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Abstract—The article bridges between two major paradigms
in computation, the functional, at basis computation from input
to output, and the interactive, where computation reacts to
its environment while underway. Central to any compositional
theory of interaction is the dichotomy between a system and
its environment. Concurrent games and strategies address the
dichotomy in fine detail, very locally, in a distributed fashion,
through distinctions between Player moves (events of the system)
and Opponent moves (those of the environment). A functional
approach has to handle the dichotomy more ingeniously, via
its blunter distinction between input and output. This has led
to a variety of functional approaches, specialised to particular
interactive demands. Through concurrent games we can see what
separates and connects the differing paradigms, and show how:
• to lift functions to strategies; how to turn functional dependency
to causal dependency and so exploit functional techniques.
• several approaches of functional programming and logic arise
naturally as full subcategories of concurrent games, including
stable domain theory; nondeterministic dataflow; geometry of
interaction; the dialectica interpretation; lenses and optics, and
their extensions to containers in dependent lenses and optics.
• the enrichments of strategies (e.g. to probabilistic, quantum or
real-number computation) specialise to the functional cases.

I. INTRODUCTION

By adopting a model which addresses interaction from
the outset, we can better understand and explore the space
of possible modes of interaction, functional or otherwise.
Concurrent games and strategies provide a way to describe
and orchestrate temporal patterns of interaction between func-
tions, their fine-grained dependencies and dynamic linkage—
Sections VI and VII. They support enrichments to strategies
for probabilistic, quantum and real-number computation.

This article bridges between the two paradigms of compu-
tation, the functional and the interactive. Broadly, it shows:
• How to convert a general class of functions to concurrent
strategies—Section V; this helps in describing and program-
ming strategies by functional techniques.
• How in many cases we can describe concurrent strategies as
interacting patterns of functions; it reveals many approaches in
functional programming arise as full subcategories associated
with special cases of concurrent games—Section VI.
• How concurrent strategies enrich in a general symmetric
monoidal category M and determine interacting patterns of
“functions” (maps in M ), composed through the composition
of strategies; in this sense a subcategory of strategies deter-
mines a potential functional paradigm, helping systematise the
way we explore interaction via functions—Section VII.

Amplifying the second point above, it was a surprise to
the author how many functional approaches and paradigms
arise simply by specialising to full subcategories of concurrent
games. By restricting to deterministic strategies between con-
current games where all moves are Player moves we recover
stable functions and Berry’s stable domain theory, of which
Girard’s qualitative domains and coherence spaces are special
cases. For such restricted games, general, nondeterministic,
strategies correspond to stable spans, a model underpinning
compositional accounts of nondeterministic dataflow. Only
marginally more complicated are games comprising two par-
allel components, one a purely Player game and the other with
purely Opponent moves. Strategies between such games yield
models for Geometry of Interaction built on stable functions
and stable spans [15]–[18]. Adjoining winning conditions and
imperfect information to these games, so Opponent can see the
moves of Player but not the converse, we recover a dialectica
category [19], so Gödel’s dialectica interpretation [20], from
deterministic strategies. Dialectica categories mark an early
occurrence of lenses, used in functional programming to make
composable local changes on data-structures [8], [9]. The
newer paradigm of optics appears in characterising arbitrary,
nondeterministic, strategies between dialectica games, and
when we move to more general container games, associated

The view of computation as functions is at the very founda-
tion of computer science: the Church-Turing thesis expresses 
the coincidence of different notions of computable function; 
programming with higher-order functions is commonplace.

In contrast the view of computation as interaction is more 
recent and less settled, and often obscured by adherence to 
one syntax or another, perhaps each with its own mechanism 
of interaction. Instead our approach is maths-driven. Its tools 
are those of distributed/concurrent games and strategies [1], a 
causal model which allows for highly distributed interaction. 
Concurrent games and strategies are built on the mathematical 
foundations of categories of models for interaction [2], chiefly 
on the central model of event structures [3].1

Whereas the basic mechanism of interaction of functions 
is clear—ultimately by function composition—a functional 
approach can struggle with finding q uite t he r ight w ay to 
approach computation which isn’t simply from input to output. 
The literature includes approaches via lenses, optics, combs, 
containers, dependent lenses, open games and learners [8]–
[14]. The difficulties are compounded by enrichments to, say, 
probabilistic, quantum or real-number computation.

1A core language for concurrent strategies derives from the mathematical 
structure, although we shall only glimpse it here in Section IV-G: it is higher-
order and an interesting hybrid of dataflow, c f. TensorFlow [ 4], concurrent 
process calculi, cf. CSP, CCS and Session Types [5]–[7].
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with container types [10], [12], [21]. The definition of de-
pendent optic here is derived as a characterisation of general
strategies between container games; it seems to be new [22].

After the basics on event structures, the tools of stable
families, and concurrent strategies, the new contribution comes
in three parts, roughly: how to describe strategies by functions;
how to describe functions and functional paradigms by strate-
gies; and, how enriched strategies describe interacting patterns
of functions. The first Section V, introduces a powerful method
for lifting a very broad class of functions to strategies, turning
functional into causal dependency. The second part, Section VI,
concerns how causal dependency determines functional de-
pendency, and shows how many discoveries in making func-
tions interactive arise as subcategories of concurrent games.
The third part, Section VII, outlines how strategies enrich in
a symmetric monoidal category—this transfers to functional
approaches. Enriched strategies orchestrate a dynamic pattern
of interaction between “functions” understood as maps in the
enriching, symmetric monoidal category. Further details and
background, in particular on the dependent-type constructions
on event structures can be found in the extended version [23].

II. EVENT STRUCTURES

An event structure [3] comprises (E,≤,Con), consisting of
a set E of events which are partially ordered by ≤, the causal
dependency relation, and a nonempty consistency relation Con
consisting of finite subsets of E. The relation e′ ≤ e expresses
that event e causally depends on the previous occurrence of
event e′; the consistency relation, those events which may
occur together. We insist that the partial order is finitary, i.e.
• [e] := {e′ | e′ ≤ e} is finite for all e ∈ E ,

and that consistency satisfies
• {e} ∈ Con for all e ∈ E ,
• Y ⊆ X ∈ Con implies Y ∈ Con, and
• X ∈ Con & e ≤ e′ ∈ X implies X ∪ {e} ∈ Con .

There is an accompanying notion of state or history. A
configuration is a, possibly infinite, subset x ⊆ E which is:
• consistent, X ⊆ x & X is finite implies X ∈ Con ; and
• down-closed, e′ ≤ e ∈ x implies e′ ∈ x .
Two events e, e′ are called concurrent if the set {e, e′} is in

Con and neither event is causally dependent on the other; then
we write ecoe′. In games the relation of immediate dependency
e _ e′, meaning e and e′ are distinct with e ≤ e′ and no event
in between, plays a very important role. We write [X] for the
down-closure of a subset of events X . Write C (E) for the
configurations of E and C (E)o for its finite configurations.

Let E and E′ be event structures. A map of event structures
f : E → E′ is a partial function on events f : E ⇀ E′ such
that for all x ∈ C (E) its direct image fx ∈ C (E′) and

if e, e′ ∈ x and f(e) = f(e′) (with both defined), then e = e′.

Maps of event structures compose as partial functions.
Notice that for a total map f , i.e. when the function f is total,
the condition on maps says it is locally injective, in the sense
that w.r.t. any configuration x of the domain the restriction of

f to a function from x is injective; the restriction of total f
to a function from x to fx is thus bijective.

Although a map f : E → E′ of event structures does not
generally preserve causal dependency, it does reflect causal
dependency locally: whenever e, e′ ∈ x, a configuration of E,
and f(e) and f(e′) are both defined with f(e′) ≤ f(e), then
e′ ≤ e. Consequently, f preserves the concurrency relation: if
e co e′ in E then f(e) co f(e′), when defined.

A total map of event structures is rigid when it preserves
causal dependency. Rigid maps induce discrete fibrations:

Proposition 1. A total map f : E → E′ of event structures is
rigid iff for all x ∈ C (E) and y ∈ C (E′),

y ⊆ fx =⇒ ∃z ∈ C (E). z ⊆ x and fz = y .

The configuration z is necessarily unique by local injectivity.

III. STABLE FAMILIES

In an event structure, defined above, an event e has a unique
causal history, the prime configuration [e]. Constructions di-
rectly on such event structures can be unwieldy, as often an
event is more immediately associated with several mutually
inconsistent causal histories. In this case the broader model of
stable families is apt, especially so, as any stable family yields
an event structure [3], [24].

A subset X of a family of sets F is compatible if there is
an element of F which includes all elements of X; we say X
is finitely compatible if every finite subset of X is compatible.
A stable family is a non-empty family of sets F which is
• Complete: if Z ⊆ F is finitely compatible,

⋃
Z ∈ F ;

• Stable: If Z ⊆ F is compatible and nonempty,
⋂
Z ∈ F ;

• Finitary: If e ∈ x & x ∈ F , there is x0 ∈ F with x0 finite,
e ∈ x0 & x0 ⊆ x;
• Coincidence-free: For all x ∈ F , e, e′ ∈ x with e 6= e′,

∃x0 ∈ F . x0 ⊆ x & (e ∈ x0 ⇐⇒ e′ /∈ x0) .

We call elements of F its configurations,
⋃

F its events and
write F o for its finite configurations.

A map f : F → G between stable families F and G
is a partial function f from the events of F to those of G
such that for all x ∈ F its direct image fx ∈ G and if
e, e′ ∈ x and f(e) = f(e′) then e = e′. The choice of map
ensures a full inclusion functor from the category of event
structures to that of stable families. The inclusion functor has
a right adjoint Pr giving a coreflection (an adjunction with unit
an isomorphism). The construction Pr(F ) essentially replaces
the original events of a stable family F by the minimal, prime
configurations at which they occur. Let x be a configuration
of a stable family F . Define the prime configuration of e in
x by

[e]x :=
⋂
{y ∈ F | e ∈ y & y ⊆ x} .

By coincidence-freeness, the function top : C (Pr(F ))→ F
which takes a prime configuration [e]x to e is well-defined; it
is the counit of the adjunction [3], [24].
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Theorem 1. Let F be a stable family. Then, Pr(F ) :=
(P,Con,≤) is an event structure where

P = {[e]x | e ∈ x & x ∈ F} ,
Z ∈ Con iff Z ⊆ P &

⋃
Z ∈ F , and

p ≤ p′ iff p, p′ ∈ P & p ⊆ p′ .

There is an order isomorphism θ : (C (Pr(F )),⊆) ∼= (F ,⊆)
where θ(y) := top y =

⋃
y for y ∈ C (Pr(F )); its mutual

inverse is ϕ where ϕ(x) = {[e]x | e ∈ x} for x ∈ F .

The partial orders represented by configurations under in-
clusion are the same whether for event structures or stable
families. They are Gérard Berry’s dI-domains [3], [24], [25].

A. Hiding—the defined part of a map

Let (E,≤,Con) be an event structure. Let V ⊆ E be
a subset of ‘visible’ events. Define the projection on V , by
E↓V := (V,≤V ,ConV ), where v ≤V v′ iff v ≤ v′ & v, v′ ∈
V and X ∈ ConV iff X ∈ Con & X ⊆ V . The operation
hides all events outside V . It is associated with a partial-total
factorization system. Consider a partial map of event structures
f : E ⇀ E′. Let V := {e ∈ E | f(e) is defined} . Then f
clearly factors into the composition

E
f0 / E↓V

f1 // E′

of f0, a partial map of event structures taking e ∈ E to itself
if e ∈ V and undefined otherwise, and f1, a total map of event
structures acting like f on V . Note that any x ∈C (E↓V ) is the
image under f0 of a minimum configuration, viz. [x]E ∈C (E).
We call f0 a projection and f1 the defined part of the map f .

B. Pullbacks

The coreflection from event structures to stable families
is a considerable aid in constructing limits in the former
from limits in the latter. The pullback of total maps of event
structures is essential in composing strategies. We can define it
via the pullback of stable families, obtained as a stable family
of secured bijections. Let σ : S → B and τ : T → B be total
maps of event structures. There is a composite bijection

ψ : x ∼= σx = τy ∼= y ,

between x ∈ C (S) and y ∈ C (T ) such that σx = τy; because
σ and τ are total they induce bijections between configurations
and their image. The bijection is secured when the transitive
relation generated on ψ by (s, t) ≤ (s′, t′) if s ≤S s′ or
t ≤T t′ is a finitary partial order.

Theorem 2. Let σ : S → B, τ : T → B be total maps of
event structures. The family R of secured bijections between
x ∈C (S) and y ∈C (T ) such that σx = τy is a stable family.
The functions π1 : Pr(R) → S, π2 : Pr(R) → T , taking a
secured bijection with top to, respectively, the left and right
components of its top, are maps of event structures. Pr(R)
with π1, π2 is the pullback of σ, τ in the category of event
structures.

Notation III-C. W.r.t. σ : S → B and τ : T → B, define x∧y
to be the configuration of their pullback which corresponds via
θ : C (Pr(R)) ∼= R to a secured bijection between x ∈ C (S)
and y ∈ C (T ), necessarily with σx = τy; any configuration
of the pullback takes the form x ∧ y for unique x and y.

IV. CONCURRENT GAMES AND STRATEGIES

The driving idea is to replace the traditional role of game
trees by that of event structures. Both games and strategies
will be represented by event structures with polarity, which
comprise (A, polA) where A is an event structure and a
polarity function polA : A → {+,−, 0} ascribing a polarity
+ (Player) or − (Opponent) or 0 (neutral) to its events. The
events correspond to (occurrences of) moves. It will be techni-
cally useful to allow events of neutral polarity; they arise, for
example, in a play between a strategy and a counterstrategy.
Maps are those of event structures which preserve polarity.
A game is represented by an event structure with polarities
restricted to + or −, with no neutral events.

Definition 3. In an event structure with polarity, with config-
urations x and y, write x ⊆− y to mean inclusion in which
all the intervening events y \ x are Opponent moves. Write
x ⊆+ y for inclusion in which the intervening events are
neutral or Player moves. For a subset of events X we write
X+ and X− for its restriction to Player and Opponent moves,
respectively. The Scott order [26] will play a central role:
between x, y ∈ C (A), where A is a game, it is defined by

y vA x ⇐⇒ y ⊇− x ∩ y ⊆+ x
and is also characterised by

y vA x ⇐⇒ y− ⊇ x− & y+ ⊆ x+ .
The Scott order reduces to Scott’s pointwise order on functions
in special cases and is central in relating games to Scott
domains and “generalised domain theory” [26], [27].

There are two fundamentally important operations on
games. One is that of forming the dual game. On a game A
this amounts to reversing the polarities of events to produce the
dual A⊥. The other operation, a simple parallel composition
A‖B, is achieved on games A and B by simply juxtaposing
them, ensuring a finite subset of events is consistent if its
overlaps with the two games are individually consistent; any
configuration x of A‖B decomposes into xA‖xB where xA
and xB are configurations of A and B respectively.

A strategy in a game A is a total map σ : S → A of event
structures with polarity such that
(i) if σx ⊆− y, for x ∈ C (S), y ∈ C (A), there is a unique

x′ ∈ C (S) with x ⊆ x′ and σx′ = y;
(ii) if s _S s′ and (pol(s) = + or pol(s′) = − ) , then

σ(s) _A σ(s′).
The conditions prevent Player from constraining Opponent’s
behaviour beyond the constraints of the game. Condition (i)
is receptivity, ensuring that the strategy is open to all moves
of Opponent permitted by the game. Condition (ii), called
innocence in [28], ensures that the only additional immediate
causal dependencies a strategy can enforce beyond those of
the game are those in which a Player move awaits moves of
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Opponent. A map f : σ ⇒ σ′ of strategies σ : S → A and
σ′ : S′ → A is a map f : S → S′ such that σ = σ′f ; this
determines when strategies are isomorphic.

Following [29], [30], a strategy from a game A to a game B
is a strategy in the game A⊥‖B. Given a strategy from B to a
game C, so in B⊥‖C, we compose the two strategies essen-
tially by playing them against each other in the common game
B, where if one strategy makes a Player move the other sees
it as a move of Opponent. The conditions of receptivity and
innocence precisely ensure that the copycat strategy behaves
as identity w.r.t. composition, detailed below [1].

A. Copycat

Let A be a game. The copycat strategy ccA : CCA → A⊥‖A
is an instance of a strategy from A to A. The event structure
CCA is based on the idea that Player moves in one component
of the game A⊥‖A always copy corresponding moves of
Opponent in the other component. For c ∈ A⊥‖A we use c̄
to mean the corresponding copy of c, of opposite polarity, in
the alternative component. The event structure CCA comprises
A⊥‖A with extra causal dependencies c̄ ≤ c for all events c
with polA⊥‖A(c) = +; with the original causal dependency
they generate a partial order ≤; a finite subset is consistent in
CCA iff its down-closure w.r.t. ≤ is consistent in A⊥‖A. The
map ccA acts as the identity function. In characterising the
configurations of CCA we recall the Scott order of Defn 3.

Lemma 4. Let A be a game. Let x ∈ C (A⊥) and y ∈ C (A).
Then, x‖y ∈ C (CCA) iff y vA x .

B. Composition

Two strategies σ : S → A⊥‖B and τ : T → B⊥‖C
compose via pullback and hiding, summarised below.

T ~ S
π1

yy

/

τ~σ

��

π2

%%

T�S

τ�σ

��

S‖C

σ‖C $$

A‖T

A‖τzz
A‖B‖C / A‖C

Ignoring polarities, by forming the pullback of σ‖C and A‖τ
we obtain the synchronisation of complementary moves of
S and T over the common game B; subject to the causal
constraints of S and T , the effect is to instantiate the Opponent
moves of T in B⊥ by the corresponding Player moves of
S in B, and vice versa. Reinstating polarities we obtain the
interaction of σ and τ

τ ~ σ : T ~ S → A⊥‖B0‖C ,

where we assign neutral polarities to all moves in or over B.
Neutral moves over the common part B0 remain unhidden.
The map A⊥‖B0‖C ⇀ A⊥‖C is undefined on B0 and
otherwise mimics the identity. Pre-composing this map with
τ~σ we obtain a partial map T ~S ⇀ A⊥‖C; it is undefined
on precisely the neutral events of T ~ S. The defined part of
its partial-total factorization yields

τ�σ : T�S → A⊥‖C

—this is the composition of σ and τ .

Notation IV-C. For x ∈ C (S) and y ∈ C (T ), let σx =
xA‖xB and τy = yB‖yC where xA ∈ C (A), xB , yB ∈ C (B),
yC ∈C (C). Define y~x = (x‖yC)∧(xA‖y). This is a partial
operation only defined if the ∧-expression is. It is defined and
glues configurations x and y together at their common overlap
over B provided xB = yB and a finitary partial order of causal
dependency results. Any configuration of T ~ S has the form
y ~ x, for unique x ∈ C (S), y ∈ C (T ).

D. A bicategory of strategies

We obtain a bicategory Strat for which the objects are
games, the arrows σ : A + //B are strategies σ : S → A⊥‖B;
with 2-cells f : σ ⇒ σ′ maps of strategies. The vertical
composition of 2-cells is the usual composition of maps.
Horizontal composition is the composition of strategies �
(which extends to a functor via the universality of pullback
and partial-total factorisation). We can restrict the 2-cells to
be rigid maps and still obtain a bicategory. The bicategory
of strategies is compact-closed, though with the addition
of winning conditions—Section IV-E—this weakens to ∗-
autonomous.

A strategy σ : S → A is deterministic if S is deterministic,
viz.

∀X ⊆fin S. [X]− ∈ ConS =⇒ X ∈ ConS ,

where [X]− := {s′ ∈ S | ∃s ∈ X. polS(s′) = − & s′ ≤ s}.
So, a strategy is deterministic if consistent behaviour of Op-
ponent is answered by consistent behaviour of Player. Copycat
ccA is deterministic iff the game A is race-free, i.e. if x ⊆− y
and x ⊆+ z in C (A) then y ∪ z ∈ C (A). The bicategory of
strategies restricts to a bicategory of deterministic strategies
between race-free games [31], [32].

There are several ways to reformulate strategies. Determin-
istic strategies coincide with the receptive ingenuous strategies
of Melliès and Mimram based on asynchronous transition
systems [31], [33]. Via the Scott order, we can see strategies as
a refinement of profunctors: a strategy in a game A induces a
discrete fibration, so presheaf, on (C (A)o,vA), a construction
which extends to strategies as profunctors between games [26].

E. Winning conditions

Winning conditions of a game A specify a subset W of
its configurations, an outcome in which is a win for Player.
Informally, a strategy (for Player) is winning if it always pre-
scribes moves for Player to end up in a winning configuration,
no matter what the activity or inactivity of Opponent.

Formally, a game with winning conditions (A,WA) com-
prises a concurrent game A with winning conditions WA ⊆
C (A). A strategy σ : S → A is winning if σx is in WA for all
+-maximal configurations x of S; in general, a configuration
is +-maximal if no additional Player, or neutral, moves can
occur from it. That σ is winning can be shown equivalent to:
all plays of σ against any counterstrategy of Opponent result
in a win for Player [32], [34].
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As the dual of a game with winning conditions (A,WA)
we again reverse the roles of Player and Opponent, and
take its winning conditions to be the set-complement of WA,
i.e. (A,WA)⊥ = (A⊥, C (A) \WA).

In a parallel composition of games with winning con-
ditions, we deem a configuration x of A‖B winning if
its component xA is winning in A or its component xB
is winning in B: (A,WA)‖(B,WB) := (A‖B,W ) where
W = {x ∈ C (A‖B) | xA ∈WA or xB ∈WB}.

With these extensions, we take a winning strategy from a
game (A,WA) to a game (B,WB), to be a winning strategy
in the game A⊥‖B —its winning conditions form the set

{x ∈ C (A⊥‖B) | xA ∈WA ⇒ xB ∈WB} .

When games are race-free, copycat will be a winning strategy.
The composition of winning strategies is winning [32], [34].

F. Imperfect information

In a game of imperfect information some moves are inacces-
sible and strategies with dependencies on inaccessible moves
are ruled out. Games extend with imperfect information in
a way that respects the operations of concurrent games and
strategies [35]. Moves of a game are assigned a level in an
order of access levels; moves of the game or its strategies can
only causally depend on moves at equal or lower levels.

In more detail, presupposing a fixed preorder of access
levels (Λ,�), a Λ-game comprises a game A with a level
function l : A→ Λ such that if a ≤A a′ then l(a) � l(a′). A
Λ-strategy in the Λ-game is a strategy σ : S → A for which if
s ≤S s′ then lσ(s) � lσ(s′) for all s, s′ in S. The access levels
of moves in a game are left undisturbed in forming the dual
and parallel composition of Λ-games. As before, a Λ-strategy
from a Λ-game A to a Λ-game B is a Λ-strategy in the game
A⊥‖B. It can be shown that Λ-strategies compose [35].

G. A language for strategies

We recall briefly the language for strategies introduced
in [36]. Games A,B,C, · · · play the role of types. Operations
on games include dual A⊥, simple parallel composition A‖B,
a sum Σi∈IAi, event-prefixing and recursive games.

Terms, denoting strategies, have typing judgements

x1 : A1, · · · , xm : Am ` t a y1 : B1, · · · , yn : Bn ,

where all the variables are distinct, interpreted as a strategy
from ~A = A1‖ · · · ‖Am to ~B = B1‖ · · · ‖Bn. We can think of
the term t as a box with input and output wires ~x and ~y.

The term t denotes a strategy σ : S → ~A⊥‖ ~B. It does
so by describing witnesses, configurations of S, to a relation
between configurations ~x of ~A and ~y of ~B. For example, the
term

x : A ` y vA x a y : A

denotes the copycat strategy on a game A; it describes configu-
rations of copycat, CCA, as witnesses, viz. those configurations
x‖y of CCA for which y vA x in the Scott order. There are

other operations, such as sum [] and pullback ∧ on strategies
of the same type. Duality is caught by the rules

Γ, x : A ` t a ∆

Γ ` t a x : A⊥,∆

Γ ` t a x : A,∆

Γ, x : A⊥ ` t a ∆

and composition of strategies by

Γ ` t a ∆ ∆ ` u a H

Γ ` ∃∆. [ t ‖ u ] a H

which, in the picture of strategies as boxes, joins the output
wires of one strategy to input wires of the other. Simple
parallel composition of strategies arises when ∆ is empty.

V. FROM FUNCTIONS TO STRATEGIES

The language for strategies in [36] included a judgement

x : A ` g(y) vC f(x) a y : B

for building strategies out of expressions f(x) and g(y)
denoting “affine functions.” It breaks down into a composition

x : A ` ∃z : C. [ g(y) vC z ‖ z vC f(x) ] a y : B .

Here we present a considerably broader class of affine-stable
functions f and “co-affine-stable” functions g with which to
define strategies in this manner. The work hinges on the Scott
order to convert functional dependency to causal dependency,
in the sense captured by Theorem 6 below.

A. Affine-stable maps and their strategies

Definition 5. An affine-stable map between games from A to
B is a function f : C (A)→ C (B) which is
• polarity-respecting: for x, y ∈ C (A),

x ⊆− y ⇒ f(x) ⊆− f(y) and x ⊆+ y ⇒ f(x) ⊆+ f(y) ;

• +-continuous: if x ∈ C (A), b ∈ f(x) & polB(b) = +,

∃x0 ∈ C (A)o. x0 ⊆ x & b ∈ f(x0) ;

• −-image finite: for all finite configurations x ∈ C (A)o the
set f(x)− is finite;
• affine: for all compatible families {xi | i ∈ I} in C (A),⋃

i∈If(xi) ⊆+ f(
⋃
i∈Ixi)

—when I is empty this amounts to ∅ ⊆+ f(∅); and
• stable: for all compatible families {xi | i ∈ I} 6= ∅ in C (A),

f(
⋂
i∈Ixi) ⊆

− ⋂
i∈If(xi) .

When all the moves of games A and B are those of Player,
the definition reduces to that of stable function. If all moves
are those of Opponent, it becomes that of demand maps—see
Section VI-B [37]. Affine-stable maps include maps of event
structures with polarity, including partial maps between games,
and the affine maps of [36]. They are the most general maps
out of which we can construct a strategy, now described.

Theorem 6. Let f : C (A) → C (B) be an affine-stable map
between games A and B. Then

F := {x‖y ∈ C (A⊥‖B) | y vB f(x)}
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is a stable family. The map top : Pr(F ) → A⊥‖B is a
strategy f! : A + //B. The strategy f! is deterministic if A and
B are race-free and f reflects −-compatibility, i.e. x ⊆− x1

and x ⊆− x2 in C (A) and fx1 ∪ fx2 ∈ C (B) implies
x1 ∪ x2 ∈ C (A).

The theorem explains how to convert functional dependency,
expressed as y vB f(x), to causal dependency between moves
Pr(F ), obtained as primes of the stable family F .

For f an affine-stable map from A to B we can write f! as

x : A ` y vB f(x) a y : B .

Through suitable choices of f we can create strategies from
structural maps, make injections and projections into strate-
gies, create strategies for conditional and case statements and,
in general, express much of the causal wiring that is often
explained informally in a diagrammatic way. Generally, if σ
is a strategy in A then f!�σ is its “pushforward” to a strategy
in B. Some other basic examples:

Example 7. (Projectors) Let f : A‖B → B be the map
undefined on game A but acting as identity on game B; on
configurations f x‖y = y. Let σ be a strategy in the game
A‖B. Strategy f!�σ is its projection to a strategy in B. �

Example 8. (Duplicators) Let A be a game. Consider the
function dA : x 7→ x‖x from C (A) to C (A‖A). It is
easily checked to be affine-stable. Hence there is a duplicator
strategy δA = dA! : A + //A‖A. (The strategy δA is not natural
in A as ‖ is not a product, except in subcategories.) �

Example 9. (Detectors) Let A be a game. Let X ∈ ConA
with X ⊆ A+. Let � be a single “detector” event, of +ve
polarity. Let dX : C (A) → C (�) be the function such that
dX(x) = {�} if X ⊆ x , ∅ otherwise. The function dX is
affine-stable. There is a detector strategy dX ! : A + //� .The
strategy simply adjoins extra causal dependencies a _ � from
a ∈ X . It detects the presence of X . Similarly, one can extend
detectors to detect the occurrence of one of a family 〈Xi〉i∈I
of Xi ∈ ConA provided Xi ∪Xj ∈ ConA implies i = j . �

Example 10. (Blockers) Let A be a game and Y ⊆ A−. Let
hY : C (A)→ C (�) be the function which acts so hY (x) =
{�} if x∩Y 6= ∅ , ∅ otherwise. Then hY is affine-stable. The
blocker strategy hY ! adjoins causal dependencies �_ a from
� to each a ∈ Y . Absence of move � blocks all moves Y . �

Theorem 11. The operation ( )! is a (pseudo) functor from the
category of affine-stable maps to concurrent strategies Strat.

B. co-Affine-stability

We examine the dual, or co-notion, to affine-stability. An
affine-stable map f from A⊥ to B⊥ yields a strategy f! :
A⊥ + //B⊥, so by duality a strategy f∗ : B + //A. We obtain
a dual to Theorems 6 and 11 as a corollary:

Corollary 12. Let g : C (A) → C (B) be such that
g : C (A⊥)→ C (B⊥) is affine-stable, then

G := {y‖x ∈ C (B⊥‖A) | g(x) vB y}

is a stable family. The map top : Pr(G )→ B⊥‖A is a strategy
g∗ : B + //A. The strategy g∗ is deterministic if A is race-
free and g reflects +-compatibility. The operation ( )∗ is a
contravariant (pseudo) functor from the category of affine-
stable maps to Strat.

For g an affine-stable map A⊥ to B⊥ we can write g∗ as

y : B ` g(y) vB x a x : A .

For a strategy σ in game B the operation g∗�σ yields the
strategy in A got as the pullback of σ along g. In particular,
if A prefixed game B by some initial move, g∗�σ would be
a prefix operation on strategies.

C. An adjunction

An affine-stable map f from A to B is not generally an
affine-stable map from A⊥ to B⊥. The next definition, of an
additive-stable map f from A to B, bluntens affine-stability to
ensure f is also a additive-stable map from A⊥ to B⊥; hence
is associated with both a strategy f! : A + //B and a converse
strategy f∗ : B + //A. Together they form an adjunction.

Definition 13. A additive-stable map between event structures
with polarity, A to B, is a function f : C (A)→C (B) which is
• polarity-respecting: for x, y ∈ C (A),

x ⊆− y ⇒ f(x) ⊆− f(y) and x ⊆+ y ⇒ f(x) ⊆+ f(y) ;

• image finite: if x ∈ C (A)o then f(x) ∈ C (B)o;
• additive: for all compatible families {xi | i ∈ I} in C (A),⋃

i∈If(xi) = f(
⋃
i∈Ixi) ;

• stable: for all compatible families {xi | i ∈ I} 6= ∅ in C (A),

f(
⋂
i∈Ixi) =

⋂
i∈If(xi) .

The usual maps of games are additive-stable, including
those which are partial, as are Girard’s linear maps. Additive-
stability is indifferent to a switch of polarities:

Proposition 2. An additive-stable map f from A to B is an
additive-stable map f from A⊥ to B⊥ and vice versa.

Given an additive-stable map f from A to B we obtain a
strategy f! : A + //B and, via f from A⊥ to B⊥, f∗ : B + //A.

Theorem 14. Let f be an additive-stable map from A to B
between event structures with polarity. The strategies f! and
f∗ form an adjunction f! a f∗ in the bicategory Strat.

This says Strat forms a pseudo double category [38],
[39]. In Section VI-C1 we exemplify a use of Theorem 14
to relate different semantics, there by connecting deterministic
strategies in general to those of Geometry of Interaction. The
adjunction in Strat yields a traditional adjunction:

Corollary 15. Let f be an additive-stable map from game
A to game B. Let StratA be the category of strategies in
the game A, and StratB that of strategies in B. Then there
are functors f!�( ) : StratA → StratB and f∗�( ) :
StratB → StratA with f!�( ) left adjoint to f∗�( ).
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VI. FROM STRATEGIES TO FUNCTIONS

We recover familiar notions of games from those based on
event structures. A game is tree-like when any two events
are either inconsistent or causally dependent. When such a
game is race-free, at any finite configuration, the next possible
moves, if there are any, belong purely to Player, or purely to
Opponent. Then, at each position where Player may move,
a deterministic strategy either chooses a unique move or to
stay put. In contrast to many presentations of games, in a
concurrent strategy Player isn’t forced to make a move, though
that can be encouraged through suitable winning conditions.
A counterstrategy, as a strategy in the dual game, picks
moves for Opponent at their configurations. The interaction
τ ~ σ of a deterministic strategy σ with a deterministic
counterstrategy τ determines a finite or infinite branch in
the tree of configurations, which in the presence of winning
conditions will be a win for one of the players.

On tree-like games we recover familiar notions. More
surprising is that by exploiting the richer structure of con-
current games we can recover other familiar approaches, not
traditionally tied to games, or if so only somewhat informally.
We start by rediscovering Berry’s stable domain theory, of
which Jean-Yves Girard’s qualitative domains and coherence
spaces are special cases. The other examples, from dataflow,
logic and functional programming, concern ways of handling
interaction within a functional approach. We shall restrict to
race-free games, so guaranteeing that deterministic strategies
have an identity w.r.t. composition, given by copycat.

A. Stable functions

Consider games in which all moves are Player moves.
Consider a strategy σ from one such purely Player game A to
another B. This is a map σ : S → A⊥‖B which is receptive
and innocent. Notice that in A⊥‖B all the Opponent moves
are in A⊥ and all the Player moves are in B. By receptivity
any configuration of A can be input. The only new immediate
causal connections, beyond those in A⊥ and B, that can be
introduced in a strategy are those from Opponent moves of
A⊥ to Player moves of B. Beyond the causal dependencies
of the games, a strategy σ can only make a Player move of
B causally depend on a finite subset of moves of A⊥.

When σ is deterministic, all inconsistencies are inherited
from those between Opponent moves. Then the strategy σ
gives rise to a stable function from the configurations of A
to the configurations of B. Conversely, such a stable function
f yields a deterministic strategy f! : A + //B, by Theorem 6.

Theorem 16. The category dI of dI-domains and stable
functions, enriched by the stable order, is equivalent to the
bicategory of deterministic strategies between purely Player
games with rigid 2-cells. (With all 2-cells it is equivalent to
the category of dI-domains enriched by the pointwise order.)

The category of dI-domains and stable functions is well-
known to be cartesian-closed; its function space and product
are realised by constructions [A → B] and A‖B on event
structures. When the games are further restricted to have trivial

causal dependency we recover Girard’s qualitative domains.
Girard’s models for polymorphism there generalise to dI-
domains, with dependent types Πx:AB(x) and Σx:AB(x) on
event structures [3], [40], [41]—see the extended version [23].

B. Stable spans

When between games in which all the moves are Player
moves, a general, nondeterministic, strategy corresponds to
a stable span, a form of many-valued stable function which
has been discovered, and rediscovered, in giving seman-
tics to higher-order processes and especially nondeterministic
dataflow [37], [42], [43]; the trace of strategies, derived from
their compact closure, specialises to the feedback operation of
dataflow. Recall a stable span comprises

E
dem

||
out

##
A B ,

with event structure E relating input given by an event
structure A and output by an event structure B. The map
out : E → B is a rigid map. The map dem : E → A,
associated to input, is of a different character. It is a demand
map, i.e., a function from C (E) to C (A) which preserves
unions and finite configurations; dem(x) is the minimum input
for x to occur and is the union of the demands of its events.
The occurrence of an event e in E demands minimum input
dem([e]) and is observed as the output event out(e). Spans
from A to B are related by the usual 2-cells, here (necessarily)
rigid maps r making the diagram below commute:

E′
dem′

{{
r��

out′

##
A E

dem
oo

out
// B

Stable spans compose via the usual pullback construction of
spans, as both demand and output maps extend to functions
between configurations. A stable span E corresponds to a
(special) profunctor

Ẽ(x, y) = {w ∈ C (E)o | dem(w) ⊆ x & out w = y} ,

between the partial-order categories C (A)o and C (B)o —
a correspondence that respects composition. Recalling the
view of profunctors as Kleisli maps w.r.t. the presheaf con-
struction [44], we borrow from Moggi [45] and describe the
composition of stable spans F : A + //B, G : B + //C as

G�F (x) = let y ⇐ F (x) in G(y)

—which, via the correspondence with profunctors, stands for
the coend

∫ y∈C (B)o
F̃ (x, y) × G̃(y, ). In using let-notation

we can take account of the shape of the configuration y in the
definition of G, in effect an informal pattern matching.

Stable spans are monoidal closed [42], [46]: w.r.t. an event
structure A, the functor ( ‖A) has a right adjoint, the function
space [A ( ]. The construction [A ( B] extends to a
dependent product Πs

x:AB(x) for stable spans: the type of
stable spans which on input x : A yield output y : B(x)

7

Making Concurrency Functional: Extended version



nondeterministically [23]. Stable spans are trace monoidal
closed; their trace is described concretely in [43].

Let A and B be purely Player games. A strategy σ : S →
A⊥‖B gives rise to a stable span

A E
demoo out // B ,

where E = S+, and out gives the image of its events
in B and dem those events in A on which they casually
depend. Conversely given a stable span, as above, we obtain
a strategy as the composition out !�dem∗, by the results of
Section V; as, regarding E and A as purely Player games,
both out and dem : C (E⊥) → C (A⊥) are affine-stable.
In the strategy out !�dem∗ : S → A⊥‖B so obtained, S
comprises the disjoint union of A and E with the additional
causal dependencies of e ∈ E on a ∈ A⊥ prescribed by dem .

Theorem 17. The bicategory Stab of stable spans is equiv-
alent to the bicategory of strategies between purely Player
games with rigid 2-cells.

We show that in a similar way, we obtain geometry of in-
teraction, dialectica categories, containers, lenses, open games
and learners, optics and dependent optics by moving to slightly
more complicated subcategories of games, sometimes with
winning conditions and imperfect information.

C. Geometry of Interaction

Let’s now consider slightly more complex games. A GoI
game comprises a parallel composition A := A1‖A2 of a
purely Player game A1 with a purely Opponent game A2.
Consider a strategy σ from a GoI game A := A1‖A2 to a GoI
game B := B1‖B2. Rearranging the parallel compositions,

A⊥‖B = A⊥1 ‖A⊥2 ‖B1‖B2
∼= (A1‖B⊥2 )⊥‖(A⊥2 ‖B1) .

So σ, as a strategy in A⊥‖B, corresponds to a strategy from
the purely Player game A1‖B⊥2 to the purely Player game
A⊥2 ‖B1. We are back to the simple situation considered in the
previous section, of strategies between purely Player games.

Strategies between GoI games, from A to B, correspond to
stable spans from A1‖B⊥2 to A⊥2 ‖B1. The maps are familiar
from models of geometry of interaction built as free compact-
closed categories from traced monoidal categories [17], [18],
though here lifted to the bicategory Stab of stable spans.

Theorem 18. The bicategory of strategies on GoI games
with rigid 2-cells is equivalent to the free compact-closed
bicategory built on the trace monoidal bicategory Stab.

When deterministic, strategies from GoI game A to GoI
game B correspond to a stable function from C (A1‖B⊥2 ) to
C (A⊥2 ‖B1). Note that a configuration of a parallel composi-
tion of games splits into a pair of configurations:

C (A1‖B⊥2 ) ∼= C (A1)× C (B2), C (A⊥2 ‖B1) ∼= C (A2)× C (B1)

Thus deterministic strategies from A to B correspond to stable
functions

S = 〈g, f〉 : C (A1)× C (B2)→ C (A2)× C (B1) ,

associated with a pair of stable functions g :C (A1)×C (B2)→
C (A2) and f : C (A1) × C (B2) → C (B1), summarised
diagrammatically by: A1

��
S

;;B1f

A2 B2

AA

zz
g

Such maps are obtained by Abramsky and Jagadeesan’s GoI
construction, here starting from stable domain theory [16].

The composition of deterministic strategies between GoI
games, σ from A to B and τ from B to C coincides with
the composition of GoI given by “tracing out” B1 and B2.
Precisely, supposing σ corresponds to the stable function

S : C (A1)× C (B2)→ C (A2)× C (B1)

and τ to the stable function

T : C (B1)× C (C2)→ C (B2)× C (C1) ,

we see a loop in the functional dependency at B:

A1

��
S

;;B1

��
T

;;C1

A2 B2

AA

zz
C2

AA

zz

Accordingly, the composition τ�σ corresponds to the stable
function taking (x1, z2) ∈ C (A1) × C (C2) to (x2, z1) ∈
C (A2)× C (C1) in the least solution to the equations

(x2, y1) = S(x1, y2) and (y2, z1) = T (y1, z2) .

Theorem 19. The bicategory of deterministic strategies on
GoI games with rigid 2-cells is equivalent to the free compact-
closed category Int(dI) of [17] and the Geometry of Inter-
action category G (dI) of [18] built on the category dI of
dI-domains and stable functions.

Geometry of Interaction started as an investigation of the
nature of proofs of linear logic, understood as networks [15].
It has subsequently been tied to optimal reduction in the λ-
calculus [47], and inspired implementations via token ma-
chines on networks [48], [49]; when the two components of a
GoI game match events of exit and entry of a token at a link.

It is straightforward to extend GoI games with winning
conditions. A winning condition on a GoI game A = A1‖A2

picks out a subset of the configurations C (A), so amounts
to specifying a property WA(x1, x2) of pairs (x1, x2) in
C (A1)×C (A2). That a deterministic strategy from GoI game
A to GoI game B = B1‖B2 is winning means

WA(x, g(x, y)) =⇒ WB(f(x, y), y) ,

for all x ∈C (A1), y ∈C (B2), when expressed in terms of the
pair of stable functions the strategy determines. In particular, a
deterministic winning strategy in the individual GoI game B,
with winning conditions WB , corresponds to a stable function
f : C (B2)→ C (B1) such that ∀y ∈ C (B2). WB(f(y), y).

With stable spans, unlike with dI-domains with stable func-
tions, the operation of parallel composition ‖ is no longer a
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product. Hence, while general strategies σ : A + //B between
GoI games are expressible as stable spans A1‖B⊥2 + //A⊥2 ‖B1,
their expression doesn’t project to an equivalent pair of sepa-
rate components, as in the deterministic case.

1) The GoI adjunctions: For any game A there is a map
of event structures with polarity

fA : A→ A+‖A− ,

where A+ is the projection of A to its +ve events and A−

is the projection to its −ve events: the map fA acts as the
identity function on events; it sends a configurations x ∈C (A)
to fAx = x+‖x−. It determines an adjunction fA! a fA

∗ from
A to A+‖A−. Because the game A is race-free, both fA! and
fA
∗ are deterministic strategies. This provides a lax functor

from deterministic strategies in general, to those between GoI
games. Let σ : A + //B be a deterministic strategy between
games A and B. Defining goi(σ) = fB !�σ�fA

∗ we obtain
a deterministic strategy

goi(σ) : A+‖A− + //B+‖B− .

The strategy goi(σ) corresponds to a stable function from
A+‖B− to A−‖B+, so to a GoI map. The operation goi
only forms a lax functor however: for σ : A + //B and τ :
B + //C, there is, in general, a nontrivial 2-cell goi(τ�σ)⇒
goi(τ)�goi(σ). This puts pay to goi being right adjoint to
the inclusion functor in a pseudo adjunction from the category
of GoI games to deterministic strategies. But, there is a lax
pseudo adjunction, of potential use in abstract interpretation.

D. Dialectica games

Dialectica categories were devised in the late 1980’s by
Valeria de Paiva in her Cambridge PhD work with Martin
Hyland [19]. The motivation then was to provide a model of
linear logic underlying Kurt Gödel’s dialectica interpretation
of first-order logic [20]. They have come to prominence again
recently because of a renewed interest in their maps in a variety
of contexts, in formalisations of reverse differentiation and
back propagation, open games and learners, and as an early
occurrence of maps as lenses. The dialectica interpretation
underpins most proof-mining techniques [50], [51].

We obtain a particular dialectica category, based on Berry’s
stable functions, as a full subcategory of deterministic strate-
gies on dialectica games. Dialectica games are obtained as GoI
games of imperfect information, intuitively by not allowing
Player to see the moves of Opponent.

A dialectica game is a GoI game A = A1‖A2 with winning
conditions, and with imperfect information given as follows.
The imperfect information is determined by particularly simple
order of access levels: 1 ≺ 2. All Player moves, those in A1,
are assigned to 1 and all Opponent moves, those in A2, are
assigned to 2. It is helpful to think of the access levels 1 and
2 as representing two rooms separated by a one-way mirror
allowing anyone in room 2 to see through to room 1. In a
dialectica game, Player is in room 1 and Opponent in room
2. Whereas Opponent can see the moves of Player, and in
a counterstrategy make their moves dependent on those of

Player, the moves of Player are made blindly, in that they
cannot depend on Opponent’s moves.

Although we are mainly interested in strategies between
dialectica games it is worth pausing to think about strategies
in a single dialectica game A = A1‖A2 with winning condi-
tions WA. Because Player moves cannot causally depend on
Opponent moves, a deterministic strategy in A corresponds
to a configuration x ∈ C (A1); that it is winning means
∀y ∈ C (A2). WA(x, y). So to have a winning strategy for
the dialectica game means

∃x ∈ C (A1)∀y ∈ C (A2). WA(x, y) .

Consider now a deterministic winning strategy σ from a
dialectica game A = A1‖A2 with winning conditions WA to
another B = B1‖B2 with winning conditions WB . Ignoring
access levels, σ is also a deterministic strategy between GoI
games, so corresponds to a pair of stable functions

f :C (A1)×C (B2)→C (B1) and g :C (A1)×C (B2)→C (A2) .

But moves in B2 have access level 2, moves of B1 access level
1; a causal dependency in the strategy σ of a move in B1 on
a move in B2 would violate the access order 1 ≺ 2. That no
move in B1 can causally depend on a move in B2 is reflected
in the functional independence of f on its second argument.
As a deterministic strategy between dialectica categories, σ
corresponds to a pair of stable functions

f : C (A1)→ C (B1) and g : C (A1)× C (B2)→ C (A2) ,

which we can picture as:

A1

g

f // B1

A2 B2
rr

That σ is winning means, for all x ∈ C (A1), y ∈ C (B2),

WA(x, g(x, y)) =⇒ WB(f(x), y) .

Pairs of functions f, g satisfying this winning condition are
precisely the maps of de Paiva’s construction of a dialectica
category from Berry’s stable functions.

Such pairs of functions are the lenses of functional program-
ming [8], [9]. We recover their at first puzzling composition
from the composition of strategies. Let σ be a deterministic
strategy from dialectica game A to dialectica game B; and τ
a deterministic strategy from B to another dialectica game
C. Assume σ corresponds to a pair of stable functions f
and g, as above, and analogously that τ corresponds to stable
functions f ′ and g′. Then, the composition of strategies τ�σ
corresponds to the composition of lenses: with first component
f ′◦f and second component taking x ∈C (A1) and y ∈C (C2)
to g(x, g′(f(x), y)).

Theorem 20. The bicategory of deterministic strategies on di-
alectica games with rigid 2-cells is equivalent to the dialectica
category of [19] built on dI-domains and stable functions.

9

Making Concurrency Functional: Extended version



Girard’s variant: In the first half of de Paiva’s thesis she
concentrates on the construction of dialectica categories. In
the second half, she follows up on a suggestion of Girard to
explore a variant. This too is easily understood in the context
of concurrent games: imitate the work of this section, with
GoI games extended with imperfect information, but now with
access levels modified to the discrete order on 1, 2. Then
the causal dependencies of strategies are further reduced and
deterministic strategies from A = A1‖A2 to B = B1‖B2

correspond to pairs of stable functions

f : C (A1)→ C (B1) and g : C (B2)→ C (A2) .

Combs: Discussions of causality in science, and quantum
information in particular, are often concerned with what causal
dependencies are feasible; then structures similar to orders of
access levels are used to capture one-way signalling, as in
dialectica games, and non-signalling, as in Girard’s variant. In
this vein, through another variation of games with imperfect
information, we obtain the generalisation of lenses to combs,
used in quantum architecture and information [11], [52].
Combs provide a commonly used method for imposing higher-
order structure on quantum circuits or string diagrams.

Combs arise as strategies between comb games which,
at least formally, are an obvious generalisation of dialectica
games; their name comes from their graphical representation
as structures that look like (hair) combs, with teeth repre-
senting successive transformations from input to output. An
n-comb game, for a natural number n, is an n-fold parallel
composition A1‖A2‖ · · · ‖An of purely Player or purely Oppo-
nent games Ai of alternating polarity; it is a game of imperfect
information associated with access levels 1 ≺ 2 ≺ · · · ≺ n
with moves of component Ai having access level i. Dialectica
games are 2-comb games with winning conditions.

Open games and learners: Open games and learners [13],
[14] have recently been presented as parameterised lenses
or optics—in the case of open games with a concept of
equilibrium or winning condition [53]. As an example, we
obtain a form of open game between dialectica games A and
B as a strategy A‖P + //B, where P is a dialectica game of
which the configurations specify strategy profiles. A variation
based on optimal strategies between dialectica games with
payoff, following [54], introduces Nash equilibria and takes
us into game-theory territory, and to a testing ground for open
games and the notions being developed there.

E. Optics

We show that general, possibly nondeterministic, strategies
between dialectica games are precisely optics [10], [21] based
on stable spans [37], [42], [43]. Recall that a dialectica game
comprises A1‖A2 where A1 is a purely Player game, all events
of which have access level 1 and A2 is a purely Opponent
game with all events of access level 2, w.r.t. access order Λ
specifying 1 ≺ 2. We ignore winning conditions.

Let A and B be dialectica games. Let Q be a purely
Player Λ-game. Recall that nondeterministic strategies be-

tween purely Player games correspond to stable spans. Con-
sider strategies

F : A1 + //B1‖Q and G : Q‖B⊥2 + //A⊥2 .

Then the strategies F and G are between purely Player games,
so correspond to stable spans.

As any causal dependencies of F or G respect Λ, they are
Λ-strategies. Hence the composition

A1‖B⊥2 +
F‖B⊥

2 // B1‖Q‖B⊥2 +
B1‖G // B1‖A⊥2

is also a Λ-strategy and, being between purely Player games,
corresponds to a stable span. The composition, rearranges to
a strategy

σ : A1‖A2 + //B1‖B2 ,

which is a Λ-strategy, so to a strategy between the original
dialectica games A and B. We call this strategy optic(F,G)
and call (F,G) its presentation from A to B with residual Q.
The terminology is apt, as we’ll show strategies obtained in
this way coincide with optics as usually defined. Presentations
can be represented diagrammatically:

A1
F //

��
B1

Q

A2 B2 ,
G

oo

illustrating how F and G are “coupled” via the residual Q.
As usually defined, an optic is an equivalence class of

presentations. Let (F,G) and (F ′, G′) be presentations from
A to B with residuals Q and Q′ respectively. The equiva-
lence relation ∼ on presentations is that generated by taking
(F,G) ∼ (F ′, G′) if, for some f : Q + //Q′, the following
triangles commute

A1 +
F ′

//

×
F $$

B1‖Q′ Q′‖B2 +
G′

// B1

B1‖Q
+B1‖f
OO

Q‖B2 .

+f‖B2

OO
×
G

:: (∼ def)

Presentations of optics compose. Let A, B and C be
dialectica games. Given a presentation (F,G) from A to B
with residual Q and another (F ′, G′) from B to C with
residual P we obtain a presentation from A to C with residual
P‖Q guided by the diagram

A1
F //

��
B1

F ′
//

��
C1

Q P

A2 B2
G

oo C2 ,
G′

oo

precisely, as ((F ′‖Q)�F, G�(Q‖G′)�(sPQ‖C2)), where
sPQ expresses the symmetry P‖Q ∼= Q‖P .

Composition preserves ∼ and has the evident identity pre-
sentation, with residual the empty game. It follows that optic
is functorial and that if (F,G) ∼ (F ′, G′) then

optic(F,G) ∼= optic(F ′, G′) .
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To show any strategy between container games is an op-
tic, we can exploit the monoidal-closure of stable spans. A
presentation (F,G) is ∼-equivalent to a canonical presen-
tation (F ′, G′) with residual Q′ = [B⊥2 ( A⊥2 ] and G′

as application apply: in (∼def), take f = curryG and
F ′ = (B1‖f)�F .

Now, strategies σ : A + //B, between dialectica games A
and B, correspond to canonical presentations. To see this,
ignoring the access levels for the moment, a general strategy

σ : A1‖A2 + //B1‖B2

corresponds to a strategy between purely Player games

σ1 : A1‖B⊥2 + //B1‖A⊥2 ,

so to a stable span. From the monoidal-closure of stable spans
we can curry σ1, to obtain a corresponding strategy

σ2 : A1 + // [B⊥2 ( (B1‖A⊥2 )]

with the property σ1
∼= applyB1‖A⊥

2
�(σ2‖B⊥2 ) . Recalling the

access levels, no event of B1 can causally depend on an event
of B2, ensuring that σ2 corresponds to

σ+ : A1 + //B1‖[B⊥2 ( A⊥2 ] where

σ1
∼= applyB1‖A⊥

2
�(σ2‖B⊥2 ) ∼= (B1‖applyA⊥

2
)�(σ+‖B⊥2 ) .

It follows that (σ+, applyA⊥
2

) is a canonical presentation for
which

σ ∼= optic(σ+, applyA⊥
2

) ,

giving a correspondence between strategies σ : A + //B
between dialectica games and canonical presentations
(σ+, applyA⊥

2
).

Via canonical presentations we obtain a bicategory of optics.
Its objects are dialectica games. Its maps are stable spans
A1 + //B1‖[B⊥2 ( A⊥2 ] , with the associated 2-cells, from
dialectica game A to dialectica game B.

Theorem 21. The bicategories of strategies on dialectica
games with rigid 2-cells and that of optics built on stable
spans are equivalent.

F. Containers

A container game is a game of imperfect information A
w.r.t. access levels 1 ≺ 2; each Player move of A is sent to
1 and each Opponent move to 2. So in A the only causal
dependencies between moves of different polarity are � ≤ �.

The configurations of a container game A have a dependent-
type structure. Opponent moves can causally depend on Player
moves, but not conversely. Let A1 denote the subgame com-
prising the initial substructure of purely Player moves of A.
A configuration x ∈ C (A1) determines a subgame A2(x)
comprising the substructure of A based on all those Opponent
moves for which all the Player moves on which they depend
appear in x. A configuration of A breaks down uniquely into
a union x ∪ y, so a pair (x, y), where x ∈ C (A1) and
y ∈ C (A2(x)). We can see the configurations of a container
game A as forming a dependent sum Σx:A1 A2(x). In this way

a container game represents a container type, familiar from
functional programming [12]; configurations x of A1 are its
“shapes,” indexing “positions” configurations y of A2(x).

We can of course extend a container game A with winning
conditions which we identify with a property WA of the de-
pendent sum Σx:A1

A2(x). A deterministic winning strategy in
the container game corresponds to a configuration x ∈ C (A1)
such that ∀y ∈ C (A2(x)). WA(x, y).

Strategies between container games respect � on access
levels. A deterministic strategy σ from a container game A to
a container game B corresponds to a map of container types,
also called a dependent lens, having type

Σf :[A1→B1]Πx:A1
[B2(f(x))→ A2(x)] ; (∗)

so σ corresponds to a pair of stable functions

f : [A1 → B1] and g : Πx:A1
[B2(f(x))→ A2(x)] ,

where we are using the function space, dependent sum and
product of stable functions [41]. Container types built on dI-
domains and stable functions arise as a full subcategory of
deterministic concurrent games.

Theorem 22. The bicategory of deterministic strategies on
container games with rigid 2-cells is equivalent to a full
subcategory of containers of dI-domains [12].

G. Dependent optics

What about general, nondeterministic, strategies between
container games? A way to motivate their characterisation is
to observe the isomorphism of the type of a dependent lens
(∗) above with

Πx:A1
Σy:B1

[B2(y)→ A2(x)] .

This way to present the type of lenses generalises to the
monoidal-closed bicategory of stable spans, when we move to
the dependent product Πs and function space of stable spans.

Ignoring winning conditions, a general strategy between
container games corresponds to a new form of optic. A
dependent optic between container games, from A to B, is
a stable span of type

dOp[A,B] = Πs
x:A1

Σy:B1 [B2(y)( A2(x)] ,

so a rigid map into dOp[A,B]. A 2-cell f : F ⇒ F ′ between
dependent optics F, F ′ : dOp[A,B] is a 2-cell of stable spans.
Composition of dependent optics is the stable span

◦ : dOp[B,C] ‖dOp[A,B] + //dOp[A,C]

described by

G◦F := λx : A1. let (y, F ′)⇐ F (x) in
let (z,G′)⇐ G(y) in (z, F ′�G′) ,

where F ′�G′ : [C2(z)( A2(x)] is the composition of stable
spans G′ : [C2(z)( B2(y)] and F ′ : [B2(y)( A2(x)]. The
identity optic of container game A acts on x : A1 to return
the identity at the x-component of Σx:A1 [A2(x)( A2(x)].
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The equivalence of strategies between container games with
dependent optics, hinges on recasting dOp[A,B] as a strategy
do[A,B] : A + //B between container games A and B. Any
strategy between container games is of course a strategy where
we forget the access levels. We can express that a strategy
σ : A + //B respects the access levels, so is truly a strategy
between container games, precisely through the presence of a
rigid 2-cell

A

+
σ

''

+
do[A,B]

88⇓ r B .

The 2-cell r is unique, making the strategy do[A,B] terminal
amongst strategies σ between container games, from A to B.
By restricting r to Player moves we obtain the dependent optic
σ+ : dOp[A,B] which corresponds to σ.

Theorem 23. The bicategory of strategies between container
games, with rigid 2-cells, is equivalent to the bicategory of
dependent optics.

VII. ENRICHMENT

Concurrent games and strategies support enrichments, to:
probabilistic strategies, also with continuous distributions [55],
[56]; quantum strategies [57]; and strategies on the reals [58].
The enrichments now transfer automatically to approaches in
functional programming, domain theory and GoI.

The enrichments named above were developed individually
and are not always the final story. For instance, the assignment
of quantum operators to configurations of strategies in [57] is
not functorial w.r.t. inclusion on configurations, a defect when
it comes to understanding how the operator of a configuration
is built up. The authors’ remedy also achieves all the enrich-
ments just named, now uniformly by the same construction.

The construction is w.r.t. a symmetric monoidal category
(M ,⊗, I). For example, M can be the monoid ([0, 1], ·, 1)
comprising the unit interval under multiplication (for proba-
bilistic strategies); measurable spaces with Markov kernels (for
probabilistic strategies with continuous distributions); CPM,
finite-dimensional Hilbert spaces with completely positive
maps (for quantum strategies); or Euclidean spaces with
smooth maps, to support (reverse) differentiation.

We first extend M to allow interaction beyond that from
argument to result. The parameterised category Para(M )
has the same objects, now with maps (P, f,Q) : X → Y
consisting of f : X⊗P → Q⊗Y in M ; the parameters P and
Q allow input and output with the environment. Composition
accumulates parameters: (R, g, S)◦(P, f,Q) := (P⊗R, (Q⊗
g) ◦ (f ⊗R), Q⊗ S). Then,
(1) moves a of a game A are assigned objects H (a) in M ,
extended to X ∈ ConA by H (X) :=

⊗
a∈X H (a). (Neutral

moves, appearing in interaction, are assigned the ⊗-unit I.)
(2) an M -enriched strategy σ : S → A has a functor Q :
(C (S)o,⊆)→ Para(M ). To an interval x ⊆ x′ in C (S)o it
assigns a parameterised map Q(x ⊆ x′) with input parameters
H (σ(x′ \ x)

−
) and output parameters H (σ(x′ \ x)

+
).

The assignment in (2) describes how the internal state is
transformed in moving from x to x′ under interaction with
the environment through events x′ \x. It is assumed oblivious,
i.e. Q(x ⊆− x′) is always an isomorphism in M , expressing
that all the input from x′ \ x is adjoined to the internal state;
this ensures enriched copycat is identity w.r.t. composition.

In the quantum and probabilistic cases, observation is con-
textual, reflected in the presence of an extra drop condition, a
form of inclusion-exclusion principle [55], [57]; it requires M
be enriched over, at least, cancellative commutative monoids.

Moves, their positions, dependencies and polarities, or-
chestrate the functional dependency and dynamic linkage in
composing enriched strategies. Enrichment restricts directly
to sub(bi)categories, and the functional approaches we have
considered. For example, stable spans when enriched by prob-
ability, via the monoid ([0, 1], ·, 1), become Markov kernels,
and this enrichment extends to the various forms of optics
we have uncovered. Enrichment w.r.t. CPM specialises to an
enrichment of Geometry of Interaction with quantum effects.

VIII. CONCLUSION

Functional paradigms help tame the wild world of in-
teractive computation. On the other hand, discovering the
simplifying paradigms has often required considerable inge-
nuity, for example, in Gödel’s Dialectica Interpretation, or
in Girard’s Geometry of Interaction. The challenges to a
functional approach are even more acute with enrichments,
say to probabilistic, quantum or real-number computation. The
traditional categories of mathematics do not often support
all the features required by computation. They often don’t
have function spaces or support recursion; their extension to
computational features has often to be dealt with separately.

As a model of interaction, concurrent games and strategies
are more technically challenging and require a new, local way
of thinking. But, as has been shown here, they can provide a
general context for interaction which specialises to functional
paradigms, also in providing enrichments to probabilistic,
quantum and real-number computation, without requiring ex-
tensions to the traditional categories of mathematics.

Concurrent games and strategies can provide a rationale
for new definitions. The form of dependent optic described
here appears to be new. It is derived as a characterisation of
nondeterministic strategies between container games—cf. [22].

One project within reach is that of connecting concurrent
games and strategies with the theory of effects [45], [59],
specifically with understanding effect handlers [60] as con-
current strategies. Though superficially rather different, effect
handlers and concurrent strategies have similar roles: both
are concerned with orchestrating the future of a computation
contingent on its past and its environment. The results of
Section V suggest ways to extend the language of strategies
(IV-G) to effects and effect handlers. Such an investigation
should also lead to ways to enhance effects and effect handlers
to support richer forms of concurrent computation, taking the
form of an event structure. As a beginning, the “detectors” of
Example 9 generalise to give a form of “event handler.”
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and Jérémy. Samuel Ben Hamou, ENS Paris-Saclay, verified
the early part of the dialectica-games section for his student
internship. Section VII is directly inspired by joint work with
Pierre Clairambault and Marc de Visme.

REFERENCES

[1] S. Rideau and G. Winskel, “Concurrent strategies,” in LICS 2011, 2011.
[2] G. Winskel and M. Nielsen, Handbook of Logic in Computer Science

4. OUP, 1995, ch. Models for Concurrency, pp. 1–148.
[3] G. Winskel, “Event structures,” in Advances in Petri Nets, ser. LNCS,

vol. 255. Springer, 1986, pp. 325–392.
[4] M. Abadi, M. Isard, and D. G. Murray, “A computational model for

tensorflow: an introduction,” in Proceedings of the 1st ACM SIGPLAN
International Workshop on Machine Learning and Programming
Languages, MAPL@PLDI 2017. ACM, 2017, pp. 1–7. [Online].
Available: https://doi.org/10.1145/3088525.3088527

[5] S. Brookes, C. A. R. Hoare, and A. W. Roscoe, “A theory of commu-
nicating sequential processes,” J. ACM, vol. 31, pp. 560–599, 1984.

[6] R. Milner, A Calculus of Communicating Systems, ser. Lecture Notes
in Computer Science. Springer, 1980, vol. 92. [Online]. Available:
https://doi.org/10.1007/3-540-10235-3

[7] S. Castellan and N. Yoshida, “Two sides of the same coin: session
types and game semantics: a synchronous side and an asynchronous
side,” Proc. ACM Program. Lang., vol. 3, no. POPL, pp. 27:1–27:29,
2019. [Online]. Available: https://doi.org/10.1145/3290340

[8] F. J. Oles, A category theoretic approach to the semantics of program-
ming languages. PhD Thesis, University of Syracuse, 1982.

[9] J. N. Foster, M. B. Greenwald, J. T. Moore, B. C. Pierce, and
A. Schmitt, “Combinators for bidirectional tree transformations: A
linguistic approach to the view-update problem,” ACM Trans. Program.
Lang. Syst., vol. 29, no. 3, p. 17, 2007. [Online]. Available:
https://doi.org/10.1145/1232420.1232424

[10] M. Pickering, J. Gibbons, and N. Wu, “Profunctor optics: Modular data
accessors,” Art Sci. Eng. Program., vol. 1, no. 2, p. 7, 2017. [Online].
Available: https://doi.org/10.22152/programming-journal.org/2017/1/7

[11] G. Chiribella, G. M. D’Ariano, and P. Perinotti, “Quantum circuit
architecture,” Physical Review Letters, vol. 101, no. 6, Aug 2008.

[12] M. G. Abbott, T. Altenkirch, and N. Ghani, “Containers: Constructing
strictly positive types,” Theor. Comput. Sci., vol. 342, no. 1, pp. 3–27,
2005. [Online]. Available: https://doi.org/10.1016/j.tcs.2005.06.002

[13] N. Ghani, J. Hedges, V. Winschel, and P. Zahn, “Compositional game
theory,” in Proceedings of the 33rd Annual ACM/IEEE Symposium on
Logic in Computer Science, LICS 2018, Oxford, UK, July 09-12, 2018,
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