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Abstract
We study set systems formed by neighborhoods in graphs of bounded twin-width. We start by
proving that such graphs have linear neighborhood complexity, in analogy to previous results
concerning graphs from classes with bounded expansion and of bounded clique-width. Next, we shift
our attention to the notions of distality and abstract cell decomposition, which come from model
theory. We give a direct combinatorial proof that the edge relation is distal in classes of ordered
graphs of bounded twin-width. This allows us to apply Distal cutting lemma and Distal regularity
lemma, so we obtain powerful combinatorial tools for graphs of bounded twin-width.
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1 Introduction

Twin-width is a graph width parameter recently introduced by Bonnet et al. in [9] with
remarkable properties. In particular, classes of bounded twin-width generalize some of the
previously examined graph classes (e.g. planar graphs, graphs excluding a fixed minor,
graphs of bounded clique-width), while admitting good structural properties (e.g. being
closed under FO-transductions), algorithmical properties (e.g. FO model checking can be
done in linear time on graphs of bounded twin-width given a contraction sequence) and
combinatorial properties (e.g. χ-boundedness [6]).

Graphs of bounded twin-width have linear neighborhood complexity

Our focus is on the combinatorial and logical complexity of set systems defined by neigh-
borhoods in graphs of bounded twin-width. This continues a line of research studying
other graph classes in this context. Namely, graphs of bounded clique-width have linear
neighborhood complexity, as it was proven in [26]. That means that for every graph G of
clique-width at most c and any non-empty subset A of its vertices there are at most nc|A|
different neighborhoods of vertices of G in A (where the constant nc depends only on c).
The same is also true for planar graphs and graphs excluding a fixed minor. More generally,
the same holds for classes with bounded expansion [28], although they are not generalized by
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classes of bounded twin-width. Our first result states that graphs of bounded twin-width
also have linear neighborhood complexity.

I Theorem (Informal version of Theorem 4). For every integer t, there is a constant nt such
that for every graph G of twin-width at most t and every non-empty subset A ⊆ V (G), the
vertices of G have at most nt|A| different neighborhoods in A.

Our proof relies on properties of matrices of graphs of bounded twin-width shown in [9],
as well as the celebrated Stanley-Wilf conjecture/Marcus-Tardos theorem [23]. We remark
that Theorem 4 was proven independently by Bonnet et al. in [8]. Although the techniques
used there are similar to ours, we decided to include a self-contained proof of Theorem 4
since the underlying ideas are needed in the later part of the paper.

Theorem 4 in particular implies that the VC-density of graphs of bounded twin-width is
equal to 1 (Corollary 9). This notion is a refinement of VC-dimension, which is the most
well-known measure of complexity of set systems and was introduced in [34]. Both measures
are applied in a wide range of fields, including statistical learning theory and computational
geometry. Whereas a set system has bounded VC-dimension if and only if it has bounded
VC-density, in general, VC-density is at most as large as the VC-dimension, and it turns out
that the VC-density, not the VC-dimension, is the decisive measure for the combinatorial
complexity of a family of sets [2]. For example, the VC-density of S governs the size of
packings in S with respect to the Hamming metric [19] and is intimately related to the
notions of entropic dimension [3] and discrepancy [25]. VC-density has also a number of
applications in algorithmics, for example Connected k-Vertex Cover admits a kernel
with O(k1.5) vertices on classes of graphs with VC-density at most 1 [8].

The edge relation is distal in classes of graphs of bounded twin-width

In the following part of the paper we refine our analysis of set systems defined by neighbor-
hoods in graphs of bounded twin-width, and turn our attention to their logical complexity.
We do it by investigating the notion of distality defined by Simon in [32]. This notion comes
from model theory and aims at describing theories which are NIP and purely instable. The
original definition is phrased in the language of model theory and was stated for theories and
single infinite models. However, there is also an equivalent definition given in [13]. It uses
abstract cell decompositions, which are more combinatorial objects. We adapt this definition
to the context of classes of finite structures, e.g. graphs., by saying that a formula is distal
in a class of structures if it admits an abstract cell decomposition.

It is known that every graph of bounded twin-width can be equipped with a linear order
on its vertices such that the twin-width of the ordered graph (seen as a binary structure)
is still bounded. However, computing an optimal order is a hard problem. In fact, even
the problem of deciding whether a given (unordered) graph has twin-width at most 4 is
NP-complete [4]. On the other hand, when it comes to the problem of FO model checking on
ordered graphs, it can be solved in fpt time precisely on these classes of ordered graphs that
have bounded twin-width [7]. It is also known that classes of ordered graphs of bounded
twin-width are distal by combining a few results from model theory. However, this proof
is highly unconstructive and relies on the compactness theorem for first-order logic. In the
main result of the paper (Theorem 21) we give a direct combinatorial proof that the edge
relation is distal in classes of graphs of bounded twin-width, provided that we add to every
graph an order that is a witness of a low twin-width.
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I Theorem (Informal version of Theorem 21). Let Ĉ be a class of ordered graphs of twin-width
bounded by some constant t. Then, the formula ϕ(x; y) ≡ E(x, y) admits in Ĉ a distal cell
decomposition weakly definable by a finite set Ψ(x; y1, . . . , yk), where k = O(t). Moreover,
the exact form of formulas in Ψ follows from the proof.

This allows us to e.g. obtain effective bounds on the constants in theorems about powerful
distal combinatorial tools proven in [15, 13] and to better understand structure of sets that
appear in these theorems.

Distal combinatorial tools

After adapting the notion of abstract cell decompositions to classes of finite structures we
translate theorems about powerful combinatorial tools proven in [15, 13] into this setting. We
now briefly describe these tools and motivations for investigating abstract cell decompositions.

Cutting lemma

The so-called cutting lemma is a very useful combinatorial partition tool with numerous
applications in computational and incidence geometry and related areas (see e.g. [24, Sections
4.5, 6.5] or [11] for a survey). In its simplest form it can be stated as follows (see e.g. [24,
Lemma 4.5.3]).

I Theorem (Cutting lemma). For every set L of n lines in the real plane and every 1 < r < n

there exists a 1
r -cutting for L of size O(r2). That is, there is a subdivision of the plane into

generalized triangles (i.e. intersections of three half-planes) ∆1, . . . ,∆t so that the interior
of each ∆i is intersected by at most nr lines in L, and we have t ≤ Cr2 for a certain constant
C independent of n and r.

This result provides a method to analyze intersection patterns in families of lines, and
it has many generalizations to higher dimensional sets and/or to families of sets of more
complicated shape than lines, for example families of algebraic or semialgebraic curves
of bounded complexity [12]. Combining the result of Chernikov, Galvin and Starchenko
from [13] with Theorem 21 we get a version of distal cutting lemma for graphs of bounded
twin-width.

I Theorem (Informal version of Theorem 25). Let C be a class of graphs of twin-width at
most t. Then, there is an integer d = O(t) with the following property: for any graph G ∈ C,
any A ⊆ V (G) of size n, and any real 1 ≤ r ≤ n we can partition the vertices of V (G)
into at most Crd sets X1, . . . , Xl such that the vertices in every Xi have almost the same
neighborhood in A. More precisely, there are at most n

r vertices a ∈ A for which there are
u, v ∈ Xi with (u, a) ∈ E(G) and (v, a) 6∈ E(G).

Let us remark that this theorem is obvious for r = 1 (we just take X1 = V (G)) and the
version for r = n corresponds to having a polynomial neighborhood complexity and is implied
by Theorem 4.

Regularity Lemma

Another property of distal classes of graphs is a stronger version of the regularity lemma.
The original Szemerédi Regularity Lemma is a fundamental result in graph combinatorics
with many versions and applications in extremal combinatorics, number theory and computer
science (see [20] for a survey). Roughly speaking, it says that for every ε > 0 there is a
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bound K = K(ε) such that every graph G can be partitioned into K parts, such that the
edges between any two parts (apart from a few exceptions) behave in a regular way (where ε
controls the degree of regularity). In its simplest form it can be presented as follows.

I Theorem (Regularity lemma). For every ε > 0 there exists K = K(ε) such that: for every
graph G = (V,E) there exists a partition V = V1 ∪ . . . ∪ Vk into non-empty sets and a set
Σ ⊆ [k]× [k] with the following properties.
1. Bounded size of the partition: k ≤ K.
2. Few exceptions: |

⋃
(i,j)∈Σ Vi × Vj |≥ (1− ε)|V |2.

3. ε-regularity: for all (i, j) ∈ Σ and all A ⊆ Vi, B ⊆ Vj with |A|≥ ε|Vi|, |B|≥ ε|Vj |, one has

|d(A,B)− d(Vi, Vj)| ≤ ε,

where d(X,Y ) = |E(X,Y )|
|X||Y | and E(X,Y ) is the set of edges with one endpoint in X and

the other in Y .

In general the bound on the size of the partition K is known to grow as an exponential
tower of height 1

ε . Recently several improved regularity lemmas were obtained in the context
of definable sets in certain structures or in restricted families of structures (see e.g. [33, 22]).

Chernikov and Starchenko proved much stronger version of the regularity lemma for
distal structures [15]. For classes of graphs which are NIP (this is a property of classes of
structures less restrictive than distality) and their edge relation is distal (in particular graphs
of bounded twin-width satisfy this conditions), this can be translated as:

I Theorem (Informal version of Theorem 20). Let C be an NIP class of graphs with a distal
edge relation. Then, there is a constant c depending only on C with the following property:
for every ε > 0 and for every graph G ∈ C, there exists a partition V (G) = V1 ∪ . . . ∪ Vk into
non-empty sets, and a set Σ ⊆ [k]× [k] with the following properties.
1. Polynomially bounded size of the partition: k ≤ c( 1

ε )c.
2. Few exceptions: |

⋃
(i,j)∈Σ Vi × Vj |≥ (1− ε)|V |2.

3. 0− 1-regularity: for all (i, j) ∈ Σ there are either all edges between Vi and Vj or no edge
at all.

Structure of the paper

The paper is structured as follows. In Section 2 we introduce the preliminary notions. Then,
the proof of Theorem 4 is presented in Section 3. After the proof of Theorem 4 we switch
our attention to the notion of distality and abstract cell decompositions in Section 4. In
particular, we translate the theorems about distal combinatorial tools into the setting of
classes of finite structures. Then, in Section 5 we give a direct combinatorial proof that the
edge relation is distal in classes of ordered graphs of bounded twin-width. Finally, in Section
6 we present conclusions that follow from our work.

2 Preliminaries

We denote by [i] the set of integers {1, . . . , i}. If X is a set of sets, we denote by
⋃
X the

union of them.
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2.1 Graph definitions and notations
In this paper we investigate only undirected simple graphs, i.e. graphs with no multiple-edges
nor self-loops. We denote by V (G) the set of vertices of a given graph G and by E(G) the
set of its edges.

For a graph G = (V,E) and A ⊆ V we denote by G − A the graph {V \ A, {(u, v) ∈
E : u, v 6∈ A}}, i.e. the graph obtained from G by removing all the vertices in A and edges
incident to them.

For A ⊆ V (G) and v ∈ V (G) we denote the neighborhood of v in A by NG
A (v), i.e.

NG
A (v) = {u ∈ A : (u, v) ∈ E(G)}. We omit a superscript G whenever the graph is

implicit from the context. We write N(v) for NV (G)(v). Similarly, we denote the set of all
neighborhoods in A ⊆ V (G) by NG(A), i.e. NG(A) = {NA(u) : u ∈ V (G)}. We also write
N̂G(A) for the set of all non-empty neighborhoods in A, i.e. N̂G(A) = NG(A) \ {∅}.

For a graph G = (V,E) and two subsets of its vertices A,B ⊆ V we say that A and B are
homogeneous, if either for every v ∈ A and u ∈ B we have (v, u) ∈ E or for every v ∈ A and
u ∈ B we have (v, u) 6∈ E. In particular, if A ∩ B 6= ∅ then A and B can be homogeneous
only if for every v ∈ A and u ∈ B we have (v, u) 6∈ E.

2.2 Matrix definitions and notations
For a matrix M consisting of m rows and n columns (an m×n matrix) we denote by M [i][j]
its entry in the i’th row and j’th column (assuming that 1 ≤ i ≤ m and 1 ≤ j ≤ n). A p× q
submatrix N of an m× n matrix M (with p ≤ m and q ≤ n) is any matrix formed by taking
p consecutive rows and q consecutive columns of M . For an m× n matrix M we denote by
M [i : j][k : l] (with 1 ≤ i ≤ j ≤ m and 1 ≤ k ≤ l ≤ n) the submatrix of M formed by rows
from i to j (inclusive) and columns from k to l (inclusive).

An m×n matrix M is vertical if every two rows of M are equal, i.e. for any 1 ≤ i, j ≤ m
we have M [i : i][1 : n] is equal to M [j : j][1 : n]. Similarly, M is horizontal if every two
columns of M are equal, i.e. for any 1 ≤ i, j ≤ n we have M [1 : m][i : i] is equal to
M [1 : m][j : j]. Observe that if a matrix is both vertical and horizontal, then it is constant.
We say that a matrix is mixed if it is neither vertical nor horizontal. A corner is a 2 × 2
mixed matrix. In [9] it was proven that a matrix is mixed if and only if it contains a corner
as a submatrix.

Given an m × n matrix M , a row-partition (resp. column-partition) is a partition
of the rows (resp. columns) of M . Similarly, a row-division (resp. column-division) is
a row-partition (resp. column-partition), where every part consists of consecutive rows
(resp. columns). A (k, l)-division (or simply division) of a matrix M is a pair (R, C) of a
row-division and a column-division with respectively k and l parts. A zone of a division
(R, C) = ({R1, . . . , Rk}, {C1, . . . , Cl}) is any submatrix Ri ∩ Cj for 1 ≤ i ≤ k and 1 ≤ j ≤ l.

A 0, 1-matrix is a matrix with all its entries equal to 0 or 1. Given a 0, 1-matrix M ,
a t-grid minor in M is a (t, t)-division of M in which every zone contains a 1. Given a
0, 1-matrix M , a t-mixed minor in M is a (t, t)-division of M in which every zone is a mixed
submatrix of M . A matrix is t-grid free (resp. t-mixed free) if it does not contain a t-grid
minor (resp. t-mixed minor).

If G is an n-vertex graph and σ is a total ordering of V (G), say, v1, . . . , vn, then Mσ(G)
denotes the adjacency matrix of G in the order σ. Thus Mσ(G)[i][j] is 1 if (vi, vj) ∈ E(G)
and 0 otherwise. An ordered graph is a pair (G,�) such that G is a graph and � is a total
order on V (G). We say that an ordered graph (G,�) is t-mixed free if M�(G) is t-mixed
free. A first-order formula of ordered graphs is a standard first-order formula of graphs that
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can use additional � symbol, which is interpreted as an order of an ordered graph.

2.3 Definition of twin-width of graphs
The twin-width of a given graph was first defined in [9]. Since then, many tutorials on the
topic were given, e.g. [17, 27] can serve as a good introduction.

The original definition of twin-width uses the notion of a trigraph, i.e. a tripleG = (V,E,R)
where E and R are two disjoint sets of edges on V : the (usual) edges and the red edges.
A trigraph (V,E,R) such that (V,R) has maximum degree at most d is a d-trigraph. Any
graph (V,E) may be interpreted as the trigraph (V,E, ∅).

Given a trigraph G = (V,E,R) and two vertices u, v in V , we define the trigraph
G/u, v = (V ′, E′, R′) obtained by identifying u, v into a new vertex w as the trigraph on
a new vertex-set V ′ = (V \ {u, v}) ∪ {w} such that G − {u, v} = (G/u, v) − {w} and the
following edges incident to w:

(w, x) ∈ E′ if and only if (u, x) ∈ E and (v, x) ∈ E,
(w, x) 6∈ E′ ∪R′ if and only if (u, x) 6∈ E and (v, x) 6∈ E,
(w, x) ∈ R′ otherwise.

We say that G/u, v is a contraction of G. If both G and G/u, v are d-trigraphs, G/u, v is a
d-contraction.

A (tri)graph G is d-collapsible if there exists a sequence of d-contractions which contracts
G to a single vertex. The minimum d for which G is d-collapsible is the twin-width of G,
denoted tww(G).

2.4 Theorems related to twin-width of graphs
The following grid minor theorem for twin-width proven in [9] describes a connection between
twin-width of a graph and mixed minors of its matrix.

I Theorem 1. If G is a graph of twin-width less than t, then there is a total ordering on its
vertices σ such that Mσ(G) is 2t+ 2-mixed free. On the other hand, if G is a graph and σ is
a total ordering on its vertices such that Mσ(G) is k-mixed free, then tww(G) = 22O(k) .

A crucial tool for this proof is the Marcus-Tardos theorem about grid minors.

I Theorem 2 ([23]). For every integer t, there is some ct such that every m× n 0, 1-matrix
M with at least ct max(m,n) entries 1 has a t-grid minor.

Marcus and Tardos established Theorem 2 with ct = 2t4
(
t2

t

)
. Then Cibulka and Kynčl [16]

decreased ct to 8/3(t + 1)224t. In the rest of this paper we keep the notation ct for these
constants.

2.5 Vapnik-Chervonenkis density of graphs
In this section we introduce notions of Vapnik-Chervonenkis dimension (VC-dimension) and
Vapnik-Chervonenkis density (VC-density) in the context of graphs. It is worth noting that
it was first introduced in [34] and originated in statistics, but it is also an important notion
in combinatorics and statistical learning theory.

We say that A ⊆ V (G) is shattered if NG(A) = 2A, i.e. for every subset of A there is a
vertex v ∈ V (G) such that NA(v) is precisely that subset of A. For a graph G we define its
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1
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1
1
1 1 1

11

1
1

1

1
1

0 0
0 0

0 0
0 0
0

0 0
0 0 0 0 0

0 0 0 0 0
0 0

0 0
0

1 1 1
1 11

1 1 1 0

Figure 1 Example of a corner matrix

VC-dimension as the size of the largest subset of V (G), which is shattered, and denote it by
dim(G). We denote the shatter function of a graph G by πG : N→ N and define it as follows:

πG(k) = max
A⊆V (G),|A|≤k

|NG(A)|.

For a non-empty class of graphs C we define its VC-dimension as the supremum over VC-
dimensions of graphs in C and denote it by dim(C). Similarly, we denote its shatter function
by πC : N→ N and define it by:

πC(k) = max{πG(k) : G ∈ C}.

Observe that this is well-defined, as πG(k) ≤ 2k for any graph G and k ∈ N.
We can bound the shatter function of a graph class C in terms of dim(C). This is stated

in the shatter function lemma proven independently by Sauer [29] and Shelah [30].

I Lemma 3 (Shatter function lemma). If C is a graph class such that dim(C) ≤ d, then
πC(k) = O(kd).

For a class of graphs C we also define its VC-density (denoted by vc(C)) as follows:

vc(C) =
{

inf{r ∈ R : r > 0, πC(k) = O(kr)} if dim(C) is finite,
+∞ otherwise.

3 Neighborhood complexity of classes of graphs of bounded
twin-width

In this section we prove that classes of graphs of bounded twin-width admit linear neighbor-
hood complexity. This is formalized in Theorem 4.

I Theorem 4. For every integer t, there is some nt such that for every graph G of twin-width
at most t and every non-empty A ⊆ V (G) we have |NG(A)|≤ nt|A|.

The following definition and two lemmas will be useful for the proof.

I Definition 5. Let A be an m × n 0, 1-matrix, where m,n ≥ 2. We define the corner
matrix B of matrix A as the (m− 1)× (n− 1) matrix given by:

B[i][j] =
{

1 if M [i : (i+ 1)][j : (j + 1)] is a corner,
0 otherwise.

An example of a corner matrix is presented in Figure 1.
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0
1
0
1
0
0
0
0

0
1
0
1
0
0
0
0

0
1
0
1
1
1
1
1

0
1
0
1
1
1
1
1

0
1
0
1
1
1
1
1

0
1
0
1
1
1
1
1

0
1
0
1
1
1
1
1

Figure 2 A matrix P with all its corners (in orange) contained in three pairs of consecutive rows
is split into P1 and P2 in the inductive step.

I Lemma 6. Let A be a 0, 1-matrix, which is t-mixed free. Then its corner matrix B is
2t-grid free.

Proof. Let us assume by contradiction, thatB admits a (2t, 2t)-division (R, C) = ({R1, . . . , R2t},
{C1, . . . , C2t}), which is a 2t-grid minor. Every part Rk, which consists of l rows of B, corres-
ponds to l+ 1 consecutive rows of A. Precisely, if Rk consists of rows i to i+ l− 1 of B, then
entries in these rows depend only on rows i to i+ l of A. Moreover, whenever |k−m|> 1, Rk
and Rm correspond to disjoint sets of rows of A – in particular R1, R3, . . . , R2t−1 correspond
to t disjoint sets of rows of A. The same happens for C1, C3, . . . , C2t−1. These sets of rows
and columns induce a t-mixed minor of A. This is a contradiction to A being t-mixed
free. J

I Lemma 7. Let P be an m × n 0, 1-matrix such that all corners in P appear only in p

different pairs of consecutive rows, i.e. there are p distinct integers 1 ≤ i1, . . . , ip < m such
that every corner in P is of a form P [ij : (ij + 1)][k : (k + 1)] for some 1 ≤ j ≤ p and
1 ≤ k < n. Then P has at most 2p+1 different columns.

Proof. We proceed by induction on p. In the base case, i.e. when p = 0, P does not contain
any corner, so it is either horizontal or vertical. If P is horizontal, then all its columns are
equal by definition. On the other hand, when P is vertical, then every column of P contains
only 0s or only 1s. Therefore, P contains at most 2 different columns.

Now let us assume p ≥ 1 and the statement is true for p− 1. Without loss of generality
1 ≤ i1 < . . . < ip < m. We can split P horizontally into two submatrices P1 = P [1 : ip][1 : n]
and P2 = P [(ip + 1) : m][1 : n]. All the corners of P1 are contained in p− 1 different pairs of
consecutive rows, so it contains at most 2p different columns (see Figure 2 for an illustration).
Moreover, P2 does not contain any corner at all, so it contains at most 2 different columns.
Every column of P is made up using one column of P1 and one column of P2, so there are at
most 2p · 2 = 2p+1 different columns in P . J
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We also state an easy corollary which follows directly from the proof of Lemma 7 and
will be useful in later sections.

I Corollary 8. Let P be an m× n 0, 1-matrix such that all corners in P appear only in p

different pairs of consecutive rows. Then, there is a subset I ⊆ [m] of at most p + 1 rows
such that whenever two columns j and j′ satisfy P [i][j] = P [i][j′] for every i ∈ I, then they
are equal.

Now we prove that graphs of bounded twin-width have linear neighborhood complexity.

Proof of Theorem 4. Let us take any graph G such that tww(G) ≤ t and a non-empty
subset A ⊆ V (G) of vertices of G. By Theorem 1 there is a total ordering σ on V (G) such
that Mσ(G) is 2t+ 2-mixed free. For the rest of this proof we write M for Mσ(G).

Let B ⊆ V (G) be a minimal subset of vertices of G such that they represent all possible
neighborhoods in A apart from ∅. Formally, B is a minimal subset of V (G) such that
N̂G(A) = {NA(b) : b ∈ B}. Obviously |NG(A)|≤ |B|+1 so we need to bound the size of
|B|. Let us also remark, that for any distinct b, b′ ∈ B we have NA(b) 6= NA(b′), as in the
opposite case we could remove b′ from B obtaining a smaller set with the property we want.
Similarly, for any b ∈ B we have NA(b) 6= ∅.

Let us denote by N the matrix that is obtained fromM by removing rows that correspond
to vertices in V (G) \A and columns that correspond to vertices in V (G) \B. Obviously, N
is an |A|×|B| 2t+ 2-mixed free matrix, as we obtain it by deleting some rows and columns of
M , which is 2t+ 2-mixed free itself. We can see that any two consecutive columns of N form
a mixed matrix. Indeed, they cannot be equal, so the matrix formed by them is not vertical.
It is not horizontal either, as there is no column in N containing only zeros. Therefore, for
any two consecutive columns of N there is a corner contained in them. Let us denote by C
the corner matrix of N (we assume |A|, |B|≥ 2 as the opposite case is trivial). From what
we observed so far, we know that in every column of C there is at least one entry with 1.

By Lemma 7 applied for p = c4t+4 we obtain that every set of 2c4t+4 consecutive columns
of C has at least c4t+4 non-zero rows. This is because every such set corresponds to a set of
2c4t+4 + 1 consecutive columns in N (and columns of N are pairwise different).

Suppose C has at least 2c4t+4(|A|−1) columns. Pick any partition of its columns into
|A|−1 disjoint sets (B1, . . . , B|A|−1), of at least 2c4t+4 consecutive columns each. Consider
the (|A|−1)× (|A|−1) matrix C ′ given by:

C ′[i][j] =
{

1 if there is a column in Bj that has entry 1 in i’th row,
0 otherwise.

The matrix C ′ has at least c4t+4 entries with 1 in every column. Therefore, by Theorem
2, it admits a 4t + 4-grid minor, which trivially induces a 4t + 4-grid minor of C. This is
a contradiction with Lemma 6, which states that C is 4t+ 4-grid free. Therefore C has at
most 2c4t+4(|A|−1)− 1 columns, so G has at most 2c4t+4(|A|−1) + 1 neighborhoods in |A|.
Bearing in mind the separate case for |A|= 1, we can set nt = 2c4t+4 = 22O(t) . J

I Corollary 9. Let Ct be a class of all graphs of twin-width at most t. Then vc(Ct) = 1.

Proof. Theorem 4 trivially implies vc(Ct) ≤ 1, so it suffices to show vc(Ct) ≥ 1. By Gk we
denote the graph on vertices [2k] with edges {(2i − 1, 2i) : i ∈ [k]}, i.e. Gk is a sum of k
non-incident edges. Let us also take Ak = {2i : i ∈ [k]}. Obviously Gk has twin-width 0, so
Gk ∈ Ct for any t ≥ 0. On the other hand, |NGk

(Ak)|= |Ak|+1, which implies vc(Ct) ≥ 1. J
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4 Distality and distal combinatorial tools

In this section we concentrate on the notion of distality. The definition of a distal theory was
introduced in [32] using notions from model theory. Later in [13], an equivalent definition
of a distal model was presented, this time using abstract cell decompositions, which are
more combinatorial objects. To our knowledge, only the definitions of a distal theory
and a distal model are explicitly present in the literature. In this section, we also define
notions of a distal class of structures and a distal formula. We remark, that they are just
straightforward generalizations of the previous definitions and they already appeared in the
literature implicitly (e.g. [13, Theorem 3.2]). Using our definitions we reformulate theorems
about powerful combinatorial tools presented in [13] and [15]. Originally, they were stated
for single, infinite distal structures, but we derive analogous statements for the case of classes
of (possibly finite) structures. However, we need to start with additional preliminaries on
model theory and introduce the notion of NIP (standing for not the independence property),
which is closely related to distality.

4.1 Model theory preliminaries
In the remaining part of this paper we investigate only first-order structures over relational
signatures. In particular we treat a graph G as a structure over the signature consisting
only of the binary edge relation symbol E. Similarly, we treat an ordered graph (G,�) as a
structure over the signature consisting of two binary symbols – the edge relation symbol E
and the order relation symbol �.

Our notations are standard. We usually denote first-order structures by blackboard bold
letters M,N, etc., and use letters M,N , etc. to denote their domains. We denote elements of
domains and variables in formulas by small letters a, x, etc., and use small letters with a bar
a, x, etc. to denote tuples of elements or variables. Then we use |x| to denote the length of
the tuple x = (x1, . . . , xn).

We sometimes treat a tuple x as a finite set of variables, and then we write ϕ(x) to denote
a first-order formula ϕ with free variables contained in x. We may also write ϕ(x1, . . . , xk)
to denote a formula whose free variables are contained in x1 ∪ . . . ∪ xk. We write x instead
of {x} in case of a singleton set of variables, e.g. ϕ(x, y) always refers to a formula with two
free variables x and y. We sometimes write ϕ(x; y) (with a semicolon between tuples) to
distinguish a partition of the set of free variables of ϕ into two parts, x and y; this partition
plays an implicit role in some definitions. If we have a set Ψ of formulas with the same free
variables x (i.e. Ψ = {ϕ1(x), ϕ2(x), . . .}), then we may denote this set by Ψ(x) to emphasize
the set of free variables.

If M is a structure and ϕ(x; y) is a formula in the language of M, then for a ∈ M |y|,
by ϕ(M ; a) we denote the subset of M |x| defined by ϕ(x; a), namely ϕ(M ; a) = {b ∈M |x| :
M |= ϕ(b; a)}.

For a given signature Σ we say that a Σ-structure A is a binary structure, if Σ is a
signature consisting only of binary relational symbols.

A theory T (over Σ) is a set of Σ-sentences. A model of a theory T is a Σ-structure M
such that M |= ϕ for all ϕ ∈ T . When a theory has a model, it is said to be consistent. The
theory of a class of Σ-structures C is the set of all Σ-sentences ϕ such that M |= ϕ for all
M ∈ C. The elementary closure C of C is the set of all models M of the theory of C. Thus
C ⊂ C, and C and C have equal theories.

An important tool for checking if a theory is consistent is the compactness theorem.
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I Theorem 10 (Compactness). A theory T is consistent if and only if every finite subset T ′
of T is consistent.

4.2 NIP and monadic NIP
The notion of NIP formulas was introduced by Shelah in his work on the classification
program [31]. We present here a definition from [21], which is equivalent to the original one.

I Definition 11. A formula ϕ(x; y) with two tuples of free variables x and y is NIP (or
dependent) in a class of structures C if there is a constant k, such that for every structure
M ∈ C there are no tuples ai ∈M |x|(i ∈ [k]), bI ∈M |y|(I ⊆ [k]) satisfying

M |= ϕ(ai; bI) ⇐⇒ i ∈ I. (∗)

Moreover, we say that a class of structures C is NIP if every formula ϕ(x; y) is NIP in C
and we say that a single structure M is NIP if the class {M} is.

Observe, that for a formula ϕ(x; y) and a constant k we can write a first-order sentence
assert(ϕ(x; y), k) which states, that in a given structure M there are no tuples ai ∈M |x|(i ∈
[k]), bI ∈M |y|(I ⊆ [k]) satisfying condition (∗), namely

assert(ϕ(x; y), k) ≡ ¬

∃x1 . . . ∃xk
∃y∅ . . . ∃y[k]

∧
i∈I

ϕ(xi; yI) ∧
∧
i 6∈I

¬ϕ(xi; yI)

 .
Therefore, if ϕ(x; y) is NIP in a class of structures C, then for some k the formula assert(ϕ(x; y), k)
is true in all structures in C. It follows that ϕ(x; y) is NIP in C if and only if it is NIP in its
elementary closure C. Moreover, C is an NIP class of structures if and only if C is.

We remark that the definition of NIP formulas can be equivalently expressed in terms
of VC-dimension. Indeed, it is easy to see that a formula ϕ(x; y) is NIP in a class of
structures C if and only if there is an integer k such that for every M ∈ C the family of sets
{ϕ(M ; a) : a ∈ M |y|} has VC-dimension at most k. This gives an equivalent definition of
NIP using the notion of VC-dimension.

Let us also note at this point that a class of graphs of bounded twin-width together with
compatible orders is NIP. We state it formally in the following lemma.

I Lemma 12. Let Ĉ be a class of ordered graphs with the following property: there is a
constant t ∈ N depending only on Ĉ such that for every (G,�) ∈ Ĉ the matrix M�(G) is
t-mixed free. Then, Ĉ is NIP.

We defer the proof of Lemma 12 to Appendix A. The reason is that although the proof is
a simple combination of [9, Theorem 14], [7, Theorem 11], and [7, Theorem 3], it requires
introducing a number of new definitions which are irrelevant for the rest of this paper.

4.3 Abstract cell decompositions and definitions of distality
In this subsection we define the notion of an abstract cell decomposition for a given formula
in a given structure by following [13]. This requires a number of new definitions – in order
to make it easier to understand them, we interleave new definitions with examples. Finally,
we use abstract cell decompositions for defining the notion of distality.

Let M be a fixed Σ-structure. For sets A,X ⊆Md we say that A crosses X if both X ∩A
and X ∩ (Md \A) are nonempty.

For a formula ϕ(x; y) and a set S ⊆ M |y| we say that a subset A ⊆ M |x| is ϕ(x;S)-
definable if A = ϕ(M ; s) for some s ∈ S. For a set A ∈M |x| we say that ϕ(x;S) crosses A if
ϕ(M ; s) crosses A for some s ∈ S.
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Figure 3 For a given finite set S ⊆ M |y| we can divide M |x| into at most 2|S| parts such
that tuples in every part satisfy ϕ with the same elements of S. That gives us an abstract cell
decomposition for ϕ(x; S). However, this decomposition does not need to be weakly definable.

I Example 13. Consider the structure M with domain M = {v1, v2, . . .} over the empty sig-
nature Σ = ∅ and a formula ϕ(x; y) ≡ x = y. Then, for Sk = {v1, . . . , vk} only {v1}, . . . , {vk}
are ϕ(x;S)-definable. Moreover, ϕ(x;Sk) crosses {v1, v2} (because {v1} does), but it does
not cross M \ Sk. J

Given a finite set S ⊆M |y|, a finite family F of subsets of M |x| is called an abstract cell
decomposition for ϕ(x, S) if M |x| =

⋃
F and every ∆ ∈ F is not crossed by ϕ(x;S). Observe,

that we do not require the sets in F to be disjoint – we just want them to cover the whole of
M |x|. An abstract cell decomposition for ϕ(x; y) is an assignment T that to each finite set
S ⊆M |y| assigns an abstract cell decomposition T (S) for ϕ(x;S).

Observe that every ϕ(x; y) admits an obvious abstract cell decomposition, with T (S)
consisting of the atoms in the Boolean algebra generated by the ϕ(x;S)-definable sets
(see Figure 3). In general, defining these cells would require longer and longer formulas
when S grows, and we want to avoid this possibility. Therefore, we say that an abstract
cell decomposition T for ϕ(x; y) is weakly definable if there is a finite set of formulas
Ψ(x; y1, . . . , yk) with |y|= |y1|= . . . = |yk| such that for any finite S ⊆M |y|, every ∆ ∈ T (S)
is Ψ(x;Sk)-definable (i.e. ∆ = ψ(M ; s1, . . . , sk) for some s1, . . . , sk ∈ S and ψ ∈ Ψ). In this
case we say that Ψ(x; y1, . . . , yk) weakly defines T .

I Example 14. Consider the structure M and the formula ϕ(x; y) from Example 13. The
obvious abstract cell decomposition for ϕ(x; y) mentioned above is the assignment T defined
for every finite S ⊆M as follows

T (S) = {{v} : v ∈ S} ∪ {M \ S}.

However, ϕ(x; y) does not admit a weakly definable abstract cell decomposition in M. Indeed,
assume by contradiction that ϕ(x; y) admits an abstract cell decomposition T in M weakly
definable by Ψ(x; y1, . . . , yk). Take a set S of size k + 1 and an element v ∈M \ S. By the
definition of T there is a set F ∈ T (S) such that v ∈ F . This set F is definable by some
ψ ∈ Ψ, so F = ψ(M ; s1, . . . , sk) for some s1, . . . , sk ∈ S. Therefore, there is an element
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s ∈ S \ {s1, . . . , sk}. As ψ is a formula over the empty signature, it cannot distinguish v
from s, so s ∈ F . However, {s} crosses F , which is a contradiction. J

I Example 15. We observed in Example 14 that the formula which is just an equality does not
admit a weakly definable abstract cell decomposition in an infinite structure over the empty
signature. We can overcome this problem by adding a total order to our structure. Formally,
consider the structure M� over the signature Σ = {�} with the domain M = {v1, v2, . . .}
and assume vi � vj ⇐⇒ i ≤ j. Consider an abstract cell decomposition T defined for any
S = {vi1 , . . . , vik} with i1 < . . . < ik as follows

T (S) ={{v} : v ∈ S}
∪{{v : vij ≺ v ≺ vij+1} : j ∈ [k − 1]}
∪{{v : v ≺ vi1}}
∪{{v : v � vik}}.

Observe that every F ∈ T (S) can be defined by one of these four formulas:
ψ1(x; y1) ≡ x = y1;
ψ2(x; y1, y2) ≡ y1 � x ∧ x � y2 ∧ x 6= y1 ∧ x 6= y2;
ψ3(x, y1) ≡ x � y1 ∧ x 6= y1;
ψ4(x; y1) ≡ y1 � x ∧ x 6= y1.

Formally, these formulas have a different number of parameters, but we can extend ψ1, ψ3
and ψ4 with one artificial parameter which is not further used and in this way we obtain
that T is weakly definable with Ψ(x; y1, y2) for Ψ = {ψ1, ψ2, ψ3, ψ4}. J

If we have an abstract cell decomposition T which is weakly definable by Ψ(x, y1, . . . , yk)
we know that for every F ∈ T (S) there is a choice of a formula ψ ∈ Ψ and s1, . . . , sk ∈ S
such that F = ψ(M, s1, . . . , sk). However, we don’t know a priori which choices of ψ ∈ Ψ
and parameters from S lead to a set in T (S). Therefore, we say that an abstract cell
decomposition T for ϕ(x; y) is definable if it is weakly definable by some Ψ(x; y1, . . . , yk)
and if for every S ⊂M |y| and each Ψ(x;Sk)-definable ∆ ⊆M |x| there is a set I(∆) ⊆M |y|,
uniformly definable in ∆, such that

T (S) = {∆ ∈ Ψ(x;S) : I(∆) ∩ S = ∅}.

By the uniform definability of I(∆) we mean that for every ψ(x; y1, . . . , yk) ∈ Ψ(x; y1, . . . , yk),
there is a formula θψ(y; y1, . . . , yk) such that for any s1, . . . , sk ∈M |y| if ∆ = ψ(M ; s1, . . . , sk)
then I(∆) = θψ(M ; s1, . . . , sk).

Observe, that every abstract cell decomposition T weakly definable with Ψ(x; y1, . . . , yk)
induces the definable abstract cell decomposition T max with

I(∆) = {s ∈M |y| : ϕ(x; s) crosses ∆},

i.e. for every ψ ∈ Ψ we take

θψ(y; y1, . . . , yk) ≡ (∃x.ψ(x; y1, . . . , yk) ∧ ϕ(x; y)) ∧ (∃x.ψ(x; y1, . . . , yk) ∧ ¬ϕ(x; y)) .

Moreover, for any finite S ∈M |x| we have |T max(S)|≤ |Ψ|·|S|k= O(|S|k).

I Example 16. In Example 15 we gave an example of the abstract cell decomposition
T weakly definable by Ψ(x, y1, y2) for the formula x = y in the model M�. Consider
now a set S = {v1, v3, v5}. In T (S) there is a set {v : v1 ≺ v ≺ v3} = {v2}, which is
defined by the formula ψ2(x; y1, y2) ≡ y1 � x ∧ x � y2 ∧ x 6= y1 ∧ x 6= y2, where we
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plug y1 = v1 and y2 = v3. However, if we plug y1 = v1 and y2 = v5 we get the set
∆ = {v : v1 ≺ v ≺ v4} = {v2, v3, v4} 6∈ T (S).

Consider the formula θψ2 given above for defining T max. In this particular case it says:

θψ2(y, y1, y2) ≡ ψ2(y, y1, y2) ∧ (∃x.x 6= y ∧ ψ2(x, y1, y2)).

Observe that we have M� |= θψ2(v3, v1, v5), so we have v3 ∈ I(∆). In this way we know that
the set ∆ shouldn’t be used in T (S). It is easy to observe, that for the considered abstract cell
decomposition T , we have that T max(S) = O(|S|) for the induced T max definable abstract
cell decomposition. J

Using the notion of a weakly definable abstract cell decomposition we can define the
notion of distality. We define it for single formulas and classes of structures similarly to the
notion of NIP. The following definition is an adaptation of [13, Fact 2.9].

I Definition 17. A formula ϕ(x; y) with two tuples of parameters x and y is distal in a class
of structures C if there is a finite set of sentences Ψ(x; y1, . . . , yk) such that for any M ∈ C
there is an abstract cell decomposition for ϕ(x; y) weakly definable by Ψ.

In other words we say that a formula ϕ(x; y) is distal in C if in every M ∈ C it admits an
abstract cell decomposition weakly definable by the same set of formulas. As we observed
that every weakly definable abstract cell decomposition T induces a definable abstract cell
decomposition T max, we can assume that the decomposition in the definition of a distal
formula is definable. Moreover, we say that a class of structures C is distal if every formula
ϕ(x; y) is distal in C and we say that a single structure M is distal if the class {M} is.

Observe, that similarly to the case of NIP classes of structures, if a formula ψ(x; y) admits
a distal cell decomposition weakly definable by a finite set of sentences Ψ in C, then it also
admits a distal cell decomposition weakly definable by a finite set of sentences Ψ in the
elementary closure C.

4.4 Distal combinatorial tools
We start this section with the original statement of Distal cutting lemma.

I Theorem 18 (Distal cutting lemma, [13, Theorem 3.2]). Let M be a fixed structure and
ϕ(x; y) be a formula admitting a definable distal cell decomposition T (weakly definable by a
finite set of formulas Ψ(y; y1, . . . , yk)) with T (S) = O(|S|d). Then for any A ⊆M |y| of size
n and any real r satisfying 1 ≤ r ≤ n we can partition M |x| into sets X1, . . . , Xl with

l ≤ Crd,

and satisfying the following: for every Xi there are at most nr tuples a ∈ A such that ϕ(M ; a)
crosses Xi. The constant C depends only on the model M and the formula ϕ. Moreover,
each of the Xi’s is an intersection of at most two Ψ(x;Ak)-definable sets.

To better understand the statement of Theorem 18 consider it in the case when M is a
graph (possibly ordered and infinite) and ϕ(x; y) ≡ E(x, y). Then Theorem 18 says, that
for any set of vertices A we can partition all the vertices into at most Crd sets X1, . . . , Xl

and in every Xi there are at most n
r vertices a ∈ A such that a has both a neighbor and a

non-neighbor in Xi, so in other words Xi is homogenous towards all but n
r vertices from A.

By using compactness in a standard way, we get a version of Theorem 18 for classes of
structures.
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I Theorem 19 (Distal cutting lemma for classes of structures). Let C be a fixed class of
structures and ϕ(x; y) be a formula admitting for every M ∈ C a definable distal cell de-
composition TM (weakly definable by the same finite set of formulas Ψ(y; y1, . . . , yk)) with
TM(S) = O(|S|d). Then for any M ∈ C, any A ⊆ M |y| of size n, and any real r satisfying
1 ≤ r ≤ n we can partition M |x| into sets X1, . . . , Xl with

l ≤ Crd,

such that for every Xi there are at most n
r tuples a ∈ A such that ϕ(M ; a) crosses Xi. The

constant C depends only on the class of structures C and the formula ϕ. Moreover, each of
the Xi’s is an intersection of at most two Ψ(x;Ak)-definable sets.

Proof. Assume by contradiction that the statement is not true for some real r. Therefore,
for every L ∈ N there is some nL ∈ N and a structure ML ∈ C together with AL ⊆M |y|L of
cardinality at most nL such that we cannot choose at most Lrd sets which are intersection of
at most two Ψ(x;AkL)-definable sets and form a desired partition. Without loss of generality,
we can choose constants nL so that they form a non-decreasing sequence.

Observe, that for every L we can write a sentence ξL of first-order logic stipulating:

"there is a set AkL of at most nL tuples of length |y| (formally we quantify existentially nL
times over tuples of size |y|) with the following property: for every choice of Lrd sets which
are intersection of at most two Ψ(x;AkL)-definable sets, if they cover the whole domain, then

at least one of them is crossed by more than |A
k
L|
r ϕ(x;AkL)-definable sets".

Consider the theory T of the class C. Extend it by adding all the sentences ξL to obtain a
new theory T ′. By compactness, T ′ is consistent. Indeed, any finite subset of T ′ is consistent,
as there is a model in C which satisfies sentences ξL for arbitrary large L’s.

As T ′ is consistent, it has a model M′. As T ⊆ T ′, the model M′ satisfies the assumptions
of Theorem 18. However, as ξL ∈ T ′ for every L ∈ N, then M′ does not satisfy its conclusion,
which gives us a contradiction. J

A similar approach can be applied to another distal combinatorial tool - Distal regularity
lemma [15, Theorem 5.8]. However, its full statement is more complicated and uses a number
of new definitions. Moreover, it is stated for distal models, but a careful analysis of the proof
shows that it can be applied also on the level of distal formulas provided that the model we
are working with is NIP. Therefore, we decided to present here a simplified statement of this
theorem in the setting of (ordered) graphs.

I Theorem 20 (Simplified version of Distal regularity lemma). Let C be an NIP class of
(ordered) graphs and assume that the formula ϕ(x; y) ≡ E(x, y) is distal in C. Then, there
is a constant c = c(C) such that for any ε > 0 and for any graph G ∈ C there is a partition
P1, . . . , Pl of vertices of G for some l ≤ c( 1

ε )c, such that∑
|Pi||Pj |≤ ε|V (G)|2

where the sum is over all i, j ∈ [|V (G)|] such that Pi and Pj are not homogenous.

A sketch of the proof of Theorem 20 is given in Appendix B. As we mentioned, this is
just repeating parts of the argument from [15], but in the simplified setting of graphs.
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Figure 4 In this example we have Prof(2) = {1, 4, 5}.

5 Abstract cell decomposition for the edge relation in graphs of
bounded twin-width

Classes of ordered graphs of bounded twin-width are known to be distal. The proof of this
fact is a combination of a few involved results from model theory. Without going into details,
if Ĉ is a class of totally ordered graphs of bounded twin-width, then by [7, Theorem 1 and
Theorem 3] it is monadically NIP (this is a property of models much stronger than being
NIP). Then by [10, Theorem 1.1] we get that since Ĉ is monadically NIP then it is dp-minimal
(this is another property of models which we don’t define in this paper), and finally by [32,
Lemma 2.10] we get that as Ĉ is dp-minimal and totally ordered, then it is distal. However,
this proof does not give any explicit abstract cell decomposition for the class C, which means
that e.g. we don’t have any bound on the parameter d in Theorem 19.

The aim of this section and the main result of this paper is a direct combinatorial proof of
the result sketched above for the case of the edge relation. Formally, we prove the following
theorem.

I Theorem 21. Let Ĉ be a class of ordered graphs with the following property: there is a
constant t ∈ N depending only on Ĉ such that for every (G,�) ∈ Ĉ the matrix M�(G) is
t-mixed free. Then the formula ϕ(x; y) ≡ E(x, y) admits in Ĉ a distal cell decomposition
weakly definable by a finite set Ψ(x; y1, . . . , yk), where k = O(t).

5.1 Proof of Theorem 21
We start by introducing a crucial definition for this part.

I Definition 22. Let M be an m×n 0− 1 matrix. We define the corner-profile of column
j (with 1 ≤ j < n) as the subset Prof(j) ⊆ [m − 1] such that i ∈ Prof(j) if and only
if M [i : (i + 1)][j : (j + 1)] is a corner. For a subset of columns J ⊆ [n − 1] we define
Prof(J) =

⋃
j∈J Prof(j). For an ordered graph (G,�) we identify columns of M�(G) with

vertices of G and therefore assume that the domain of Prof is V (G) and it ranges over subsets
of V (G).

An example of a corner profile of a column is presented in Figure 4.
Before we proceed with the proof of Theorem 21, it is insightful to prove a simpler

proposition, which shows some intuitions that will be useful later on. Namely, we prove that
vertices with a large corner-profile can be efficiently defined using a few parameters.

We use additional notation for an ordered graph (G,�). A vertex v′ is the successor of
vertex v in � (denoted by s(v)) if v 6= v′, v � v′ and for all u ∈ V (G) we have either u � v
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or v′ � u. Two vertices v, v′ ∈ V (G) are adjacent in � if v′ = s(v) or v = s(v′). For a
vertex v we also denote by Sk(v) the set of k consecutive vertices after v together with v, i.e.
Sk(v) = {sl(v) : 0 ≤ l ≤ k}.

I Proposition 23. Let (G,�) be a t-mixed free ordered graph and let v ∈ V (G) sat-
isfy |Prof(v)|≥ 2t. There are a constant ft depending only on t, a sequence of ver-
tices (a1, . . . , at) ∈ Prof(v)t, and a first-order formula in the language of ordered graphs
ϕ(x; y1, . . . , yt) such that the length of ϕ is bounded by ft and ϕ(G; a1, . . . , at) = {v}.

Proof. As |Prof(v)|≥ 2t we can pick a subset P ⊆ Prof(v) of size t such that every two
vertices w,w′ ∈ P are not adjacent in �. Let us denote S = {u ∈ V (G) : P ⊆ Prof(u)}.
Obviously v ∈ S and we can easily see that |S|< 2t. Indeed, if |S|≥ 2t, then we could pick
S′ ⊆ S of size t such that every two vertices in S′ are not adjacent in �. Then pairs of rows
{(w, s(w)) : w ∈ P} and pairs of columns {(u, s(u)) : u ∈ S′} would induce a t-mixed minor
ofM�(G). That is a contradiction with the assumption that (G,�) is t-mixed free. Therefore,
we take ϕ which just says that v is the l’th vertex in order � such that P ⊆ Prof(v). This can
be done within the constraints in the statement, as we can use vertices in P as a1, . . . , at and
we can define the successor of a given vertex using �. Moreover, the size of ϕ depends only
on t (as we discussed that l is smaller than 2t), so it can be bounded by some constant ft. J

The assumption that one vertex has a large corner-profile is quite strong, in the sense
that we can easily imagine a matrix which admits a large mixed minor, but its every column
has a small corner-profile (e.g. of a constant size). However, Proposition 23 can be leveraged
to the case when a set of consecutive vertices has a large corner-profile, which is formalized
in Proposition 24.

I Proposition 24. Let (G,�) be a t-mixed free ordered graph and let v ∈ V (G) satisfy
|Prof(Sl(v))|≥ 2t for some integer l. There are a constant ft depending only on t, a sequence
of vertices (a1, . . . , at) ∈ Prof(Sl(v))t, a first-order formula in the language of ordered graphs
ϕ(x; y1, . . . , yt), and a vertex v′ ∈ Sl(v) such that the length of ϕ is bounded by ft and
ϕ(G; a1, . . . , at) = {v′}.

Proof. Similarly as in the proof of Proposition 23 we can pick a subset P ⊆ Prof(Sl(v)) of size
t such that every two vertices w,w′ ∈ P are not adjacent in �. Let v0 be the smallest vertex
of G in � and r0 = min{n ∈ N : P ⊆ Prof(Sn(v0))}, i.e. r0 is the smallest integer such that
first r0 + 1 vertices of G in � have P as a subset of their corner-profile. This is obviously well-
defined as P ⊆ Sl(v). Now we set v1 = sr0+1(v0) and r1 = min{n ∈ N : P ⊆ Prof(Sn(v1))}.
We define v2, r2, v3, . . . analogously, until some vj or rj is not defined (i.e. srj−1(vj−1) is
the maximal vertex of G in � or {n ∈ N : P ⊆ Prof(Sn(vj))} is empty). We clearly have
j < 2t. Indeed, if j ≥ 2t then the sets of columns Sr0+1(v0), Sr2+1(v2), . . . , Sr2t−2+1(v2t−2)
are pairwise disjoint. Moreover, together with pairs of rows {(u, s(u)) : u ∈ P} they induce a
t-mixed minor of M�(G), which is a contradiction.

If vj−1, rj−1 is the last pair, which was well-defined above, and we also managed to define
vj but not rj , then we can’t have vj � v. That is because we have P ⊆ Prof(Sl(v)), so in
this case rj would be well-defined. Therefore, there is some p such that v ∈ Srp(vp). We
also have srp(vp) ∈ Sl(v). Indeed, we can’t have srp(vp) ≺ v by the definition of p and if
we had sl(v) ≺ srp(vp), then we would have P ⊆ Sl(v) ⊆ Srp−1(vp), which contradicts the
definition of rp. We pick the vertex srp(vp) as our v′ from the statement. That is because
it is either the maximal vertex of G (in which case it is obvious that we can define it even
by a formula without parameters) or the predecessor of vp+1. However, vp+1 is definable
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Figure 5 Example of how the vi are set in the proof of Proposition 24.

by a first-order formula of ordered graphs with a1, . . . , at being the vertices of P in some
order. This is because the definition of each vi can be easily transformed into a first-order
formula of ordered graphs, and the size of formula for vp can be bounded by some constant
ft because p ≤ 2t. Finally, as we mentioned in the proof of Proposition 23, the successor
relation is definable, so indeed we can define srp(vp) as the predecessor of vp+1. J

Let us remark that Proposition 24 assures that if we have a set of consecutive vertices
with a large corner-profile, then we can encode some vertex in it using a first-order formula.
However, we cannot control which vertex from the given set is to be encoded. It turns out
not to be that problematic, so we can start the proof of Theorem 21.

Proof of Theorem 21. Let us take a t-mixed free ordered graph (G,�) and some non-empty
A ⊆ V (G). Our goal is to present an abstract cell decomposition which is weakly definable
by the same set of formulas which does not depend on G nor on A.

Similarly as in the proof of Theorem 4 we can remove from M�(G) rows that correspond
to vertices in V (G) \ A, thus obtaining a t-mixed free |A|×|V (G)| matrix M . We set v0
to be the minimal vertex of G in � and r0 = min{n ∈ N : |Prof(Sn(v0))|≥ 2t}. Next, we
set v1 = sr0+1(v0) and r1 = min{n ∈ N : |Prof(Sn(v1))|≥ 2t}. We proceed this way with
v2, r2, v3, . . .. If at some point we manage to define vl but the set {n ∈ N : |Prof(Sn(vl))|≥ 2t}
is empty, then we define rl = max{n ∈ N : sn(vl) ∈ V (G)}, i.e. Srl(vl) = {u ∈ V (G) : vl � u}.
In this way we define l + 1 pairs v0, r0, . . . , vl, rl. This process is presented in Figure 5.

We have that in every Srj (vj) there is some v′j which is first-order definable. This is a
bit more tricky than in the proof of Proposition 24, as now any two consecutive rows of M
don’t necessarily correspond to vertices of V (G) which are adjacent in �. However, we are
still able to define a corner by explicitly naming both its rows. Therefore, the formula ϕj
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which defines v′j needs to use 2t parameters which correspond to t vertices from Prof(Srj (vj))
and their successors in ��A×A. There is also a special case for Srl(vl), as we can’t assume
|Prof(Srl(vl))|≥ 2t. Nevertheless, the vertex srl(vl) is definable as the maximal vertex of G,
so we can set v′l = srl(vl). As M is t-mixed free, then the size of each ϕj is bounded by some
function of t only.

If for any srj (vj) we have Prof(srj (vj)) ≥ 2t, then we can define srj (vj) and vj+1 (if it
exists) as well. Again, we need to use for it formulas with 2t parameters of size bounded by
some function of t.

By now we defined a few singleton sets with a bounded number of formulas such that
any of them uses at most 2t parameters from A. Now we will show how to deal with the
remaining vertices. Every such vertex u satisfies w ≺ u ≺ w′ for some w,w′ already defined
in previous steps. Let us denote Iww′ = {u : w ≺ u ≺ w′}. From the construction we have
|Prof(Iww′)|< 4t. Moreover, by Corollary 8 we know that there is a subset Aww′ ⊆ A of size
at most |Prof(Iww′)|+1 ≤ 4t such that whenever two vertices u, u′ ∈ Iww′ have exactly the
same neighborhood on the set Aww′ , then their columns in M are equal, so they have the
same neighborhood in the whole A. Therefore, we can define sets of vertices between w and
w′ in �, that have specific values on Aww′ using formulas with 2t+ 2t+ 4t parameters and
of size bounded by some function of t. Finally, we obtain the statement of Theorem 21 with
k = 8t. The set of formulas Ψ that we use is finite, because every ψ ∈ Ψ has its size bounded
by a function of t only. J

5.2 Distal tools for graphs of bounded twin-width

We already know that for every graph G from a class C of unordered graphs of twin-width
bounded by t we can find a total order � on its vertices, such that (G,�) is 2t+ 2-mixed
free. Combining this fact with Theorem 21 and Theorem 19 we obtain cutting lemma for
graphs of bounded twin-width (without an order).

I Theorem 25 (Cutting lemma for graphs of bounded twin-width). Let G be a graph of
twin-width at most t. There is a constant C depending only on t such that for any A ⊆ V (G)
of size n and any real r satisfying 1 ≤ r ≤ n we can partition V (G) into sets X1, . . . , Xl with

l ≤ Cr16t+16

such that for every Xi all but at most n
r vertices a ∈ A are homogenous towards Xi.

Similarly, using Theorem 20 we can formulate regularity lemma for graphs of bounded
twin-width. In this case, we cannot directly apply the bounds on the size of abstract cell
decompositions from Theorem 21. The reason is that the bounds in Theorem 20 depend also
on VC-dimension of set systems definable by formulas used in a definition of an abstract cell
decomposition.

I Theorem 26 (Regularity lemma for graphs of bounded twin-width). Let G be a graph of
twin-width at most t. Then, there is a constant c = c(t) such that for any ε > 0 there is a
partition P1, . . . , Pl of V (G) for some l ≤ c( 1

ε )c, such that∑
|Pi||Pj |≤ ε|V (G)|2

where the sum is over all i, j ∈ [|V (G)|] such that Pi and Pj are not homogenous.
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6 Conclusions

One of the most important conjectures in structural and algorithmic graph theory is that
model checking is FPT on a class of graphs if and only if the class is monadically NIP [1].
As we mentioned, this notion comes from model theory and therefore it is believed that
progressing towards this conjecture requires a better understanding of the interplay of model
theory and structural graph theory. We believe that studying the notion of distality is a step
in this direction.

We can observe the mentioned interplay when we can prove a theorem in two completely
different ways – one using tools from model theory, and the other being a direct, combinatorial
proof. An example of such theorem is shown in [18]. We are grateful to the Anonymous
Reviewer who pointed out that Theorem 26 alternatively can be proven in a purely combin-
atorial way using [5, Lemma 20]. We believe that studying connections between these two
proofs is an interesting goal.

As we mentioned in Section 5 a class of ordered graphs is distal if and only if it has
bounded twin-width. However, the distal regularity lemma and the distal cutting lemma
does not only apply to graphs of bounded twin-width. As an example, we can consider
classes of graphs of bounded expansion equipped with an arbitrary order. They are not distal,
but every first-order formula which doesn’t use order is distal in them [14]. This leads to a
possible generalization of classes of graphs of bounded expansion and bounded twin-width
and such a generalization is highly anticipated and sought. In light of these facts, Theorem
25 and Theorem 26 may be seen as a step towards finding common combinatorial properties
of the two notions.
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elij =
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and eij = (e1
ij , . . . , e

k
ij). Finally, we define the adjacency matrix of H in the order σ as the

matrix Mσ(H) satisfying Mσ(H)[i][j] = eij .
Not only the definition of Mσ can be lifted to the case of binary structures, but also the

definition of twin-width. We don’t present the lifted definition here. Instead, we just remark
that by [9, Theorem 14] if for a given binary structure H there is a total order σ on its
domain such that Mσ(H) is t-mixed free, then the twin-width of H is 22O(t) . Therefore, we
can show that a binary structure has bounded twin-width, by finding an ordering in which
its adjacency matrix is t-mixed free for some t. This happens to be the case for the ordered
graphs that we consider in the statement of Lemma 12.

I Lemma 27. Let (G,�) be an ordered graph such that the matrix M�(G) is t-mixed free.
Then M�((G,�)) is 2t-mixed free.

Before starting the proof, let us stress the difference between M�(G) and M�((G,�)). The
first one is the adjacency matrix of the graph G in the order �. In particular, it is a 0− 1
matrix. On the other hand, M�((G,�)) is an adjacency matrix of a binary structure over
the signature {E,�}, so its elements are from the set (0,−1, 1, 2)2. However, as the order �
is both a part of the structure and the order which is used for creating M�((G,�)), it is
easier to reason about properties of this matrix.

Proof of Lemma 27. Let us assume by contradiction, that M�((G,�)) admits a (2t, 2t)-
division (R, C) = ({R1, . . . , R2t}, {C1, . . . , C2t}), which is a 2t-mixed minor. Denote by Rij
(respectively Cij) the sum Rij = ∪jk=iRk (respectively Cij = ∪jk=iCk). It is easy to see that
on one of the zones R1t∩Ct+1,2t or Rt+1,2t∩C1t the relation � is constant. Therefore, either
({R1, . . . , Rt}, {Ct+1, . . . , C2t}) or ({Rt+1, . . . , R2t}, {C1, . . . , Ct}) induce a t-mixed minor of
M�(G), which is a contradiction. J

The notion of NIP classes of structures can be extended to much stronger notion of
monadically NIP classes. Roughly speaking a class C is monadically NIP if whenever we add
a number of unary predicates to every structure in C thus obtaining a class C, then C is NIP.
We don’t define the notion of monadically NIP classes of structures formally, because for
the proof of Lemma 12 it is enough to know that this is a more restrictive notion than NIP.
Knowing that we can proceed to the proof of Lemma 12.

Proof of Lemma 12. By Lemma 27 and [9, Theorem 14] we know that the class Ĉ of ordered
graphs has bounded twin-width. By [7, Theorem 11] and the equivalence of conditions (1)
and (2) of [7, Theorem 3] we get that Ĉ is monadically NIP and hence NIP. J

B Sketch of the proof of Theorem 20

In this section whenever we talk about graphs we assume that they can be ordered. Before
we sketch the proof of Theorem 20 we need to define a few auxiliary notions.

Let us assume that we have a class of graphs C such that the formula ϕ(x; y) ≡ E(x, y)
admits an abstract cell decomposition in C weakly definable by Ψ(x; y1, . . . , yl). For any
G ∈ C, any d ∈ Gl, and any ψ ∈ Ψ we denote by CG,ψ,d the subset of vertices of G defined
by ψ(G; d) and call it a chamber. If in addition d ∈ Bl for some B ⊆ V (G) then we say that
CG,ψ,d is a B-definable chamber.

For a chamber C and a set B we denote by C#(B) the set of all b ∈ B such that C and
{b} are not homogenous. Note that C#(G) is a definable set (by a formula depending just
on the formula ψ defining C).
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For B ⊆ V (G) we say that a chamber C is B-complete if C is B-definable and C#(B) = ∅.
Since Ψ weakly defines an abstract cell decomposition of ϕ in C then for any G ∈ C, any

finite B ⊆ V (G), and any a ∈ V (G) there is a B-complete chamber C such that a ∈ C. In
particular for any finite B ⊆ V (G) the union of all B-complete chambers covers V (G).

For a positive r ∈ R and a G ∈ C we say that a family F of chambers is a 1/r-cutting if
V (G) is covered by F and for every C ∈ F we have C#(G) ≤ |V (G)|/r.

We also need the following fact, which can be seen as a special case of the VC-theorem.

I Lemma 28 (Simplified version of [15, Fact 2.2]). For any k > 0 and ε > 0 there is
n = O(k( 1

ε )2 log 2
ε ) satisfying the following. For any finite set X and a family F of subsets of

X of VC-dimension ≤ k there are some x1, . . . , xn ∈ X such that for any S ∈ F if |S|≥ ε|X|
then S ∩ {x1, . . . , xn} 6= ∅.

After explaining these additional notions we can prove Lemma 29, which is an important
step in the direction of Theorem 20.

I Lemma 29 (compare with [15, Claim 3.5]). There is a constant K depending only on C
such that the following holds. For any positive r and for any G ∈ C there is a set S ⊆ V (G)
of size at most Kr2 log 2r such that the family of all S-complete chambers is a 1/r-cutting.

Proof. Consider the family of sets

D = {C#(G) : C is a G-definable chamber}.

This is a definable family, so it has VC-dimension bounded by a constant that depends only
on C. By applying Lemma 28 with ε = 1

r we obtain a subset S ⊆ G of size at most Kr2 log 2r
such that for every G-definable chamber C if |C#(G)|≥ |V (G)|/r then S ∩C#(G) 6= ∅. Since
C#(S) = ∅ for any S-complete chamber C, we are done. J

By following the proof of [15, Theorem 3.6] and using Lemma 29 we can prove the following
theorem.

I Theorem 30. Let C be an NIP class of graph such that ϕ(x; y) ≡ E(x, y) is distal in C.
Then, there is a constant δ depending only on C and a pair of formulas ψ1(x, z1), ψ2(y, z2) such
that for every G ∈ C there are c1 ∈ V (G)|z1|, c2 ∈ V (G)|z2| such that |ψ1(G, c1)|, |ψ2(G, c2)|≥
δ|V (G)| and the pair of sets ψ1(G, c1), ψ2(G, c2) is homogenous.

Now we start the sketch of the proof of Theorem 20. The idea is to consider for any
G ∈ C rectangular partitions of V (G)2, i.e. partitions where every part is of the form S1×S2
for S1, S2 ⊆ V (G). In particular, we consider partitions that are (ψ1, ψ2)-definable over
some A ⊆ V (G), for some formulas ψ1(x, z1), ψ2(y, z2). It means that for every S1 × S2 in
our partition S1 (respectively S2) can be expressed as a finite Boolean combination of sets
from the family {ψ1(V (G), a1) : a1 ∈ A|z1|} (respectively {ψ2(V (G), a2) : a2 ∈ A|z2|}). For a
rectangular partition P of V (G)2 we can define its defect as:

def(P) =
∑

S1×S2∈P
S1 and S2 not homogenous

|S1||S2|.

The idea behind the proof of Theorem 20 is to start with the rectangular partition
consisting of just one part V (G) × V (G) and then iteratively decrease its defect using
Theorem 30 (possibly applied to subgraphs of G). In this way we obtain a rectangular
partition of V (G)2 with a low defect which is (ψ1, ψ2)-definable over some set A of size
polynomial in 1/ε. This process is depicted in [15, Claim 5.7]. We finish the proof by
observing, that the statement of Theorem 20 follows if we take the partition of V (G) into
(ψ1, ψ2)-types over A, which is formally stated in the proof of [15, Theorem 5.8].
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