
The Iteration Number of the Weisfeiler-Leman Algorithm

Martin Grohe
RWTH Aachen University

grohe@informatik.rwth-aachen.de

Moritz Lichter
TU Darmstadt

lichter@mathematik.tu-darmstadt.de

Daniel Neuen
Simon Fraser University

dneuen@sfu.ca

Abstract

We prove new upper and lower bounds on the number of iterations the k-dimensional
Weisfeiler-Leman algorithm (k-WL) requires until stabilization. For k ≥ 3, we show that
k-WL stabilizes after at most O(knk−1 log n) iterations (where n denotes the number of
vertices of the input structures), obtaining the first improvement over the trivial upper
bound of nk − 1 and extending a previous upper bound of O(n log n) for k = 2 [Lichter et
al., LICS 2019].

We complement our upper bounds by constructing k-ary relational structures on which
k-WL requires at least nΩ(k) iterations to stabilize. This improves over a previous lower
bound of nΩ(k/ log k) [Berkholz, Nordström, LICS 2016].

We also investigate tradeoffs between the dimension and the iteration number of WL,
and show that d-WL, where d = ⌈ 3(k+1)

2 ⌉, can simulate the k-WL algorithm using only
O(k2 · n⌊k/2⌋+1 log n) many iterations, but still requires at least nΩ(k) iterations for any d
(that is sufficiently smaller than n).

The number of iterations required by k-WL to distinguish two structures corresponds to
the quantifier rank of a sentence distinguishing them in the (k + 1)-variable fragment Ck+1

of first-order logic with counting quantifiers. Hence, our results also imply new upper and
lower bounds on the quantifier rank required in the logic Ck+1, as well as tradeoffs between
variable number and quantifier rank.

1 Introduction

The Weisfeiler-Leman (WL) algorithm is a combinatorial algorithm that, given a relational struc-
ture A (in most applications, this structure is a graph), iteratively computes an isomorphism-
invariant coloring of tuples of vertices of A. The original algorithm introduced by Weisfeiler
and Leman [26] is the 2-dimensional version that colors pairs of vertices. Its generalization to
arbitrary dimension k ≥ 1, independently introduced by Babai and Mathon as well as Immer-
man and Lander [11] (see also [1] for a historic note), yields for every natural number k the
k-dimensional WL algorithm (k-WL), which iteratively refines a coloring of vertex k-tuples by
aggregating local structural information encoded in the colors. More concretely, the k-WL algo-
rithm initially colors all k-tuples of vertices v = (v1, . . . , vk) of a structure A by the isomorphism
type of the underlying induced ordered substructure. Afterwards, in each iteration, the coloring
is refined by taking the colors of all tuples into account that can be obtained from v by replacing
a single entry of the tuple. This process necessarily stabilizes after a finite number of iterations
and the resulting coloring can be used to classify k-tuples of vertices.

The most prominent application of the WL algorithm lies in the context of the graph isomor-
phism problem. Indeed, since no isomorphism between two structures A and B can map tuples
of vertices of different colors to each other, the WL algorithm provides a hierarchy of increasingly
powerful heuristics to the graph isomorphism problem. While there is no dimension k for which

1

ar
X

iv
:2

30
1.

13
31

7v
2

 [
cs

.D
S]

 2
7

M
ay

 2
02

3

https://orcid.org/0000-0002-0292-9142
mailto:grohe@informatik.rwth-aachen.de
https://orcid.org/0000-0001-5437-8074
mailto:lichter@mathematik.tu-darmstadt.de
https://orcid.org/0000-0002-4940-0318
mailto:dneuen@sfu.ca

k-WL serves as a complete isomorphism test [4], the algorithm is still surprisingly powerful.
For example, Grohe [7] proved that for every non-trivial minor-closed graph class there is some
k ∈ N such that k-WL computes a different coloring on all non-isomorphic graphs, and thus
provides a polynomial-time isomorphism test on that class. Moreover, the WL algorithm is also
regularly used as a subroutine in isomorphism algorithms (see, e.g., [19, 20, 23]) which includes
Babai’s [1] quasipolynomial-time graph isomorphism test that employs the WL algorithm with
dimension k = O(log n).

More recently, the WL algorithm has also received significant attention in the machine
learning context where it characterizes the expressiveness of graph neural networks [8, 17, 27]
and, more generally, the colorings computed by WL are used in classification tasks on graph-
structured data sets (see, e.g., [16, 22]).

Since the late 1980s, the WL algorithm has played an important role in descriptive complexity
theory. Indeed, it was independently introduced in the context of descriptive complexity by
Immerman and Lander [11]. The main reason for this is that k-WL can be seen as an equivalence
test for the logic Ck+1, the (k+1)-variable fragment of first-order logic with counting quantifiers
∃≥nx. Through this connection, the algorithm has turned out to be important for studying the
expressiveness of fixed-point logic with counting [4] and, more generally, for the quest for a logic
capturing polynomial time [6, 21].

In this work, we study the iteration number of k-WL, i.e., the number of iterations the algo-
rithm requires until stabilization. Since the number of color classes increases in each iteration,
the k-WL algorithm trivially requires at most nk − 1 rounds to stabilize. For k = 1, Kiefer and
McKay [12] proved that this trivial bound is optimal by providing several infinite families of
graphs G for which 1-WL requires n− 1 iterations to stabilize (where n denotes the number of
vertices of G). In contrast, for k = 2, Lichter, Ponomarenko and Schweitzer [15] (improving an
earlier upper bound by Kiefer and Schweitzer [14]) obtained an upper bound of O(n log n) on
the iteration number of 2-WL. Beyond that, no improved upper bounds are known for k ≥ 3.
As our first main contribution, we obtain non-trivial bounds on the iteration number of k-WL
for all k ≥ 2.

Theorem 1.1. For all k ≥ 2, the k-dimensional Weisfeiler-Leman algorithm stabilizes after
O(knk−1 log n) refinement rounds on all relational structures A of arity at most k where n
denotes the size of the universe.

For the proof, we extend the algebraic arguments from [15]. Consider a structure A with
vertex set V of size n and let χ0, . . . , χℓ : V

k → C denote the sequence of colorings computed
by k-WL, i.e., χi is the coloring computed in the i-th iteration. For k = 2, Lichter et al. [15]
associate with each coloring χi a matrix algebra as follows. For each color c in the image of
χi, let Mi,c denote the V × V indicator matrix that sets Mi,c(v1, v2) := 1 if χi(v1, v2) = c, and
Mi,c(v1, v2) := 0 otherwise. The matrices Mi,c, where c ranges over all colors in the image of
χi, generate a matrix algebra A(i) of V × V matrices over the complex numbers using standard
matrix multiplication. Using representation-theoretic arguments, it is possible to bound the
length of the sequence of matrix algebras generated this way which eventually leads to the
upper bound of O(n log n).

The proof of Theorem 1.1 follows a similar strategy. For each color in the image of χi, we
obtain an indicator tensor Mi,c ∈ CV k . Now, the key challenge in generalizing the arguments
of [15] is to define a suitable multiplication of those tensors that can be “simulated” by a single
round of k-WL. Given such a multiplication, we then show that the generated algebra A(i) is
isomorphic to a subalgebra of the nk−1 × nk−1 full matrix algebra (over the complex numbers)
which then again allows us to use algebraic arguments to obtain the desired upper bound.

Our arguments actually prove a more general result. Let χ0, . . . , χℓ : V
k → C be a sequence

of finer and finer colorings (i.e., the partition into color classes of χi refines the partition into
color classes of χi−1 for all i ∈ [ℓ]) where in each step the coloring is refined at least as much as

2

by a single iteration of k-WL. Then the length of the sequence is bounded by ℓ = O(knk−1 log n).
As a lower bound to our arguments, we show that, in this more general setting, our upper bound
is tight up to a factor Ok(log n) (the Ok(·)-notation hides constant factors in k). Here, the key
insight is that we can find a sequence of finer and finer colorings χ0, . . . , χℓ : V

k → C of length
Ωk(n

k−1) that are all stable with respect to k-WL. As such, it provides a lower bound in the
more general setting explained above (but it does not give any lower bounds on the iteration
number of k-WL) and implies that new ideas are likely required to obtain further improvements
on the upper bounds of the iteration number of k-WL (see Section 4 for more details).

Looking for lower bounds on the iteration number of k-WL, Fürer [5] provided, for every
k ≥ 2, a family of graphs on which k-WL requires at least Ω(n) many iterations until stabiliza-
tion. For k sufficiently large, this result was strengthened by Berkholz and Nordström [3] who
constructed k-ary relational structures A of size n on which k-WL requires at least nΩ(k/ log k)

many iterations. Answering an open question from [3], our second main contribution is an im-
proved lower bound that gets rid of the 1/ log k factor in the exponent. Actually, we prove the
following even stronger result.

Theorem 1.2. There are absolute constants k0 ∈ N and α, ε > 0 such that for every d ≥ k ≥ k0
and every n ≥ αd8k6 there is a is pair of k-ary relational structures A and B of size |V (A)| =
|V (B)| = n that are distinguished by k-WL, but d-WL does not distinguish A and B after nεk

refinement rounds.

We note that, as in the work of Berkholz and Nordström [3], the structures we need to prove
this theorem are k-ary, that is, have relations of arity k.

The structures A and B provided by the theorem can be distinguished by k-WL which
trivially requires at most nk − 1 rounds. The theorem states that, even if we are allowed to
increase the dimension of the Weisfeiler-Leman algorithm to d, the structures can still not be
distinguished unless d-WL runs for at least nεk rounds. This result stands in strong contrast to
several existing results for restricted classes of graphs. For example, k-WL distinguishes between
all non-isomorphic pairs of graphs of tree-width at most k [13], and increasing the dimension
to 4k + 3 guarantees that O(log n) iterations suffices to distinguish between all non-isomorphic
pairs of graphs of tree-width at most k [10]. Similar results are known for planar graphs [9, 25].
The above theorem rules out such results for general relational structures even if we only wish
to improve the iteration number to, for example, linear in n.

By setting d = k, we obtain the following corollary which shows that the upper bound in
Theorem 1.1 is optimal up to a constant factor (that does not depend on k) in the exponent.

Corollary 1.3. There are absolute constants k0 ∈ N and α, ε > 0 such that for every k ≥ k0
and every n ≥ αk14 there is a k-ary structure A of size |V (A)| = n such that the k-dimensional
Weisfeiler-Leman algorithm does not stabilize within nεk refinement rounds on A.

For the proof of Theorem 1.2, our main technical contribution is to show that there is a
k0 ∈ N such that, for all d ≥ k0, there are structures A and B of size n that are distinguished by
k0-WL, but d-WL still requires Ω(n/d2) many iterations to distinguish A and B. Afterwards,
we obtain Theorem 1.2 by using a known hardness condensation [3] that reduces the size of the
structures while roughly preserving the number of iterations required to distinguish them.

Let us point out that Fürer [5] constructed graphs G and H which are distinguished by
k0-WL after Ω(n) many rounds. However, as Fürer also shows, his instances are distinguished
by (3k0)-WL after only O(log n) many rounds which means that we cannot use them for our
purposes. Berkholz and Nordström [3] provided, for all d ≥ 2, structures A and B of size n that
are distinguished by 2-WL, but d-WL still requires Ω(n1/(1+log d)) many rounds to distinguish
them. In combination with the hardness condensation, this leads to the previous lower bound
of nΩ(k/ log k).

For the construction of our structures, we introduce the notion of layered expanders whose
global structure is similar to a (k × n)-grid, but that locally (when looking at O(k) consecutive

3

columns) behave like an expander graph. We then obtain propositional XOR-formulas from
layered expanders which can be transformed into relational structures which satisfy the desired
properties.

Connection to Logics. As pointed out above, k-WL is an equivalence test for the logic Ck+1.
That is, k-WL distinguishes between two structures A and B if and only if there is a sentence
φ ∈ Ck+1 such that A |= φ and B ̸|= φ. Additionally, the minimal quantifier rank of such a
sentence equals (up to an additive error of at most k) the number of iterations k-WL requires to
distinguish between A and B. With this in mind, Theorem 1.1 can be reformulated as follows.

Corollary 1.4. Let k ≥ 3. Let A and B be two relational structures of arity at most k that can
be distinguished by a sentence in Ck. Then there is a sentence φ ∈ Ck of quantifier rank at most
q = O(knk−2 log n) such that A |= φ and B ̸|= φ.

Similarly, we can reformulate Theorem 1.2, but here it turns out that we can obtain an even
stronger result since the structures constructed in the theorem can already be distinguished in
the logic Lk+1, the (k + 1)-variable fragment of first-order logic without counting quantifiers.

Theorem 1.5. There are absolute constants k0 ∈ N and α, ε > 0 such that for every d ≥ k ≥ k0
and every n ≥ αd8k6 there is a pair of k-ary structures A and B of size |V (A)| = |V (B)| = n
that can be distinguished by a sentence in k-variable first-order logic Lk, but satisfy the same
sentences in Ld and Cd up to quantifier rank nεk.

Hence, we obtain lower bounds for the quantifier rank not only for the logic Ck, but also
for the logic Lk. We stress that the lower bounds on the quantifier rank remain valid even if
we arbitrarily increase the number of variables to any number d (as long as d is sufficiently far
away from the size of the structures). In other words, even if we are allowed to increase the
number of variables, we cannot in general hope for significant improvements on the quantifier
rank required to distinguish between two structures.

Having said that, our final result shows that at least some improvements on the upper bound
are possible if we are allowed to increase the number of variables by roughly a factor of 3/2.

Theorem 1.6. Let k ≥ 2. Let A and B be two relational structures of arity at most k such that
n := |V (A)| = |V (B)|. Also suppose there is a sentence φ ∈ Ck+1 such that A |= φ and B ̸|= φ.
Let d := ⌈3(k+1)

2 ⌉. Then there is a sentence ψ ∈ C
(q)
d of quantifier rank q = O(k2 ·n⌊k/2⌋+1 log n)

such that A |= ψ and B ̸|= ψ.

Structure of the Paper. After introducing the necessary preliminaries in the next section,
we prove Theorem 1.1 in Section 3. Afterwards, we prove limitations of our approach to obtain
improved upper bounds on the iteration number in Section 4. In Section 5, we obtain the lower
bounds on the iteration number of WL and prove Theorems 1.2 and 1.5. Finally, Theorem 1.6
is proved in Section 6.

2 Preliminaries

We use N = {1, 2, 3, . . . } to denote the positive integers. For n ∈ N we write [n] := {1, . . . , n}
and [0, n] := {0, . . . , n}.

Graphs. We use standard graph notation. A graph is a pair G = (V (G), E(G)) with finite
vertex set V (G) and edge set E(G). In this paper, all graphs are simple (i.e., there are no loops
or multiedges) and undirected. We write vw to denote an edge {v, w} ∈ E(G). The (open)
neighborhood of a vertex v ∈ V (G) is the set NG(v) := {w ∈ V (G) | vw ∈ E(G)}. The degree

4

of a vertex, denoted by degG(v), is the size of its neighborhood. For X ⊆ V (G) we define
NG(X) := (

⋃
v∈X NG(v)) \ X to denote the neighborhood of X. If the graph G is clear from

context, we usually omit the index G and simply write N(v), deg(v) and N(X). For X ⊆ V (G)
we also write G[X] to denote the subgraph of G induced by X.

Relational Structures. In this work, we restrict ourselves to relational vocabularies (sig-
natures) σ = {R1, . . . , Rm} where each Ri is a relation symbol of a prescribed arity ki ≥ 1.
We say that σ has arity at most k if ki ≤ k for all i ∈ [m]. A σ-structure is a tuple
A = (V (A), RA

1 , . . . , R
A
m) where V (A) is a finite universe and RA

i ⊆ (V (A))ki is a relation
of arity ki. In the remainder of this work, we usually do not explicitly refer to the vocabulary
underlying a structure A. With this in mind, we say a structure A = (V (A), RA

1 , . . . , R
A
m) has

arity at most k if the underlying vocabulary has arity at most k.
For X ⊆ V (A) we define A[X] to be the induced substructure of A on X, i.e., A[X] is the

relational structure with V (A[X]) = X and

R
A[X]
i = RA

i ∩Xki

for all i ∈ [m]. Let B = (V (B), RB
1 , . . . , R

B
m) be a second structure (over the same vocabulary

σ). An isomorphism from A to B is a bijection f : V (A) → V (B) such that, for all i ∈ [m] and
all v1, . . . , vki ∈ V (A), it holds that

(v1, . . . , vki) ∈ RA
i ⇐⇒ (f(v1), . . . , f(vki)) ∈ RB

i .

The structures A and B are isomorphic if there is an isomorphism from A to B.

Logics. Next, we cover bounded-variable fragments of first-order logic (with counting quanti-
fiers). Let σ = {R1, . . . , Rm} be a relational vocabulary and suppose Ri has arity ki ≥ 1. We
write FO to denote standard first-order logic defined via the grammar

φ ::= x1 = x2 | Ri(x1, . . . , xki) | φ ∧ φ | ¬φ | ∃x1φ

for all i ∈ [m] and all variables xj ∈ V where V is an infinite set of variables. We write
φ(x1, . . . , xk) to indicate that the free variables of φ are among the variables {x1, . . . , xk}. For
a structure A = (V (A), RA

1 , . . . , R
A
m) and v = (v1, . . . , vk) ∈ (V (A))k we write A |= φ(v) if A is

a model of φ when xi is interpreted by vi.
We define the quantifier rank of a formula φ ∈ FO inductively via

• qr(x1 = x2) = qr(Ri(x1, . . . , xki)) := 0 for all i ∈ [m] and all variables xj ∈ V,

• qr(φ ∧ ψ) := max(qr(φ), qr(ψ)),

• qr(¬φ) := qr(φ), and

• qr(∃xφ) := qr(φ) + 1 for all x ∈ V.

We define first-order logic with counting quantifiers C to be the extension of FO by counting
quantifiers of the form ∃≥jxφ. The formula ∃≥jxφ is satisfied over a structure A if there are
at least j distinct elements v ∈ V (A) that satisfy φ. We extend the definition of the quantifier
rank in the natural way by setting qr(∃≥jxφ) := qr(φ) + 1 for all x ∈ V.

For k ∈ N we define Lk to be the restriction of FO to formulas over at most k variables, i.e.,
we restrict ourselves to a set of variables V of size exactly k. Similarly, we define Ck to be the
restriction of C to formulas over at most k variables.

Moreover, for q ≥ 0, we define L
(q)
k to the restriction of Lk to formulas φ of quantifier rank

qr(φ) ≤ q. Similarly, we define C
(q)
k to the restriction of Ck to formulas of quantifier rank at

most q.

5

The Weisfeiler-Leman Algorithm. Next, we describe the k-WL algorithm. While it is
most commonly used as a heuristic to graph isomorphism testing, the algorithm can be applied
to any relational structure of arity at most k.

Let χ1, χ2 : V
k → C be colorings of k-tuples over a finite set V where C is some finite set of

colors. The coloring χ1 refines χ2, denoted χ1 ⪯ χ2, if χ1(v) = χ1(w) implies χ2(v) = χ2(w) for
all v,w ∈ V k. Observe that χ1 ⪯ χ2 if and only if the partition into color classes of χ1 refines
the corresponding partition into color classes of χ2. The colorings χ1 and χ2 are equivalent,
denoted χ1 ≡ χ2, if χ1 ⪯ χ2 and χ2 ⪯ χ1. Also, χ1 strictly refines χ2, denoted χ1 ≺ χ2, if
χ1 ⪯ χ2 and χ1 ̸≡ χ2.

Let us fix k ≥ 2 and consider a relational structure A = (V (A), RA
1 , . . . , R

A
m) of arity at most

k. Let v = (v1, . . . , vk) ∈ (V (A))k. We define the atomic type of v, denoted by atpA(v), to be
the isomorphism type of the ordered substructure of A that is induced by {v1, . . . , vk}. More
concretely, for a second structure B = (V (B), RB

1 , . . . , R
B
m) and a tuple w = (w1, . . . , wk) ∈

(V (B))k, it holds that atpA(v) = atpB(w) if the mapping vi 7→ wi is an isomorphism from
A[{v1, . . . , vk}] to B[{w1, . . . , wk}].

Next, we describe a single refinement step of k-WL. Let V be a finite set and let χ : V k → C
be a coloring of all k-tuples over V . We define the coloring stepk(χ) by setting(

stepk(χ)
)
(v) :=

(
χ(v),Mχ(v)

)
for all v = (v1, . . . , vk) ∈ V k where

Mχ(v) :=
{{(

χ(v[w/1]), . . . , χ(v[w/k])
) ∣∣∣ w ∈ V

}}
and v[w/i] := (v1, . . . , vi−1, w, vi+1, . . . , vk) is the tuple obtained from v by replacing the i-th
entry by w (and {{. . . }} denotes a multiset). Observe that stepk(χ) ⪯ χ. We say the coloring χ
is k-stable if stepk(χ) ≡ χ.

We define the initial coloring computed by k-WL on the structure A via χ(0)
k [A](v) := atpA(v)

for all v ∈ (V (A))k. For r ≥ 0 we set

χ
(r+1)
k [A] := stepk

(
χ
(r)
k [A]

)
.

Since χ(r+1)
k [A] ⪯ χ

(r)
k [A] for all r ≥ 0, there is some minimal r∞ ≤ |V |k − 1 such that

χ
(r∞)
k [A] ≡ χ

(r∞+1)
k [A].

We say that k-WL stabilizes after r∞ rounds on A and define χ(∞)
k [A] := χ

(r∞)
k [A] to be the

output coloring of k-WL. Observe that χ(∞)
k [A] is a k-stable coloring.

Now, let B = (V (B), RB
1 , . . . , R

B
m) be a second structure. Let r ≥ 0. We say that k-WL

distinguishes A and B after r rounds if there is some color c such that∣∣∣{v ∈ (V (A))k
∣∣∣ χ(r)

k [A](v) = c
}∣∣∣ ̸= ∣∣∣{w ∈ (V (B))k

∣∣∣ χ(r)
k [B](w) = c

}∣∣∣.
We also say that k-WL distinguishes A and B if there is some integer r ≥ 0 such that k-WL
distinguishes A and B after r rounds. We write A ≃k B if k-WL does not distinguish A and
B. Note that, if k-WL distinguishes A and B and k-WL stabilizes after r∞ rounds on A, then
k-WL distinguishes A and B after (at most) r∞ + 1 rounds.

The following connections to bounded-variable fragments of first-order logic with counting
quantifiers are well-known. Those connections were first proved in [4, 11] for graphs, but the
arguments directly generalize to arbitrary relational structures (see, e.g., [7]).

6

Theorem 2.1. Let k ≥ 2. Also let A and B be structures of arity at most k and suppose
v ∈ V (A)k and w ∈ V (B)k. Then, for every r ≥ 0, it holds that χ(r)

k [A](v) ̸= χ
(r)
k [B](w) if and

only if there is some φ(x) ∈ C
(r)
k+1 such that A |= φ(v) and B ̸|= φ(w).

Corollary 2.2. Let k ≥ 2. Also let A and B be structures of arity at most k.
If there is a sentence φ ∈ C

(r)
k+1 such that A |= φ and B ̸|= φ, then the k-dimensional

Weisfeiler-Leman algorithm distinguishes A and B after at most r refinement rounds.
If the k-dimensional Weisfeiler-Leman algorithm distinguishes A and B after r refinement

rounds, then there is a sentence φ ∈ C
(r+k)
k+1 such that A |= φ and B ̸|= φ.

Algebras. Finally, we recall some algebraic tools required in this work. We use C to denote
the complex numbers.

Recall that a C-algebra A is a ring which is also a C-vector space such that a · (vw) =
(a·v)w = v(a·w) for all a ∈ C and v,w ∈ A. Since we restrict our attention to complex numbers,
we simply refer to a C-algebra as an algebra. In this work, we are interested in matrix algebras
where the algebra consists of (d× d)-matrices over the complex numbers with standard matrix
multiplication as the ring operation. We write Md(C) for the full matrix algebra of all (d× d)-
matrices over the complex numbers. It is a well-known fact that a matrix algebra A ⊆ Md(C),
which is closed under conjugate transposition, is always semisimple. Indeed, if M is in the
Jacobson radical of A, then so is M∗M . But M∗M is diagonalizable (because it is Hermitian)
and nilpotent (because the radical is nilpotent [28, Lemma 1.6.6]) and hence, M∗M = 0 and so
M = 0. Then the radical itself is 0, which is one characterization of semisimplicity.

Hence, we can use the following result to bound the length of sequences of strict subalgebras
of Md(C) that are closed under conjugate transposition.

Theorem 2.3 ([15, Theorem 5]). Let A(1) ⊂ · · · ⊂ A(ℓ) ⊆ Md(C) be a sequence of semisimple
strict subalgebras. Then ℓ ≤ 2d.

A ∗-algebra is an algebra with an additional operation ∗ such that (v + w)∗ = v∗ + w∗,
(vw)∗ = w∗v∗, 1∗ = 1 and (v∗)∗ = v for all v,w ∈ A (where 1 denotes the unit element). Note
that Md(C) forms a ∗-algebra using conjugate transposition.

3 Upper Bounds

In this section, we prove Theorem 1.1. Actually, we prove a more general result on the maximal
iteration number of any refinement method that is at least as strong as k-WL.

For the remainder of this section, let us fix some integer k ≥ 2. Let V be a finite set and let
P be a partition of V k. For two tuples v,w ∈ V k, we write v ∼P w if there is some P ∈ P such
that v,w ∈ P (i.e., ∼P is the equivalence relation with equivalence classes from P).

We say P is compatible with equality if for all P ∈ P, all tuples (v1, . . . , vk), (w1, . . . , wk) ∈ P ,
and all i, j ∈ [k] it holds that

vi = vj ⇐⇒ wi = wj .

Moreover, the partition P is shufflable if for every function π : [k] → [k] and every pair of tuples
(v1, . . . , vk), (w1, . . . , wk) ∈ V k it holds that

(v1, . . . , vk) ∼P (w1, . . . , wk) =⇒ (vπ(1), . . . , vπ(k)) ∼P (wπ(1), . . . , wπ(k)). (1)

Observation 3.1. Let P be a shufflable partition of V k. Then

P π :=
{
(vπ(1), . . . , vπ(k))

∣∣ (v1, . . . , vk) ∈ P
}
∈ P

for every bijection π : [k] → [k] and every P ∈ P.

7

Proof. Let Q ∈ P such that Q ∩ P π ̸= ∅. This means there is some (v1, . . . , vk) ∈ P such that
(vπ(1), . . . , vπ(k)) ∈ Q. Let (w1, . . . , wk) ∈ P be another tuple. Then (v1, . . . , vk) ∼P (w1, . . . , wk)
and thus, (vπ(1), . . . , vπ(k)) ∼P (wπ(1), . . . , wπ(k)) by Equation (1). Since (vπ(1), . . . , vπ(k)) ∈ Q,
it follows that (wπ(1), . . . , wπ(k)) ∈ Q. So P π ⊆ Q.

By the same argument, Qπ−1 ⊆ P which implies that Q ⊆ P π. Together, this means that
P π = Q ∈ P.

We say a coloring χ : V k → C of k-tuples is compatible with equality if the corresponding
partition P into color classes is compatible with equality. Similarly, χ is shufflable if P is
shufflable.

Recall that stepk(χ) denotes the coloring obtained from χ after applying a single refinement
round of k-WL.

Theorem 3.2. Let V be a finite set of size n := |V |. Also let χ0, . . . , χℓ : V
k → C be a sequence

of colorings such that

(I) χt is shufflable and compatible with equality for all t ∈ [0, ℓ],

(II) stepk(χt−1) ⪰ χt for all t ∈ [ℓ], and

(III) χt−1 ≻ χt for all t ∈ [ℓ].

Then ℓ ≤ 2nk−1(⌈k log n⌉+ 1) = O(knk−1 log n).

Note that Theorem 1.1 immediately follows from Theorem 3.2 by observing that all colorings
χ
(i)
k [A] obtained from the refinement process of k-WL are shufflable and compatible with equality.

The proof of Theorem 3.2 relies on algebraic tools. Let V be a finite set of size n := |V |. We
define a multiplication on the space CV k by

(a · b)(v1, . . . , vk) :=
∑
v∈V

a(v1, . . . , vk−1, v)b(v1, . . . , vk−2, v, vk) (2)

for all a, b ∈ CV k . Note that this multiplication is associative and has a unit 1, defined by

1(v1, . . . , vk) :=

{
1 if vk−1 = vk,

0 otherwise.

Furthermore, the multiplication is compatible with the vector space structure. Hence, it defines
an algebra which we denote by A.

With every a ∈ CV k we associate a matrix Ma ∈ CV k−1×V k−1 with entries

Ma

(
(v1, . . . , vk−1), (w1, . . . , wk−1)

)
:={

a(v1, . . . , vk−2, vk−1, wk−1) if vi = wi for all i ∈ [k − 2],

0 otherwise.

It is easy to see that the mapping a 7→Ma is injective and linear. Moreover, it is compatible
with multiplication:

Ma ·Mb

(
(v1, . . . , vk−1), (w1, . . . , wk−1)

)
=

∑
u1,...,uk−1∈V

Ma

(
(v1, . . . , vk−1), (u1, . . . , uk−1)

)
Mb

(
(u1, . . . , uk−1), (w1, . . . , wk−1)

)
=

{∑
u∈V a(v1, . . . , vk−2, vk−1, u)b(v1, . . . , vk−2, u, wk−1) if vi = wi for all i ∈ [k − 2],

0 otherwise

8

=

{
(a · b)(v1, . . . , vk−1, wk−1) if vi = wi for all i ∈ [k − 2],

0 otherwise

=Ma·b
(
(v1, . . . , vk−1), (w1, . . . , wk−1)

)
.

And finally, M1 is the identity matrix. Thus, A is isomorphic to a subalgebra of the nk−1×nk−1-
dimensional matrix algebra CV k−1×V k−1 .

For every a ∈ A we define a∗ ∈ A by

a∗(v1, . . . , vk) := a(v1, . . . , vk−2, vk, vk−1)

(here, c denotes the complex conjugate of a number c ∈ C, i.e., if c = a + bi then c = a − bi).
Then Ma∗ = (Ma)

∗ (the conjugate transpose). Thus, ∗ is an involution on A compatible with
the algebra structure, which turns A into a ∗-algebra.

Since A is isomorphic to a subalgebra of Mnk−1(C) which is closed under conjugate transpo-
sition, we conclude that A is semisimple. Moreover, Theorem 2.3 implies the following corollary.

Corollary 3.3. Let A(1) ⊂ · · · ⊂ A(ℓ) ⊆ A be a sequence of semisimple strict subalgebras of A.
Then ℓ ≤ 2nk−1.

We wish to use the last corollary to obtain an upper bound on the length of the coloring
sequence χ0, . . . , χℓ in Theorem 3.2. Towards this end, we associate with every coloring χt (or
the corresponding partition into color classes) a subalgebra of A as follows.

For every subset A ⊆ CV k , we let span(A) be the linear subspace of CV k generated by A, and
we let ⟨A⟩ be the closure of span(A) under multiplication. If 1 ∈ ⟨A⟩, then ⟨A⟩ is a subalgebra
of A. As indicated above, we are interested in subalgebras of A generated by partitions of the
set V k in the way explained next.

For every subset P ⊆ V k, we define

cP (v) :=

{
1 if v ∈ P,

0 otherwise

to be the characteristic vector of P . For a partition P of V k, we let CP := {cP | P ∈ P} and
AP := ⟨CP⟩. If 1 ∈ AP , then AP is a subalgebra of A.

Lemma 3.4. Let P and Q be partitions of V k such that Q strictly refines P. Then span(CP) ⊂
span(CQ) and AP ⊆ AQ.

Proof. If P ∈ P is the disjoint union of Q1, . . . , Qm ∈ Q, then cP =
∑m

i=1 cQi . Thus, CP ⊆
span(CQ) and therefore span(CP) ⊆ span(CQ). Moreover, there are P ∈ P, Q ∈ Q such that
Q ⊂ P . Then cQ ̸∈ span(CP), because all a ∈ span(CP) are constant on P . Hence the inclusion
is strict.

The second assertion AP ⊆ AQ follows immediately from the definitions of AP and AQ.

Observation 3.5. Let P be a partition of V k.

(1) If P is compatible with equality, then 1 ∈ AP and hence AP is a subalgebra of A.

(2) If P is shufflable, then AP is closed under ∗.

Proof. Suppose that P is compatible with equality. Then there is some Q ⊆ P such that
1 =

∑
P∈Q cP . Hence, 1 ∈ AP .

Next, suppose that P is shufflable. Consider the bijection π : [k] → [k] for which π(i) = i
for all i ∈ [k − 2], π(k − 1) = k and π(k) = k − 1. Then c∗P = cPπ for every P ∈ P. Using
Observation 3.1, it follows that c∗P ∈ CP which implies that AP is closed under ∗.

9

Corollary 3.6. Let P be a partition of V k that is shufflable and compatible with equality. Then
AP is a ∗-subalgebra of A. In particular, AP is semisimple.

Recall that our goal is to bound the length of the color sequence χ0, . . . , χℓ in Theorem 3.2.
We associate a ∗-subalgebra A(t) of A with every coloring χt by considering the corresponding
partition into color classes. The last corollary implies that A(t) is semisimple for every t ∈ [0, ℓ].
So, to be able to apply Corollary 3.3 to bound the length of the sequence of subalgebras, it
remains to argue that inclusions between successive subalgebras are strict. Actually, this is not
true in general, but we can prove that only a small number of successive algebras can be equal.

We say that a ∈ CV k distinguishes v,w ∈ V k if a(v) ̸= a(w), and we say that A ⊆ CV k

distinguishes v,w if some a ∈ A distinguishes them.

Lemma 3.7. Let A ⊆ CV k and v,w ∈ V k such that ⟨A⟩ distinguishes v,w. Then there are an
s ≤ nk and a1, . . . ,as ∈ A such that a1 · · ·as distinguishes v,w.

Proof. As a linear subspace of CV k , the space ⟨A⟩ consists of finite linear combinations of
“monomials” a1 · · ·as for ai ∈ A. Since the dimension of the space is at most nk, we only need
to consider such monomials for s ≤ nk. Hence v,w are distinguished by a linear combination

m∑
i=1

λiai1 · · ·aisi

with λi ∈ C, aij ∈ A, and si ≤ nk. This immediately implies that v,w are distinguished by
ai1 · · ·aisi for some i ∈ [m].

With every partition P = {P1, . . . , Pm} we associate a relational structure (V,RP
1 , . . . , R

P
m)

whose vocabulary consists of k-ary relation symbols Ri interpreted by RP
i = Pi (to uniquely

define the associated structure, we fix an arbitrary order on the blocks P1, . . . , Pm). Slightly
abusing notation, we denote this structure by P as well. We say that a formula φ(x) distinguishes
v,w ∈ V k over P if

P |= φ(v) ⇐⇒ P ̸|= φ(w).

Recall that C(q)
k+1 denotes the fragment of first-order logic with counting consisting of all formulas

of quantifier rank at most q with at most k + 1 variables.

Lemma 3.8. Let P be a partition of V k and let v,w ∈ V k such that AP distinguishes v and
w. Then there is a formula φ(x) ∈ C

(q)
k+1 of quantifier rank q ≤ ⌈k log n⌉ that distinguishes v,w

over P.

Proof. Suppose that P = {P1, . . . , Pm}, and let ci := cPi . Then AP = ⟨{c1, . . . , cm}⟩. Thus, by
Lemma 3.7, there is an s ≤ nk and i1, . . . , is ∈ [m] such that ci1 · · · cis distinguishes v,w.

By induction on s ≥ 1, we prove that if ci1 · · · cis distinguishes v,w, then there is a formula
φ(x) ∈ C

(⌈log s⌉)
k+1 that distinguishes v,w. The assertion of the lemma follows.

For the base step s = 1, note that if ci distinguishes v,w, then the atomic formula Ri(x)
distinguishes v,w.

For the inductive step, let s ≥ 2. Suppose that b = ci1 · · · cis distinguishes v,w. Let
r := ⌈s/2⌉ and note that r ≤ 2⌈log s⌉−1 and therefore

⌈log r⌉ ≤ ⌈log s⌉ − 1.

Let b1 := ci1 · · · cir and b2 := cir+1 · · · cis . Then b = b1 · b2. Suppose that v = (v1, . . . , vk) and
w = (w1, . . . , wk). We have

b(v) =
∑
u∈V

b1(v1, . . . , vk−1, u) · b2(v1, . . . , vk−2, u, vk)

10

̸= b(w) =
∑
u∈V

b1(w1, . . . , wk−1, u) · b2(w1, . . . , wk−2, u, wk).

Thus, there are b1, b2 ∈ C such that

p :=
∣∣∣{u ∈ V

∣∣∣ b1(v1, . . . , vk−1, u) = b1 and b2(v1, . . . , vk−2, u, vk) = b2

}∣∣∣
̸=
∣∣∣{u ∈ V

∣∣∣ b1(w1, . . . , wk−1, u) = b1 and b2(w1, . . . , wk−2, u, wk) = b2

}∣∣∣ =: q.
It follows from the induction hypothesis that for i = 1, 2 and for all v′,w′ ∈ V k such that bi
distinguishes v′,w′ there is a formula ψv′,w′

i (x) ∈ C
(⌈log r⌉)
k+1 that distinguishes v′,w′. Without

loss of generality,
P |= ψv′,w′

i (v′) and P ̸|= ψv′,w′

i (w′),

otherwise we replace ψv′,w′

i (x) by its negation. Let Vi ⊆ V k be the set of all v′ ∈ V k such that
bi(v

′) = bi and let
φi(x) :=

∨
v′∈Vi

∧
w′∈V k\Vi

ψv′,w′

i (x).

Then for all v′ ∈ V k we have

P |= φi(v
′) ⇐⇒ bi(v

′) = bi.

Without loss of generality we assume that p > q. Then the formula

φ(x1, . . . , xk) := ∃≥pxk+1

(
φ1(x1, . . . , xk−1, xk+1) ∧ φ2(x1, . . . , xk−2, xk+1, xk)

)
∈ C

(⌈log s⌉)
k+1

distinguishes v,w.

We are now ready to prove Theorem 3.2.

Proof of Theorem 3.2. For every t ∈ [0, ℓ] let P(t) be the partition of V k into the color classes
of χt.

Claim 3.9. Let t, q ≥ 0 such that t + q ≤ ℓ. Suppose that there is a formula φ(x) ∈ C
(q)
k+1 that

distinguishes v,w ∈ V k over P(t). Then v,w belong to different classes of the partition P(t+q).

Proof. By Condition (I), the partition P(t) is shufflable and compatible with equality. This
implies that χt ≡ χ

(0)
k [P(t)]. Together with Condition (II), we get that χt+q ⪯ χ

(q)
k [P(t)].

Also, using Theorem 2.1, we get that χ(q)
k [P(t)](v) ̸= χ

(q)
k [P(t)](w). Overall, it follows that

v,w belong to different classes of the partition P(t+q). ⌟

For every t ∈ [0, ℓ] we define C(t) := CP(t) and A(t) := AP(t) . Note that A(t) is a semisimple
∗-subalgebra of A by Condition (I) and Corollary 3.6. By Lemma 3.4, we have

A(0) ⊆ A(1) ⊆ . . . ⊆ A(ℓ) ⊆ A. (3)

Claim 3.10. For all t ∈ [0, ℓ− ⌈k log n⌉],

A(t) ⊆ span(C(t+⌈k logn⌉)).

Proof. Let a ∈ A(t). By Lemma 3.8 and Claim 3.9, for all v,w ∈ V k, if a(v) ̸= a(w),
that is, if a distinguishes v and w, then v and w belong to different classes of the partition
P(t+⌈k logn⌉). Thus, a is constant on each class of the partition P(t+⌈k logn⌉), which immediately
implies that a can be written as a linear combination of the characteristic vectors cP of the
classes P ∈ P(t+⌈k logn⌉). This is the assertion of the claim. ⌟

11

Claim 3.11. For all t ∈ [0, ℓ− ⌈k log n⌉ − 1],

A(t) ⊂ A(t+⌈k logn⌉+1).

Proof. By Claim 3.10, we have A(t) ⊆ span(C(t+⌈k logn⌉)). Moreover, by Condition (III), the
partition P(t+⌈k logn⌉+1) strictly refines the partition P(t+⌈k logn⌉). By Lemma 3.4, this implies
span(C(t+⌈k logn⌉)) ⊂ span(C(t+⌈k logn⌉+1)). As span(C(t+⌈k logn⌉+1)) ⊆ A(t+⌈k logn⌉+1), the as-
sertion of the claim follows. ⌟

Recall that by Corollary 3.6, the algebras A(t) are semisimple. Thus, by Corollary 3.3, at
most 2nk−1 of the inclusions in (3) are strict. Then Claim 3.11 implies

ℓ ≤ 2nk−1(⌈k log n⌉+ 1) = O(knk−1 log n).

4 Long Sequences of Stable Colorings

Next, we prove an almost matching lower bound for Theorem 3.2, i.e., we prove that there are
sequences of colorings χ0, . . . , χℓ : V

k → C satisfying Conditions (I) - (III) of Theorem 3.2 of
length ℓ = Ω(nk−1). Actually, we prove a slightly stronger result.

As before, let us fix an integer k ≥ 2. We present a construction for a sequence χ0 ≻ χ1 ≻
· · · ≻ χℓ of colorings of V k such that χt is k-stable (i.e., the coloring is stable with respect to
k-WL) for all t ∈ [0, ℓ]. More precisely, the main result of this section is the following theorem.

Theorem 4.1. Suppose n ≥ 2k2 and let V be a set of size |V | = 2n. Then there is a sequence
of colorings χ0, . . . , χℓ : V

k → C of length ℓ ≥
(

n
2k

)k−1 such that

(I) χt is shufflable and compatible with equality for all t ∈ [0, ℓ],

(II) χt is k-stable for all t ∈ [0, ℓ], and

(III) χt−1 ≻ χt for all t ∈ [ℓ].

Before diving into the proof, let us first discuss some implications of the theorem.
First of all, Theorem 4.1 implies that the upper bound in Theorem 3.2 is tight up to a factor

of Ok(log n). This follows from the simple observation that, if χt is k-stable and χt−1 ≻ χt, then
stepk(χt−1) ≡ χt−1 ⪰ χt, i.e., the sequence of colorings constructed in Theorem 4.1 satisfies the
requirements of Theorem 3.2.

On the other hand, since all colorings χt are already k-stable, the theorem does not provide
any lower bounds on the iteration number of k-WL. However, Theorem 4.1 still provides some
valuable insights in this setting. Indeed, all existing methods to bound the iteration number
of k-WL [14, 15] rely on “parallelization arguments”, i.e., it is argued that at some point in the
refinement process many color classes have to be split at the same time. Theorem 4.1 essentially
implies that such arguments do not suffice to push the upper bounds on the iteration number
beyondO(nk−1) since such “parallelization arguments” typically also work in the extended setting
of Theorem 3.2. As a concrete example, Kiefer and Schweitzer [14] prove upper bounds on
iteration number of 2-WL by bounding the cost of a certain game related to 2-WL. This game
naturally generalizes to k-WL, but Theorem 4.1 immediately implies that its cost is Ω(nk−1)
and thus, it is not possible to obtain improved upper bounds by analyzing said game. So overall,
Theorem 4.1 can be interpreted as saying that, in order to obtain improved upper bounds on
the iteration number of k-WL, we need to rely on arguments that also exploit the possibility of
stabilization at an early point, and it is not possible to solely rely on “parallelization arguments”.

Let us now turn to the proof of Theorem 4.1. It relies on the following theorem which
provides a large set family with restricted intersections between its members. Let U be a set of
size n. A k-uniform set family (over U) is a collection F of k-element subsets of U .

12

Theorem 4.2 ([2, Theorem 4.11]). For every n ≥ 2k2 there exists a k-uniform set family F
over a universe U of n points such that

1. |E1 ∩ E2| ≤ k − 2 for all distinct E1, E2 ∈ F , and

2. |F| ≥
(

n
2k

)k−1.

Now, let U be a universe of size n ≥ k and let F be a k-uniform set family over U . We set

V := U × {0, 1}

and define a coloring χF : V k → C as follows. Since the actual names of the colors are not
relevant for our purposes, we only define the color classes, i.e., we specify when two tuples
receive the same color.

Let ((u1, a1), . . . , (uk, ak)), ((u
′
1, a

′
1), . . . , (u

′
k, a

′
k)) ∈ V k. We define χF in such a way that

χF ((u1, a1), . . . , (uk, ak)) = χF ((u
′
1, a

′
1), . . . , (u

′
k, a

′
k)) if and only if

(A) ui = u′i for all i ∈ [k],

(B) (ui, ai) = (uj , aj) ⇔ (u′i, a
′
i) = (u′j , a

′
j) for all i, j ∈ [k], and

(C) if {u1, . . . , uk} ∈ F , then
∑

i∈[k] ai ≡
∑

i∈[k] a
′
i mod 2.

Lemma 4.3. Suppose |E1 ∩ E2| ≤ k − 2 for all distinct E1, E2 ∈ F . Then χF is k-stable.

Proof. Let v = ((u1, a1), . . . , (uk, ak)),v
′ = ((u′1, a

′
1), . . . , (u

′
k, a

′
k)) ∈ V k such that

χF (v) = χF (v
′).

Observe that ui = u′i for all i ∈ [k] by Condition (A). We need to show that the two tuples do
not receive distinct colors after a single refinement step of k-WL, that is, we need to argue that{{(

χF (v[(u, a)/1]), . . . , χF (v[(u, a)/k])
) ∣∣∣ u ∈ U, a ∈ {0, 1}

}}
=
{{(

χF (v
′[(u, a)/1]), . . . , χF (v

′[(u, a)/k])
) ∣∣∣ u ∈ U, a ∈ {0, 1}

}}
where v[(u, a)/i]) = ((u1, a1), . . . , (ui−1, ai1), (u, a), (ui+1, ai+1), . . . , (uk, ak)) is the tuple ob-
tained from v by replacing the i-th entry by (u, a). Towards this end, we actually show the
stronger statement that{{(

χF (v[(u, a)/1]), . . . , χF (v[(u, a)/k])
) ∣∣∣ a ∈ {0, 1}

}}
=
{{(

χF (v
′[(u, a)/1]), . . . , χF (v

′[(u, a)/k])
) ∣∣∣ a ∈ {0, 1}

}}
holds for all u ∈ U .

Fix some u ∈ U . To see that these two multisets are equal, consider the set

V ′ := {u1, . . . , uk, u} × {0, 1} ⊆ V

and the restriction χ′
F : (V ′)k → C : v 7→ χF (v) of χF to the set (V ′)k. Also, let F ′ := {E ∈ F |

E ⊆ V ′}. Since |E1 ∩E2| ≤ k− 2 for all distinct E1, E2 ∈ F and |V ′| ≤ k+1, we conclude that
|F ′| ≤ 1.
Claim 4.4. There is a bijection φ : V ′ → V ′ such that

(i) χ′
F (v) = χ′

F (φ(v)) for all v ∈ (V ′)k, and

(ii) φ(ui, ai) = (u′i, a
′
i) for all i ∈ [k].

13

Proof. For i ∈ [k] we define φ(ui, ai) := (ui, a
′
i) and φ(ui, 1 − ai) := (ui, 1 − a′i). In particular,

Condition (ii) is satisfied since ui = u′i for all i ∈ [k]. If there is some E′ ∈ F ′ such that u ∈ E′,
then we define

φ(u, a) :=

{
(u, a) if

∑
ui∈E′ ai ≡

∑
ui∈E′ a′i mod 2

(u, 1− a) otherwise

for both a ∈ {0, 1}. If no such set E′ ∈ F ′ exists, then we set φ(u, a) := (u, a) for both i ∈ {0, 1}.
It can be easily verified that χ′

F (v) = χ′
F (φ(v)) for all v ∈ (V ′)k. ⌟

Since the multisets above are defined in an isomorphism-invariant manner over the structure
induced by (V ′, χ′

F), we conclude that they have to be equal.

Proof of Theorem 4.1. Let F be the set family obtained from Theorem 4.2 and suppose that F =

{E1, . . . , Eℓ}. Observe that ℓ ≥
(

n
2k

)k−1 as desired. For t ∈ [0, ℓ] we define Ft := {E1, . . . , Et} ⊆
F and χt := χFt . Then χt is k-stable by Lemma 4.3. Also, Ft−1 ⊂ Ft which implies that
χt−1 ≻ χt by definition of the coloring χt. Finally, it is easy to verify that all colorings are
shufflable and compatible with equality.

5 Lower Bounds on the Iteration Number of WL

In this section, we obtain improved lower bounds on the iteration number of the Weisfeiler-
Leman algorithm. More precisely, we prove Theorem 1.2. Our proof strategy is similar to the
one employed by Berkholz and Nordström in [3]. First, for every sufficiently large ℓhi ≥ ℓlo, we
construct pairs of structures that can be distinguished by ℓlo-WL, but ℓhi-WL still requires a
linear number of iterations to distinguish them. Afterwards, we apply a hardness compression
that reduces the number of vertices in the obtained structures while preserving the iteration
number of the Weisfeiler-Leman algorithm. Actually, for the second step, we can rely on the
same tools that are already used by Berkholz and Nordström in [3].

5.1 Overview

The hard instances we construct are based on propositional XOR-formulas that can also be
viewed as systems of linear equations over the 2-element field F2.

Let V be a finite set which we interpret as a set of variables that take values in {0, 1}. An
XOR-constraint (over V) is a pair (C, a) where C ⊆ V and a ∈ {0, 1}. The reader is encouraged
to think of such a constraint as the equation x1 + · · ·+ xk ≡ a mod 2 where C = {x1, . . . , xk} is
the set of those variables that appear on the left side of the equation. We explicitly allow C to
be empty; (∅, 0) is always satisfied and (∅, 1) is unsatisfiable. Let C be a set of XOR-constraints.
We define the arity of C to be the maximum cardinality of C for any pair (C, a) ∈ C.

We can translate a set of XOR-constraints into a pair of relational structures as follows. Let
C be a set of XOR-constraints over a set V . Also suppose that V = {x1, . . . , xn}. We define
A = A(C) and B = B(C) as follows. We set V (A) = V (B) := V × {0, 1}, i.e., each element
of the structures A and B corresponds to an assignment of a single variable. For each i ∈ [n],
we add a unary relation Xi and set XA

i = XB
i := {(xi, 0), (xi, 1)}. Finally, for every constraint

(C, a) ∈ C with C = {xi1 , . . . , xik} we introduce a k-ary relation RC,a and define

RA
C,a :=

((xi1 , b1), . . . , (xik , bk))
∣∣∣∣∣∣ b1, . . . , bk ∈ {0, 1},

k∑
j=1

bj ≡ 0 mod 2


and

RB
C,a :=

((xi1 , b1), . . . , (xik , bk))
∣∣∣∣∣∣ b1, . . . , bk ∈ {0, 1},

k∑
j=1

bj ≡ a mod 2


14

Instead of analysing the Weisfeiler-Leman algorithm directly on A(C) and B(C), it turns out
to more convenient to consider the following game that is directly played on C and is known
to capture the same information as applying the Weisfeiler-Leman algorithm to the associated
structures.

Let C be a set of XOR-constraints over a set V . Let k ∈ N such that C has arity at most
k. A partial assignment β : X → {0, 1} with X ⊆ V violates an XOR-constraint (C, a) ∈ C if
C ⊆ X and ∑

x∈C
β(x) ̸≡ a mod 2. (4)

For a partial assignment β0 : X0 → {0, 1} with |X0| ≤ k the r-round k-pebble game Gr
k(V, C, β0)

is played as follows:

• The game has two players called Verifier and Falsifier.

• The game is played in rounds with initial position β0.

• Suppose β : X → {0, 1} is the current position. Then the next round consists of the
following steps:

– Falsifier chooses x ∈ V \X and X ′ ⊆ X such that |X ′ ∪ {x}| ≤ k.

– Verifier chooses b ∈ {0, 1}.
– The game moves to position β′ : X ′ ∪ {x} → {0, 1} with β′(x′) = β(x′) for x′ ∈ X ′

and β′(x) = b.

• Falsifier wins a play if within the first r rounds an assignment β violates some XOR-
constraint (C, a) ∈ C (if r = 0, then Falsifier wins if the initial assignment β0 violates some
constraint in C).

• Verifier wins a play if Falsifier does not win within the first r rounds.

We say Falsifier (respectively Verifier) wins the game Gr
k(V, C, β0) if Falsifier (respectively

Verifier) has a winning strategy for the game. The k-pebble game Gk(V, C, β0) is played in the
same way, but without any restriction on the number of rounds played.

The following lemma relates the pebble game Gr
k(V, C, ∅) to bounded-variable fragments of

first-order logic and thereby, using Corollary 2.2, also to the Weisfeiler-Leman algorithm. (Here,
we use ∅ to denote the empty assignment, i.e., the domain X0 of the initial partial assignment
β0 is empty.)

Lemma 5.1 ([3, Lemma 2.1]). Let k, r ∈ N such that r > 0 and k ≥ 3. Let C be a set
of XOR-constraints over a universe V of arity at most k. Then the following statements are
equivalent:

(i) Falsifier wins the r-round k-pebble game Gr
k(V, C, ∅).

(ii) There exists a sentence φ ∈ L
(r)
k such that φ |= A(C) and φ ̸|= B(C).

(iii) There exists a sentence φ ∈ C
(r)
k such that φ |= A(C) and φ ̸|= B(C).

To obtain a set of XOR-constraints on which Falsifier requires a large number of rounds to
win the pebble game, we proceed in two steps. First, for every sufficiently large ℓhi ≥ ℓlo, we
construct a set of XOR-constraints such that Falsifier wins the ℓlo-pebble game, but still requires
a linear number of rounds to win the ℓhi-pebble game. This is formalized by the next lemma
which forms the main technical contribution of this section.

15

Lemma 5.2. There are absolute constants ℓlo ≥ 2 and δ > 1 such that for every ℓhi ≥ ℓlo
and every r ≥ 1 there is a set of XOR-constraints C of arity at most ℓlo over a set V of size
|V | ≤ δ · ℓ2hi · r such that Falsifier

(a) wins the ℓlo-pebble game Gℓlo(V, C, ∅), but

(b) does not win the r-round ℓhi-pebble game Gr
ℓhi
(V, C, ∅).

We remark that a similar result has also been obtained in [3], but with weaker guarantees
on the number of rounds required to win the ℓhi-pebble game. It is exactly this improvement
that allows us to obtain stronger lower bounds on the iteration number of k-WL in comparison
to [3].

Remark 5.3. When applying Lemma 5.2, we also require that |V | ≥ r which is not guaranteed by
the lemma. However, if |V | < r we can simply add dummy variables that do not appear in any
constraint to increase the number of variables. It is easy to see that all properties guaranteed by
the lemma remain valid. In particular, the dummy variables do not affect the winning strategy
for either player (if Falsifier asks for an assignment of a dummy variable, Verifier simply chooses
any value; since dummy variables do not appear in any constraints this is always safe).

Afterwards, we rely on the following hardness compression lemma that reduces the number
of variables while essentially maintaining the number of rounds that Falsifier requires to win the
game.

Lemma 5.4 (Berkholz, Nordström [3, Lemma 3.3]). There is an absolute constant ∆0 ≥ 1 such
that the following holds. Suppose C is a set of XOR-constraints of arity at most p over a set V
of size |V | = m. Also assume there are parameters ℓlo > 0, ℓhi ≥ ∆0ℓlo and r > 0 such that
Falsifier

(a) wins the ℓlo-pebble game Gℓlo(V, C, ∅), but

(b) does not win the r-round ℓhi-pebble game Gr
ℓhi
(V, C, ∅).

Let ∆ be an integer such that ∆0 ≤ ∆ ≤ ℓhi/ℓlo and (2ℓhi∆)2∆ ≤ m. Then there is a set of
XOR-constraints D of arity at most ∆p over a set W of size |W | = ⌈m3/∆⌉ such that Falsifier

(A) wins the (∆ℓlo)-pebble game G∆ℓlo(W,D, ∅), but

(B) does not win the r
2ℓhi

-round ℓhi-pebble game Gr/(2ℓhi)
ℓhi

(W,D, ∅).

Combining Lemmas 5.2 and 5.4, we obtain the following corollary.

Corollary 5.5. There are absolute constants k0 ∈ N and α, ε > 0 such that for every d ≥ k ≥ k0
and every n ≥ α · d8 · k6 there is a set of XOR-constraints C of arity at most k over a set V of
size |V | ≤ n such that Falsifier wins the k-pebble game Gk(V, C, ∅), but does not win the r-round
d-pebble game Gr

d(V, C, ∅) for all r ≤ nεk.

Proof. Let ℓlo ≥ 2 and δ > 1 denote the constants from Lemma 5.2. Also, let ∆0 denote the
constant from Lemma 5.4 and suppose without loss of generality that δ,∆0 are integers and
∆0 ≥ 3. We choose

k0 := max{∆0ℓlo, 6ℓlo}.

Let d ≥ k ≥ k0. We set p := ℓlo, ℓhi := d and ∆ := ⌊ k
ℓlo
⌋. We have ℓhi = d ≥ k ≥ k0 ≥ ∆0ℓlo

and ∆0 ≤ k
ℓlo

. Since ∆0 is an integer, we conclude that ∆0 ≤ ∆.
We define

n0 := max{
(
δ · ℓ2hi · (2ℓhi∆)2∆

)3/∆
, 4 · δ · ℓ3hi}

16

and set α := max{64 · δ · ℓ−6
lo , 4 · δ}. Let n ≥ α · d8 · k6. Using ∆ ≥ ∆0 ≥ 3, we get that(

δ · ℓ2hi · (2ℓhi∆)2∆
)3/∆ ≤ δ · ℓ2hi · (2ℓhi∆)6 ≤ 64 · δ · ℓ8hi ·

(
k

ℓlo

)6

≤ α · d8 · k6

and 4 · δ · ℓ3hi ≤ α · d3. So in particular n ≥ n0. Let r be the maximal integer such that(
δ · ℓ2hi · r

)3/∆ ≤ n. (5)

Note that r ≥ (2ℓhi∆)2∆ since n ≥ n0. Let C be the set of XOR-constraints of arity at most ℓlo
over a set V of size |V | ≤ δ · ℓ2hi · r obtained from Lemma 5.2. By adding dummy variables (see
Remark 5.3), we may assume without loss of generality that m := |V | ≥ r ≥ (2ℓhi∆)2∆.

By applying Lemma 5.4, we obtain a set of XOR-constraints D of arity at most ∆p over a
set W of size |W | = ⌈m3/∆⌉ such that Falsifier

(A) wins the (∆ℓlo)-pebble game G∆ℓlo(W,D, ∅), but

(B) does not win the r
2ℓhi

-round ℓhi-pebble game Gr/(2ℓhi)
ℓhi

(W,D, ∅).

First observe that ∆p = ⌊ k
ℓlo
⌋ · ℓlo ≤ k and

|W | =
⌈
m3/∆

⌉
≤
⌈(
δ · ℓ2hi · r

)3/∆⌉ ≤ n.

Since ∆ℓlo ≤ k, it holds that Falsifier wins the k-pebble game Gk(W,D, ∅). Moreover, Falsifier
does not win the r

2ℓhi
-round d-pebble game Gr/(2ℓhi)

d (W,D, ∅). We have that(
δ · ℓ2hi · 2r

)3/∆ ≥ n

since r is the maximal integer to satisfy Equation (5). This implies that

r

2ℓhi
≥ n∆/3

4 · δ · ℓ3hi
≥ n

1
3
⌊ k
ℓlo

⌋−1 ≥ nεk

for some sufficiently small absolute constant ε > 0.

With Corollary 5.5 at hand, we are now ready to prove Theorems 1.2 and 1.5.

Proof of Theorem 1.2. Let k′0 ∈ N and α′, ε′ > 0 denote the absolute constants from Corollary
5.5.

Let k0 := max{k′0, 3}. We set α ≥ 1 and ε > 0 in such a way that for all d ≥ k ≥ k0 and
n ≥ αd8k6 it holds that ⌊n

2

⌋
≥ α′(d+ 1)8(k + 1)6

and (n
2
− 1
)ε′k

− d ≥ nεk.

Now, let us fix some d ≥ k ≥ k0 and n ≥ αd8k6. Let d′ := d + 1, k′ := k and n′ := ⌊n2 ⌋. We
apply Corollary 5.5 with parameters d′, k′, n′ and obtain a set of XOR-constraints C of arity at
most k′ over a set V ′ of size |V ′| ≤ n′ such that Falsifier wins the k′-pebble game Gk′(V

′, C, ∅),
but does not win the r′-round d′-pebble game Gr′

d′ (V
′, C, ∅) for r′ = (n′)ε

′k′ .
Let A := A(C) and B := B(C). Then |V (A)| = |V (B)| = 2|V ′| ≤ 2n′ ≤ n. Note that we can

easily increase the size of both structures by adding isolated elements that do not participate in
any relations. Also, note that both structures have arity at most k′ = k.

By Lemma 5.1 and Corollary 2.2, k-WL distinguishes between A and B. On the other hand,
again by Lemma 5.1 and Corollary 2.2, d-WL does not distinguish A and B after r := r′ − d
refinement rounds. We get that

r = r′ − d = (n′)ε
′k′ − d ≥

(n
2
− 1
)ε′k

− d ≥ nεk.

17

Proof of Theorem 1.5. This follows directly from Corollary 5.5 and Lemma 5.1.

The remainder of this section is devoted to the proof of Lemma 5.2.

5.2 The Closure of the Constraint Set

The critical step in the proof of Lemma 5.2 is to argue that Verifier survives a linear number
of rounds even for a large number of pebbles. Here, we rely on an alternative description of
winning positions in terms of a closure operator.

Let k ∈ N. Let V be a finite set and let C be a set of XOR-constraints over V of arity at
most k. We define the k-attractor

attrk(C) := C ∪
{
(C1 ⊕ C2, a1 + a2 mod 2)

∣∣∣ (C1, a1), (C2, a2) ∈ C, |C1 ⊕ C2| ≤ k
}
.

Here, C1 ⊕ C2 denotes the symmetric difference between the two sets, that is, C1 ⊕ C2 :=
(C1 ∪ C2) \ (C1 ∩ C2).

Intuitively speaking, if x1 + · · · + xℓ ≡ a1 mod 2 and y1 + · · · + ym ≡ a2 mod 2 are two
constraints in C, then every satisfying assignment also has to satisfy the equation x1 + · · · +
xℓ + y1 + · · ·+ ym ≡ a1 + a2 mod 2. Since all variables appearing in both sets {x1, . . . , xk} and
{y1, . . . , ym} cancel over F2, we only need to keep those variables appearing in the symmetric
difference. In the case that the resulting number of variables is bounded by k, we add the
corresponding equation to the k-attractor of the constraint set.

We define cl
(0)
k (C) := C and cl

(r+1)
k (C) := attrk(cl

(r)
k (C)) for all r ≥ 0. Finally, we define the

k-closure of C to be the set clk(C) := cl
(r)
k (C) for the minimal r ≥ 0 such that cl(r+1)

k (C) = cl
(r)
k (C).

The following lemma provides the key method to prove that Verifier can survive a certain
number of rounds.

Lemma 5.6. Let β : X → {0, 1} be a partial assignment with |X| ≤ k such that β violates no
XOR-constraint (C, a) ∈ cl

(r)
k (C). Then Verifier wins Gr

k(V, C, β).

Proof. We prove the statement by induction on r. For r = 0 the statement is trivial. So suppose
r ≥ 1 and Falsifier chooses x ∈ V \X and X ′ ⊆ X such that |X ′ ∪ {x}| ≤ k in the first round.
For b ∈ {0, 1} let βb : X ′ ∪ {x} → {0, 1} be the partial assignment with βb(x

′) = β(x′) for
x′ ∈ X ′ and βb(x) = b. Assume towards a contradiction that, for every b ∈ {0, 1}, there is some
XOR-constraint (Cb, ab) ∈ cl

(r−1)
k (C) violated by βb. Observe that x ∈ Cb for both b ∈ {0, 1}

(since otherwise β would violate (Cb, ab) contradicting our assumption). Let C := C0 ⊕C1 ⊆ X
and a := (a0 + a1) mod 2. Note that |C| ≤ k since C ⊆ X. Then∑

y∈C
β(y) ≡

∑
y∈C0\{x}

β(y) +
∑

y∈C1\{x}

β(y) ≡ 1 +
∑
y∈C0

β0(y) +
∑
y∈C1

β1(y) ≡ 1 + a mod 2

and (C, a) ∈ cl
(r)
k (C). Hence, β violates some (C, a) ∈ cl

(r)
k (C) which is a contradiction.

So there is some b ∈ {0, 1} such that βb violates no XOR-constraint in cl
(r−1)
k (C). Verifier

chooses such a b ∈ {0, 1} and the game moves to position βb which violates no XOR-constraint
in cl

(r−1)
k (C). So Verifier wins Gr−1

k (V, C, βb) by the induction hypothesis which implies that
Verifier also wins Gr

k(V, C, β).

5.3 Layered Graphs and Expansion

Next, we discuss the construction of certain expander graphs. Overall, we are aiming to con-
struct what we refer to as single-neighbor layered expanders. Towards this end, we start with
constructing standard bipartite expander graphs with an expansion that is close to the minimum
degree of one side of the bipartite graph. We then define single-neighbor expanders and observe

18

that bipartite expanders with large expansion also are single-neighbor expanders (with a slightly
smaller expansion parameter). Finally, we obtain single-neighbor layered expanders by “stacking
single-neighbor expanders on top of each other”.

5.3.1 Expander Graphs

We start by defining standard bipartite expander graphs.

Definition 5.7. Let 0 < γ < 1 and α > 1 be constants and let G = (V,W,E) be a bipartite
graph. We say that G is an (α, γ)-expander if for every ∅ ≠ Y ⊆ W with |Y | ≤ γ|W | it holds
that

N(Y) ≥ α|Y |.

For more information on expander graphs we refer to [18, 24]. The references also contain
variants of the following standard argument that guarantees the existence of graphs with good
expansion properties. For our purposes, the crucial property in the lemma below is that the
expansion α is relatively close to the degree of the vertices in W .

Lemma 5.8. There is some number R0 ≥ 2 such that for every r ≥ R0 and every n ≥ 4r there
is a (34r,

1
20r)-expander G = (V,W,E) such that |V | = |W | = n and deg(w) = r for all w ∈W .

Proof. Suppose r is sufficiently large. Let V,W be two sets with |V | = |W | ≥ 4r. We construct
a bipartite graph G = (V,W,E) using the following random process: for each w ∈ W we select
independently and uniformly at random a set of r distinct neighbors from V . We prove that,
for r sufficiently large, with positive probability the graph G is a (34r,

1
20r)-expander.

Let n := |V | = |W |. For X ⊆ V and Y ⊆W let pX,Y denote the probability that N(Y) ⊆ X.
Then

pX,Y ≤
(
|X|
n

)r·|Y |
.

Furthermore, let α := 3
4r and γ := 1

20r . Let p be the probability that G is not a (γ, α)-expander.
Then, using the inequality

(
n
k

)
≤ (ne/k)k, we get

p ≤
∑
Y⊆W
|Y |≤γ·n

∑
X⊆V

|X|=⌊α|Y |⌋

pX,Y

≤
⌊γ·n⌋∑
s=1

∑
Y⊆W
|Y |=s

∑
X⊆V

|X|=⌊α|Y |⌋

(
|X|
n

)r·|Y |

≤
⌊γ·n⌋∑
s=1

(
n

s

)(
n

⌊αs⌋

)(αs
n

)r·s
≤

⌊γ·n⌋∑
s=1

(ne
s

)s (ne
αs

)α·s (αs
n

)r·s
=

⌊γ·n⌋∑
s=1

[(ne
s

)(ne
αs

)α (αs
n

)r]s
=

⌊γ·n⌋∑
s=1

[(s
n

)r−α−1
e1+ααr−α

]s

=

⌊γ·n⌋∑
s=1

[(s
n

)r/4−1
e1+3r/4(3r/4)r/4

]s

19

≤
⌊γ·n⌋∑
s=1

[
γr/4−1e1+3r/4(3r/4)r/4

]s
.

Now let x := γr/4−1e1+3r/4(3r/4)r/4. For r sufficiently large we get

x = (20r)1−r/4e1+3r/4(3r/4)r/4 = 20er

(
3e3

80

)r/4

< 1/10.

It follows that

p ≤
∞∑
s=1

xs =
x

1− x
≤ 1

9
.

In particular, p < 1 which implies the existence of the desired expander graph.

Next, we turn to what we call single-neighbor expanders where each sufficiently small set
Y ⊆ V is required to have a large number of neighbors that additionally satisfy the property
that they are the neighbor of only a single vertex from Y . Let G = (V,W,E) be a bipartite
graph. For Y ⊆W we define

N∗(Y) = {v ∈ N(Y) | |N(v) ∩ Y | = 1}.

Definition 5.9. Let 0 < γ < 1 and α > 1 be constants and let G = (V,W,E) be a bipartite
graph. We say that G is an (α, γ)-single-neighbor expander if for every ∅ ≠ Y ⊆ W with
|Y | ≤ γ|W | it holds that

N∗(Y) ≥ α|Y |.

We can obtain single-neighbor expanders from Lemma 5.8 by allowing some loss on the
expansion parameter α.

Corollary 5.10. There is some number R0 ≥ 5 such that for every r ≥ R0 and every n ≥
4r there is a (14r,

1
20r)-single-neighbor expander G = (V,W,E) such that |V | = |W | = n and

deg(w) = r for all w ∈W .

Proof. Choose R0 := max(5, R′
0) where R′

0 is the constant from Lemma 5.8 and suppose r ≥ R0

and n ≥ 4r. By Lemma 5.8, there is a (34r,
1

20r)-expander G = (V,W,E) such that |V | = |W | = n
and deg(w) = r for all w ∈ W . We claim that G is a (14r,

1
20r)-single-neighbor expander. Let

Y ⊆ W with |Y | ≤ n
20r . Then |N(Y)| ≥ 3

4r|Y |. Furthermore |N(Y)| = |N∗(Y)| + |{v ∈
N(Y) | |N(v) ∩ Y | ≥ 2}| ≤ |N∗(Y)| + 1

2r|Y | because every vertex in Y has degree r. Thus,
|N∗(Y)| ≥ 1

4r|Y |.

5.3.2 Layered Graphs

Now, we turn to the construction of single-neighbor layered expanders which is the main tool
for constructing the desired constraint sets in the proof of Lemma 5.2. We start by defining a
certain notion of layered graphs (see also Figure 1).

Let ℓ,m ∈ N. An (ℓ ×m)-layered graph is a bipartite graph G = (V,W,E) for which there
are partitions V = V0 ⊎ · · · ⊎ Vℓ and W =W1 ⊎ · · · ⊎Wℓ such that

1. |Vi| = m for all i ∈ [0, ℓ],

2. |Wi| = m for all i ∈ [ℓ],

3. NG(Wi) ⊆ Vi−1 ∪ Vi for all i ∈ [ℓ], and

4. G[Vi ∪Wi] is 1-regular (i.e., a matching) for all i ∈ [ℓ].

20

V0

W1

V1

W2

Wℓ

Vℓ

...
...

. . .

. . .

. . .

. . .

. . .

. . .

Figure 1: Visualization of (ℓ×m)-layered graphs.

With this, we are now ready to define the notion of single-neighbor layered expanders.

Definition 5.11. Let ℓ,m ≥ 2. Let 0 < γ < 1 and α > 1 be constants and let G = (V,W,E) be
an (ℓ ×m)-layered graph. We say that G is an (α, γ)-single-neighbor (ℓ ×m)-layered expander
if for every ∅ ≠ Y ⊆W with |Y | ≤ γm it holds that

N∗(Y) ≥ α|Y |.

Note that an (α, γ)-single-neighbor (ℓ×m)-layered expander is not a (α, γ)-single-neighbor
expander since we are only considering sets Y ⊆W of size |Y | ≤ γm, i.e., we are only considering
sets that are smaller (by a factor of γ) than a single layer of a layered graph. In particular, the
reader is encouraged to think of ℓ being much larger than m. In this case, such a graph is far
from being a (global) expander, but the key property is that it behaves like an expander when
only considering a few layers of the graph.

By again allowing some small loss on the expansion parameter α, we can obtain single-
neighbor layered expanders by “stacking ℓ copies of a single-neighbor expander on top of each
other”.

Corollary 5.12. There is some number R0 ≥ 9 such that for every r ≥ R0, every ℓ ≥ 1, and
every m ≥ 4r there is a (14r − 1, 1

20r)-single-neighbor (ℓ ×m)-layered expander G = (V,W,E)
with partitions V = V0 ⊎ · · · ⊎ Vℓ and W = W1 ⊎ · · · ⊎Wℓ such that NG(w) ∩ Vi−1 = r for all
w ∈Wi and all i ∈ [ℓ].

Proof. Choose R0 := max(9, R′
0) where R′

0 is the constant from Corollary 5.10 and suppose
r ≥ R0, ℓ ≥ 1, and m ≥ 4r. By Corollary 5.10, there is a (14r,

1
20r)-single-neighbor expander

G′ = (V ′,W ′, E′) such that |V ′| = |W ′| = m and degG′(w′) = r for all w′ ∈ W ′. Suppose
V ′ = {v′1, . . . , v′m} and W ′ = {w′

1, . . . , w
′
m}.

We set Vi := {vi,1, . . . , vi,m} for all i ∈ [0, ℓ] and Wi := {wi,1, . . . , wi,m} for all i ∈ [ℓ]. Also,
we set

E := {vi−1,jwi,k | i ∈ [ℓ], v′jw
′
k ∈ E′} ∪ {vi,jwi,j | i ∈ [ℓ], j ∈ [m]}.

Clearly, G = (V,W,E) is an (ℓ×m)-layered graph.
Let α := 1

4r and γ := 1
20r . Also let Y ⊆ W such that |Y | ≤ γm. We define Yi := Y ∩Wi

for all i ∈ [ℓ]. Observe that |Yi| ≤ γm for all i ∈ [ℓ] and Y1, . . . , Yℓ forms a partition of Y . Let
I := {i ∈ [ℓ] | Yi ̸= ∅}. Since G′ is an (α, γ)-single-neighbor expander, we conclude that

|N∗(Yi) ∩ Vi−1| ≥ α|Yi|

21

for all i ∈ I. Moreover, since G[Vi∪Wi] is 1-regular (i.e., a matching) for all i ∈ [ℓ], we conclude
that

|N∗(Y) ∩ Vi−1| ≥ α|Yi| − |Yi−1|
for all i ∈ I (we set Y0 := ∅). So overall

|N∗(Y)| ≥
∑
i∈I

α|Yi| − |Yi−1| ≥
∑
i∈I

(α− 1)|Yi| = (α− 1)|Y |

as desired.

5.4 Constraint Sets from Layered Expanders

Now, we turn to the construction of constraint sets from layered graphs. For a bipartite graph
G = (V,W,E) we define the XOR-constraint set CG := {(N(w), 0) | w ∈ W} over the variable
set V . Slightly abusing notation, for C ⊆ V , we shall also write C ∈ CG if (C, 0) ∈ CG.

The basic idea for the construction of the XOR-constraint set C is to take a layered graph
G = (V,W,E) with partitions V = V0 ⊎ · · · ⊎ Vℓ and W =W1 ⊎ · · · ⊎Wℓ, and set

C := CG ∪
{
({x}, 0)

∣∣ x ∈ V0
}
∪
{
({xℓ}, 1)

}
for some arbitrary xℓ ∈ Vℓ. It is not difficult to see that this constraint set is unsatisfiable.
Indeed, every variable in layer V0 needs to be set to 0, and if all variables in layer Vi−1 are set to
0, then the constraints obtained from the vertices in Wi enforce that every variable in layer Vi
needs to be set to 0 as well (using that G[Vi ∪Wi] is a matching). This inductive argument can
be easily turned into a winning strategy for Falsifier that requires O(ℓ) many rounds (assuming
the degree of all vertices in W is bounded by some absolute constant d ≤ k where k denotes the
number of variables available in the game).

Now, the central claim is that, if we start with a single-neighbor layered expander, this
strategy is essentially optimal. Let us suppose for the moment that only constraints from
CG are present and consider the k-closure clk(CG). What we need to avoid is that clk(CG)
contains some constraint that is “non-local”. For example, if clk(CG) would contain a constraint
({x1, x2, x3}, 0) such that x1, x2 ∈ V0 and x3 ∈ Vℓ, then Falsifier could use such a (derived)
constraint to immediately conclude that certain variables in the last layer need to be set to
0 and potentially follow a different strategy to win the game faster. The main point is that,
by using single-neighbor layered expanders, we ensure that all “relevant” constraints in clk(CG)
are “local”, i.e., they can only contain variables of O(k) consecutive layers. (Here, the reader
may note that if |N(w1) ∪ N(w2)| ≤ k then (N(w1) ⊕ N(w2), 0) is always contained in the
closure even if w1 and w2 are far apart. However, in such a case, N(w1) ∩ N(w2) = ∅ and
the derived constraint (N(w1) ∪ N(w2), 0) is not “relevant” since, whenever it is violated by a
partial assignment, one of the constraints associated with w1 or w2 is also violated.) This way,
even when adding all constraints from clk(CG) to the initial set, the best that Falsifier can do is
essentially to follow the above inductive strategy (with the exception that Falsifier may skip up
to O(k) layers in one step which, however, does not cause any problems for our arguments).

For technical reasons, the formal arguments slightly deviate from the intuitive ideas described
above. To start, instead of working with the k-closure clk(CG), it turns out to be more convenient
to work with the following set.

Let α > 1 and k ≥ 1. We define the set

cl∗k,α(CG) :=

{(⊕
D∈D

D, 0

) ∣∣∣∣∣ D ⊆ CG, |D| ≤ k

α
,
∣∣∣ ⊕
D∈D

D
∣∣∣ ≤ k

}
.

We remark that, for D = ∅, the constraint (∅, 0) is added to cl∗k,α(CG). Observe that CG ⊆
cl∗k,α(CG) if k ≥ α (which is always the case in our constructions). So the next lemma implies
that clk(CG) ⊆ cl∗k,α(CG) if G is a suitable single-neighbor layered expander.

22

Lemma 5.13. Suppose α > 1 and 0 < γ < 1. Let G = (V,W,E) be an (α, γ)-single-neighbor
(ℓ×m)-layered expander such that deg(w) ≤ d for all w ∈W and suppose d ≤ k ≤ 1

2γm. Then

attrk
(
cl∗k,α(CG)

)
= cl∗k,α(CG).

Proof. Let C∗ := cl∗k,α(CG). Suppose C ∈ attrk(C∗), that is, there are C1, C2 ∈ C∗ such that C :=

C1⊕C2 and |C| ≤ k. By definition, there are integers s, t ≤ k
α and D1, . . . , Ds, Ds+1, . . . , Ds+t ∈

CG such that C1 = D1⊕· · ·⊕Ds and C2 = Ds+1⊕· · ·⊕Ds+t. Moreover, D1, . . . , Ds are pairwise
distinct as well as Ds+1, . . . , Ds+t are pairwise distinct. We have C = D1 ⊕ · · · ⊕Ds+t. Let

D := {D1, . . . , Ds} ⊕ {Ds+1, . . . , Ds+t}

and let Y := {w ∈ W | N(w) ∈ D}. Clearly, C =
⊕

D∈DD. Suppose towards a contradiction
that |D| > k

α . Then |Y | > k
α and moreover, |Y | ≤ s+ t ≤ 2 k

α ≤ 2k ≤ γm and thus, |N∗(Y)| ≥
α|Y | > k. But on the other hand N∗(Y) ⊆ C which implies that |N∗(Y)| ≤ k. This is a
contradiction. So |D| ≤ k

α which implies that C ∈ C∗ as desired.

Lemma 5.14. Suppose α > 1 and 0 < γ < 1. Let G = (V,W,E) be an (α, γ)-single-neighbor
(ℓ×m)-layered expander such that deg(w) ≤ d for all w ∈W and suppose d ≤ k ≤ 1

2γm. Then
|C| ≥ 2 for all C ∈ cl∗k,α(CG) such that C ̸= ∅.

Proof. Let C ∈ cl∗k,α(CG) such that C ̸= ∅ and let C1, . . . , Cs ∈ CG such that C = C1 ⊕ · · · ⊕ Cs

for some s ≤ k
α ≤ k. Furthermore, let Y := {w ∈ W | ∃i ∈ [s] : N(w) = Ci}. Observe that

1 ≤ |Y | ≤ k ≤ γm. Then N∗(Y) ⊆ C and thus, |C| ≥ |N∗(Y)| ≥ α|Y | > 1.

Next, we prove that Falsifier wins the pebble game if we set all variables in layer V0 to 0,
and a single variable in the last layer Vℓ to 1. For technical reasons, we do not add ({xℓ}, 1) to
the constraint set, but rather consider an initial assignment that assigns value 1 to variable xℓ.

Lemma 5.15. Let G = (V,W,E) be an (ℓ×m)-layered graph with partitions V = V0 ⊎ · · · ⊎ Vℓ
and W =W1⊎· · ·⊎Wℓ such that deg(w) ≤ k for all w ∈W . Let xℓ ∈ Vℓ and suppose βℓ : {xℓ} →
{0, 1} is the partial assignment defined via βℓ(xℓ) = 1. Then Falsifier wins Gk(W, C, βℓ) where

C := CG ∪
{
({x}, 0)

∣∣ x ∈ V0
}
.

Proof. We prove by induction on i = 0, . . . , ℓ that Falsifier wins Gk(V, C, βi) where βi is any
partial assignment for which βi(xi) = 1 for some xi ∈ Vi.

The base case i = 0 is trivial since ({x0}, 0) ∈ C for every x0 ∈ V0. For the inductive
step, suppose i ∈ [ℓ] and consider some partial assignment βi for which there is some xi ∈ Vi
such that βi(xi) = 1. Since G = (V,W,E) is an (ℓ × m)-layered graph, there is a unique
vertex wi ∈ Wi such that wixi ∈ E. Moreover, NG(wi) ⊆ Vi−1 ∪ Vi. If NG(wi) = {xi}, then
({xi}, 0) ∈ CG and Falsifier wins immediately. So suppose that NG(wi) ∩ Vi−1 ̸= ∅. Since
deg(wi) ≤ k, Falsifier can move to a partial assignment βi−1 : Xi → {0, 1} where Xi = NG(wi)
and βi−1(xi) = 1. If βi−1 violates the XOR-constraint (Xi, 0), then Falsifier wins immediately.
Otherwise,

∑
y∈Xi

βi−1(y) = 0. Together with the fact that βi−1(xi) = 1, this implies that
there is some xi−1 ∈ Xi ∩ Vi−1 such that βi−1(xi−1) = 1. So Falsifier wins by the induction
hypothesis.

The next lemma forms the key technical lemma stating that Falsifier requires a large number
of rounds to win if the constraint set is obtained from a single-neighbor layered expander.

Lemma 5.16. Suppose α > 1 and 0 < γ < 1. Let G = (V,W,E) be an (α, γ)-single-neighbor
(ℓ ×m)-layered expander with partitions V = V0 ⊎ · · · ⊎ Vℓ and W = W1 ⊎ · · · ⊎Wℓ such that
deg(w) ≤ d for all w ∈W and suppose d ≤ k ≤ 1

2γm.

23

Let xℓ ∈ Vℓ and suppose βℓ : {xℓ} → {0, 1} is the partial assignment defined via βℓ(xℓ) = 1.
Then Verifier wins Gr−1

k (V, C, βℓ) where

C := CG ∪
{
({x}, 0)

∣∣ x ∈ V0
}

and r := ⌊ℓ/2k⌋.

Proof. Let
C∗
G := cl∗k,α(CG)

and define C∗ := C∗
G∪{({x}, 0) | x ∈ V0}. We show that Verifier wins Gr−1

k (V, C∗, βℓ) which clearly
implies the claim since C ⊆ C∗ (using that α ≤ d ≤ k). By Lemma 5.6, it suffices to show that
βℓ violates no XOR-constraint from the set cl

(r−1)
k (C∗), or equivalently ({xℓ}, 0) /∈ cl

(r−1)
k (C∗)

(note that all constraints in cl
(r−1)
k (C∗) are of the form (C, 0)).

We define

Vi :=
2ik⋃
j=0

Vj

for all i ∈ {0, . . . , ⌊ℓ/2k⌋}. Finally, we define

C∗
i :=

{
C ⊆ V

∣∣∣ |C| ≤ k,C = D ⊕ U for some D ∈ C∗
G, U ⊆ Vi

}
for all i ∈ {0, . . . , ⌊ℓ/2k⌋}.
Claim 5.17. attrk(C∗

i) ⊆ C∗
i+1 for all i ∈ {0, . . . , ⌊ℓ/2k⌋ − 1}.

Proof. Let C1, C2 ∈ C∗
i such that |C1 ⊕C2| ≤ k. Let C := C1 ⊕C2. For j ∈ {1, 2} pick Dj ∈ C∗

G

and Uj ⊆ Vi such that Cj = Dj⊕Uj . Let U ′ := U1⊕U2. Clearly, U ′ ⊆ Vi and C = D1⊕D2⊕U ′.
Let Yj ⊆W , j ∈ {1, 2}, be a set of vertices of size |Yj | ≤ k

α < k such that Dj =
⊕

w∈Yj
N(w)

(recall that such a set Yj exists by the definition of cl∗k,α(CG); for Dj = ∅ we set Yj := ∅). Then
there is some λ ∈ {2ik + 1, . . . , 2(i+ 1)k} such that Wλ ∩ (Y1 ∪ Y2) = ∅. We define

Y <λ
j := Yj ∩W<λ

where W<λ :=
⋃

µ<λWµ and
Y >λ
j := Yj ∩W>λ

where W>λ :=
⋃

µ>λWµ. Moreover, let

C>λ
j :=

⊕
w∈Y >λ

j

N(w)

for both j ∈ {1, 2}. We have
C>λ
j ⊆ Cj

because C>λ
j ⊆ Dj (since Wλ ∩ Yj = ∅) and C>λ

j ∩ Uj = ∅ (since λ > 2ki). Also let

C>λ := C>λ
1 ⊕ C>λ

2 ⊆ C.

Hence, |C>λ
j | ≤ k and |C>λ| ≤ k. So C>λ

j ∈ C∗
G for both j ∈ {1, 2}. It follows that C>λ ∈ C∗

G by
Lemma 5.13.

Now, C = C>λ ⊕ U for some U ⊆ V0 ∪ · · · ∪ Vλ−1 ⊆ Vi+1. It follows that C ∈ C∗
i+1. ⌟

Since C∗ ⊆ C∗
0 (this holds since (∅, 0) ∈ C∗

G) it follows by induction that

cl
(i)
k (C∗) ⊆ C∗

i (6)

for all i ∈ {0, . . . , ⌊ℓ/2k⌋} using Claim 5.17. So it only remains the prove the following claim.

24

Claim 5.18. {xℓ} /∈ C∗
r−1.

Proof. Let C ∈ C∗
r−1 such that C∩Vℓ ̸= ∅. Also pick D ∈ C∗

G and U ⊆ Vr−1 such that C = D⊕U
(which exist by the definition of C∗

r−1). We have that

U ⊆ Vr−1 =

2k(r−1)⋃
i=0

Vi ⊆
ℓ−2k⋃
i=0

Vi.

Let Y ⊆ W such that |Y | ≤ k
α < k and D =

⊕
w∈Y N(w). Let λ ∈ [ℓ] be the maximal number

such that Y ∩Wλ = ∅. Note that λ > ℓ − k since |Y | < k. Now let D′ :=
⊕

w∈Y ∩W>λ
N(w)

where W>λ :=
⋃

µ>λWµ. Then D′ = C ∩ (Vλ ∪ · · · ∪ Vℓ) and hence, |D′| ≤ k. It follows that
D′ ∈ cl∗k,α(CG). Also |D′| ≥ 1 since C∩Vℓ ̸= ∅. So |D′| ≥ 2 by Lemma 5.14 and thus, |C| ≥ 2. ⌟

Finally, we require one more technical lemma that allows us to add the XOR-constraint
({xℓ}, 1) to the final constraint set.

Lemma 5.19. Let k ≥ 2 and r ≥ 1. Let V be a finite set and let C be a set of XOR-constraints
over V . Let x0 ∈ V and define β0 : {x0} → {0, 1} via β0(x0) = 1. If Verifier wins Gr

k(V, C, β0),
then Verifier also wins Gr

k−1(V, C ∪ {({x0}, 1)}, ∅).

Proof. Consider a position β : X → {0, 1} of the game Gr
k−1(V, C ∪ {({x0}, 1)}, ∅). Throughout

the game, by following a winning strategy for Gr
k(V, C, β0), Verifier can maintain the following

properties after every round ℓ ∈ [0, r]:

(i) If x0 ∈ X, then β(x0) = 1, and

(ii) Verifier wins the game Gr−ℓ
k (V, C, β′) where β′ : X ∪ {x0} → {0, 1} is defined via β′(x) :=

β(x) for all x ∈ X and β(x0) := 1.

Observe that the condition is satisfied initially since Verifier wins Gr
k(W, C, β0). All positions

reached this way clearly satisfy all XOR-constraints in C∪{({x0}, 1)} which implies that Verifier
wins Gr

k−1(W, C ∪ {({x0}, 1)}, ∅).

With this, we are ready to prove Lemma 5.2.

Proof of Lemma 5.2. Let R0 ≥ 9 denote the constant from Corollary 5.12 and define ℓlo :=
R0 + 1. Let d := R0, α := 1

4d− 1 > 1 and γ := 1
20d . Let ℓhi ≥ ℓlo and r ≥ 1 be given. We define

k := ℓhi + 1. Also, let m := 2 · k
γ = 40dk ≥ 4d and ℓ := 2k(r + 1).

By Corollary 5.12, there is an (α, γ)-single-neighbor (ℓ×m)-layered expander G = (V,W,E)
such that deg(w) = d+ 1 for all w ∈W . Let V0, . . . , Vℓ and W1, . . . ,Wℓ denote the layers of G.
Also fix some arbitrary element xℓ ∈ Vℓ. We define

C := CG ∪ {({x}, 0) | x ∈ V0} ∪ {({xℓ}, 1)}.

Note that C is a set of XOR-constraints over V of arity at most d+ 1 = ℓlo.
To complete the proof, we show that C has the desired properties. First,

|V | = (ℓ+ 1)m = (2k(r + 1) + 1)40dk ≤ 8kr · 40dk = 320R0(ℓhi + 1)2r ≤ δ · ℓ2hi · r

for some suitable absolute constant δ. Moreover, Falsifier wins the ℓlo-pebble game Gℓlo(V, C, ∅)
by Lemma 5.15. Finally, by Lemma 5.16, Verifier wins Gr

k(V, C\{({xℓ}, 1)}, βℓ) where βℓ : {xℓ} →
{0, 1} is the partial assignment defined via βℓ(xℓ) = 1. So Verifier wins the r-round ℓhi-pebble
game Gr

ℓhi
(V, C, ∅) by Lemma 5.19.

25

6 Trading Variable Number for Quantifier Depth

In this section, we investigate tradeoffs between the number of variables and the quantifier rank
of formulas used to distinguish relational structures. More concretely, suppose A and B are
two structures of size n that are distinguished by k-WL. By Corollary 2.2, there is a formula
φ ∈ Ck+1 such that A |= φ and B ̸|= φ. Using Theorem 1.1, we may assume that φ has
quantifier rank at most O(knk−1 log n). In this section, we show that there are sentences ψ
that distinguish between A and B with smaller quantifier rank if we are allowed to increase the
number of variables by some function in k. In other words, we can show improved bounds on
the number of WL-iterations required to distinguish between A and B (compared to Theorem
1.1) by increasing the dimension of the WL-algorithm.

Theorem 6.1 (Theorem 1.6 restated). Let k ≥ 2. Let A and B be two relational structures of
arity at most k such that n := |V (A)| = |V (B)|. Also suppose there is a sentence φ ∈ Ck+1 such
that A |= φ and B ̸|= φ. Let d := ⌈3(k+1)

2 ⌉. Then there is a sentence ψ ∈ C
(q)
d of quantifier rank

q = O(k2 · n⌊k/2⌋+1 log n) such that A |= ψ and B ̸|= ψ.

Toward the proof of this theorem, let us fix some k ≥ 2 and suppose that k is odd, i.e.,
k = 2ℓ − 1 for some integer ℓ ≥ 2 (this is the crucial case). Let A be a relational structure of
arity at most k. We translate A into a binary structure (i.e., a structure of arity at most two)
Bin(A) defined as follows. The universe of Bin(A) is set to

V (Bin(A)) := (V (A))ℓ.

For every atomic type typ ∈ {atpA(v) | v ∈ (V (A))2ℓ} (on 2ℓ vertices) we introduce a binary
relation symbol Rtyp and set

R
Bin(A)
typ :=

{(
(v1, . . . , vℓ), (vℓ+1, . . . , v2ℓ)

) ∣∣ atpA(v1, . . . , v2ℓ) = typ
}
.

Now, the key idea behind the proof of Theorem 6.1 is to use d variables to simulate the
execution of 2-WL on the binary structure Bin(A). We can then obtain the upper bound on the
quantifier rank by exploiting that 2-WL stabilizes after at most O(n log n) rounds (see Theorem
1.1).

The next lemma translates a formula that distinguishes between Bin(A) and Bin(B) into a
formula distinguishing A and B.

Lemma 6.2. Let A and B be two relational structures of arity at most k. Suppose there is a
sentence φ ∈ C

(q)
d such that Bin(A) |= φ and Bin(B) ̸|= φ. Then there is a sentence φ̃ ∈ C

(q·ℓ)
d·ℓ

such that A |= φ̃ and B ̸|= φ̃.

The proof of the lemma is a standard syntactic translation (see, e.g., [21, Chapter 1.5]) and
we omit the details here.

Lemma 6.3. Let A and B be two relational structures of arity at most k such that Bin(A) ≃2

Bin(B). Then A ≃k B.

Proof. Consider an arbitrary structure C and define χ2 := χ
(∞)
2 [Bin(C)] to be the coloring

computed by 2-WL on the structure Bin(C). We define a coloring χ : (V (C))k → C by setting

χ(v1, . . . , vk) := χ2((v1, . . . , vℓ), (vℓ+1, . . . , vk−1, vk, vk)).

Claim 6.4. Suppose atpC(v1, . . . , vk) ̸= atpC(v
′
1, . . . , v

′
k). Then χ(v1, . . . , vk) ̸= χ(v′1, . . . , v

′
k).

26

Proof. Let typ := atpC(v1, . . . , vk−1, vk, vk). Then ((v1, . . . , vℓ), (vℓ+1, . . . , vk, vk)) ∈ R
Bin(C)
typ , but

on the other hand ((v′1, . . . , v
′
ℓ), (v

′
ℓ+1, . . . , v

′
k, v

′
k)) /∈ R

Bin(C)
typ . So

atpBin(C)((v1, . . . , vℓ), (vℓ+1, . . . , vk, vk)) ̸= atpBin(C)((v
′
1, . . . , v

′
ℓ), (v

′
ℓ+1, . . . , v

′
k, v

′
k))

which implies that

χ2((v1, . . . , vℓ), (vℓ+1, . . . , vk, vk)) ̸= χ2((v
′
1, . . . , v

′
ℓ), (v

′
ℓ+1, . . . , v

′
k, v

′
k)).

This directly implies the claim. ⌟

Claim 6.5. χ is k-stable.

Proof. Let v,v′ ∈ (V (C))k such that χ(v) = χ(v′). Suppose v = (v1, . . . , vk) and v′ =
(v′1, . . . , v

′
k). Let us write v1 := (v1, . . . , vℓ) for the “first half” of v, and v2 := (vℓ+1, . . . , vk)

for the “second half”. Note that v2 has only ℓ − 1 entries since k = 2ℓ − 1. Similarly, we
define v′

1 := (v′1, . . . , v
′
ℓ) and v′

2 := (v′ℓ+1, . . . , v
′
k). For w ∈ V (C) we write v2 ◦ w for the tuple

(vℓ+1, . . . , vk, w) obtained from v2 by appending w. The tuple v′
2 ◦ w is defined analogously.

Since χ2 is 2-stable and χ2(v1,v2 ◦ vk) = χ2(v
′
1,v

′
2 ◦ v′k), we conclude that{{(

χ2(v1,w), χ2(w,v2 ◦ vk)
) ∣∣∣ w ∈ (V (C))ℓ

}}
=
{{(

χ2(v
′
1,w), χ2(w,v

′
2 ◦ v′k)

) ∣∣∣ w ∈ (V (C))ℓ
}}
.

Using that χ2 refines the coloring by atomic types, it follows that{{(
χ2(v1,v2 ◦ w), χ2(v2 ◦ w,v2 ◦ vk)

) ∣∣∣ w ∈ V (C)
}}

=
{{(

χ2(v
′
1,v

′
2 ◦ w), χ2(v

′
2 ◦ w,v′

2 ◦ v′k)
) ∣∣∣ w ∈ V (C)

}}
.

In particular, we get that{{
χ2(v1,v2 ◦ w)

∣∣∣ w ∈ V (C)
}}

=
{{
χ2(v

′
1,v

′
2 ◦ w)

∣∣∣ w ∈ V (C)
}}
.

Now let w,w′ ∈ V (C) such that χ2(v1,v2 ◦ w) = χ2(v
′
1,v

′
2 ◦ w′). Then

χ(v[w/i]) = χ(v′[w′/i])

for all i ∈ [k] using again that χ2 is 2-stable and refines the coloring by atomic types. It follows
that{{(

χ(v[w/1]), . . . , χ(v[w/k])
) ∣∣∣ w ∈ V (C)

}}
=
{{(

χ(v′[w/1]), . . . , χ(v′[w/k])
) ∣∣∣ w ∈ V (C)

}}
.

Overall, this implies that χ is k-stable. ⌟

Combining both claims, we obtain that χ ⪯ χ
(∞)
k [C]. Now, we complete the proof by setting

C to the disjoint union of A and B.

Proof of Theorem 6.1. First suppose that k odd, i.e., k = 2ℓ − 1 for some integer ℓ ≥ 2. Since
there is a sentence φ ∈ Ck+1 such that A |= φ and B ̸|= φ, we conclude that A ̸≃k B using
Corollary 2.2. So Bin(A) ̸≃2 Bin(B) by Lemma 6.3. By Theorem 1.1, the 2-WL algorithm
distinguishes between Bin(A) and Bin(B) after at most r = O(|V (Bin(A))| log |V (Bin(A))|) =
O(ℓ ·nℓ · log n) many refinement rounds. Using Corollary 2.2 again, this means there is a sentence
φ′ ∈ C

(r)
3 such that Bin(A) |= φ′ and Bin(B) ̸|= φ′. So there is a sentence ψ ∈ C

(r·ℓ)
3·ℓ such that

A |= ψ and B ̸|= ψ using Lemma 6.2. Note that 3ℓ = 3 · k+1
2 = d and r · ℓ = O(ℓ2 · nℓ · log n) =

O(k2 · n(k+1)/2 log n).
For k being even, the statement the of theorem follows by applying the first case to k′ =

k + 1.

27

7 Conclusion

We obtained new upper and lower bounds for the iteration number of the WL algorithm. First,
we showed that k-WL always stabilizes after at most O(knk−1 log n) rounds for all k ≥ 2, which
is the first non-trivial upper bound on the iteration number for k ≥ 3. We complemented this
result by a lower bound of nΩ(k) which improves over the previously known lower bound of
nΩ(k/ log k) [3]. Finally, we also investigated tradeoffs between the dimension and the iteration
number of WL. Using known characterizations of WL, our results also imply upper and lower
bounds on the quantifier rank of formulas in Ck required to distinguish between two structures.

Still, several questions remain open. The first question concerns the iteration number of
k-WL on graphs. The structures on which our lower bounds hold are n-element structures of
arity Θ(k) and size nΘ(k), and the increase in arity is inherent in the hardness condensation
from [3]. The best known lower bound on the iteration number of k-WL on graphs is Ω(n) due
to Fürer [5]. As an intermediate question, one can also ask for improved lower bounds in the
size of the structure (i.e., the sum of the sizes of all relations), i.e., are there structures on which
the iteration number of k-WL exceeds Ω(m) where m denotes the size of the structure?

Our next question concerns the quantifier rank of formulas in Lk. While our lower bounds
extend to the logic Lk (see Theorem 1.5), this is not the case for the upper bounds that crucially
rely on the availability of counting quantifiers. A non-trivial upper bound of O(n2/ log n) on the
quantifier rank of formulas in L3 has been obtained in [14]. Can we also obtain improved upper
bounds on the quantifier rank of formulas in Lk for k ≥ 4?

Finally, we ask for further results on tradeoffs between the variable number and the quantifier
rank. Specifically, is there an integer d ≥ 3 such that, for all structures A and B of size n
distinguished by 3-WL, d-WL distinguishes between A and B in at most Õ(n) rounds (where
Õ(·) hides polylogarithmic factors)? We remark that even d = 3 may be a valid choice, but any
d ≥ 3 is sufficient to obtain further tradeoffs in the spirit of Theorem 1.6.

References
[1] László Babai. Graph isomorphism in quasipolynomial time [extended abstract]. In Daniel Wichs

and Yishay Mansour, editors, Proceedings of the 48th Annual ACM SIGACT Symposium on Theory
of Computing, STOC 2016, Cambridge, MA, USA, June 18-21, 2016, pages 684–697. ACM, 2016.
doi:10.1145/2897518.2897542.

[2] László Babai and Péter Frankl. Linear algebra methods in combinatorics. University of Chicago,
2020.

[3] Christoph Berkholz and Jakob Nordström. Near-optimal lower bounds on quantifier depth and
Weisfeiler-Leman refinement steps. In Martin Grohe, Eric Koskinen, and Natarajan Shankar, edi-
tors, Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science, LICS
’16, New York, NY, USA, July 5-8, 2016, pages 267–276. ACM, 2016. doi:10.1145/2933575.
2934560.

[4] Jin-yi Cai, Martin Fürer, and Neil Immerman. An optimal lower bound on the number of variables
for graph identification. Comb., 12(4):389–410, 1992. doi:10.1007/BF01305232.

[5] Martin Fürer. Weisfeiler-Lehman refinement requires at least a linear number of iterations. In
Fernando Orejas, Paul G. Spirakis, and Jan van Leeuwen, editors, Automata, Languages and
Programming, 28th International Colloquium, ICALP 2001, Crete, Greece, July 8-12, 2001, Pro-
ceedings, volume 2076 of Lecture Notes in Computer Science, pages 322–333. Springer, 2001.
doi:10.1007/3-540-48224-5_27.

[6] Martin Grohe. The quest for a logic capturing PTIME. In Proceedings of the Twenty-Third Annual
IEEE Symposium on Logic in Computer Science, LICS 2008, 24-27 June 2008, Pittsburgh, PA,
USA, pages 267–271. IEEE Computer Society, 2008. doi:10.1109/LICS.2008.11.

[7] Martin Grohe. Descriptive Complexity, Canonisation, and Definable Graph Structure Theory, vol-
ume 47 of Lecture Notes in Logic. Cambridge University Press, 2017. doi:10.1017/9781139028868.

28

https://doi.org/10.1145/2897518.2897542
https://doi.org/10.1145/2933575.2934560
https://doi.org/10.1145/2933575.2934560
https://doi.org/10.1007/BF01305232
https://doi.org/10.1007/3-540-48224-5_27
https://doi.org/10.1109/LICS.2008.11
https://doi.org/10.1017/9781139028868

[8] Martin Grohe. The logic of graph neural networks. In 36th Annual ACM/IEEE Symposium on
Logic in Computer Science, LICS 2021, Rome, Italy, June 29 - July 2, 2021, pages 1–17. IEEE,
2021. doi:10.1109/LICS52264.2021.9470677.

[9] Martin Grohe and Sandra Kiefer. Logarithmic weisfeiler-leman identifies all planar graphs. In Nikhil
Bansal, Emanuela Merelli, and James Worrell, editors, 48th International Colloquium on Automata,
Languages, and Programming, ICALP 2021, July 12-16, 2021, Glasgow, Scotland (Virtual Confer-
ence), volume 198 of LIPIcs, pages 134:1–134:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2021. doi:10.4230/LIPIcs.ICALP.2021.134.

[10] Martin Grohe and Oleg Verbitsky. Testing graph isomorphism in parallel by playing a game. In
Michele Bugliesi, Bart Preneel, Vladimiro Sassone, and Ingo Wegener, editors, Automata, Languages
and Programming, 33rd International Colloquium, ICALP 2006, Venice, Italy, July 10-14, 2006,
Proceedings, Part I, volume 4051 of Lecture Notes in Computer Science, pages 3–14. Springer, 2006.
doi:10.1007/11786986_2.

[11] Neil Immerman and Eric Lander. Describing graphs: A first-order approach to graph canonization.
In Alan L. Selman, editor, Complexity Theory Retrospective: In Honor of Juris Hartmanis on the
Occasion of His Sixtieth Birthday, July 5, 1988, pages 59–81. Springer New York, New York, NY,
1990. doi:10.1007/978-1-4612-4478-3_5.

[12] Sandra Kiefer and Brendan D. McKay. The iteration number of colour refinement. In Artur Czu-
maj, Anuj Dawar, and Emanuela Merelli, editors, 47th International Colloquium on Automata,
Languages, and Programming, ICALP 2020, July 8-11, 2020, Saarbrücken, Germany (Virtual Con-
ference), volume 168 of LIPIcs, pages 73:1–73:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2020. doi:10.4230/LIPIcs.ICALP.2020.73.

[13] Sandra Kiefer and Daniel Neuen. The power of the weisfeiler-leman algorithm to decompose graphs.
SIAM J. Discret. Math., 36(1):252–298, 2022. doi:10.1137/20m1314987.

[14] Sandra Kiefer and Pascal Schweitzer. Upper bounds on the quantifier depth for graph differentiation
in first-order logic. Log. Methods Comput. Sci., 15(2), 2019. doi:10.23638/LMCS-15(2:19)2019.

[15] Moritz Lichter, Ilia Ponomarenko, and Pascal Schweitzer. Walk refinement, walk logic, and the
iteration number of the Weisfeiler-Leman algorithm. In 34th Annual ACM/IEEE Symposium on
Logic in Computer Science, LICS 2019, Vancouver, BC, Canada, June 24-27, 2019, pages 1–13.
IEEE, 2019. doi:10.1109/LICS.2019.8785694.

[16] Christopher Morris, Yaron Lipman, Haggai Maron, Bastian Rieck, Nils M. Kriege, Martin Grohe,
Matthias Fey, and Karsten M. Borgwardt. Weisfeiler and Leman go machine learning: The story
so far. CoRR, abs/2112.09992, 2021. URL: https://arxiv.org/abs/2112.09992, arXiv:2112.
09992.

[17] Christopher Morris, Martin Ritzert, Matthias Fey, William L. Hamilton, Jan Eric Lenssen, Gaurav
Rattan, and Martin Grohe. Weisfeiler and Leman go neural: Higher-order graph neural networks. In
The Thirty-Third AAAI Conference on Artificial Intelligence, AAAI 2019, The Thirty-First Inno-
vative Applications of Artificial Intelligence Conference, IAAI 2019, The Ninth AAAI Symposium
on Educational Advances in Artificial Intelligence, EAAI 2019, Honolulu, Hawaii, USA, January
27 - February 1, 2019, pages 4602–4609. AAAI Press, 2019. doi:10.1609/aaai.v33i01.33014602.

[18] Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms. Cambridge University Press,
1995. doi:10.1017/cbo9780511814075.

[19] Daniel Neuen. Isomorphism testing parameterized by genus and beyond. In Petra Mutzel, Rasmus
Pagh, and Grzegorz Herman, editors, 29th Annual European Symposium on Algorithms, ESA 2021,
September 6-8, 2021, Lisbon, Portugal (Virtual Conference), volume 204 of LIPIcs, pages 72:1–72:18.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPIcs.ESA.2021.72.

[20] Daniel Neuen. Isomorphism testing for graphs excluding small topological subgraphs. In
Joseph (Seffi) Naor and Niv Buchbinder, editors, Proceedings of the 2022 ACM-SIAM Symposium
on Discrete Algorithms, SODA 2022, Virtual Conference / Alexandria, VA, USA, January 9 - 12,
2022, pages 1411–1434. SIAM, 2022. doi:10.1137/1.9781611977073.59.

[21] Martin Otto. Bounded Variable Logics and Counting: A Study in Finite Models, volume 9 of Lecture
Notes in Logic. Cambridge University Press, 2017. doi:10.1017/9781316716878.

29

https://doi.org/10.1109/LICS52264.2021.9470677
https://doi.org/10.4230/LIPIcs.ICALP.2021.134
https://doi.org/10.1007/11786986_2
https://doi.org/10.1007/978-1-4612-4478-3_5
https://doi.org/10.4230/LIPIcs.ICALP.2020.73
https://doi.org/10.1137/20m1314987
https://doi.org/10.23638/LMCS-15(2:19)2019
https://doi.org/10.1109/LICS.2019.8785694
https://arxiv.org/abs/2112.09992
http://arxiv.org/abs/2112.09992
http://arxiv.org/abs/2112.09992
https://doi.org/10.1609/aaai.v33i01.33014602
https://doi.org/10.1017/cbo9780511814075
https://doi.org/10.4230/LIPIcs.ESA.2021.72
https://doi.org/10.1137/1.9781611977073.59
https://doi.org/10.1017/9781316716878

[22] Nino Shervashidze, Pascal Schweitzer, Erik Jan van Leeuwen, Kurt Mehlhorn, and Karsten M.
Borgwardt. Weisfeiler-Lehman graph kernels. J. Mach. Learn. Res., 12:2539–2561, 2011. URL:
https://dl.acm.org/doi/10.5555/1953048.2078187.

[23] Xiaorui Sun and John Wilmes. Faster canonical forms for primitive coherent configurations: Ex-
tended abstract. In Rocco A. Servedio and Ronitt Rubinfeld, editors, Proceedings of the Forty-
Seventh Annual ACM on Symposium on Theory of Computing, STOC 2015, Portland, OR, USA,
June 14-17, 2015, pages 693–702. ACM, 2015. doi:10.1145/2746539.2746617.

[24] Salil P. Vadhan. Pseudorandomness. Found. Trends Theor. Comput. Sci., 7(1-3):1–336, 2012.
doi:10.1561/0400000010.

[25] Oleg Verbitsky. Planar graphs: Logical complexity and parallel isomorphism tests. In Wolfgang
Thomas and Pascal Weil, editors, STACS 2007, 24th Annual Symposium on Theoretical Aspects of
Computer Science, Aachen, Germany, February 22-24, 2007, Proceedings, volume 4393 of Lecture
Notes in Computer Science, pages 682–693. Springer, 2007. doi:10.1007/978-3-540-70918-3\
_58.

[26] Boris Weisfeiler and Andrei Leman. The reduction of a graph to canonical form and the algebra
which appears therein. NTI, Series 2, 1968. English translation by Grigory Ryabov available at
https://www.iti.zcu.cz/wl2018/pdf/wl_paper_translation.pdf.

[27] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In 7th International Conference on Learning Representations, ICLR 2019, New Orleans,
LA, USA, May 6-9, 2019. OpenReview.net, 2019. URL: https://openreview.net/forum?id=
ryGs6iA5Km.

[28] Alexander Zimmermann. Representation theory, volume 19 of Algebra and Applications. Springer,
Cham, 2014. A homological algebra point of view. doi:10.1007/978-3-319-07968-4.

30

https://dl.acm.org/doi/10.5555/1953048.2078187
https://doi.org/10.1145/2746539.2746617
https://doi.org/10.1561/0400000010
https://doi.org/10.1007/978-3-540-70918-3_58
https://doi.org/10.1007/978-3-540-70918-3_58
https://www.iti.zcu.cz/wl2018/pdf/wl_paper_translation.pdf
https://openreview.net/forum?id=ryGs6iA5Km
https://openreview.net/forum?id=ryGs6iA5Km
https://doi.org/10.1007/978-3-319-07968-4

	Introduction
	Preliminaries
	Upper Bounds
	Long Sequences of Stable Colorings
	Lower Bounds on the Iteration Number of WL
	Overview
	The Closure of the Constraint Set
	Layered Graphs and Expansion
	Expander Graphs
	Layered Graphs

	Constraint Sets from Layered Expanders

	Trading Variable Number for Quantifier Depth
	Conclusion

