µΣ, R) on (µΣ, γ), the Howe closure (µΣ, R̂)
w.r.t. (µΣ, ι) is a weak simulation.

In the proof below we denote the relation B((X,S), (Y, T ))
by (B(X,Y ), ES,T ) and its projections by outlS,T , outrS,T .

Proof sketch. Form the relation (µΣ, P ) via the pullback

P E
R̂,R̂

µΣ× µΣ B(µΣ, µΣ)×B(µΣ, µΣ)

p

〈outlP ,outrP 〉 〈outl
R̂,R̂

,outr
R̂,R̂

〉

〈γ,γ̃〉

The crucial step is to show existence of RelµΣ(C)-morphisms

βl : (µΣ, R)→ (µΣ, P ),

βr : ι⋆Σ((µΣ, R̂)×µΣ (µΣ, P )) • (µΣ, R)→ (µΣ, P ),

where×µΣ is the product in RelµΣ(C) (Section IV-A3). Their

construction imitates the arguments for the induction base and

induction step, respectively, in the proof of Theorem III.8.

Once this is achieved, we can conclude the proof as follows.

By copairing βl and βr we obtain the RelµΣ(C)-morphism

β = [βl, βr] : ΣR,ι

(
(µΣ, R̂)×µΣ (µΣ, P )

)
→ (µΣ, P )

(cf. Notation VII.1) and thus primitive recursion (II.1) yields

the RelµΣ(C)-morphism pr β : µΣR,ι = (µΣ, R̂)→ (µΣ, P ).

Choose a morphism r : (µΣ, µΣ) → (µΣ, R̂) witnessing that

(µΣ, R̂) is reflexive (Lemma VII.4). Then the commutative

diagram below proves (µΣ, R̂) to be a weak simulation.

R̂

µΣ P µΣ

B(µΣ, µΣ) E
R̂,R̂

B(µΣ, µΣ)

E
µΣ,R̂

outl
R̂

outr
R̂

(pr β)1

γ

outlP

p

outrP

γ̃

outl
R̂,R̂

B(r,(µΣ,R̂))1

outr
R̂,R̂

outl
µΣ,R̂

outr
µΣ,R̂

We are ready to state our main result. Recall that we work

under the Assumptions IV.1 and VIII.1.

Theorem VIII.6 (Compositionality). Suppose that γ̃ is

a weakening of the operational model (µΣ, γ) such that

(µΣ, ι, γ̃) is a lax ̺-bialgebra. Then the weak similarity

relation on (µΣ, γ) is a congruence.
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Proof. Let (µΣ,.) be the weak similarity relation on (µΣ, γ).

Its Howe closure (µΣ, .̂) satisfies

(µΣ,.) ≤ (µΣ, .̂) ≤ (µΣ,.).

The first inequality is witnessed by the morphism α.,ι · inl,
for α.,ι from (VII.1). For the second one we use that the

relation (µΣ, .̂) is a weak simulation by Proposition VIII.5

(note that it is reflexive and transitive by Lemma VI.3, so the

proposition applies) and that . is the greatest weak simulation.

Thus (µΣ,.) ∼= (µΣ, .̂), and since (µΣ, .̂) is a congruence

by Lemma VII.4, we conclude that so is (µΣ,.).

By choosing the trivial weakening γ̃ = γ and equipping B
with the equality preorder, we obtain similarity as an instance

of weak similarity (Remark VI.5(1)), and the laxness condition

on the bialgebra (µΣ, ι, γ) holds trivially by (II.3). We obtain

Corollary VIII.7. Similarity on (µΣ, γ) is a congruence.

This is a variant of the main result of [20]. In fact, the

present version is more general since its notion of similarity

is parametric in a lifting of B, while the result in op. cit. is

about coalgebraic behavioural equivalence, which corresponds

to the canonical lifting of B (see Appendix, Section C).

IX. APPLICATIONS

We conclude with two applications of Theorem VIII.6.

A. HO Specifications

To recover the results of Section III, fix an HO specifica-

tion R over the signature Σ, corresponding to a higher-order

GSOS law ̺0 of Σ over B0(X,Y ) = Y + Y X . We take

C = Set and instantiate the data of Assumptions VIII.1 to

(1) the given polynomial functor Σ;

(2) the behaviour functor B(X,Y ) = P(Y +Y X), preordered

by inclusion, with its relation lifting B as in Remark III.3(1);

(3) the higher-order GSOS law ̺ of Σ over B given by (III.5).

It is not difficult to verify that the above data satisfies the

Assumptions VIII.1. Then by choosing the weakening γ̃ to be

the weak transition system associated to γ0, see Notation III.1,

we recover Theorem III.8 as a special case of Theorem VIII.6.

B. The λ-Calculus

We briefly sketch how our framework applies to the λ-calculus,

building on ideas from the work of Fiore et al. [16] and our

previous work [20]. The (untyped call-by-name) λ-calculus is

given by the small-step operational rules shown below, where

s, s′, t range over possibly open λ-terms and [t/x] denotes

capture-avoiding substitution.

app1
s→ s′

s t→ s′ t
app2

(λx.s) t → s[t/x]
(IX.1)

Take the presheaf category C = SetF, where F is the category

of finite cardinals and functions, and the functors

Σ: C→ C, ΣX = V + δX +X ×X,

B0 : C
op × C→ C, B0(X,Y ) = 〈〈X,Y 〉〉 × (Y + Y X + 1).

Here Y X denotes the exponential object in the topos SetF,

and the presheaves V , δX and 〈〈X,Y 〉〉 are meant to represent

variables, λ-abstraction, and substitution, respectively:

V (n) = n, δX(n) = X(n+1), 〈〈X,Y 〉〉(n) = SetF(Xn, Y ).

The initial algebra for Σ is the presheaf Λ ∈ SetF given by

Λ(n) = λ-terms in free variables from n = {0, . . . , n− 1},

where λ-terms are formed modulo α-equivalence [16]. In [20,

Def. 5.8] we devised a V -pointed higher-order GSOS law ̺0

of Σ over B0 whose operational model

γ0 = 〈γ0
1 , γ

0
2〉 : Λ→ 〈〈Λ,Λ〉〉 × (Λ + ΛΛ + 1) (IX.2)

captures the operational semantics of (IX.1), in the sense that

for every m,n ∈ F, t ∈ Λ(n) and ~u ∈ Λ(m)n:

• γ0
1(t)(~u) = t[~u] = t[(u0, . . . , un−1)/(0, . . . , n− 1)];

• t→ t′ =⇒ γ0
2(t) = t′ ∈ Λ(n);

• t = λx.t′ =⇒ γ0
2(t) ∈ ΛΛ(n)∧∀e ∈ Λ(n).γ0

2(t)(e) = t′[e];
• γ0

2(t) = ∗ otherwise (that is, if t is stuck).

Here γ0
2(t)(e) = ev(γ0

2 (t), e) for the evaluation map ev : ΛΛ×
Λ→ Λ. We instantiate the data of Assumptions VIII.1 to

(1) the above functor ΣX = V + δX +X ×X ;

(2) the functor B(X,Y ) = 〈〈X,Y 〉〉 × P⋆(Y + Y X), where

P⋆ : Set
F → SetF is the pointwise powerset functor given by

X 7→ P ·X for X ∈ SetF. (Note that we dropped the “+1”

summand from the behaviour, whose role is taken over by the

empty set.) The relation lifting B is constructed similarly to

the one of B(X,Y ) = P(Y + Y X) in Remark III.3(1);

(3) a higher-order GSOS law ̺ of Σ over B which is derived

from ̺0 in a way similar to the construction of Remark III.7.

The weak operational model is the B(Λ,−)-coalgebra

γ̃ = 〈γ̃1, γ̃2〉 : Λ→ 〈〈Λ,Λ〉〉 × P⋆(Λ + ΛΛ)

given for t ∈ Λ(n) by γ̃1(t) = γ0
1(t) and

γ̃2(t) = { t ∈ Λ(n) : t⇒ t } ∪

{ f ∈ ΛΛ(n) : ∃t. t⇒ t ∧ γ0
2(t) = f }.

Here ⇒ is the reflexive transitive hull of the reduction re-

lation →. Weak similarity on (IX.2) then can be shown to

coincide with the following concept due to Abramsky [1]:

Definition IX.1. Applicative similarity is the greatest relation

.
ap
0 ⊆ Λ(0)× Λ(0) on the set of closed λ-terms such that if

t1 .
ap
0 t2 and t1 ⇒ λx.t′1, then there is a term t′2 such that

t2 ⇒ λx.t′2 ∧ ∀e ∈ Λ(0). t′1[e/x] .
ap
0 t′2[e/x].

Its open extension is the relation .ap⊆ Λ×Λ whose compo-

nent .ap
n ⊆ Λ(n)× Λ(n) for n > 0 is given by

t1 .ap
n t2 iff t1[~u] .

ap
0 t2[~u] for every ~u ∈ Λ(0)n.

One can verify that (Λ, ι, γ̃) forms a lax ̺-bialgebra, which

amounts to observing that the rules (IX.1) are sound for

weak transitions. Consequently, Theorem VIII.6 instantiates to

a well-known and fundamental result about the λ-calculus [1]:
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Theorem IX.2. The open extension of applicative similarity

is a congruence: for all λ-terms s, t, t′, one has

t .ap t′ =⇒ s t .ap s t′ ∧ t s .ap t′ s ∧ λx.t .ap λx.t′.

It follows that the open extension of applicative bisimilarity,

viz. the relation ≈ap = .ap ∩&ap, is also a congruence.

X. CONCLUSIONS AND FUTURE WORK

We have developed relation liftings of bifunctors and an

abstract analogue of Howe’s method to prove congruence of

coalgebraic weak similarity for higher-order GSOS laws. We

have thus taken the first steps towards operational reasoning

in the higher-order abstract GSOS framework.

Logical relations [36], [35], [33], [15] are another important

operational reasoning technique that we would like to cover

in the future. Logical relations are typically type-indexed,

while higher-order abstract GSOS has so far been applied to

untyped languages. We aim to investigate typed languages in

the context of higher-order abstract GSOS and develop abstract

analogues of logical relations. It is worth noting that, even in

the untyped setting, relation liftings of bifunctors already share

a key characteristic with logical relations, namely that func-

tions send related inputs to related outputs (Remark III.3(1)).

Another goal is to apply our methods to call-by-value lan-

guages. As already noted in our previous work [20, Sec. 5.4],

this appears to be more subtle than the call-by-name case. We

envision a multi-sorted setting as a possible approach.

Finally, we aim to explore effectful languages. For instance,

by taking the behaviours P(Y +Y X) or S(Y +Y X), where S
is the subdistribution functor, our results already yield a

form of compositionality for nondeterministic and probabilis-

tic combinatory logic. For the latter, exploring behavioural

distances instead of (bi)similarity is also a natural direction;

we expect that existing work on probabilistic λ-calculi [12],

[18] can provide some guidance.

REFERENCES

[1] S. Abramsky, “The lazy λ-calculus,” in Research topics in Functional

Programming. Addison Wesley, 1990, pp. 65–117.
[2] M. Barr, “Relational algebras,” in Proc. Midwest Category Seminar, ser.

LNM, vol. 137. Springer, 1970.
[3] F. Bartels, “On generalised coinduction and probabilistic specification

formats: Distributive laws in coalgebraic modelling,” Ph.D. dissertation,
Vrije Universiteit Amsterdam, 2004.

[4] B. Bloom, “Structural operational semantics for weak bisimulations,”
Theor. Comput. Sci., vol. 146, no. 1&2, pp. 25–68, 1995.

[5] B. Bloom, S. Istrail, and A. R. Meyer, “Bisimulation can’t be traced,”
J. ACM, vol. 42, no. 1, pp. 232–268, 1995.

[6] F. Bonchi, D. Petrisan, D. Pous, and J. Rot, “Lax bialgebras and up-
to techniques for weak bisimulations,” in CONCUR’15, ser. LIPIcs,
L. Aceto and D. de Frutos-Escrig, Eds., vol. 42. Schloss Dagstuhl
- Leibniz-Zentrum fuer Informatik, 2015, pp. 240–253.

[7] F. Borceux, Handbook of Categorical Algebra 1. Cambridge University
Press, 1994.

[8] P. Borthelle, T. Hirschowitz, and A. Lafont, “A cellular Howe theorem,”
in LICS’20, H. Hermanns, L. Zhang, N. Kobayashi, and D. Miller, Eds.
ACM, 2020, pp. 273–286.

[9] T. Brengos, “Weak bisimulation for coalgebras over order enriched
monads,” Logical Methods in Computer Science, vol. 11, no. 2, 2015.

[10] T. Brengos, M. Miculan, and M. Peressotti, “Behavioural equivalences
for coalgebras with unobservable moves,” J. Log. Algebraic Methods
Program., vol. 84, no. 6, pp. 826–852, 2015.

[11] A. Carboni, S. Lack, and R. Walters, “Introduction to extensive and
locally distributive categories,” Journal of Pure and Applied Algebra,
vol. 84, pp. 145–158, 1993.
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APPENDIX

This appendix is structured as follows:

• Section A establishes a number of auxiliary results on graphs and relations.

• Section B provides complete proofs of all results from the extended abstract.

• Section C explains how to construct canonical graph and relation liftings of mixed-variance bifunctors.

• Section D addresses canonical graph and relation liftings of higher-order GSOS laws.

• Section E is a more detailed version of Section IX-B on the λ-calculus.

Recall that throughout our paper, including this appendix, we work under the Assumptions IV.1 on the base category C.

APPENDIX A

MORE ON GRAPHS AND RELATIONS

In Section IV-A3 we stated that the category Gra(C) is complete and cocomplete, with limits and colimits formed at the

level of C. In particular, this means that the product (X,R)× (Y, S) and coproduct (X,R) + (Y, S) are given by the graphs

R× S

X × Y

outlR×outlS outrS×outrS and

R+ S

X + Y

outlR+outlS outrR+outrS

Colimits in GraX(C) are also formed at the level of C. In particular, the coproduct of (X,R), (X,R′) ∈ GraX(C), denoted

by (X,R) +X (X,R′), is the graph

R+R′

X

[outlR,outlR′ ] [outrR,outrR′ ]

(Co-)limits in Rel(C) and RelX(C) are formed by taking the (co-)limit in Gra(C) and GraX(C), respectively, and

applying the reflector (−)†. Note that Rel(C) is closed under products in Gra(C), since products of monomorphisms are

monomorphisms.

The remaining results of this section are about composition of graphs and relations. We first mention a useful property of

pullbacks that follows from our assumptions:

Lemma A.1. For every commutative diagram (A.2), if the outside and the inner square are pullbacks and e0, e1 are strong

epimorphisms, then e is a strong epimorphism.

A B

A′ B′

C′ D

C D

f

g

e

h

e0

f ′

g′
h′

k′

e1

k

id

(A.1)

Proof. Recall that pullbacks correspond to products in a slice category. Therefore, the lemma states that for any two morphisms

e0 : h → h′ and e1 : g → g′ in C/D with e0, e1 strongly epic in C, their product e = e0 ×D e1 in C/D is also a strong

epimorphism in C. Since e0×D e1 = (id×D e1)◦(e0×D id), and strong epimorphisms are closed under composition, it suffices

to assume that one of the ei is an identity morphism, w.l.o.g. e1 = id. Then we have the following commutative diagram:

A B

A′ B′

C = C′ D

g

f

e e0

h
f ′

g′
h′

k=k′

(A.2)

The lower rectangle and the outside are pullbacks, so the upper rectangle is also a pullback [7, Prop. 2.5.9]. Since e0 is strongly

epic and strong epimorphisms are pullback-stable by Assumption IV.1(2), we conclude that e is strongly epic.
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Notation A.2. Recall that the graph (X,R) ; (X,R′) is defined by via the pullback (IV.3). We often write RR′ for R ;R′.

Graph composition extends to a bifunctor

(−) ; (−) : GraX(C)×GraX(C)→ GraX(C)

as follows. Given f : (X,R)→ (X,S) and f ′ : (X,R′)→ (X,S′) in GraX(C), the morphism

f ; f ′ : (X,R) ; (X,R′)→ (X,S) ; (X,S′)

is defined by (f : f ′)0 = idX , and (f ; f ′)1 is the unique C-morphism making the two squares below commute, using the

universal property of the pullback SS′:

RR′ SS′

R S

πRR′,R

(f ;f ′)1

πSS′,S

f1

RR′ SS′

R′ S′

πRR′,R′

(f ;f ′)1

πSS′,S′

f ′
1

(A.3)

Lemma A.3. If f1 and f ′
1 are strong epimorphisms, then (f ; f ′)1 is a strong epimorphism.

Proof. This follows from Lemma A.1 applied to the commutative diagram

RR′ R′

SS′ S′

S X

R X

πRR′,R′

πRR′,R

(f ;f ′)1

outlR′

f ′
1

πSS′,S′

πSS′,S outlS′

outrS

f1

outrR

id

Analogously, composition of relations extends to the bifunctor

(−) • (−) = (RelX(C)×RelX(C) →֒ GraX(C)×GraX(C)
(−);(−)
−−−−−−→ GraX(C)

(−)†

−−−−→ RelX(C) ).

Lemma A.4. For every (X,R), (X,R′) ∈ GraX(C), we have

(X,R)† • (X,R′)† ∼= ((X,R) ; (X,R′))†.

Proof. Since (id, eR) : (X,R)→ (X,R†) and (id, eR′) : (X,R′)→ (X,R′†) are graph morphisms and by (IV.2), the following

diagram commutes:

R ; R′ R† ;R′† (R† ; R′†)†

(R ;R′)† X ×X

eR;R′

((id,eR);(id,eR′ ))1

〈outlR;R′ ,outrR;R′〉

e
R†;R′†

〈outl
R†;R′† ,outrR†;R′† 〉 〈outl

(R†;R′†)†
,outr

(R†;R′†)†
〉

〈outl
(R;R′)†

,outr
(R;R′)†

〉

Note that ((id, eR) ; (id, eR′))1 is a strong epimorphism by Lemma A.3. Thus the desired isomorphism follows from the

uniqueness of (strong epi, mono)-factorizations.

The following lemma shows that graph and relation composition distribute over coproducts. This is where our assumption

that C is locally distributive is used.

Lemma A.5. For X ∈ C we have the following natural isomorphisms in GraX(C) and RelX(C), respectively:

(X,R) ; ((X,S) + (X,T )) ∼= (X,R) ; (X,S) + (X,R) ; (X,T ), (A.4)

((X,S) + (X,T )) ; (X,R) ∼= (X,S) ; (X,R) + (X,T ) ; (X,R), (A.5)

(X,R) • ((X,S) ∨ (X,T )) ∼= (X,R) • (X,S) ∨ (X,R) • (X,T ), (A.6)

((X,S) ∨ (X,T )) • (X,R) ∼= (X,S) • (X,R) ∨ (X,T ) • (X,R). (A.7)
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Here we write + and ∨ for +X and ∨X .

Proof. We construct the isomorphisms (A.4) and (A.6); the other two are analogous.

Proof of (A.4). By the universal property of the pullback R(S + T ), there exists a unique C-morphism i : RS → R(S + T )
making the following diagrams commute:

RS R(S + T )

R

i

πRS,R πR(S+T),R

RS R(S + T )

S S + T

i

πRS,S
πR(S+T),S+T

inl

(A.8)

The morphism j : RT → R(S+T ) is defined analogously. Since the slice category C/X is distributive, and products in C/X
correspond precisely to pullbacks in C, it follows that

[i, j] : RS +RT
∼=−−→ R(S + T )

is an isomorphism in C. Thus

(idX , [i, j]) : (X,R) ; (X,S) + (X,R) ; (X,T )
∼=
−−→ (X,R) ; ((X,S) + (X,T ))

is an isomorphism in GraX(C); the two diagrams below show that is indeed a GraX(C)-morphism. (Below and henceforth

we indicate the reason why the parts of a commutative diagram commutes, and we write 	 if a part obviously commutes.)

RS +RT R(S + T )

R+R R

X X

[i,j]

πRS,R+πRT,R

[outlRS ,outlRT ] outlR(S+T )

πR(S+T),R
(A.8)

(IV.3)

	[outlR,outlR]

∇

outlR

(IV.3)

id

RS +RT R(S + T )

S + T

X X

[i,j]

πRS,S+πRT,T

[outrRS ,outrRT ] outrR(S+T )

πR(S+T ),S+T(A.8)

	

(IV.3) (IV.3)

[outrS ,outrT ] [outrS ,outrT ]

id

Naturality of the isomorphism (idX , [i, j]) amounts to showing that the square below commutes for all GraX(C)-morphisms

f : (X,R)→ (X,R′), g : (X,S)→ (X,S′) and h : (X,T )→ (X,T ′), where [i′, j′] is defined analogously to [i, j] above.

RS +RT R(S + T )

R′S′ +R′T ′ R′(S′ + T ′)

[i,j]

(fg)1+(fh)1 (f(g+h))1

[i′,j′]

It suffices to show that the square commutes when postcomposed with the pullback projections πR′(S′+T ′),R′ and

πR′(S′+T ′),S′+T ′ ; the latter follows from the two commutative diagrams below.

RS + RT R(S + T )

R+R R

R′ +R′ R′

R′S′ +R′T ′ R′(S′ + T ′)

[i,j]

πRS,R+πRT,R

(fg)1+(fh)1 (f(g+h))1

πR(S+T ),R
(A.8)

	

(A.3)

f1+f1

∇
(A.3)

f1

(A.8)

∇

[i′,j′]

πR′S′,R′+πR′T,R′ πR′(S′+T ′),R′

RS +RT R(S + T )

S + T

S′ + T ′

R′S′ +R′T ′ R′(S′ + T ′)

[i,j]

πRS,S+πRT,T

(fg)1+(fh)1 (f(g+h))1

πR(S+T),S+T

g1+h1

(A.8)

(A.3) (A.3)

(A.8)

[i′,j′]

πR′S′,R′+πR′T,R′ πR′(S′+T ′),S′+T ′

Proof of (A.6). For every (X,R), (X,S), (X,T ) ∈ RelX(C) we compute

(X,R) • ((X,S) ∨ (X,T )) ∼= (X,R)† • ((X,S) + (X,T ))†

∼= ((X,R) ; ((X,S) + (X,T )))†

∼= ((X,R) ; (X,S) + (X,R) ; (X,T ))†

∼= ((X,R) ; (X,S))† ∨ ((X,R) ; (X,T ))†

∼= (X,R) • (X,S) ∨ (X,R) • (X,T ).
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In the first step we use the definition of ∨ and that (X,R)† ∼= (X,R) because (X,R) is a relation; the second step follows

from Lemma A.4; the third step uses the isomorphism (A.4) established above; the fourth step uses that the reflector (−)†

preserves coproducts, being a left adjoint; the last step follows by definition of •.

Recall from Section IV-A6 the reindexing functor f⋆ : GraX(C)→ GraY (C) induced by a morphism f : X → Y .

Lemma A.6. For every f : X → Y in C and (X,R), (X,R′) ∈ GraX(C) we have

f⋆((X,R) ; (X,R′)) ≤ f⋆(X,R) ; f⋆(X,R′), (A.9)

f⋆((X,R)†) ≤ (f⋆(X,R))†. (A.10)

Proof. Proof of (A.9). By definition, f⋆(X,R) ; f⋆(X,R′) is the relation (Y, S) obtained via the following pullback:

S

R R′

Y Y Y

πS,R πS,R′

outlS outrS

f ·outlR f ·outrR f ·outlR′ f ·outrR′

Since outrR, outlR′ merge πR;R′,R and πR;R′,R′ , so do f · outrR, f · outlR′ , hence the universal property of the pullback S
yields a unique h1 : R ;R′ → S such that

πR;R′,R = πS,R · h1 and πR;R′,R′ = πS,R′ · h1.

It follows that

(id, h1) : f⋆((X,R) ; (X,R′))→ f⋆(X,R) ; f⋆(X,R′)

is a GraY (C)-morphism, as required.

Proof of (A.10). By definition, (f⋆(X,R))† is the relation (Y, S) obtained via the (strong epi, mono)-factorization e and

〈outlS , outrS〉 of the morphism 〈f · outlR, f · outrR〉 = (f × f) · 〈outlR, outrR〉. We thus obtain a diagonal fill-in d : R† → S
making the diagram below commute:

R S

R†

X ×X Y × Y

e

〈outlR,outrR〉

eR

〈outlS ,outrS〉

d

〈outl
R† ,outrR†〉

f×f

It follows that

(id, d) : f⋆((X,R)†)→ (f⋆(X,R))†

is a GraY (C)-morphism, as required.

Corollary A.7. For every f : X → Y in C and (X,R), (X,R′) ∈ RelX(C) we have

f⋆((X,R) • (X,R′)) ≤ f⋆(X,R) • f⋆(X,R′). (A.11)

Proof. This follows from the computation

f⋆((X,R) • (X,R′)) = f⋆(((X,R) ; (X,R′))†)

≤ (f⋆((X,R) ; (X,R′))†

≤ (f⋆(X,R) ; f⋆(X,R′))†

= f⋆(X,R) • f⋆(X,R′).

The second step uses (A.10) and the third one uses (A.9) and functoriality of (−)†.
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APPENDIX B

OMITTED PROOFS

PROOF OF PROPOSITION III.13

The rules (III.10) for a passive operator are clearly sound, as is the first rule in (III.11) for an active operator. To see that

the second rule in (III.11) is sound, suppose that p1, . . . , pn, pj ∈ µΣ are programs such that pj ⇓ pj . This means that

pj = p0j → p1j → · · · → pkj = pj for some k ≥ 0 and p0j , . . . , p
k
j ∈ µΣ.

By applying the first of (III.11) (the first ones k times) we obtain

f(p1, . . . , pj, . . . , pn)→ · · · → f(p1, . . . pj , . . . , pn)

→ t[p1, . . . , pj−1, pj+1, . . . , pn, (pj)p1 , . . . , (pj)pj−1 , (pj)pj+1 , . . . , (pj)pn
].

(The bracket [· · · ] indicates how the variables of t are substituted. Note that t does not depend on xj and y
xj

j .) It follows

f(p1, . . . , pn) ⇒ t[p1, . . . , pj−1, pj+1, . . . , pn, (pj)p1 , . . . , (pj)pj−1 , (pj)pj+1 , . . . , (pj)pn
], as required. The soundness of the

third rule in (III.11) is shown analogously.

PROOF OF PROPOSITION V.4

We first establish some auxiliary results.

Remark B.1. By putting D = 1 in Lemma A.1, we see that strong epimorphisms in C are product-stable: e0× e1 is strongly

epic whenever e0 and e1 are strongly epic.

Lemma B.2. If Σ preserves strong epimorphisms, we have the following isomorphism for every (X,R), (Y, S) ∈ Gra(C):

ΣRel((X,R)† × (Y, S)†) ∼= (ΣGra((X,R)× (Y, S))†.

Proof. This follows from the commutative diagram below and the uniqueness of (strong epi, mono)-factorizations. Note that

eR × eS is strongly epic by Remark B.1.

Σ(R × S) Σ(R† × S†) (Σ(R† × S†))†

(Σ(R × S))† Σ(X × Y )× Σ(X × Y )

eΣ(R×S)
〈Σ(outlR×outlS),Σ(outrR×outrS)〉

Σ(eR×eS) e
Σ(R†×S†)

〈Σoutl
R†×S† ,Σoutr

R†×S†〉 〈outl(Σ(R†×S†))†
,outr

(Σ(R†×S†))†
〉

〈outl
(Σ(R×S))†

,outr
(Σ(R×S)†

〉

Lemma B.3. If Σ preserves strong epimorphisms, the following diagrams commute:

Gra(C) Gra(C)

Rel(C) Rel(C)

ΣGra

(−)† (−)†

ΣRel

Proof. For each (X,R) ∈ Gra(C) we have

(ΣGra(X,R))† = (ΣX,ΣR)† ∼= (ΣX, (ΣR†))† = ΣRel((X,R)†)

The isomorphism in the second step follows from the commutative diagram below and the uniqueness of (strong epi, mono)-

factorizations.

ΣR ΣR† (ΣR†)†

(ΣR)† ΣX × ΣX

eΣR

〈ΣoutlR,ΣoutrR〉

ΣeR
e
(ΣR†)†

〈Σoutl
R† ,Σoutr

R† 〉 〈outl
(ΣR†)†

,outr
(ΣR†)†

〉

〈outl
(ΣR)†

,outr
(ΣR)†

〉
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Since (−)† is a left adjoint, the above lemma and [22, Thm. 2.14] yield

Corollary B.4. If Σ preserves strong epimorphisms, there is an adjunction

Alg(ΣGra) Alg(ΣRel)⊥
F

U

where the right adjoint U is given by

(ΣRel(A,R)
a
−−→ (A,R)) 7→ (ΣGra(A,R)

(id,eΣR)
−−−−−−→ ΣRel(A,R)

a
−−→ (A,R)) and h 7→ h,

the left adjoint F by

(ΣGra(A,R)
a
−−→ (A,R)) 7→ (ΣRel(A,R

†)
a†

−−−→ (A,R†)) and h 7→ h†,

and the unit at ((A,R), a) ∈ Alg(ΣGra) by

(id, eR) : ((A,R), a)→ UF ((A,R), a).

With this preparation, we are ready to prove the proposition.

Proof of Proposition V.4. Let (Σ⋆, η, µ) be the free monad generated by Σ, with associated natural transformation

ι : ΣΣ⋆ → Σ⋆;

that is, ιX : ΣΣ⋆X → Σ⋆X is the free Σ-algebra on X with the universal morphism ηX : X → Σ⋆X .

(1) We first consider the graph lifting Σ = ΣGra. It suffices to show that a free Σ-algebra on (X,R) ∈ Gra(C) is given by

ΣΣ⋆(X,R) = (ΣΣ⋆X,ΣΣ⋆R)
(ιX ,ιR)
−−−−−−→ (Σ⋆X,Σ⋆R) = Σ⋆(X,R)

with the universal morphism

(X,R)
(ηX ,ηR)
−−−−−−→ (Σ⋆X,Σ⋆R) = Σ⋆(X,R).

To prove this, we verify the required universal property. Thus suppose that we are given a Σ-algebra a : Σ(A,S)→ (A,S) and

a Gra(C)-morphism h : (X,R)→ (A,S). The universal property of the free Σ-algebra (Σ⋆X, ιX) yields a unique Σ-algebra

morphism

h0 : (Σ
⋆X, ιX)→ (A, a0) such that h0 ◦ ηX = h0,

and similarly the universal property of (Σ⋆R, ιR) yields a unique Σ-algebra morphism

h1 : (Σ
⋆R, ιR)→ (S, a1) such that h1 ◦ ηR = h1.

This implies that the Σ-algebra morphism

h = (h0, h1) : (Σ
⋆(X,R), (iX , iR))→ ((A,S), a)

satisfies h ◦ (ηX , ηR) = h, and it is clearly unique with that property.

(2) Now consider the relation lifting Σ̃ = ΣRel. It suffices to show that a free Σ̃-algebra on (X,R) ∈ Rel(C) is given by

Σ̃Σ̃⋆(X,R)
(ιX ,ιR)†

−−−−−−−→ Σ̃⋆(X,R)

with the universal morphism

(X,R)
(ηX ,ηR)†

−−−−−−−→ Σ̃⋆(X,R).

But this is immediate from part (1) above and Corollary B.4.
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PROOF OF LEMMA VI.3

We prove a more refined result:

Lemma B.5. Suppose that the functor F satisfies the following conditions for all X ∈ C and (X,R), (X,S) ∈ RelX(C):

(1) the relation F (X,X) is reflexive;

(2) F (X,R) • F (X,S) ≤ F ((X,R) • (X,S)).

Then for every coalgebra c : C → FC:

(a) If (C,Ri), i ∈ I , are simulations on (C, c), then the coproduct
∨

i∈I(C,Ri) in RelC(C) is a simulation.

(b) The identity relation (C,C) is a simulation on (C, c).

(c) If (C,R) and (C, S) are simulations on (C, c), then the composite (C,R) • (C, S) is a simulation.

(d) The similarity relation on (C, c) exists, and it is reflexive and transitive.

Proof. (a) Let (C,R) =
∨

i(C,Ri) and denote by ini : (C,Ri)→ (C,R) the coproduct injection. We first compute

c⋆(
∐

i

(C,Ri)) =
∐

i

c⋆(C,Ri) ≤
∐

i

F (C,Ri) ≤ F (C,R),

where the first
∐

refers to the coproduct in GraC(C) and the other two to the coproduct in GraFC(C). The first step follows

from the definition of
∐

and c⋆, the second step uses that (C,Ri) is a simulation, and the third step is witnessed by the

morphism [F (ini)]i. It follows that

c⋆(C,R) = c⋆((
∐

i

(C,Ri))
†) ≤ (c⋆(

∐

i

(C,Ri)))
† ≤ F (C,R)† = F (C,R).

The first step uses that (C,R) =
∨

i(C,Ri) and the definition of
∨

, the second one follows from (A.10), the third one from

the computation above, and the last one since F (C,R) is a relation.

(b) This follows from the computation

c⋆(C,C) ≤ (FC, FC) ≤ F (C,C)

where the first step is witnessed by the GraFC(C)-morphism (id, c) : c⋆(C,C) → (FC, FC) and the second one uses that

F (C,C) is reflexive by condition (1).

(c) This follows from the computation

c⋆((C,R) • (C, S)) ≤ c⋆(C,R) • c⋆(C, S) ≤ F (C,R) • F (C, S) ≤ F ((C,R) • (C, S)).

The first step follows from (A.7), the second step uses that c⋆(C,R) ≤ F (C,R) and c⋆(C, S) ≤ F (C, S) because (C,R) and

(C, S) are simulations and that • is functorial, and the third step uses condition (2).

(d) Since the category C is well-powered (Assumptions IV.1), the collection { (C,Ri) : i ∈ I } of all simulations, taken up

to isomorphism in RelC(C), forms a small set. Thus the greatest simulation is given by the coproduct (C,R) =
∨

i(C,Ri),
see part (a). It is reflexive because (C,C) is a simulation by part (b) and thus (C,C) ≤ (C,R) because (C,R) is the greatest

simulation. It is transitive because (C,R) • (C,R) is a simulation by part (c) and thus (C,R) • (C,R) ≤ (C,R).

Remark B.6. By (A.10) the congruence property in Definition VII.3 is equivalent to

a⋆ΣGra(A,R) ≤ (A,R),

that is, existence of a morphism aR : ΣR→ R such that the diagram below commutes.

ΣA ΣR ΣA

A R A

a

ΣoutlR

aR

ΣoutrR

a

outlR outrR
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PROOF OF LEMMA VII.4

(1) Suppose that (X,R) is reflexive. Then (X, R̂) is reflexive because

(X,X) ≤ (X,R) ≤ (X, R̂).

The first step uses that (X,R) is reflexive and the second step is witnessed by αR,ξ · inl, see (VII.1). Similarly, (X, R̂) is a

congruence on (X, ξ) because

ξ⋆Σ(X, R̂) = (ξ⋆Σ(X, R̂)) • (X,X) ≤ (ξ⋆Σ(X, R̂)) • (X,R) ≤ (X, R̂).

The first step follows from the definition of relation composition, the second step uses that (X,R) is reflexive and that relation

composition is functorial, and the third step is witnessed by αR,ξ · inr.

(2) Suppose that (X,R) is transitive. Putting ∨ = ∨X , we obtain

(X, R̂) • (X,R) ∼= ((X,R) ∨ (ξ⋆Σ(X, R̂)) • (X,R)) • (X,R)

∼= (X,R) • (X,R) ∨ (ξ⋆Σ(X, R̂)) • (X,R) • (X,R)

≤ (X,R) ∨ (ξ⋆Σ(X, R̂)) • (X,R)

∼= (X, R̂).

The first and the last step are witnessed by the isomorphism (VII.1), the second one uses Lemma A.5, and the third one uses

that (X,R) • (X,R) ≤ (X,R) by transitivity of (X,R) and that ∨ and • are monotone.

PROOF OF PROPOSITION VIII.5

The proof of the proposition requires some notation:

Notation B.7. (1) For each (X,R), (Y, S) ∈ Rel(C) we denote the relation B((X,R), (Y, S)) by

ER,S

B(X,Y )

outlR,S outrR,S

Thus the domain and codomain of the Rel(C)-morphism

̺(X,R),(Y,S) : Σ((X,R)×B((X,R), (Y, S)))→ B((X,R),Σ
⋆
((X,R) + (Y, S)))

are the relations

Σ((X,R)×B((X,R), (Y, S))) = (Σ(X ×B(X,Y )), (Σ(R × ER,S))
†)

and

B((X,R),Σ
⋆
((X,R) + (Y, S))) = (B(X,Σ⋆(X + Y )), ER,(Σ⋆(R∨S))†).

We put

tR,S = (Σ(R × ER,S)
eΣ(R×ER,S)

−−−−−−−−−→ (Σ(R × ER,S))
† (̺(X,R),(Y,S))1
−−−−−−−−−−−→ ER,(Σ⋆(R∨S))† ).

Then we have the following commutative diagram, where out ∈ {outl, outr}; the lower right-hand part commutes because

̺(X,R),(Y,S) is a Rel(C)-morphism and (̺(X,R),(Y,S))0 = ̺X,Y .

Σ(R× ER,S) (Σ(R × ER,S))
† ER,(Σ⋆(R∨S))†

Σ(X ×B(X,Y )) B(X,Σ⋆(X + Y )

Σ(outR×outR,S)

eΣ(R×ER,S)

tR,S

(̺(X,R),(Y,S))1

out
(Σ(R×ER,S))† out

R,(Σ⋆(R∨S))†

̺X,Y

(B.1)

(2) Since (µΣ, R̂) is a congruence on (µΣ, ι) by Lemma VII.4, there exists a C-morphism ι
R̂

such that diagram below

commutes, cf. Remark B.6.

Σ(µΣ) ΣR̂ Σ(µΣ)

µΣ R̂ µΣ

ι

Σoutl
R̂

ι
R̂

Σoutr
R̂

ι

outl
R̂

outr
R̂

(B.2)
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(3) Since (µΣ, R) is a weak simulation on (µΣ, γ), there exist C-morphisms γ̃R and
≈
γR such that the following diagrams

commute, cf. Definition VI.4.

µΣ R µΣ

B(µΣ, µΣ) EµΣ,R B(µΣ, µΣ)

γ

outlR

γ̃R

outrR

γ̃

outlµΣ,R outrµΣ,R

µΣ R µΣ

B(µΣ, µΣ) EµΣ,R B(µΣ, µΣ)

γ̃

outlR

≈
γR

outrR

γ̃

outlµΣ,R outrµΣ,R

(B.3)

Proof of Proposition VIII.5. Suppose that (µΣ, R) is a reflexive and transitive weak simulation on (µΣ, γ). Our task is to

show that the Howe closure (µΣ, R̂) is a weak simulation on (µΣ, γ). To this end, form the relation (µΣ, P ) ∈ RelµΣ(C)
via the pullback below; it is a relation because monomorphisms are stable under pullbacks.

P E
R̂,R̂

µΣ× µΣ B(µΣ, µΣ)×B(µΣ, µΣ)

p

〈outlP ,outrP 〉 〈outl
R̂,R̂

,outr
R̂,R̂

〉

〈γ,γ̃〉

(B.4)

The key to the proof is showing the existence of RelµΣ(C)-morphisms

βl : (µΣ, R)→ (µΣ, P ) and βr : ι⋆Σ((µΣ, R̂)×µΣ (µΣ, P )) • (µΣ, R)→ (µΣ, P ) (B.5)

where ×µΣ denotes the product in RelµΣ(C), see Section IV-A3. Once this is achieved, we can conclude the proof as follows.

By copairing βl and βr we obtain the RelµΣ(C)-morphism

β = [βl, βr] : ΣR,ι

(
(µΣ, R̂)×µΣ (µΣ, P )

)
→ (µΣ, P )

and thus primitive recursion (II.1) yields the RelµΣ(C)-morphism

pr β : µΣR,ι = (µΣ, R̂)→ (µΣ, P ).

Choose a witness r : (µΣ, µΣ) → (µΣ, R̂) that (µΣ, R̂) is reflexive, see Lemma VII.4. Then the following commutative

diagram proves (µΣ, R̂) to be a weak simulation on (µΣ, γ):

R̂

µΣ P µΣ

B(µΣ, µΣ) E
R̂,R̂

B(µΣ, µΣ)

E
µΣ,R̂

outl
R̂

outr
R̂

(pr β)1

γ

outlP

p

outrP

γ̃

outl
R̂,R̂

B(r,(µΣ,R̂))1

outr
R̂,R̂

outl
µΣ,R̂

outr
µΣ,R̂

It only remains to define the RelµΣ(C)-morphisms βl and βr in (B.5). Their construction imitates the arguments for the

induction base and induction step, resp., in the proof of Theorem III.8.

Construction of βl : (µΣ, R)→ (µΣ, P ):

(1) We define the morphism f : µΣ→ E
R̂,R̂

via primitive recursion as follows:

Σ(µΣ) µΣ

Σ(µΣ× E
R̂,R̂

) Σ(R̂ × E
R̂,R̂

) E
R̂,(Σ⋆(R̂∨R̂))† E

R̂,(Σ⋆R̂)† E
R̂,R̂

ι

Σ〈id,f〉 f

Σ(r1×id) t
R̂,R̂ B(id,Σ

⋆
∇)1 B(id, ̂(ι,ι

R̂
)†)1

(B.6)

Here t
R̂,R̂

is defined in Notation B.7, and ̂(ι, ι
R̂
)† : Σ

⋆
(µΣ, R̂) → (µΣ, R̂) is the Σ

⋆
-algebra corresponding to the Σ-algebra

(ι, ι
R̂
)† : Σ(µΣ, R̂)→ (µΣ, R̂), cf. Proposition V.4 and its proof.
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(2) The morphism f : µΣ→ E
R̂,R̂

satisfies

γ = outl
R̂,R̂
· f and γ = outr

R̂,R̂
· f. (B.7)

By symmetry it suffices to prove the first equation, which follows from the observation that the morphism outl
R̂,R̂
· f satisfies

the commutative diagram (II.3) defining γ:

Σ(µΣ) µΣ

Σ(µΣ× E
R̂,R̂

) Σ(R̂× E
R̂,R̂

) E
R̂,(Σ⋆(R̂∨R̂))† E

R̂,(Σ⋆R̂)† E
R̂,R̂

Σ(µΣ×B(µΣ, µΣ)) B(µΣ,Σ⋆(µΣ + µΣ)) B(µΣ,Σ⋆(µΣ)) B(µΣ, µΣ)

ι

Σ〈id,f〉 f

Σ(r1×id)

Σ(id×outl
R̂,R̂

) (B.1)Σ(outl
R̂
×outl

R̂,R̂
)

t
R̂,R̂

outl
R̂,(Σ⋆(R̂∨R̂))†

B(id,Σ
⋆
∇)1

outl
R̂,(Σ⋆R̂)†

B(id, ̂(ι,ι
R̂
)†)1

outl
R̂,R̂

̺µΣ,µΣ B(µΣ,Σ⋆∇) B(µΣ,ι̂)

(3) Now consider the composite graph B((µΣ, R̂), (µΣ, R̂));B((µΣ, µΣ), (µΣ, R)). The universal property of the correspond-

ing pullback E
R̂,R̂

;EµΣ,R yields a unique morphism g making the diagram below commute, where π and π′ are the left and

right projection of the pullback:

µΣ R

E
R̂,R̂

E
R̂,R̂

;EµΣ,R EµΣ,R

f

outlR
γ̃R

g

π π′

(B.8)

Indeed, by definition E
R̂,R̂

;EµΣ,R is the pullback of outr
R̂,R̂

and outlµΣ,R, and the commutative diagram below shows that

these two morphisms merge f · outlR and γ̃R.

R µΣ E
R̂,R̂

EµΣ,R B(µΣ, µΣ)

(B.3)γ̃R

outlR

γ

f

outr
R̂,R̂

(B.7)

outlµΣ,R

(4) Next, we observe that there exists a GraB(µΣ,µΣ)(C)-morphism

k : B
(
(µΣ, R̂), (µΣ, R̂)

)
;B

(
(µΣ, µΣ), (µΣ, R)

)
→ B

(
(µΣ, R̂), (µΣ, R̂)

)
. (B.9)

This is shown by the following computation:

B
(
(µΣ, R̂), (µΣ, R̂)

)
; B

(
(µΣ, µΣ), (µΣ, R)

)

≤ B
(
(µΣ, R̂), (µΣ, R̂)

)
•B

(
(µΣ, µΣ), (µΣ, R)

)

≤ B
(
(µΣ, R̂), (µΣ, R̂) • (µΣ, R)

)

≤ B
(
(µΣ, R̂), (µΣ, R̂)

)
.

The first step holds by definition of relation composition •; the second step follows from (G3); the third step uses that (µΣ, R̂)
is weakly transitive by Lemma VII.4.

(5) Finally, we have the following commutative diagram:

µΣ R µΣ

B(µΣ, µΣ) E
R̂,R̂

E
R̂,R̂

; EµΣ,R EµΣ,R B(µΣ, µΣ)

E
R̂,R̂

γ
f

outlR outrR

g
γ̃R

γ̃

(B.7)

(B.9)

(B.8)

outl
R̂,R̂

(B.7)
π

k1

π′

(B.9)

(B.3)

outrµΣ,R

outl
R̂,R̂

outr
R̂,R̂
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The universal property of the pullback (B.4) yields a unique βl
1 : R→ P such that outlR = outlP · βl

1 and outrR = outrP · βl
1

and k1 · g = p · βl
1. By the first two equations, we thus obtain the RelµΣ(C)-morphism

βl = (id, βl
1) : (µΣ, R)→ (µΣ, P ).

Construction of βr : ι⋆Σ((µΣ, R̂)×µΣ (µΣ, P )) • (µΣ, R)→ (µΣ, P ):

(1) Recall that the product (µΣ, R̂)×µΣ (µΣ, P ) is the relation (µΣ, Q) where Q is the pullback

Q P

R̂ µΣ× µΣ

q
R̂

qP

〈outlP , outrP 〉

〈outl
R̂
, outr

R̂
〉

(B.10)

and

outlQ = outl
R̂
· q

R̂
, and outrQ = outr

R̂
· q

R̂
. (B.11)

(2) Consider the C-morphism h : ΣQ→ E
R̂,R̂

defined as the composite

h = (ΣQ Σ(R̂× P ) Σ(R̂× E
R̂,R̂

) E
R̂,(Σ⋆(R̂∨R̂))† E

R̂,(Σ⋆R̂)† E
R̂,R̂

).
Σ〈q

R̂
,qP 〉 Σ(id×p) t

R̂,R̂
B(id,Σ

⋆
∇)1 B(id, ̂(ι,ι

R̂
)†)1

We claim that the diagram below commutes laxly, where outlΣQ = ι ·ΣoutlQ and outrΣQ = ι ·ΣoutrQ are the projections of

the relation ι⋆Σ(µΣ, Q):

µΣ ΣQ µΣ

B(µΣ, µΣ) E
R̂,R̂

B(µΣ, µΣ)

=
γ �

outlΣQ

h

outrΣQ

γ̃

outl
R̂,R̂

outr
R̂,R̂

(B.12)

This is proven by the two diagrams below. In the part (∗) of the second diagram, we make use of our assumption that (µΣ, ι, γ̃)
is a lax ̺-bialgebra.

ΣQ Σ(R̂ × P ) Σ(R̂× E
R̂,R̂

) E
R̂,(Σ⋆(R̂∨R̂))† E

R̂,(Σ⋆R̂)† E
R̂,R̂

Σ(µΣ× µΣ) Σ(µΣ×B(µΣ, µΣ)) B(µΣ,Σ⋆(µΣ + µΣ)) B(µΣ,Σ⋆(µΣ))

Σ(µΣ) µΣ B(µΣ, µΣ)

h

Σ〈q
R̂
,qP 〉

ΣoutlQ

Σ〈outlQ,outlQ〉
(B.4)

Σ(id×p)

Σ(outl
R̂
×outlP )

(B.1)

t
R̂,R̂

Σ(outl
R̂
×outl

R̂,R̂
)

B(id,Σ
⋆
∇)1

outl
R̂,(Σ⋆(R̂∨R̂))†

B(id, ̂(ι,ι
R̂
)†)1

outl
R̂,(Σ⋆R̂)†

outl
R̂,R̂

Σ(id×γ) ̺µΣ,µΣ
B(id,Σ⋆∇)

B(id,ι̂)Σ〈id,id〉

Σ〈id,γ〉

ι

(II.3)

γ

ΣQ Σ(R̂ × P ) Σ(R̂× E
R̂,R̂

) E
R̂,(Σ⋆(R̂∨R̂))† E

R̂,(Σ⋆R̂)† E
R̂,R̂

Σ(µΣ× µΣ) Σ(µΣ×B(µΣ, µΣ)) B(µΣ,Σ⋆(µΣ+ µΣ)) B(µΣ,Σ⋆(µΣ))

Σ(µΣ) µΣ B(µΣ, µΣ)

h

Σ〈q
R̂
,qP 〉

ΣoutrQ

Σ〈outrQ,outrQ〉
(B.4)

Σ(id×p)

Σ(outr
R̂
×outrP )

(B.1)

t
R̂,R̂

Σ(outr
R̂
×outr

R̂,R̂
)

B(id,Σ
⋆
∇)1

outr
R̂,(Σ⋆(R̂∨R̂))†

B(id, ̂(ι,ι
R̂
)†)1

outr
R̂,(Σ⋆R̂)†

outr
R̂,R̂

Σ(id×γ̃) ̺µΣ,µΣ
B(id,Σ⋆∇)

B(id,ι̂)Σ〈id,id〉

Σ〈id,γ̃〉

ι

� (∗)

γ̃
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From (B.12) and (G1), it follows that there exists a C-morphism l : ΣQ→ E
R̂,R̂

such that the following diagram commutes:

µΣ ΣQ µΣ

B(µΣ, µΣ) E
R̂,R̂

B(µΣ, µΣ)

γ

outlΣQ

l

outrΣQ

γ̃

outl
R̂,R̂

outr
R̂,R̂

(B.13)

(3) Again consider the composite graph B((µΣ, R̂), (µΣ, R̂)) ; B((µΣ, µΣ), (µΣ, R)). The universal property of the corre-

sponding pullback E
R̂,R̂

;EµΣ,R yields a unique morphism m making the diagram below commute, where the upper row refers

to the composite graph ι⋆Σ(µΣ, Q) ; (µΣ, R).

ΣQ ΣQ ;R R

E
R̂,R̂

E
R̂,R̂

;EµΣ,R EµΣ,R

l

πΣQ;R,ΣQ

m

πΣQ;R,R

≈
γR

π π′

(B.14)

Indeed, by definition E
R̂,R̂

; EµΣ,R is the pullback of outr
R̂,R̂

and outlµΣ,R, and the diagram below shows that these two

morphisms merge l · πΣQ;R,ΣQ and
≈
γR · πΣQ;R,R.

ΣQ ; R ΣQ E
R̂,R̂

µΣ

R EµΣ,R B(µΣ, µΣ)

πΣQ;R,ΣQ

πΣQ;R,R

l

outrΣQ

(B.13) outr
R̂,R̂

(B.3)
γ̃outlR

≈
γR outlµΣ,R

(4) Finally, we have the commutative diagram below:

µΣ ΣQ ΣQ ; R R µΣ

B(µΣ, µΣ) E
R̂,R̂

E
R̂,R̂

; EµΣ,R EµΣ,R B(µΣ, µΣ)

E
R̂,R̂

(B.12)γ (B.14)

outlΣQ

l (B.14)

πΣQ;R,ΣQ πΣQ;R,R

m (B.3)

outrR

≈
γR γ̃

(B.9)

outl
R̂,R̂

k1

π π′ outr
µΣ,R̂

(B.9)

outl
R̂,R̂

outr
R̂,R̂

The universal property of the pullback (B.4) yields a unique γr
1 : ΣQ ; R → P such that outlΣQ · πΣQ;R,ΣQ = outlP · γr

1 and

outrR · πΣQ;R,R = outrP · γr
1 and k1 ·m = p · γr

1. Thus

γr = (id, γr
1) : ι⋆Σ((µΣ, R̂)×µΣ (µΣ, P )) ; (µΣ, R)→ (µΣ, P )

is a GraµΣ(C)-morphism, which yields the RelµΣ(C)-morphism

βr = (γr)† : ι⋆Σ((µΣ, R̂)×µΣ (µΣ, P )) • (µΣ, R)→ (µΣ, P ).

This concludes the proof.

PROOF DETAILS FOR SECTION IX-A

We will prove that the given data satisfy the Assumptions VIII.1:

(1) The functor Σ preserves strong epimorphisms.

(2) The functor B is good for simulations.

(3) The higher-order GSOS law ̺ admits a relation lifting.

Proof. (1) Every set functor preserves epimorphisms (= surjections) since the latter are precisely the right-invertible maps.
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(2) By definition, we have B = P · B0 where P and B0 are the relation liftings of Remark III.3. Condition (G1) holds by

Example IV.6. For (G2) we first observe that for each X ∈ Set the relation P(X,X) is given by (PX,⊆), hence it is reflexive.

The following computation then proves B((X,X), (Y, Y )) to be reflexive:

(B(X,Y )), B(X,Y )) = (PB0(X,Y ),PB0(X,Y ))

≤ P(B0(X,Y ), B0(X,Y ))

∼= P B0((X,X), (Y, Y ))

= B((X,X), (Y, Y )).

In the second step we use the above observation about P . The third step follows from Proposition C.8, using the fact that B0

is the canonical lifting of B0. For (G3) note that

P(X,R) • P(X,S) ≤ P((X,R) • (X,S)) for every (X,R), (X,S) ∈ RelX(C), (B.15)

which is immediate from the definition of the Egli-Milner relation. Thus

B((X,R), (Y, S)) •B((X,X), (Y, S′)) = P(B0((X,R), (Y, S))) • P(B0((X,X), (Y, S′)))

≤ P(B0((X,R), (Y, S)) •B0((X,X), (Y, S′)))

≤ P(B0((X,R), (Y, S) • (Y, S′)))

= B((X,R), (Y, S) • (Y, S′)).

The second step uses (B.15). The third step follows from Proposition C.9 and the fact that B0 is the canonical relation lifting

of B0, see Section C.

(3) By definition of ̺ as the composite (III.5), it suffices to show that for all relations (X,R) and (Y, S) the maps

stX,Y : X × PY → P(X × Y ),

δX : ΣPX → PΣX,

̺0X,Y : Σ(X ×B0(X,Y ))→ B0(X,Σ⋆(X + Y )),

are relation-preserving with respect to the relations induced by the liftings Σ, P , and B0. For the first two maps this is clear

by definition of the Egli-Milner relation, and for the third one it follows from Construction D.5, using again that B0 is the

canonical lifting of B0

APPENDIX C

CANONICAL LIFTINGS OF BIFUNCTORS

In this section we demonstrate how to construct canonical graph and relation liftings of mixed-variance bifunctors on C.

Definition C.1. Let B : Cop × C→ C be a bifunctor.

(1) A graph lifting of B is a bifunctor B on Gra(C) making the first diagram commute.

(2) A relation lifting of B is a bifunctor B on Rel(C) making the second diagram commute.

Gra(C)op ×Gra(C) Gra(C)

Cop × C C

|−|op×|−|

B

|−|

B

Rel(C)op ×Rel(C) Rel(C)

Cop × C C

|−|op×|−|

B

|−|

B

Recall the relation lifting of B0(X,Y ) = Y + Y X in Remark III.3(1). Its construction can be generalized to the present

categorical setting:

Construction C.2. For every bifunctor B : Cop × C→ C we construct a canonical graph lifting

B = BGra : Gra(C)op ×Gra(C)→ Gra(C).

(1) Given (X,R), (Y, S) ∈ Gra(C), we define B((X,R), (Y, S)) ∈ Gra(C) to be the graph

TR,S

B(X,Y )

outlR,S outrR,S (C.1)
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where TR,S is obtained by the pullback below and outlR,S and outrR,S are given by

outlR,S = ~pR,S ◦ pR,S and outrR,S = ~qR,S ◦ qR,S . (C.2)

TR,S

B(R,S)

~TR,S B(R, Y ) ~TR,S

B(X,Y )

pR,S qR,S

B(id,outlS) B(id,outrS)

~pR,S

~qR,S ~pR,S

~qR,S

B(outlR,id) B(outrR,id)

(C.3)

In addition, we put

bR,S := ~qR,S ◦ pR,S = ~pR,S ◦ qR,S . (C.4)

(2) Given Gra(C)-morphisms h : (X ′, R′)→ (X,R) and k : (Y, S)→ (Y ′, S′), we define

B(h, k) : B((X,R), (Y, S))→ B((X ′, R′), (Y ′, S′)),

which is a pair of morphisms B(h, k)0 and B(h, k)1 making the following diagram commute:

TR,S TR′,S′

B(X,Y ) B(X ′, Y ′)

outlR,S outrR,S

B(h,k)1

outlR′,S′ outrR′,S′

B(h,k)0

(C.5)

We put

B(h, k)0 =
(
B(X,Y )

B(h0,k0)
−−−−−−−→ B(X ′, Y ′)

)
.

For the definition of B(h, k)1, we first use the universal property of the pullback ~TR′,S′ to obtain a unique morphism ~dh,k
making the outside and the upper rectangle of the diagram below commute. Note that the central and the lower rectangle

commute because h and k are Gra(C)-morphisms and the left and right parts commute by (C.3)

TR,S
~TR′,S′

B(R,S) B(R′, S′)

B(R, Y ) B(R′, Y ′)

B(X,Y ) B(X ′, Y ′)

outlR,S

~dh,k

bR,S ~qR′,S′

~pR′,S′

(C.3)

(IV.1)

B(h1,k1)

B(id,outlS)

(C.3)

B(id,outlS′)

B(h1,k0)

(IV.1)B(outlR,id)

B(h0,k0)

B(outlR′ ,id)

(C.6)

Analogously, we obtain a unique morphism ~dh,k : TR,S → ~TR′,S′ such that

~qR′,S′ ◦ ~dh,k = B(h0, k0) ◦ outrR,S and ~pR′,S′ ◦ ~dh,k = B(h1, k1) ◦ bR,S . (C.7)

In particular, we have

~qR′,S′ ◦ ~dh,k = B(h1, k1) ◦ bR,S = ~pR′,S′ ◦ ~dh,k,
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so the universal property of the pullback TR′,S′ yields a unique morphism B(h, k)1 making both triangles in the diagram

below commute:

TR,S

~TR′,S′ TR′,S′ ~TR′,S′

~dh,k
~dh,k

B(h,k)1

pR′,S′ qR′,S′

(C.8)

Lemma C.3. The assignment B is a functor, and it forms a graph lifting of B.

Remark C.4. In the proof and later on, we will repeatedly make use of the following diagram which commutes for every

h : (X,R′)→ (X,R) and k : (Y, S)→ (Y, S′):

TR,S TR′,S′

~TR′,S′

B(R,S) B(R′, S′)

~dh,k

B(h,k)1

bR,S

(C.8)

bR′,S′

pR′,S′

(C.4)

(C.6) ~qR′,S′

B(h1,k1)

(C.9)

Proof. (1) We show that B(h, k) defined in Construction C.2(2) is a Gra(C)-morphism. In fact, the commutative diagram

below shows that B(h, k) is compatible with left projections; the argument for right projections is symmetric.

TR,S TR′,S′

~TR,S

B(X,Y ) B(X ′, Y ′)

B(h,k)1

outlR,S

~dh,k (C.8)

outlR′,S′

pR′,S′

(C.2)

(C.6) ~pR′,S′

B(h,k)0=B(h0,k0)

(C.10)

(2) We show that B preserves identity morphisms, that is

B(id(X,R), id(Y,S)) = idB((X,R),(X,R))

for all graphs (X,R) and (Y, S). In the following we omit the subscripts of id. By the uniqueness part of the definition of

B(id, id)1, it suffices to prove that the following diagram commutes:

TR,S

~TR,S TR,S
~TR,S

~did,id
~did,id

id

pR,S qR,S

The left-hand triangle commutes because it commutes when postcomposed with the pullback projections ~qR,S and ~pR,S , as

shown by the two commutative diagrams below. The argument for the right-hand triangle is analogous.

TR,S
~TR,S

	 B(R,S) B(R,S) 	

TR,S
~TR,S

(C.6)

~did,id

id

bR,S

id

~qR,S

(C.4)

B(id,id)=id

pR,S

bR,S
~qR,S

TR,S
~TR,S

	 B(X,Y ) B(X,Y ) 	

TR,S
~TR,S

(C.6)

~did,id

id

outlR,S ~pR,S

id

(C.2)

B(id,id)=id

outlR,S

pR,S

~pR,S

(Above and subsequently, when we indicate the reason why a part of a diagram commutes unless it is easy to see without

further reference.)
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(3) We show that B preserves composition, i.e.

B(h ◦ h′, k′ ◦ k) = B(h′, k′) ◦B(h, k)

for all graph morphisms h : (X ′, R′)→ (X,R), h′ : (X ′′, R′′)→ (X ′, R′), k : (Y, S)→ (Y ′, S′) and k′ : (Y ′, S′)→ (Y ′′, S′′).
By the uniqueness part of the definition of B(h ◦ h′, k′ ◦ k)1, it suffices to prove that the following diagram commutes:

TR,S

TR′,S′

~TR′′,S′′ TR′′,S′′ ~TR′′,S′′

~dh◦h′,k′◦k

~dh◦h′,k′◦k
B(h,k)1

B(h′,k′)1

pR′′,S′′ qR′′,S′′

The left-hand part commutes because it commutes when postcomposed with the pullback projections ~qR′′,S′′ and ~pR′′,S′′ , as

shown by the two commutative diagrams below; in the second diagram, we use that B(h, k) is a graph morphism, see Item (1).

The argument for the right-hand part is analogous.

TR,S TR,S

B(R,S)

TR′,S′ B(R′, S′)

B(R′′, S′′)

TR′′,S′′ ~TR′′,S′′

(C.9)

id

B(h,k)1

bR,S

~dh◦h′,k′◦k

B(h1,k1)

B(h1◦h
′
1,k

′
1◦k1)

bR′,S′

B(h′,k′)1

B(h′
1,k

′
1)

	 (C.6)

(C.4)

(C.9)

pR′′,S′′

bR′′,S′′ ~qR′′,S′′

TR,S TR,S

B(X,Y )

TR′,S′ B(X ′, Y ′)

B(X ′′, Y ′′)

TR′′,S′′ ~TR′′,S′′

id

B(h,k)1

outlR,S

~dh◦h′,k′◦k

B(h0,k0)

B(h0◦h
′
0,k

′
0◦k0)

outlR′,S′

B(h′,k′)1

B(h′
0,k

′
0)

	

Item (1)

Item (1)

(C.6)

(C.2)
pR′′,S′′

outlR′′,S′′ ~pR′′,S′′

(4) The functor B is a lifting of B, i.e. the first diagram in Definition V.5 commutes. Indeed,

|B((X,R), (Y, S))| = B(X,Y ) = B(|(X,R)|, |(Y, S)|)

and

|B(h, k)| = B(h, k)0 = B(h0, k0) = B(|h|, |k|).

Example C.5 (C = Set). Let us spell out the construction of the lifted bifunctor

B = BGra : Gra(Set)op ×Gra(Set)→ Gra(Set)

for B : Setop × Set→ Set. Recall that in Set, the pullback of fi : Ai → B (i = 1, 2) is given by

P = { (a1, a2) ∈ A1 ×A2 : f1(a1) = f2(a2) }
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with the projections

pi : P → Ai, (a1, a2) 7→ ai.

Thus, we arrive at the following concrete description of B:

(1) The pullback TR,S in (C.3) is the set of all triples (f, z, g) such that f, g ∈ B(X,Y ), z ∈ B(R,S),

B(R, outlS)(z) = B(outlR, Y )(f) and B(R, outrS)(z) = B(outrR, Y )(g),

and outlR,S and outrR,S are the projections (f, z, g) 7→ f and (f, z, g) 7→ g, respectively.

(2) The components of the morphism B(h, k) are given by

B(h, k)0 = B(h0, k0) : B(X,Y )→ B(X ′, Y ′)

and

B(h, k)1 : TR,S → TR′,S′ , (f, z, g) 7→ (B(h0, k0)(f), B(h1, k1)(z), B(h0, k0)(g))

Construction C.6. For every bifunctor B : Cop × C → C the canonical relation lifting BRel is defined via the following

commutative diagram:

Rel(C)op ×Rel(C) Rel(C)

Gra(C)op ×Gra(C) Gra(C)

BRel

BGra

(−)†

Example C.7. The canonical relation lifting of B0(X,Y ) = Y + Y X on Set is the lifting B0 described in Remark III.3(1).

The following two propositions show that the canonical liftings satisfy the properties (G2) and (G3) of Definition VIII.2:

Proposition C.8. For every B : Cop × C→ C and X,Y ∈ C,

(B(X,Y ), B(X,Y )) ∼= BGra((X,X), (Y, Y )),

(B(X,Y ), B(X,Y )) ∼= BRel((X,X), (Y, Y )).

Proof. Immediate from the definitions.

Proposition C.9. If B : Cop × C→ C weakly preserves pullbacks in the second component, then

BGra((X,R), (Y, S)) ;BGra((X,R′), (Y, S′)) ≤ BGra((X,R) ; (X,R′), (Y, S) ; (Y, S′)), (C.11)

BRel((X,R), (Y, S)) •BRel((X,X), (Y, S′)) ≤ BRel((X,R), (Y, S) • (Y, S′)), (C.12)

where (X,R), (X,R′), (Y, S), (Y, S′) ∈ Gra(C) in (C.11) and (X,R), (Y, S), (Y, S′) ∈ Rel(C) in (C.12).

Proof. (1) Consider the first diagram in Figure 2, where the morphisms π, π′ are the projections of the pullback TR,S ;TR′,S′ .

Since the endofunctor B(RR′,−) : C→ C weakly preserves pullbacks by assumption, the part (∗) is a weak pullback square.

Note that the outside and all remaining parts commute by definition. Thus, there exists a morphism fRR′,SS′ making the two

upper parts of the diagram commute.

(2) Next, consider the diagram in Figure 3. Note that the outside and all remaining parts commute by definition. By the

universal property of the pullback ~TRR′,SS′ , there exists a unique morphism ~gRR′,SS′ making the top left and bottom left

parts of the diagram commute. Symmetrically, we obtain a unique ~gRR′,SS′ : TR,STR′,S′ → ~TRR′,SS′ such that

~pRR,SS′ ◦ ~gRR′,SS′ = fRR′,SS′ and ~qRR′,SS′ ◦ ~gRR′,SS′ = outrR′,S′ ◦ π′.

(3) The universal property of the pullback TRR,SS′ now yields a unique gRR′,SS′ making both triangles in the diagram below

commute:
TR,STR′,S′

~TRR′,SS′ TRR′,SS′ ~TRR′,SS′

~gRR′,SS′ ~gRR′,SS′

gRR′,SS′

pRR′,SS′ qRR′,SS′

(C.13)

(4) To prove (C.11), we show that

BGra((X,R), (Y, S)) ;BGra((X,R′), (Y, S′))
(idB(X,Y ),gRR′,SS′)
−−−−−−−−−−−−−−→ BGra((X,R) ; (X,R′), (Y, S) ; (Y, S′))
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TR,STR′,S′

B(RR′, SS′)

TR,S B(R,S) B(RR′, S) B(RR′, S′) B(R′, S′) TR′,S′

B(RR′, Y )

B(R, Y ) B(R′, Y )

B(X,Y )

fRR′,SS′

π π′

(∗)

B(RR′,πSS′,S) B(RR′,πSS′,S′ )

outrR,S

bR,S

(C.3)

B(R,outrS)

B(πRR′,R,S)

B(RR′,outrS) B(RR′,outlS′)
(C.3)

B(R′,outlS′)

B(πRR′,R′ ,S
′)

outlR′,S′

bR′,S′

(IV.3)

B(πRR′,R,Y ) B(πRR′,R′ ,Y )

B(outrR,Y ) B(outlR′ ,Y )

Fig. 2. First diagram for the proof of Proposition C.9

B(RR′, SS′)

B(RR′, S)

~TRR′,SS′ TR,STR′,S′ TR,S B(R,S) B(RR′, Y )

B(R, Y )

B(X,Y )

B(RR′,πSS′,S)

B(RR′,outlSS′)(IV.3)

B(RR′,outlS)

~qRR′,SS′

~pRR′,SS′

fRR′,SS′

~gRR′,SS′ π

(Fig. 2)

outlR,S

bR,S

B(πRR′,R,S)

B(R,outlS)

(C.6)

(IV.3)

B(πRR′,R,Y )

B(outlR,Y )

B(outlRR′ ,Y )

Fig. 3. Second diagram for the proof of Proposition C.9
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is a Gra(C)-morphism. To this end, consider the commutative diagram below, all whose parts commute by definition:

TR,STR′,S′ TRR′,SS′

TR,S
~TRR′,SS′

B(X,Y ) B(X,Y )

~gRR′,SS′

gRR′,SS′

π

outlRR′,SS′

pRR′,SS′

outlR,S

(C.13)

(C.2)(Fig. 3)

~pRR′,SS′

id

The morphism outlR,S · π is the left projection of the graph BGra((X,R), (Y, S)) ; BGra((X,R′), (Y, S′)), so the above

commutative diagram shows that (id, gRR′,SS′) is compatible with left projections. The proof that (id, gRR′,SS′) is compatible

with right projections is symmetric.

(5) Finally, (C.12) follows from the computation

BRel((X,R), (Y, S)) •BRel((X,X), (Y, S′)) = BGra((X,R), (Y, S))† •BGra((X,X), (Y, S′))†

= (BGra((X,R), (Y, S)) ; BGra((X,X), (Y, S′)))†

≤ BGra((X,R) ; (X,X), (Y, S) ; (Y, S′))†

∼= BGra((X,R), (Y, S) ; (Y, S′))†

≤ BGra((X,R), (Y, S) • (Y, S′))†

= BRel((X,R), (Y, S) • (Y, S′)).

The first step uses the definition of BRel; the second step follows from Lemma A.4; the third step uses (C.11); the fourth step

uses that (X,R) ; (X,X) ∼= (X,R) by definition of graph composition; the fifth step uses that (Y, S) ; (Y, S′) ≤ (Y, S)•(Y, S′)
by definition of relation composition; the last step uses the definition of BRel.

APPENDIX D

CANONICAL LIFTINGS OF HIGHER-ORDER GSOS LAWS

Next, we show how to lift higher-order abstract GSOS laws from C to Gra(C) and Rel(C).

Remark D.1. The notion of relation lifting of a higher-order GSOS law is given in Definition V.6. Graph liftings are defined

analogously: replace Rel by Gra and ∨ by +. Note that unlike relation liftings, graphs liftings are usually not unique.

Construction D.2. Let Σ: C→ C and B : Cop × C→ C be functors with their canonical graph liftings

Σ = ΣGra : Gra(C)→ Gra(C) and B = BGra : Gra(C)op ×Gra(C)→ Gra(C)

given by Construction V.2 and Construction C.2, and let

̺X,Y : Σ(X ×B(X,Y ))→ B(X,Σ⋆(X + Y )) ((X, pX) ∈ V/C, Y ∈ C)

be a V -pointed higher-order GSOS law of Σ over B. The canonical graph lifting of ̺ is the (V, V )-pointed higher-order GSOS

law ̺ = ̺Gra of Σ over B whose components

Σ((X,R)×B((X,R), (Y, S)))

B((X,R),Σ
⋆
((X,R) + (Y, S)))

̺(X,R),(Y,S)) (((X,R), (p(X,R)) ∈ (V, V )/Gra(C), (Y, S) ∈ Gra(C))

are defined as follows. First, put

(̺(X,R),(Y,S))0 :
(
Σ(X ×B(X,Y ))

̺X,Y

−−−−→ B(X,Σ⋆(X + Y ))
)
.

Second, we define

(̺(X,R),(Y,S))1 : Σ(R × TR,S)→ TR,Σ⋆(R+S)

in two steps via the universal properties of the pullbacks occurring in the construction of B:
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(1) Consider the diagram below, where we regard the objects X and R as V -pointed by the morphisms pX = (p(X,R))0 : V →
X and pR = (p(X,R))1 : V → R.

B(R,Σ⋆(R+ S))

Σ(R ×B(R,S)) Σ(R×B(R, Y )) B(R,Σ⋆(R+ Y ))

~TR,Σ⋆(R+S) Σ(R × TR,S) Σ(R×B(X,Y )) B(R,Σ⋆(X + Y ))

Σ(X ×B(X,Y )) B(X,Σ⋆(X + Y ))

B
(R

,Σ
⋆
(o
u
tl
R
+
o
u
tl
S
))

B(R,Σ⋆(R+outlS)) 	

̺R,S

Σ(R×B(R,outlS))

(∗)

̺R,Y

(nat. ̺R,−)

B(R,Σ⋆(outlR+Y ))

~qR,Σ⋆(R+S)

~pR,Σ⋆(R+S)

( ~̺(X,R),(Y,S))1

Σ(R×bR,S)

Σ(R×outlR,S)

Σ(outlR×outlR,S)

	

Σ(R×B(outlR,Y ))

Σ(outlR×B(X,Y ))

(dinat. ̺
−,Y )

̺X,Y

B(outlR,Σ⋆(X+Y ))
(D.1)

Its outside commutes due to (C.3) and using outlR+S = outlR + outlS (see Section IV-A3), and for the part marked (∗) we

remove Σ and consider the product components separately: the left-hand one is the identity on R, and for the right-hand one

we have the commutative diagram below:

B(R,S) B(R, Y )

~TR,S

TR,S B(X,Y )

B(R,outlS)

B(outlR,Y )(C.4)

(C.3)

(C.2)

~qR,S

~pR,S

outlR,S

pR,S

bR,S

The universal property of the pullback ~TR,Σ⋆(R+S) now yields a unique morphism ( ~̺(X,R),(Y,S))1 making the top and bottom

part of the diagram ab commute. Analogously, we obtain a unique morphism (~̺R,Σ⋆(R+S))1 : Σ(R × TR,S) → ~TR,Σ⋆(R+S)

such that

~pR,Σ⋆(R+S) ◦ (~̺R,Σ⋆(R+S))1 = ̺R,S ◦ Σ(R× bR,S), and

~qR,Σ⋆(R+S) ◦ (~̺R,Σ⋆(R+S))1 = ̺X,Y ◦ Σ(outrR × outrR,S).

(2) We take (̺(X,R),(Y,S))1 to be the unique morphism making both triangles in the diagram below commute, using the

universal property of the pullback TR,Σ⋆(R+S):

Σ(R× TR,S)

~TR,Σ⋆(R+S) TR,Σ⋆(R+S)
~TR,Σ⋆(R+S)

( ~̺(X,R),(Y,S))1 (~̺(X,R),(Y,S))1

(̺(X,R),(Y,S))1

pR,Σ⋆(R+S) qR,Σ⋆(R+S)

(D.2)

Proposition D.3. The family ̺Gra is a (V, V )-pointed higher-order GSOS law of ΣGra over BGra.

Remark D.4. We shall use in the proof below that the following diagram commutes:

Σ(R× TR,S) TR,Σ⋆(R+S)

~TR,Σ⋆(R+S)

Σ(R×B(R,S)) B(R,Σ⋆(R + S))

(̺(X,R),(Y,S))1

Σ(R×bR,S)

( ~̺(X,R),(Y,S))1

pR,Σ⋆(R+S)

bR,Σ⋆(R+S)

(D.2)

~qR,Σ⋆(R+S)
(D.1)

(C.3)

̺R,S

(D.3)
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Proof. (1) We show that ̺(X,R),(Y,S) is a Gra(C)-morphism for every (X,R), p(X,R)) ∈ (V, V )/Gra(C) and (Y, S) ∈
Gra(C). In fact, that ̺(X,R),(Y,S) is compatible with left projections is shown by the diagram below, all of whose parts

commute by definition. The proof that ̺(X,R),(Y,S) is compatible with right projections is symmetric.

Σ(R× TR,S) TR,Σ⋆(R+S)

~TR,Σ⋆(R+S)

Σ(X ×B(X,Y )) B(X,Σ⋆(X + Y ))

Σ(outlR×outlR,S)

(̺(X,R),(Y,S))1

( ~̺(X,R),(Y,S))1

outlR,Σ⋆(R+S)

pR,Σ⋆(R+S)

~pR,Σ⋆(R+S)

(D.2)

(C.2)(D.1)

(̺(X,R),(Y,S))0 = ̺X,Y

(D.4)

(2) To prove naturality, we need to show that for every (X,R), p(X,R)) ∈ (V, V )/Gra(C) and every Gra(C)-morphism

k : (Y, S)→ (Y ′, S′) the diagram below commutes:

Σ((X,R)×B((X,R), (Y, S))) B((X,R),Σ
⋆
((X,R) + (Y, S)))

Σ((X,R)×B((X,R), (Y ′, S′))) B((X,R),Σ
⋆
((X,R) + (Y ′, S′)))

̺(X,R),(Y,S)

Σ((X,R)×B((X,R),k)) B((X,R),Σ
⋆
((X,R)+k))

̺(X,R),(Y ′,S′)

Commutativity in the (−)0-component is clear because (̺(X,R),(Y,S))0 = ̺X,Y and (̺(X,R),(Y ′,S′))0 = ̺X,Y ′ by definition

and ̺X,− is natural. Commutativity in the (−)1-component amounts to showing that the following rectangle commutes:

Σ(R× TR,S) TR,Σ⋆(R+S)

Σ(R× TR,S′) TR,Σ⋆(R+S′)

(̺(X,R),(Y,S))1

Σ(R×B((X,R),k)1) B((X,R),Σ
⋆
((X,R)+k))1

(̺(X,R),(Y ′,S′))1

(D.5)

Indeed, the diagrams below show that (D.5) commutes when postcomposed with

outlR,Σ⋆(R+S′) = ~pR,Σ⋆(R+S′) ◦ pR,Σ⋆(R+S′) and bR,Σ⋆(R+S′) = ~qR,Σ⋆(R+S′) ◦ pR,Σ⋆(R+S′).

Σ(R× TR,S) TR,Σ⋆(R+S)

Σ(X ×B(X,Y )) B(X,Σ⋆(X + Y ))

Σ(X ×B(X,Y ′)) B(X,Σ⋆(X + Y ′))

Σ(R× TR,S′) TR,Σ⋆(R+S′)

(̺(X,R),(Y,S))1

Σ(outlR×outlR,S)

Σ(R×B((X,R),k)1)

outlR,Σ⋆(R+S)

B((X,R),Σ
⋆
((X,R)+k))1

(D.4)

(nat. ̺X,−)
(C.10)

̺X,Y

Σ(R×B(R,k0)) B(R,Σ⋆(R+k0)) (C.10)
̺X,Y ′

(D.4)
Σ(outlR×outlR,S′)

(̺(X,R),(Y ′,S′))1

outlR,Σ⋆(R+S′)
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Σ(R× TR,S) TR,Σ⋆(R+S)

Σ(R×B(R,S)) B(R,Σ⋆(R+ S))

Σ(R×B(R,S′)) B(R,Σ⋆(R+ S′))

Σ(R× TR,S′) TR,Σ⋆(R+S′)

(̺(X,R),(Y,S))1

Σ(R×bR,S)

Σ(R×B((X,R),k)1)

bR,Σ⋆(R+S)

B((X,R),Σ
⋆
((X,R)+k))1

(nat. ̺R,−)

(D.3)

(C.9)

̺R,S

Σ(R×B(R,k1)) B(R,Σ⋆(R+k1)) (C.9)

(D.3)

̺R,S′

Σ(R×bR,S′ )

(̺(X,R),(Y ′,S′))1

bR,Σ⋆(R+S′)

Since ~qR,Σ⋆(R+S′) and ~pR,Σ⋆(R+S′) are the projections of the pullback ~TR,Σ⋆(R+S′) and thus jointly monic, it follows that

(D.5) commutes when postcomposed with pR,Σ⋆(R+S′). A symmetric argument shows that (D.5) commutes when postcomposed

with qR,Σ⋆(R+S′). Finally, since pR,Σ⋆(R+S′) and qR,Σ⋆(R+S′) are the projections of the pullback TR,Σ⋆(R+S′) and thus jointly

monic, we conclude that (D.5) commutes.

(3) To prove dinaturality, we need to show that for every (Y, S) ∈ Gra(C) and every (V, V )/Gra(C)-morphism h : (X ′, R′)→
(X,R) the diagram below commutes:

Σ((X,R)×B((X,R), (Y, S))) B((X,R),Σ
⋆
((X,R) + (Y, S)))

Σ((X ′, R′)×B((X,R), (Y, S))) B((X ′, R′),Σ
⋆
((X,R) + (Y, S)))

Σ((X ′, R′)×B((X ′, R′), (Y, S))) B((X ′, R′),Σ
⋆
((X ′, R′) + (Y, S)))

̺(X,R),(Y,S)

B(h,Σ
⋆
((X,R)+(Y,S)))Σ(h×B((X,R),(Y,S)))

Σ((X′,R′)×B(h,(Y,S)))

̺(X′,R′),(Y,S)

B((X′,R′),Σ
⋆
(h+(Y,S)))

Commutativity in the (−)0-component is clear because (̺(X,R),(Y,S))0 = ̺X,Y and (̺(X′,R′),(Y,S))0 = ̺X′,Y by definition

and ̺−,Y is dinatural. Commutativity in the (−)1-component amounts to showing that the following diagram commutes:

Σ(R × TR,S) TR,Σ⋆(R+S)

Σ(R′ × TR,S) TR′,Σ⋆(R+S)

Σ(R′ × TR′,S) TR′,Σ⋆(R′+S)

(̺(X,R),(Y,S))1

B(h,Σ
⋆
((X,R)+(Y,S)))1Σ(h1×TR,S)

Σ(R′×B(h,(Y,S))1)

(̺(X′,R′),(Y,S))1

B((X′,R′),Σ
⋆
(h+(Y,S)))1

(D.6)

The argument is similar to the one for naturality: The two diagrams below show that (D.6) commutes when postcomposed

with

outlR′,Σ⋆(R+S) = ~pR′,Σ⋆(R+S) ◦ pR′,Σ⋆(R+S) and bR′,Σ⋆(R+S) = ~qR′,Σ⋆(R+S) ◦ pR′,Σ⋆(R+S).
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Thus it commutes when postcomposed with pR′,Σ⋆(R′+S) (and analogously for qR′,Σ⋆(R′+S)), and so it commutes.

Σ(R× TR,S) TR,Σ⋆(R+S)

Σ(X ×B(X,Y )) B(X,Σ⋆(X + Y ))

Σ(R′ × TR,S) Σ(X ′ ×B(X,Y )) B(X ′,Σ⋆(X + Y )) TR′,Σ⋆(R+S)

Σ(X ′ ×B(X ′, Y )) B(X ′,Σ⋆(X ′ + Y ))

Σ(R′ × TR′,S) TR′,Σ⋆(R′+S)

Σ(outlR×outlR,S)

(̺(X,R),(Y,S))1

outlR,Σ⋆(R+S)

B(h,Σ
⋆
((X,R)+(Y,S)))1(morph. h)

̺X,Y

(dinat. ̺
−,Y )

(D.4)

(C.9)

B(h0,Σ
⋆(X+Y ))

(C.9)

Σ(outlR′×outlR,S)

Σ(h1×TR,S)

Σ(R′×B(h,(Y,S))1)

Σ(h0×B(X,Y ))

Σ(X′×B(h0,Y ))

outlR′,Σ⋆(R+S)

(D.4)

̺X′,Y

(C.9)B(X′,Σ⋆(h0+Y ))

Σ(outlR′×outlR′,S)

(̺(X′,R′),(Y,S))1

B((X′,R′),Σ
⋆
(h+(Y,S)))1

outlR′,Σ⋆(R′+S)

Σ(R× TR,S) TR,Σ⋆(R+S)

Σ(R×B(R,S)) B(R,Σ⋆(R + S))

Σ(R′ × TR,S) Σ(R′ ×B(R,S)) B(R′,Σ⋆(R + S)) TR′,Σ⋆(R+S)

Σ(R′ ×B(R′, S)) B(R′,Σ⋆(R′ + S))

Σ(R′ × TR′,S) TR′,Σ⋆(R′+S)

Σ(R×bR,S)

(̺(X,R),(Y,S))1

bR,Σ⋆(R+S)

B(h,Σ
⋆
((X,R)+(Y,S)))1

(D.3)

̺R,S

(dinat. ̺
−,S )

(C.9)

B(h1,Σ
⋆(R+S))

(C.9)

Σ(R′×bR,S)

Σ(h1×TR,S)

Σ(R′×B(h,(Y,S))1)

Σ(h1×B(R,S))

Σ(R′×B(h1,Y ))

bR′,Σ⋆(R+S)

̺R′,S

(D.3)

(C.9)B(R′,Σ⋆(h1+Y ))

Σ(R′×bR′,S)

(̺(X′ ,R′),(Y,S))1

B((X′,R′),Σ
⋆
(h+(Y,S)))1

bR′,Σ⋆(R′+S)

Relation liftings of higher-order GSOS laws can be derived from their canonical graph liftings.

Construction D.5. Let Σ: C→ C and B : Cop × C→ C be functors with their canonical relation liftings

ΣRel : Rel(C)→ Rel(C) and BRel : Rel(C)op ×Rel(C)→ Rel(C),

and suppose that Σ preserves strong epimorphisms. Every V -pointed higher-order GSOS law

̺X,Y : Σ(X ×B(X,Y ))→ B(X,Σ⋆(X + Y )) ((X, pX) ∈ V/C, Y ∈ C)

of Σ over B has a (necessarily unique) lifting to a (V, V )-pointed higher-order GSOS law ̺Rel of ΣRel over BRel. Its
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component at ((X,R), (p(X,R)) ∈ (V, V )/Rel(C) and (Y, S) ∈ Rel(C)) is given by the composite

ΣRel((X,R)×BRel((X,R), (Y, S)))

ΣRel((X,R)×BGra((X,R), (Y, S))†)

(ΣGra((X,R)×BGra((X,R), (Y, S))))†

BGra((X,R),Σ
⋆

Gra
((X,R) + (Y, S)))†

BGra((X,R),Σ
⋆

Gra((X,R) ∨ (Y, S)))†

BGra((X,R),Σ
⋆

Rel
((X,R) ∨ (Y, S)))†

BRel((X,R),Σ
⋆

Rel((X,R) ∨ (Y, S)))

∼=

(̺Gra

(X,R),(Y,S))
†

BGra(id,Σ
⋆

Gra
e)†

BGra(id,h)
†

Here the isomorphism in the second step follows from Lemma B.2, and

e : (X,R) + (Y, S) ։ ((X,R) + (X,S))† = (X,R) ∨ (Y, S)

and

h : Σ
⋆

Gra
((X,R) ∨ (X,S)) ։ Σ

⋆

Rel
((X,R) ∨ (X,S))

are the reflections. For the latter recall that the free ΣRel-algebra on a relation (X,T ) is given by applying (−)† to the free

ΣGra-algebra on (X,T ), see Corollary B.4.

APPENDIX E

THE λ-CALCULUS

We give a more detailed account of the λ-calculus in the higher-order abstract GSOS framework. Recall from Section IX-B

that we work with the functors

ΣX = V + δX +X ×X and B0(X,Y ) = 〈〈X,Y 〉〉 × (Y + Y X + 1)

on the presheaf category SetF, where F is the category of finite cardinals and functions and the presheaves V , δX and 〈〈X,Y 〉〉
are given by

V (n) = n, δX(n) = X(n+ 1), 〈〈X,Y 〉〉(n) = SetF(Xn, Y ).

The initial algebra for Σ is the presheaf Λ of λ-terms modulo α-equivalence [16]. To introduce the higher-order GSOS law

for the λ-calculus, we need some notation.

Notation E.1. (1) Given X ∈ SetF we sometimes write Xn for X(n). For a presheaf morphism (i.e. a natural transformation)

f : X → Y , we drop subscripts of components and write f for fn : Xn → Yn.

(2) We let ev : Y X ×X → X denote the evaluation morphism of the exponential object Y X . Given n ∈ F, f ∈ Y X(n) and

e ∈ X(n) we write f(e) for ev(f, e).

(3) We define the maps n
oldn−−→ n+ 1

newn←−−− 1 by oldn(i) = i and newn(0) = n.

(4) For a presheaf X ∈ SetF we define upX,n =
(
X(n)

X(oldn)
−−−−−−→ X(n+ 1)

)
.

(5) Given a pointed presheaf (X, var) ∈ V/SetF and a presheaf Y ∈ SetF we define ̺1 : δ〈〈X,Y 〉〉 → 〈〈X, δY 〉〉 to be the

map sending a natural transformation f : Xn+1 → Y to the natural transformation ̺1(f) : X
n → δY given by

~u ∈ X(m)n 7→ fm+1(upX,m(~u), varm+1(newm)) ∈ Y (m+ 1).
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(6) Similarly, for a pointed presheaf (X, var) ∈ V/SetF and a presheaf Y ∈ SetF we define the map ̺2 : δ〈〈X,Y 〉〉 → Y X by

̺2(f)(e) = fn(varn(0), . . . , varn(n− 1), e) for f : Xn+1 → Y and e ∈ X(n).

(7) We write λ.(−) : δΣ⋆ → Σ⋆ and ◦ : Σ⋆ × Σ⋆ → Σ⋆ for the natural transformations whose components come from the

Σ-algebra structure on free Σ-algebras; here ◦ denotes application. In the following we will consider free algebras of the form

Σ⋆(X + Y ). For simplicity, we usually keep inclusion maps implicit: Given t1, t2 ∈ X(n) and t′1 ∈ Y (n) we write t1 t2 for

[η · inl(t1)] ◦ [η · inl(t2)], and similarly t1 t
′
1 for [η · inl(t1)] ◦ [η · inr(t′1)] etc., where inl and inr are the coproduct injections and

η : Id→ Σ⋆ is the unit of the free monad Σ⋆.

(8) Finally, define π : V → 〈〈X,Σ⋆(X + Y )〉〉 to be the map sending v ∈ V (n) = n to the the natural transformation

π(v)(n) : Xn → Σ⋆(X + Y ) given by the v-th projection Xn → X followed by η · inl.

With these preparations at hand, we are now ready to phrase the small-step operational semantics of the call-by-name λ-

calculus in terms of a V -pointed higher-order GSOS law of the syntax endofunctor ΣX = V +δX+X×X over the behaviour

bifunctor B0(X,Y ) = 〈〈X,Y 〉〉 × (Y + Y X + 1). A law of this type is given by a family of presheaf maps

V + δ(X × 〈〈X,Y 〉〉 × (Y + Y X + 1)) + (X × 〈〈X,Y 〉〉 × (Y + Y X + 1))2

〈〈X,Σ⋆(X + Y )〉〉 × (Σ⋆(X + Y ) + (Σ⋆(X + Y ))X + 1)

̺0
X,Y

dinatural in (X, varX) ∈ V/SetF and natural in Y ∈ SetF. We let ̺X,Y,n denote the component of ̺X,Y at n ∈ F.

Definition E.2 (V -pointed higher-order GSOS law for the call-by-name λ-calculus).

̺0X,Y : Σ(X ×B0(X,Y )) → B0(X,Σ⋆(X + Y ))

̺0X,Y,n(tr) = case tr of

v ∈ V (n) 7→ π(v), ∗

λ.(t, f, ) 7→ 〈〈X,λ.(−) · η · inr〉〉(̺1(f)), (η · inr)
X(̺2(f))

(t1, g, t
′
1) (t2, h, ) 7→ λ~u.(gm(~u)hm(~u)), t′1 t2

(t1, g, k) (t2, h, ) 7→ λ~u.(gm(~u)hm(~u)), η · inr · k(t2)

(t1, g, ∗) (t2, h, ) 7→ λ~u.(gm(~u)hm(~u)), ∗

where t ∈ δX(n), f ∈ δ〈〈X,Y 〉〉(n), g, h ∈ 〈〈X,Y 〉〉(n), ~u ∈ X(m)n for m ∈ N, k ∈ Y X(n), t1, t2 ∈ X(n) and t′1 ∈ Y (n)
(we have omitted the brackets around the pairs on the right).

Remark E.3. By the above definition the first component

fst · ̺0X,Y : V + δ(X × 〈〈X,Y 〉〉 × (Y + Y X + 1)) + (X × 〈〈X,Y 〉〉 × (Y + Y X + 1))2 → 〈〈X,Σ⋆(X + Y )〉〉

of ̺0X,Y only depends on f in the clause for abstraction, and only on g and h in the clauses for application. Therefore fst ·̺0X,Y

can be expressed as a composite

V + δ(X × 〈〈X,Y 〉〉 × (Y + Y X + 1)) + (X × 〈〈X,Y 〉〉 × (Y + Y X + 1))2

V + δ〈〈X,Y 〉〉+ 〈〈X,Y 〉〉2

〈〈X,Σ⋆(X + Y )〉〉

id+δ(p)+p2

τ0
X,Y

for suitable τ0X,Y , where p is the middle product projection.

The higher-order GSOS law ̺0 correctly captures the operational semantics of the call-by-name λ-calculus:

Proposition E.4 ([20]). The operational model

γ0 = 〈γ0
1 , γ

0
2〉 : Λ→ 〈〈Λ,Λ〉〉 × (Λ + ΛΛ + 1) (E.1)

of the higher-order GSOS law ̺0 satisfies the following for n ∈ F and t ∈ Λ(n):
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(1) γ0
1(t)(~u) = t[u0, . . . , un−1/0, . . . , n− 1] for all m ∈ F and ~u ∈ Λ(m)n.

(2) If t→ t′, then γ0
2(t) = t′ ∈ Λ(n).

(3) If t = λx.t′, then γ0
2(t) ∈ ΛΛ(n) and γ2(t)(e) = t′[e] for all e ∈ Λ(n).

(4) Otherwise (that is, if t is stuck), one has γ0
2(t) = ∗.

Remark E.5. In order to deal with weak similarity, we need to work with a nondeterministic version B of the bifunctor

B0(X,Y ) = 〈〈X,Y 〉〉×(Y +Y X+1). The nondeterminism is introduced via the pointwise powerset functor P⋆ : Set
F → SetF

given by X 7→ P ·X , and we put

B(X,Y ) = 〈〈X,Y 〉〉 × P⋆(Y + Y X).

Note that we dropped the “+1”; the reason is our intended notion of weak similarity, viz. the open extension of applicative

similarity, which does not detect whether a term is stuck. We extend the law ̺0 of Definition E.2 to a higher-order GSOS

law ̺ of Σ over B as follows. Given (X, varX) ∈ V/SetF and Y ∈ SetF, the first component fst · ̺X,Y is the following

composite, where p is the middle product projection and τ0X,Y has been introduced in Remark E.3:

Σ(X × 〈〈X,Y 〉〉 × P⋆(Y + Y X))

V + δ(X × 〈〈X,Y 〉〉 × P⋆(Y + Y X)) + (X × 〈〈X,Y 〉〉 × P(Y + Y X))2

V + δ〈〈X,Y 〉〉+ 〈〈X,Y 〉〉2

〈〈X,Σ⋆(X + Y )〉〉

id+δ(p)+p2

τ0
X,Y

For the second component snd · ̺X,Y we need a number of auxiliary natural transformations involving the powerset functor:

stA,B : A× P(B)→ P(A×B), (a, S) 7→ {(a, b) : b ∈ S};

δA : PA× PA→ P(A×A), (S, T ) 7→ {(s, t) : s ∈ S, t ∈ T };

φA : P(A+ 1)→ P(A), S 7→ S r {∗};

εA : P(A)→ P(A+ 1), ∅ 7→ 1, S 7→ S (S 6= ∅);

ηA : A→ PA, a 7→ {a};

canA,B,C : PA+ PB + PZ → P(A+B + C) S 7→ S.
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The map snd · ̺X,Y is the defined to be composite given as follows for n ∈ F. We drop subscripts of st, δ, φ, ε, η.

Σ(X × 〈〈X,Y 〉〉 × P⋆(Y + Y X))(n)

V (n) +X(n+ 1)× 〈〈X,Y 〉〉(n+ 1)× P(Y (n+ 1) + Y X(n+ 1)) + (X(n)× 〈〈X,Y 〉〉(n)× P(Y (n) + Y X(n)))2

V (n) +X(n+ 1)× 〈〈X,Y 〉〉(n+ 1)× P(Y (n+ 1) + Y X(n+ 1) + 1) + (X(n)× 〈〈X,Y 〉〉(n)× P(Y (n) + Y X(n) + 1))2

V (n) + P(X(n+ 1)× 〈〈X,Y 〉〉(n+ 1)× (Y (n+ 1) + Y X(n+ 1) + 1)) + (P(X(n)× 〈〈X,Y 〉〉(n)× (Y (n) + Y X(n) + 1)))2

V (n) + P(X(n+ 1)×B0(X,Y )(n+ 1)) + (P(X(n)×B0(X,Y )(n)))2

PV (n) + P(X(n+ 1)×B0(X,Y )(n+ 1)) + P((X(n)×B0(X,Y )(n))2)

P(V (n) +X(n+ 1)×B0(X,Y )(n+ 1) + (X(n)×B0(X,Y )(n))2)

P(Σ(X ×B0(X,Y ))(n))

P(B0(X,Σ⋆(X + Y ))(n))

P(〈〈X,Σ⋆(X × Y )〉〉(n)× (Σ⋆(X + Y )(n) + (Σ⋆(X + Y ))X(n) + 1))

P((Σ⋆(X + Y )(n) + (Σ⋆(X + Y ))X(n) + 1))

P((Σ⋆(X + Y )(n) + (Σ⋆(X + Y ))X(n)))

id+id×id×ε+(id×id×ε)2

id+st+st2

η+id+δ

can

P̺0
X,Y,n

Psnd

φ

(E.2)

Lemma E.6. The operational model of the higher-order GSOS law ̺ is given by

γ = 〈γ1, γ2〉 : Λ→ 〈〈Λ,Λ〉〉 × P⋆(Λ + ΛΛ)

where γ1 = γ0
1 and γ2 is the following composite at n ∈ F:

γ2 = (Λ(n)
γ0
2−−−→ Λ(n) + ΛΛ(n) + 1

η
−−→ P(Λ(n) + ΛΛ(n) + 1)

φ
−−→ P(Λ(n) + ΛΛ(n)) ).

Proof. One only needs to show that the map 〈γ0
1 , φ · η · γ

0
2〉 satisfies the diagram (II.3) defining γ. This follows via a lengthy

routine verification from the definition of ̺, using elementary properties of the involved maps st, δ, can, ε, φ.

We now instantiate the data of Assumptions VIII.1 to

(1) the functor ΣX = V + δX +X ×X ;

(2) the functor B(X,Y ) = 〈〈X,Y 〉〉×P⋆(Y +Y X) of Remark E.5, preordered by equality in the first component and inclusion

in the second one. Its relation lifting is B = F × (P⋆ ·G), where F and G are the canonical relation liftings of the bifunctors

(X,Y ) 7→ 〈〈X,Y 〉〉 and (X,Y ) 7→ (Y + Y X) and P⋆ is the lifting of P⋆ given by

P⋆(X,R) = (P⋆(X), SR),

where SR(n) ⊆ P(X(n))×P(X(n)) is the (one-sided) Egli-Milner relation induced by R(n) ⊆ X(n)×X(n), cf. Remark III.3;

(3) the higher-order GSOS law ̺ of Σ over B as described in Remark E.5.
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Let us verify that this data satisfies the required properties:

Lemma E.7. (1) The functor Σ preserves strong epimorphisms.

(2) The functor B is good for simulations.

(3) The higher-order GSOS law ̺ admits a relation lifting.

Proof. (1) Since strong epimorphisms (i.e. componentwise surjective natural transformations) are stable under coproducts, it

suffices to show that the functors δ and Id× Id preserve strong epimorphisms. For the functor δ this follows from the fact that

it is a left adjoint [16]. For Id× Id use that strong epimorphisms are stable under products, see Remark B.1.

(2) This is shown as in the proof for Section IX-A verifying the Assumptions VIII.1 Item (2), using that all the structure

involved (including relation composition • in SetF) is just formed componentwise in Set.

(3) Given a (V, V )-pointed relation (X,R), p(X,R)) ∈ (V, V )/Rel(SetF) and a relation (Y, S) ∈ Rel(SetF) we need to show

that the map ̺X,Y is relation-preserving with respect to the relations on the domain Σ(X × 〈〈X,Y 〉〉 × P⋆(Y + Y X))(n) and

codomain 〈〈X,Σ⋆(X+Y )〉〉×P(Σ⋆(X+Y )(n)+Σ⋆(X+Y )X(n)) obtained by applying the relation liftings Σ, P⋆, F , G of

the functors Σ, P⋆, (X,Y ) 7→ 〈〈X,Y 〉〉, (X,Y ) 7→ Y + Y X . There are several cases; we follow the notation of Definition E.2.

(a) Suppose that λ.(t, f, A) and λ.(t′, f ′, A′) ∈ X(n+ 1)× 〈〈X,Y 〉〉(n + 1)× P(Y (n+ 1) + Y X(n+ 1)) are related. Then

̺X,Y sends λ.(t, f, A) to the pair (〈〈X,λ.(−) · η · inr〉〉(̺1(f)), (η · inr)X(̺2(f))) and λ.(t′, f ′, A′) to the pair (〈〈X,λ.(−) · η ·
inr〉〉(̺1(f ′)), (η · inr)X(̺2(f

′))). These pairs are related because f and f ′ are related in Y X(n+1) ⊆ Y (n+1)+ Y X(n+1)
and ̺1, ̺2 are relation-preserving, which is easy to see by their definition.

(b) Suppose that (t1, g, A1) (t2, h, A2) and (t′1, g
′, A′

1) (t
′
2, h

′, A′
2) are related in (X(n)×〈〈X,Y 〉〉(n)×P(Y (n) + Y X(n)))2.

Then fst·̺X,Y sends the two pairs to λ~u.(gm(~u)hm(~u) and λ~u.(g′m(~u)h′
m(~u), respectively, and these are related in 〈〈X,Σ⋆(X+

Y )〉〉(n) because the Σ-algebra structure on Σ⋆(X + Y ) is relation-preserving by Proposition V.4. For snd · ̺X,Y we consider

two subcases:

i) If A1 = ∅, then ̺X,Y sends (t1, g, A1) (t2, h, A2) to ∅ ∈ P(Σ⋆(X+Y )(n)+(Σ⋆(X+Y ))X(n)), which is related to every

element of P(Σ⋆(X + Y )(n) + (Σ⋆(X + Y ))X(n)) by definition of the Egli-Milner relation.

ii) If A1 6= ∅, then ̺X,Y sends (t1, g, A1) (t2, h, A2) to {s t2 : s ∈ A1 ∩ Y (n)} ∪ {η · inr · k(t2) : k ∈ A1 ∩ Y X(n)} and

(t′1, g
′, A′

1) (t
′
2, h

′, A′
2) to {s′ t′2 : s′ ∈ A′

1 ∩ Y (n)} ∪ {η · inr · k′(t′2) : k
′ ∈ A′

1 ∩ Y X(n)}, and these two sets are clearly

related by the Egli-Milner relation because A1, A
′
1 are related, the Σ-algebra structure on Σ⋆(X+Y ) is relation-preserving,

and by definition of the relation lifting of (X,Y ) 7→ Y + Y X .

Next we describe the weakening γ̃ of the operational model (E.1).

Definition E.8. The weak operational model is the B(Λ,−)-coalgebra

γ̃ = 〈γ̃1, γ̃2〉 : Λ→ 〈〈Λ,Λ〉〉 × P⋆(Λ + ΛΛ + 1)

given for t ∈ Λ(n) by

γ̃1(t) = γ1(t) and γ̃2(t) = {t ∈ Λ(n) : t⇒ t} ∪ {f ∈ ΛΛ(n) : ∃t. t⇒ t ∧ γ0
2(t) = f}.

Here ⇒ is the reflexive transitive hull of the reduction relation →.

Lemma E.9. The coalgebra γ̃ is a weakening of γ, cf. Definition VI.4.

Proof. For each relation (Λ, R) we need to prove that existence of a morphism δ making (E.3) commute is equivalent to

existence of a morphism ε making (E.4) commute. Here we denote the relation B((Λ,Λ), (Λ, R)) by (B(Λ,Λ), EΛ,R).

Λ R Λ

〈〈Λ,Λ〉〉 × P⋆(Λ + ΛΛ) EΛ,R 〈〈Λ,Λ〉〉 × P⋆(Λ + ΛΛ)

γ

outlR

δ

outrR

γ̃

outlΛ,R
outrEΛ,R

(E.3)

Λ R Λ

〈〈Λ,Λ〉〉 × P⋆(Λ + ΛΛ) EΛ,R 〈〈Λ,Λ〉〉 × P⋆(Λ + ΛΛ)

γ̃

outlR

ε

outrR

γ̃

outlΛ,R
outrEΛ,R

(E.4)

By Proposition E.4 the existence of δ in (E.3) is equivalent to the following properties for every n ∈ F and Rn(t1, t2):

(1) Rm(t1[~u], t2[~u]) for all m ∈ F and ~u ∈ Λ(m)n;
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(2) t1 → t′1 =⇒ ∃t′2. t2 ⇒ t′2 ∧Rn(t
′
1, t

′
2);

(3) t1 = λx.t′1 =⇒ ∃t′2.t2 ⇒ λx.t′2 ∧ ∀e ∈ Λ(n).Rn(t
′
1[e/x], t

′
2[e/x]).

Similarly, the existence of ε in (E.4) is equivalent to the following properties for every n ∈ F and Rn(t1, t2):

(1’) Rm(t1[~u], t2[~u]) for all m ∈ F and ~u ∈ Λ(m)n;

(2’) t1 ⇒ t′1 =⇒ ∃t′2. t2 ⇒ t′2 ∧Rn(t
′
1, t

′
2);

(3’) t1 ⇒ λx.t′1 =⇒ ∃t′2.t2 ⇒ λx.t′2 ∧ ∀e ∈ Λ(n).Rn(t
′
1[e/x], t

′
2[e/x]).

The conditions (1)–(3) are clearly equivalent to (1’)–(3’).

Recall from Definition IX.1 the notion of applicative similarity and its open extension.

Proposition E.10. Weak similarity on the operational model (E.1) coincides with the open extension of applicative similarity:

. = .ap .

Proof. By Lemma E.9 and its proof, weak similarity is the greatest relation .⊆ Λ×Λ such that for every n ∈ F and t1 .n t2:

(1) t1[~u] .m t2[~u] for all m ∈ F and ~u ∈ Λ(m)n;

(2) t1 → t′1 =⇒ ∃t′2. t2 ⇒ t′2 ∧ t′1 .n t′2;

(3) t1 = λx.t′1 =⇒ ∃t′2.t2 ⇒ λx.t′2 ∧ ∀e ∈ Λ(n).t′1[e/x] .n t′2[e/x].

Proof of .⊆.ap. Note first that .0⊆ Λ(0)×Λ(0) is an applicative simulation by the above conditions (2) and (3) for n = 0.

Therefore .0⊆.
ap
0 because .

ap
0 is the greatest applicative simulation. Moreover, for n > 0 and t1 .n t2, we have

t1[~u] .0 t2[~u] for every ~u ∈ Λ(0)n

by condition (1), whence

t1[~u] .
ap
0 t2[~u] for every ~u ∈ Λ(0)n

because .0⊆.
ap
0 , and so t1 .ap

n t2. This proves .n⊆.ap
n for n > 0 and thus .⊆.ap overall.

Proof of .ap⊆.. Since . is the greatest weak simulation, it suffices to show that .ap is a weak simulation. Thus suppose

that n ∈ F and t1 .ap
n t2; we need to verify the above conditions (1)–(3) with .n replaced by .ap

n .

Let us first consider the case n = 0, i.e. t1 .
ap
0 t2.

(1) Since t1 and t2 are closed terms, this condition simply states that t1 .ap
m t2 for every m > 0. This holds by definition of

.ap
m because t1[~u] = t1 .

ap
0 t2 = t2[~u] for every ~u ∈ Λ(0)m.

(2) holds because .
ap
0 is closed under reduction: t1 → t′1 and t1 .

ap
0 t2 implies t′1 .

ap
0 t2. Thus we can take t′2 = t2.

(3) holds by definition of .
ap
0 .

Now suppose that t1 .ap
n t2 for some n > 0:

(1) Let ~u = (u0, . . . , un−1) ∈ Λ(m)n. If m = 0 we have t1[~u] .
ap
0 t2[~u] by definition of .ap

n . If m > 0 and ~v ∈ Λ(0)m we

have

t1[~u][~v] = t1[u0[~v], . . . , un−1[~v]] .
ap
0 t2[u0[~v], . . . , un−1[~v]] = t2[~u][~v],

whence t1[~u] .
ap
m t2[~u].

(2) Suppose that t1 → t′1. Then t1[~u] → t′1[~u] for every ~u ∈ Λ(0)n because reductions respect substitution, and moreover

t1[~u] .
ap
0 t2[~u] because t1 .ap

n t2. It follows that t′1[~u] .
ap
0 t2[~u] because .

ap
0 is closed under reduction, whence t′1 .ap

n t2.

(3) Suppose that t1 = λx.t′1. To show that t2 ⇒ λx.t′2 for some t′2, suppose the contrary. There are two cases:

Case 1: The term t2 diverges, that is, its reduction sequence t2 → t′2 → t′′2 → · · · is infinite.

Choose an arbitrary ~u ∈ Λ(0)n. Then t1[~u] is a λ-abstraction, while t2[~u] diverges. It follows that t1[~u] 6.
ap
0 t2[~u], in

contradiction to t1 .ap
n t2.

Case 2: The term t2 reduces in finitely many steps to y s1 · · · sm for some variable y ∈ n and terms s1, . . . , sm ∈ Λ(n).

Choose an arbitrary ~u ∈ Λ(0)n such that the term uy diverges, e.g. uy = (λx.x x) (λx.x x). Then t1[~u] is a λ-abstraction

while t2[~u] diverges, again contradicting t1 .ap
n t2.

Thus t2 ⇒ λx.t′2 for x = n and t′2 ∈ Λ(n+ 1). Moreover, for every e ∈ Λ(n) and ~u ∈ Λ(0)n we have

t′1[e/x][~u] = t′1[~u, e[~u]] = t′1[~u, x][e[~u]/x] .
ap
0 t′2[~u, x][e[~u]/x] = t′2[~u, e[~u]] = t′2[e/x][~u]
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using that t1[~u] .
ap
0 t2[~u] by definition of .ap

n . This proves t′1[e/x] .
ap
n t′2[e/x].

Finally, let us verify that the condition of Theorem VIII.6 is satisfied:

Proposition E.11. The triple (Λ, ι, γ̃) forms a lax ̺-bialgebra.

Proof. We need to prove lax commutativity of the following diagram:

Σ(Λ) Λ 〈〈Λ,Λ〉〉 × P⋆(Λ + ΛΛ)

Σ(Λ× 〈〈Λ,Λ〉〉 × P⋆(Λ + ΛΛ)) 〈〈Λ,Σ⋆(Λ + Λ)〉〉 × P⋆(Σ
⋆(Λ + Λ) + (Σ⋆(Λ + Λ))Λ) 〈〈Λ,Σ⋆(Λ)〉〉 × P⋆(Σ

⋆(Λ) + (Σ⋆(Λ))Λ)

ι

Σ〈id,γ̃〉

γ̃

̺Λ,Λ

�

〈〈Λ,Σ⋆∇〉〉×P(Σ⋆∇+(Σ⋆∇)Λ)

〈〈Λ,ι̂〉〉×P(ι̂+ι̂Λ)

In the first component, the diagram strictly commutes by definition of fst · ̺X,Y . In the second component, by definition of

snd · ̺X,Y , lax commutativity amounts to the assertion that the weak versions

w-app1
s⇒ s′

s t⇒ s′ t
w-app2

s⇒ λx.s′

s t⇒ s′[t/x]

of the rules app1 and app2 in (IX.1) are sound. This is clearly the case, since w-app1 and w-app2 amount to repeated

application of app1 and app2.

We thus obtain Theorem IX.2 as an instance of Theorem VIII.6.
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