
Folding interpretations∗

Mikołaj Bojańczyk (University of Warsaw)

Abstract
We study the polyregular string-to-string functions, which
are certain functions of polynomial output size that can be
described using automata and logic. We describe a system of
combinators that generates exactly these functions. Unlike
previous systems, the present system includes an iteration
mechanism, namely fold. Although unrestricted fold can
define all primitive recursive functions, we identify a type
system (inspired by linear logic) that restricts fold so that it
defines exactly the polyregular functions. We also present
related systems, for quantifier-free functions as well as for
linear regular functions on both strings and trees.

1 Introduction
This paper is about transducers that compute string-to-string
functions. (We also have some results on trees, but trees will
be discussed only at the end of the paper.) We are interested
in two classes of functions: the linear regular functions1,
which have linear output size, and the polyregular functions,
which have polynomial output size. Both classes can be de-
scribed by many equivalent models, and have robust closure
properties.

Let us begin with the more established class of linear
regular functions. Two typical example functions from this
class are:

(︀1, 2, 3⌋︀↦ (︀1, 2, 3, 1, 2, 3⌋︀
)︁⌊︂]︂⌊︂)︂

duplicate

(︀1, 2, 3⌋︀↦ (︀3, 2, 1⌋︀
)︁⌊︂]︂⌊︂)︂

reverse

.

The linear regular functions can be described by many equiv-
alent models, including: deterministic two-way automata
with output [27, Note 4], mso transductions [14, Section 4],
streaming string transducers [1, Section 3], an extension of
regular expressions [3, Section 2], and a calculus based on
combinators [7, Theorem 6.1]. The many equivalent models,
as well as the robustness and good decidability properties
of the underlying class, are comparable to similar properties
for the regular languages, which also have many equivalent
descriptions, including automata, logic and regular expres-
sions. For this reason, the linear regular functions have been
intensively studied in the last decade.

The second class is the polyregular functions, which ex-
tended the linear regular functions by allowing polynomial
growth, including functions such as the squaring operation

(︀1, 2, 3⌋︀↦ (︀1, 2, 3, 1, 2, 3, 1, 2, 3⌋︀.

∗This is the author’s version of a LICS 2023 paper.
1These are usually called the regular functions in the literature, but we add
the word “linear” to distinguish them from the polyregular functions.

Similarly to the linear regular functions, the polyregular func-
tions can also be described by multiple models, including:
string-to-string pebble transducers, which are introduced
in [15, Section 1] based on [16, Definition 1.5] and [24, Sec-
tion 3.1], as well as an imperative programming language [5,
Section 3], a functional programming language [5, Section
4], and a polynomial extension of mso transductions [9, Def-
inition 2]. For a survey of the polyregular functions, see [6].

Combinators. This paper studies the linear regular and
polyregular functions by using systems based on prime func-
tions and combinators. This approach dates back to the
Krohn-Rhodes Theorem [20, p. 454], and was first applied to
linear regular functions in [7], by describing them in terms
of certain prime functions, such as

1 + Σ × Σ∗ → Σ∗ list constructor,

and combinators such as
Σ → Γ Γ → Δ

Σ → Δ
function composition.

This system is further extended in [5, p. 64] to cover the
polyregular functions, by adding extra prime functions of
non-linear output size, such as the squaring operation.

The systems in [5, 7] have no constructions for iteration;
because of this design decision, the hard part is proving com-
pleteness: every function of interest can be derived in the
system. One reason for avoiding iteration is to have a mini-
mal system. Another reason is that iteration constructions
are powerful, and as we find out in this paper, it is hard to add
them while retaining soundness (only functions of interest
can be derived).

The fold combinator. In this paper, we take the opposite
approach, by studying an iteration construction, namely the
fold combinator. This combinator can be written as a rule

1→ Γ Γ × Σ → Γ

Σ∗ → Γ
fold.

The assumption of this rule can be seen as a deterministic
automaton with input alphabet Σ and state space Γ, given by
its initial state and transition function. In the conclusion of
the rule, we have the function that maps an input string to
the last state of the run of the automaton. The input alphabet
and the state space need not be finite, e.g. the state space Γ
could be the set 1∗ which represents the natural numbers.

Folding is a fundamental construction in functional pro-
gramming languages. For example, the fold combinator arises
canonically from the inductive definition of the list type [19,
Section 3]. Unfortunately, there is a price to pay for the
power and elegance of the fold combinator: one can use it
to derive all primitive recursive functions [19, Section 4.1].

ar
X

iv
:2

30
1.

05
10

1v
2

 [
cs

.L
O

]
 2

6
A

pr
 2

02
3

Therefore, without any further restrictions, the fold com-
binator falls outside the scope of automata techniques, or
any other techniques that can be used to decide semantic
properties of programs, such as the halting problem.

This paper is devoted to identifying restrictions on the
fold combinator that tame its expressive power. These restric-
tions are presented as a typing system, which ensures that
applications of fold will stay in the class of polyregular func-
tions. In particular, the resulting class of functions shares the
decidability properties of the polyregular functions, e.g. one
can decide if a function produces a nonempty output for at
least one input.

There are two main contributions in the paper.

Quantifier-free interpretations. The first contribution
is to identify the quantifier-free interpretations as an im-
portant class of functions in the context of fold. These are
functions on structures in which the universe of the output
is a subset of the universe of the input (in particular, the
output size is linear), and all relations in the output structure
are defined using quantifier-free formulas.

In Theorem 3.2 we show that applying the fold combi-
nator to a quantifier-free interpretation yields a function
that, although not necessarily quantifier-free, is at least lin-
ear regular. This result subsumes several existing results, in
particular those about mso definability of streaming trans-
ducers [2, 3]. Although quantifier-free interpretations are
rather weak, they can describe most natural transformations
that are used as primes in the calculi from [5, 7]; the remain-
ing primes can then be derived using fold.

Having identified the importance of quantifier-free func-
tions, in Theorem 4.1, we present a system of prime functions
and combinators that derives exactly the quantifier-free func-
tions. The completeness proof of the system is the longest
proof in the paper. The quantifier-free system does not al-
low fold; fold is used in the next part of the paper, about
polyregular functions.

Safe fold. The second main contribution is a type system
that tames the power of fold. This system uses a type con-
structor ! and bears certain similarities to the parsimonius
calculus of Mazza [23, Section 2.2]. The latter is part of a field
called implicit computational complexity, which seeks to de-
scribe complexity classes using type systems. An influential
example of this kind is a system of Bellantoni and Cook [4],
which characterizes polynomial time. The present paper can
be seen as part of implicit computational complexity, which
targets regular languages instead of Turing complete models,
such as logarithmic space or polymomial time. For a more
detailed discussion of the connections between regular lan-
guages and _-calculus, including a pioneering applicaton of
linear types, see [25, 26].

The usual application of ! is to restrict duplication, and
this paper is no exception, as in the following example:

𝑥 ↦ (𝑥, 𝑥)
)︁⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂]︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂)︂
not allowed

!𝑥 ↦ (!𝑥, 𝑥)
)︁⌊︂]︂⌊︂)︂

allowed

.

However, apart from restricting duplication, ! is also used
in this paper to restrict another, more mysterious, resource,
namely quantifiers. The idea is that our system uses ! to
describe functions that are not necessarily quantifier-free,
but are similar enough to quantifier-free functions so that
the fold combinator can be applied to them.

The second main contribution of this paper is Theorem 5.3,
which characterizes the polyregular functions using certain
prime functions and combinators, in which the types involve
! and one of the combinators is fold. In Theorem 6.1 we also
show that if we further restrict duplication

!𝑥 ↦ (!𝑥, 𝑥)
)︁⌊︂]︂⌊︂)︂

not allowed

!𝑥 ↦ (𝑥, 𝑥)
)︁⌊︂]︂⌊︂)︂

allowed

,

then the resulting system derives exactly the linear functions.
Finally, we also show that the results about the linear case
can be extended from strings to trees without much difficulty.

Acknowledgement. I would like to thank Lê Thành Dung
Nguyên and the anonymous reviewers for many helpful com-
ments. This work was financially supported by the Lever-
hulme Trust, and the Polish National Agency for Academic
Exchange.

2 Interpretations
In this section, we describe the polyregular functions. Among
several equivalent definitions of the polyregular functions,
our point of departure in this paper will be a definition that
uses mso interpretations [9, Section 2].

2.1 Definition of mso interpretations
We assume that the reader is familiar with the basics of
monadic second-order logic mso, see [18] for an introduc-
tion. We only describe the notation that we use. A vocabulary
consists of a finite set of relation names, each one with an
associated arity in {0, 1, . . .}. Note that we allow nullary re-
lations, i.e. relations of arity zero; such a relation takes no
arguments and is “true” or “false” in each structure. A struc-
ture over such a vocabulary consists of a finite set, possibly
empty, called the universe of the structure, and an interpre-
tation of the vocabulary, which associates to each relation
name in the vocabulary a relation over the universe of match-
ing arity. The syntax and semantics of mso is defined in the
usual way. Whenever we speak of a class of structures, all
structures in the class must be over the same vocabulary,
and the class must be closed under isomorphism. The struc-
tures considered in this paper will be used to describe finite
strings and similar objects, such as pairs of strings, or strings
of pairs of strings.

2

Intuitive description. We begin with an intuitive de-
scription of string-to-string mso intepretations. Following
the classical Büchi-Elgot-Trakhtenbrot correspondence of
automata and mso logic, we view strings as structures.

Definition 2.1. A string in Σ∗ is viewed as a structure whose
universe is the string positions, equipped with the relations

𝑥 ≤ 𝑦
⧸︀

order on positions

𝑎(𝑥)
⧸︀

𝑥 has label 𝑎 ∈ Σ

.

A string-to-string mso interpretation transforms strings
using the above representation, such that the positions of
the output string are represented by 𝑘-tuples of positions
in the input string, for some 𝑘 ∈ {0, 1, . . . }. The order2 on
output positions is defined by a formula

𝜑(𝑥1, . . . , 𝑥𝑘
)︁⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂]︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂)︂
first output

position

,𝑦1, . . . ,𝑦𝑘
)︁⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂]︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂)︂

second output
position

)

with 2𝑘 free variables, while the labels of the output positions
are defined by formulas with 𝑘 free variables, one for each
letter in the output alphabet. Finally, not all 𝑘-tuples of input
positions need to participate in the output string; there is a
formula with 𝑘 free variables, called the universe formula,
which selects those that do. All of these formulas need to be
consistent – every 𝑘-tuple of positions in the input string
that satisfies the universe formula must satisfy exactly one
of the label formulas, and these 𝑘-tuples need to be linearly
ordered by the order formula. Consistency is decidable, since
it boils down to checking if some mso formula is true in all
strings, which in turn boils down to checking if automaton is
nonempty by the equivalence of mso and regular languages.

Formal definition. We now give a formal definition of
mso interpretations. The formal definition generalizes the
above intuitive description in two ways of minor importance.
First, the definition is presented not just for strings, but for
general classes of structures; we intend to apply it to mild
generalizations of strings, such as pairs of strings or strings
of strings. Second, instead of the universe being 𝑘-tuples
of some fixed dimension, it is created using a polynomial
functor, which is an operation on sets of the form

𝐹(𝐴) = 𝐴𝑘1 +⋯ +𝐴𝑘𝑛 . (1)

Typical polynomial functors include the identity functor
𝐴, or the functor 𝐴2 +𝐴2 that produces two copies of the
square of the input set. We use the following terminology for
polynomial functors: each 𝐴𝑘𝑖 is called a component of the
polynomial functor, and 𝑘𝑖 ∈ {0, 1, . . .} is called the dimen-
sion of this component. This extra generality of polynomial

2For reasons described in [9, Theorem 4], the string positions are equipped
with a linear order 𝑥 ≥ 𝑦 instead of successor 𝑥 = 𝑦 + 1.

functors3 makes the definition more robust, it will be useful
in a more refined analysis of mso interpretations that will
appear in Section 5.3. In case of linear functors (where all
components have dimension at most one), the components
correspond to the copies in an mso transduction [14, p. 230].

In an mso interpretation, the polynomial functor is used
to define the universe of the output structure; if𝐴 is an input
structure then elements of 𝐹(𝐴) are called output candidates.
A subset of the output candidates will be the universe of
the output structure. This subset is defined using an mso
query of type 𝐹 , which is a family of mso formulas, with
one formula for each component in the functor, such that
number of free variables in each formula is the dimension of
the corresponding component. Here are some examples:

𝐴0 = 1
)︁⌊︂⌊︂⌊︂⌊︂⌊︂]︂⌊︂⌊︂⌊︂⌊︂⌊︂)︂

a query of this type
is a formula without

free variables

𝐴4

⃒
a query of this type

is a formula with
four free variables

𝐴2 +𝐴2

)︁⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂]︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂)︂
a query of this type
is two formulas with

two free variables each

The relations in the output structure are also defined using
mso queries, with a relation of arity𝑚 defined using a query
of type

𝐹𝑚(𝐴) def= 𝐹(𝐴) ×⋯ × 𝐹(𝐴)
)︁⌊︂]︂⌊︂)︂

𝑚 times

The above type is also a polynomial functor, since polynomial
functors are closed under taking products, e.g. the product of
𝐴2 and 𝐴+1 is 𝐴3 +𝐴2. The discussion above is summarized
in the following definition.

Definition 2.2 (mso interpretation). A function 𝑓 ∶ Σ → Γ
between two classes of structures is called an mso interpretation
if:

1. Universe. There is a polynomial functor 𝐹 and a mso
query of type 𝐹 such that for every input structure𝐴 ∈ Σ,
the universe of the output structure is the subset of the
output candidates 𝐹(𝐴) defined by this query; and

2. Relations. For every relation name 𝑅 in the vocabulary
of the output class, of arity𝑚, there is an mso query of
type 𝐹𝑚 , which defines the interpretation of 𝑅 in every
output structure.

A string-to-string mso interpretation is the special case of
the above definition where the input type is Σ∗ for some
finite alphabet Σ, and the output type is Γ∗ for some finite
alphabet Γ.

Example 1. Consider the squaring operation on strings

(︀1, 2, 3⌋︀↦ (︀1, 2, 3, 1, 2, 3, 1, 2, 3⌋︀.
Suppose that the input alphabet is Σ. This function is defined
by an mso interpretation as follows. The functor 𝐹 is 𝐴2, and
3One can reduce the polynomial functor in an mso interpretation to a
single component 𝐴𝑘 , at the cost of increasing the dimension 𝑘 . This works
for input structures with at least two elements. For this reason, [9] uses
interpretations with just one component.

3

the universe formula is “true”, which means that the positions
of the output string are all pairs of positions in the input
string. The order formula describes the lexicographic order
on 𝐴2. Finally, the label of an output position is inherited
from the input position on the second coordinate. ◻

2.2 List types
We are ultimately interested in functions that input and out-
put strings over a finite alphabet. However, to create such
functions using primes and combinators, it will be conve-
nient to have more structured types for the simpler functions,
such as pairs of strings. The idea to use such structured types
comes from [7], in particular we use the same types, as de-
scribed in the following definition.

Definition 2.3 (List types). A list type is any type constructed
using the constructors

1⟩︀
a type with
one element

Σ1 × Σ2
)︁⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂]︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂)︂

pairs

Σ1 + Σ2
)︁⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂]︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂)︂
co-pairs, i.e.

disjoint union

Σ∗⃒
lists

.

A list type need not have ∗ as the topmost constructor,
in fact it need not use ∗ at all. In the rest of this paper, we
use Σ and Γ for list types, which may be infinite (unlike the
convention in automata theory). An example of a list type is

(1 + 1 + 1)∗ .
This type can be seen as the type of strings over a three letter
alphabet; in this way the list types generalize strings over
finite alphabets. The generalization is minor, since elements
of a list type can be seen as strings over a finite alphabet,
which uses brackets and commas as in the following example:

((︀left 1, right 1, left 1⌋︀, 1)
)︁⌊︂]︂⌊︂)︂
an element of the list type (1 + 1)∗ × 1

.

The type 1 has a unique element, and therefore it admits
a unique function from every other list type. In this sense,
the type 1 is a terminal object, assuming that morphisms
are all functions. This continues to be true if we restrict
the morhpisms to be the polyregular functions, see below.
However, in Section 4 we will also consider a quantifier-free
system, and in this system the unique function 1∗ → 1 will
not be allowed; in particular the type 1 will no longer be a
terminal object.

Structures for list types. We will be interested in mso
interpretations that transform one list type into another.
We could simply represent list types as strings over a finite
alphabet in the way described above, and then use mso in-
terpretations on strings over a finite alphabet. The resulting
definition would be equivalent to the one that we will use in
the paper. However, we choose to use a direct representation
of list types as structures, without passing through a string
encoding. The reason is that quantifiers would be needed to
go between list types and their string encodings, and in this

paper, we will be particularly interested in quantifier-free
interpretations.

Definition 2.4. To each list type we associate a class of struc-
tures, which is defined by induction as follows.

(1) The class 1 contains only one structure; this structure
has one element in its universe and no relations.

(+) The vocabulary of the class Σ1 + Σ2 is the disjoint union
of the vocabularies of the classes Σ1 and Σ2, plus one
new nullary relation name (i.e. arity zero). A structure
in this class is obtained by taking a structure in either
of the classes Σ1 or Σ2, extending the vocabulary to the
vocabulary of the other class by using empty sets, and
interpreting the new nullary relation as “true” or “false”
depending on whether the structure is from Σ1 or Σ2.
The new nullary relation corresponds to the fact that
co-pairs are tagged, i.e. we know which of the two types
Σ1 or Σ2 is used.

(×) The vocabulary of the class Σ1 × Σ2 is the disjoint union
of the vocabularies of the class Σ1 and Σ2, plus one new
unary relation name (i.e. arity one). A structure in this
class is obtained by taking the disjoint union (defined in
the natural way) of two structures, one from Σ1 and one
from Σ2, and interpreting the new unary relation as the
elements that come from the first structure.

(∗) The general idea is that a structure in the class Σ∗ is ob-
tained by taking a list (︀𝐴1, . . . ,𝐴𝑛⌋︀ of nonempty4 struc-
tures in Σ, creating a new structure using disjoint union
(with a shared vocabulary), and adding a new binary
relation 𝑥 ≤ 𝑦 which holds whenever the structure con-
taining 𝑥 appears earlier in the list (or in the same place)
than the structure containing 𝑦. The problem with this
construction is that it would mix nullary relations that
come from different structures in the list. To fix this prob-
lem, each nullary relation name 𝑅() in the vocabulary
of Σ is changed into a unary relation name 𝑅(𝑥) that
selects elements 𝑥 such that the corresponding structure
satisfies 𝑅().

If we apply the above representation to a list type

(1 +⋯ + 1
)︁⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂]︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂)︂
𝑛 times

)∗

then we get the representation of strings as ordered struc-
tures from Definition 2.1, with the exception that the empty
string has a universe with one element. Therefore, it is not
important if we use Definition 2.1 or 2.4 for representing
strings.
4A structure is nonempty if its universe is nonempty. This leads to the
following subtle point, which arises when considering lists of lists, and
related structures. Since a list can be empty, it follows that we do not allow
lists of empty lists such as (︀(︀⌋︀, (︀⌋︀, (︀⌋︀⌋︀. This means that the list constructor, as
it is used in this paper and formalized in Definition 2.4, should be interpreted
as possibly empty lists with nonempty list items. This distinction will not
play a role for types such as (1 + 1)∗ where list elements cannot be empty,
which is the case that we really care about.

4

Definition 2.5. A polyregular function is a function

𝑓 ∶ Σ → Γ

between list types that can be defined by an mso interpretation,
assuming that list types are viewed as classes of structures
according to Definition 2.4.

The original definition of polyregular functions [5] did not
use mso interpretations, however mso interpretations were
shown equivalent to the original definition in [9, Theorem
7]. Since the original definition was closed under compo-
sition, it follows that mso interpretations are closed under
composition (as long as the input and output classes are list
types).

3 The fold combinator
In this section, we discuss dangers of the fold combinator

1→ Γ Γ × Σ → Γ

Σ∗ → Γ
fold.

We also explain how some of the dangers can be avoided by
using quantifier-free interpretations.

We begin this section with several examples illustrating
the usefulness of fold.

Example 2. Consider a finite automaton with 𝑛 states and
an input alphabet of𝑚 letters. Assuming some order on the
states and alphabet, the transition function can be seen as a
function between finite string types

(1 +⋯ + 1)
)︁⌊︂]︂⌊︂)︂

𝑛 times

× (1 +⋯ + 1)
)︁⌊︂]︂⌊︂)︂

𝑚 times

→ 1 +⋯ + 1
)︁⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂]︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂)︂
𝑛 times

.

If we apply fold to this automaton, under some chosen ini-
tial state, then we get the function that inputs a string, and
returns the last state in the run. A special case of this con-
struction is when both the states and input letters of the
automaton are elements of some finite group 𝐺 , the initial
state is the group identity, and the transition function is the
group operation. By folding this transition function, we get
the group multiplication function of type 𝐺∗ →𝐺 , which is
one of the (less appealing) prime functions in the combina-
tory calculus from [5]. ◻

Example 3. There are two symmetric list constructors

1 + Σ∗ × Σ → Σ∗
)︁⌊︂]︂⌊︂)︂

lists are constructed by adding
letters to the right of the list

1 + Σ × Σ∗ → Σ∗
)︁⌊︂]︂⌊︂)︂

lists are constructed by adding
letters to the left of the list

.

If we apply fold to the two corresponding automata, then we
get the reverse and identity functions on lists, respectively.
The fold combinator corresponds in a canonical way to the
first list constructor, which is why it is sometimes called fold
right. ◻

3.1 On the dangers of folding
We now present two examples which show how the fold
combinator, without any further restrictions, can define func-
tions that are not polyregular. More generally, one can use
fold to derive any primitive recursive function [19, Section
4.1]. In the examples below, the types Σ and Γ used by the
fold combinator are infinite, since finite types would lead to
polyregular functions, as explained in Example 2.

Example 4. [Iterating duplication] Consider an automaton
where the input alphabet is 1, and the states are 1∗. We view
the states as natural numbers, with the list 1𝑛 of length 𝑛

representing the number𝑛. The initial state in this automaton
is 1, and the transition function is

(1𝑛, 1) ∈ 1∗ × 1 ↦ 12𝑛 ∈ 1∗.
This is an example of a polyregular function, in fact it is a
linear regular function. However, if we apply fold to it, then
we get the function

1𝑛 ∈ 1∗ ↦ 12
𝑛

∈ 1∗ .
which is not polyregular because of exponential growth. ◻

Example 5. [Subtraction] As illustrated in Example 4, we
run into trouble if we iterate duplication. But we can also
run into trouble when the transition function does not cre-
ate any new elements. Consider an automaton where the
input alphabet is 1 + 1, and the state space is the integers,
represented as the list type

1∗⟩︀
represents
{−1,−2, . . .}

+ 1∗⟩︀
represents
{0, 1, . . .}

The initial state is zero, and the transition function incre-
ments or decrements the state depending on which of the
two input letters from 1 + 1 it gets. This transition function
is easily seen to be polyregular, and it has the property that
the output size is at most the input size, assuming that the
input letter contributes to the input size. However, by fold-
ing this automaton, we get a function that subsumes integer
subtraction and is therefore not polyrergular. Using similar
ideas, one could simulate two-counter machines. ◻

3.2 Quantifier-free interpretations and their folding
As the two above examples show, we have to be careful when
applying fold. Clearly we must avoid duplication (Example 4).
This can be done by requiring the polynomial functor in
the interpretation to be the identity, thus ensuring that the
output is no larger than the input. It is less clear how to
avoid the problem with Example 5. Our solution is to use
quantifier-free interpretations, as defined below.

Definition 3.1. A quantifier-free interpretation is the spe-
cial case of mso interpretations where the polynomial functor
is the identity 𝐹(𝐴) = 𝐴 and all formulas are quantifier-free.

5

One could consider interpretations in which the formulas
are quantifier-free, but the functor is not necessarily the
identity; such interpretations will not be useful in this paper.

The transition function in Example 5 is not quantifier-
free, since decrementing a number, which corresponds to
removing a list element, is not a quantifier-free operation.
The following theorem is the first main contribution of this
paper: fold can be safely applied to quantifier-free interpre-
tations. In the theorem, a linear mso interpretation is one
that uses a functor 𝐹 that is linear in the natural sense.

Theorem 3.2. Let Σ and Γ be any classes of structures, not
necessarily list types. If the transition function

𝛿 ∶ Γ × Σ → Γ

in the assumption of the fold combinator is a quantifier-free
interpretation, then the function in the conclusion is a linear
mso interpretation.

Proof
Consider an automaton as in the assumption of the theo-
rem. For an input to this automaton (︀𝐴1, . . . ,𝐴𝑛⌋︀, and 𝑖 ∈
{0, . . . , 𝑛} we write 𝐵𝑖 ∈ Γ for the state of the automaton af-
ter reading the first 𝑖 input letters. The state 𝐵0 is the initial
state, which is given by the assumption to the fold combina-
tor, and the state 𝐵𝑛 is the last state, which is the output of the
function in the conclusion of the fold combinator. Our goal
is to compute the last state using a linear mso interpretation.

Since the functor in 𝛿 is the identity, the output candidates
are simply the elements of the input structure. Therefore,
the universe of 𝐵𝑛 is contained in the disjoint union of the
universe of 𝐵𝑛−1 and the universe of 𝐴𝑛 . By unfolding the
induction, the universe of 𝐵𝑛 is contained in the universe
of the first state 𝐵0 and the input structure 𝐴 = (︀𝐴1, . . . ,𝐴𝑛⌋︀.
Therefore, to prove that the fold is an mso interpretation, it
will be enough to show that an mso formula can tell us: (a)
which elements of 𝐵0+𝐴 belong to the output structure; and
(b) which relations of the output structure are satisfied by
which tuples from 𝐵0 +𝐴. The answers to these questions
will be contained in the quantifier-free theory of the tuple,
as defined below.

Definition 3.3. Let 𝐴 be a structure and let 𝑎 be a list of
distinguished elements, which need not belong to the universe
of 𝐴. The quantifier-free theory of a 𝑎 in 𝐴 is the following
information: which distinguished elements are in the universe,
and which quantifier-free formulas are satisfied by those dis-
tinguished elements that are in the universe.

Using the above terminology, to prove that the fold is
definable in mso, we need to show that for each tuple in
𝐵0 +𝐴, we can define in mso the corresponding quantifier-
free theory in the output structure 𝐵0. This will be done
in the following claim. The key property used by the claim
is the following continuity property of quantifier-free inter-
pretations: the quantifier-free theory of a tuple of output

candidates in the output structure is uniquely determined
by the quantifier-free theory of the same tuple in the input
structure.

In the following claim, we consider a function which in-
puts structures equipped with tuples of 𝑘 distinguished ele-
ments, and which has finitely many possible output values
(quantifier-free theories, in the case of the claim). Such a
function is called mso definable if for every chosen output
value, there is an mso formula with 𝑘 free variables that
selects inputs which give chosen output.

Claim 3.4. For every 𝑘 ∈ {1, 2, . . .} and every tuple 𝑏 of ele-
ments in 𝐵0, the following function is mso definable:

● Input. A structure 𝐴 ∈ Σ∗ with elements 𝑎 ∈ 𝐴𝑘 .
● Output. The quantifier-free theory of 𝑎𝑏 in 𝐵𝑛 .

Proof
By the continuity property mentioned earlier in this proof,
the quantifier-free theory of 𝑎𝑏 in 𝐵𝑛 is uniquely determined
by the quantifier-free theory of𝑎𝑏 in the structure (𝐵𝑛−1,𝐴𝑛),
which in turn is uniquely determined (by compositionality)
by the quantifier-free theories of 𝑎𝑏 in the two individual
structures 𝐵𝑛−1 and 𝐴𝑛 . Therefore, we can think of these
quantifier-free theories as being computed by a finite au-
tomaton, where the initial state is the quantifier-free theory
of 𝑏 in 𝐵0, and the input string is

(︀qf theory of 𝑎 in 𝐴1, . . . , qf theory of 𝑎 in 𝐴𝑛⌋︀.

By the continuity property, one can design a transition func-
tion for this automaton, which does not depend on the input
structure 𝐴 or the tuple 𝑎, such that its state after reading
the first 𝑖 letters is the quantifier-free theory of 𝑎𝑏 in 𝐵𝑖 . The
state space of this automaton is finite, since there are finitely
may quantifier-free theories once the vocabulary and num-
ber of arguments have been fixed. Since finite automata can
be simulated in mso, it follows that the last state in the run
of this automaton, which is the theory in the conclusion of
the claim, can be defined in mso. ◻

We now use the claim to complete the proof of the lemma.
The output candidates of the mso interpretation are defined
by the polynomial functor

𝐹(𝐴) = 𝐴 + 1 +⋯ + 1
)︁⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂]︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂)︂

size of initial state 𝐵0

.

In other words, the output candidates are elements of the in-
put list and the initial state. By the above claim, the quantifier-
free theory of a single output candidate in the output struc-
ture can be defined in mso, and since this theory tells us if
the output candidate is present in the universe output struc-
ture, we can use it to define the universe. Similarly, if we
want to know if a tuple of output candidates satisfies some
relation from the output vocabulary, then we can find this
information using mso as in the above claim. ◻

6

On its own, the theorem above does not solve all of the
problems with fold. One issue is that the theorem only sup-
ports one application of fold, since the folded function is no
longer quantifier-free and cannot be folded again. Another
issue is that applying the theorem stays within the class of
functions that do not increase the output size, while we will
also be interested in folding functions that increase the size.
These problems will be addressed later in the paper, by de-
veloping a suitable type system. Before continuing, we give
some applications of the theorem.

Example 6. Consider a transition function of a finite au-
tomaton as in Example 2. In a list type of the form 1+⋯+ 1,
the component of the disjoint union that is used can be ac-
cessed by a quantifier-free formula without free variables,
since it is represented using nullary relations. Therefore, the
transition function is a quantifier-free interpretation, and
so we can apply Theorem 3.2 to conclude that the fold is an
mso transduction. This corresponds to the inclusion

regular languages ⊆ mso.

Applying Theorem 3.2 to prove this inclusion is not the right
way to prove it, since the inclusion itself is used in the proof
of the theorem. ◻

In Example 6, we applied the fold combinator to a finite
automaton. In the following example, we give a more inter-
esting application, where the state space is infinite.

Example 7. [Streaming string transducers] Define a simple
streaming string transducer, simple sst for short, as follows. It
has two finite alphabets Σ and Γ, called the input and output
alphabets. It has a configuration space, which is a list type of
the form

Δ = (Γ∗)𝑘1 +⋯ + (Γ∗)𝑘𝑚 .
In other words, the set of configurations is obtained by ap-
plying some polynomial functor to the set of strings over
the output alphabet. The idea is that a configuration consists
of a state, which is one of the 𝑚 components, and a register
valuation which is a tuple of strings over the output alphabet.
The configurations of the transducer are updated according
to the following three functions, which are required to be
quantifier-free, according to the representation of the input
and output alphabets that was used in Example 6:

1→ Δ
⧹︀
initial

Δ × Σ → Δ
)︁⌊︂]︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂)︂

transition function

Δ → Γ∗
)︁⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂]︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂)︂

final

.

The semantics of the transducer is the function of type Σ∗ →
Γ∗ that is obtained by folding the first two functions, and
post-composing with the final function. By Theorem 3.2, this
function is an mso transduction.

The model described is almost equivalent to in expressive
power to the classical model of sst [1, Section 3]. The only
difference, and the reason why we call our model simple,
is that our model allows the input letter to be used at most

once (as opposed to a constant number of times) in the regis-
ters. The restriction on using each input letter being used at
most once arises because we use a quantifier-free transition
function, and such a function cannot duplicate letters. The
models would become equivalent if we could preprocess the
input string by copying each input letter a constant number
of times; in particular words every sst can be decomposed
as a string-to-string homomorphism followed by a simple
sst. Therefore, Theorem 3.2 can be seen as subsuming the
implication

sst ⊆ deterministic mso transductions

proved in [1, Theorem 3]. The same idea will work for trees,
as we will see in Section 6.1. ◻

Example 8. [Graphs] As mentioned in Theorem 3.2, the
folded automaton need not operate on classes that are list
types. For instance, we could adapt Example 7 to transducers
in which the registers, instead of storing strings, store graphs
with 𝑘 distinguished vertices, as in Courcelle’s algebras for
treewidth [13, Section 1.4]. We could still apply Theorem 3.2,
since the corresponding operations on graphs are quantifier-
free, to prove that a graph extension of streaming string
transducers [10, Section 3] is subsumed bymso transductions.
Similar ideas would also work for cliquewidth. ◻

4 Deriving quantifier-free functions
As we have shown in Theorem 3.2, the fold combinator can
be safely applied to quantifier-free interpretations. Before
discussing the fold combinator, we take a minor detour in
this section, and present a complete system for the quantifier-
free interpretations.

A few examples. We begin with examples and non-examples
of quantifier-free interpretations operating on list types.

Example 9. [Commutativity of product] Consider the func-
tion of type

Σ1 × Σ2 → Σ2 × Σ1,

which swaps the order in a pair. Like all examples in this
section, this is actually an infinite family of functions, one
for every choice of Σ1 and Σ2. The function is a quantifier-
free interpretation. The only change between the input and
output concerns the unary relation from the definition of the
product class Σ1 ×Σ2 which tells us if an element is from the
first coordinate; this relation needs to be complemented. ◻

Example 10. [List reverse and concatenation] Consider the
list reverse function of type Σ∗ → Σ∗. This is clearly a
quantifier-free interpretation – it is enough to replace the
order 𝑥 ≤ 𝑦 with its reverse 𝑦 ≤ 𝑥 . A similar idea works
for the list concatenation function of type Σ∗∗ → Σ∗ which
concatenates a list of lists into a list. In the input structure,
there are two linear orders, corresponding to the inner and

7

outer lists. To get the output structure, we use the lexico-
graphic product of these two orders, which can be defined
in a quantifier-free way. ◻

Example 11. As we mentioned in Section 2.2, the type 1
is a terminal object if the morphisms are all functions, or
the polyregular functions. However, it is no longer terminal
when the morphisms are quantifier-free. This is because the
unique function of type 1∗ → 1 is not quantifier-free. The
issue is that when the input is the empty list, the correspond-
ing input structure has an empty universe, and therefore a
quantifier-free function cannot create the one element in
universe of the ouput structure. A terminal object would
be recovered by creating a new type, call it 0, representing
a class of structures that has only one structure, with an
empty universe (not to be confused with the class that has
no structures, which we do not consider). The corresponding
prime functions for the type 0 would be

Σ → Σ × 0 add 0

0→ Σ∗ create an empty list.

Note that we cannot have a version of “add 0” for 1, i.e. a
function of type Σ → Σ× 1; this is because creating the extra
1 would require unavailable resources. For similar reasons
the function for creating empty lists that we use in Figure 1
has type Σ → Σ × Γ∗ instead of the simpler type 1→ Γ∗; the
latter function would be weaker, since it would use up more
resources. All of these distinctions between 0 and 1 play a
role only in the quantifier-free system; in the polyregular
system the isomorphism 0↔ 1 will be available. ◻

Example 12. [List constructor and destructor] Consider the
(left) list constructor

1 + Σ × Σ∗ → Σ∗,

that was discussed in Example 3. This is a quantifier-free
interpretation. If the input is from 1, which can be tested
in a quantifier-free way using the nullary relation from the
co-product, then the output list is created in the natural way.
Otherwise, if the input is a pair from Σ × Σ∗, then the order
on the concatenated list can easily be defined by using the
unary predicate that identifies the first argument of a pair.

The list constructor is bijective, and therefore it has a
corresponding inverse of type

Σ∗ → 1 + Σ × Σ∗,
which we call the list destructor. The list destructor is not
a quantifier-free interpretation. The reason is that if the
input is an nonempty list, then we would need to isolate in
a quantifier-free way the elements from the head, i.e. from
the first list element, which cannot be done. ◻

Example 13. [Diagonal] Another non-example is 𝑥 ↦ (𝑥, 𝑥).
This is not a quantifier-free interpretation, since the output
size is bigger than the input size. ◻

Γ × Σ↔ Σ × Γ commutativity of ×
Γ + Σ↔ Σ + Γ commutativity of +

Γ × (Σ × Δ)↔ (Γ × Σ) × Δ associativity of ×
Γ + (Σ + Δ)↔ (Γ + Σ) + Δ associativity of +
Γ × (Σ + Δ)↔ (Γ × Σ) + (Γ × Δ) distributivity

Γ1 × Γ2 → Γ𝑖 projections

Γ𝑖 → Γ1 + Γ2 co-projections

Γ + Γ → Γ co-diagonal

Σ∗ × Σ → Σ∗ append

Σ∗ → Σ∗ reverse

Σ∗∗ → Σ∗ concat

Σ → Σ × Γ∗ create empty

(Σ × Γ)∗ → Σ∗ × Γ∗ list distribute

Figure 1. The prime quantifier-free functions.

Γ1 → Σ1 Γ2 → Σ2

Γ1 × Γ2 → Σ1 × Σ2
functoriality of ×

Γ1 → Σ1 Γ2 → Σ2

Γ1 + Γ2 → Σ1 + Σ2
functoriality of +

Γ → Σ

Γ∗ → Σ∗
functoriality of ∗

Γ → Σ Σ → Δ

Γ → Δ
function composition

Figure 2. The quantifier-free combinators.

A complete system. We now present a complete charac-
terization of quantifier-free interpretations on list types. The
system will be used as a basis for the system in the next
section, which will describe general mso interpretations.

Theorem 4.1. The quantifier-free interpretations between list
types are exactly those that can be derived from the prime func-
tions in Figure 1 by applying the combinators from Figure 2.

The proof of the above theorem, with completeness being
the non-trivial part, is in the appendix.

4.1 String diagrams
We conclude this section with several example derivations of
quantifier-free functions using the system from Theorem 3.2.
To present these derivations, we use string5 diagrams based
on [12, Chapter 3], as depicted in Figure 3.

5This is a name clash: the word “string” relates to the shape of the diagrams,
and not to the fact that they manipulate types that represent strings.

8

Σ* Σ*

Σ**

Σ* Σ**

Σ*

Σ**

create empty

append

append

concat

wires represent types, and parallel
wires represent products, so this
cross-section represents Σ**× Σ*× Σ*

boxes represent prime functions, or
previously derived functions

input is at the top

output is at the bottom

Figure 3. A string diagram that derives the binary operation
of type Σ∗ × Σ∗ → Σ∗ for list concatenation.

We also use string diagrams with a yellow background,
where parallel wires represent co-products. For example,
the following diagram represents the prime function from
Figure 1 that describes commutativity of +:

Σ Γ

Here are two other examples of string diagrams, which use
dead ends, and represent projections and co-projections:

Σ

Σ Γ

Γ
projection

Σ×Γ → Γ

co-projection

Σ → Σ+Γ

Example 14. Recall the representation of finite sets as list
types 1+⋯+1 used in Examples 2 and 6. Under this represen-
tation, every function between finite sets is derivable using
the prime functions and combinators of Theorem 3.2. This
is easily seen using string diagrams, as illustrated below:

1
0

0

0

0

1

1

2

2

3

3

1

1

1

1

1

1

1

the operation for
squaring modulo 4

The representation of finite sets as co-products is important
here. For example, the diagonal function 1 → 1 × 1 is not
derivable, as explained in Example 13. ◻

5 Deriving polyregular functions
We now move beyond quantifier-free functions and present
the main contribution of this paper, which is a system that
derives exactly the polyregular functions. As explained in
Example 5, we cannot simply add the fold combinator to the
system from Theorem 3.2. Another idea would be to have
two kinds of functions: quantifier-free functions, and general
polyregular functions, with the fold combinator used to go
from one kind to the other. In such a system, the only con-
tribution of fold would be to define linear regular functions,
since such are the functions in the conclusion of Theorem 3.2.
We are more ambitious, and we want the fold combinator to
be useful also for non-linear functions.

To define a system with fold, we add a new unary type
constructor. This type constructor is denoted by ! and it is
written on the left. The general idea is that an element !𝑥
is essentially the same element as 𝑥 , except that it is harder
to obtain. The type constructor is not idempotent, and so
!!𝑥 is even harder to obtain than !𝑥 . The goal of this type
constructor is to restrict the application of fold in a way that
avoids the problems discussed in Section 3.1. This is done by
using the following safe fold combinator:

!𝑘1→ Γ Γ × Σ → Γ

!𝑘(Σ∗)→ Γ
safe fold

In the combinator, !𝑘 refers to 𝑘-fold application of !. When
applying the combinator, the number 𝑘 ∈ {0, 1, . . .} must be
strictly bigger than the grade of Γ, which is defined to be the
maximal nesting of !, as in the following examples:

1∗⟩︀
grade zero

1+!(1+!1)
)︁⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂]︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂)︂

grade two

.

For example, when Γ has grade zero, i.e. it does not use !,
then safe fold can be used in the form

!1→ Γ Γ × Σ → Γ

!(Σ∗)→ Γ
safe fold when Γ is without !

The general idea is that the annotation with ! will disallow
certain kinds of repeated applications of fold that would lead
to functions that are not polyregular. Before giving a formal
description of the system, we begin with an example.

Example 15. [List destructor] In this example, we use safe
fold to derive a variant of the list destructor

Σ∗ → 1 + Σ∗ × Σ

that was discussed in Example 12. Consider an automaton
where the state space is the output type of the list destructor,
the initial state is 1, and the transition function is

9

(1+Σ*×Σ)×Σ

Σ*×Σ×Σ

Σ*×Σ

Σ×Σ*1

Σ*×Σ

Σ* Σ Σ

Σ*

1×Σ

distribute

1 Σ

Σ*

empty append

By applying the safe fold to this automaton, we get the list
deconstructor in a weaker type, namely

!(Σ∗)→ 1 + Σ∗ × Σ.
The weaker type avoids the issues from Example 5, since
the input and output will have different numbers of !, and
therefore we will be unable to apply fold again. ◻

5.1 Graded types and their derivable functions
We now give a formal description of the system. The type
system is the same as previously, except that we have one
more type constructor for !.

Definition 5.1. A graded list type is any type that is con-
structed using the following type constructors

1⟩︀
a type with
one element

Σ1 × Σ2
)︁⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂]︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂)︂

pair

Σ1 + Σ2
)︁⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂]︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂)︂
co-pair, i.e.

disjoint union

Σ∗⃒
lists

!Σ.

The general idea is that ! does not change the underlying
set, but only introduces some type annotation that controls
the way fold and duplication can be applied. Apart from
safe fold, the main way of dealing with ! is the duplicating
operation

!Σ → !Σ × Σ absorption,

which is named after the same rule in the parsimonious cal-
culus of Mazza [23, p.1]. There are also prime functions for
commuting ! with the remaining type constructors, for exam-
ple !(︀𝑥,𝑦, 𝑧⌋︀ and (︀!𝑥, !𝑦, !𝑧⌋︀ are going to be equivalent in our
system; for this reason we can write !Σ∗ without specifying
the order in which the two constructors are applied.

Definition 5.2. There are two kinds of derivability for func-
tions between graded list types.

1. Strongly derivable. A function is called strongly deriv-
able if it can be derived using the quantifier-free prime
functions and combinators from Figures 1 and 2, ex-
tended to graded list types that can use !, along with four
new prime functions

!(Γ + Σ)↔ !Γ+ !Σ ! commutes with +
!(Γ × Σ)↔ !Γ× !Σ ! commutes with ×
(!Γ)∗ ↔ !(Γ∗) ! commutes with ∗

!Γ → !Γ × Γ absorption

and two new combinators

Σ → Γ

!Σ →!Γ functoriality of !

!𝑘1→ Γ Γ × Σ → Γ

!𝑘(Σ∗)→ Γ
safe fold

The safe fold combinator can only be applied when Γ
has grade < 𝑘 .

2. Weakly derivable. A function is called weakly deriv-
able if it can be decomposed as

Σ !𝑘Σ Γ
𝑘-fold application of ! 𝑓

for some 𝑘 ∈ {0, 1, . . .} and strongly derivable 𝑓 .

In other words, a function is weakly derivable if it can be
strongly derived for a sufficiently upgraded input type. For
example, the list destructor of type

Σ∗ → 1 + Σ∗ × Σ

function is not strongly derivable (Example 12), but it is
weakly derivable (Example 15).

In the following theorem, which is the main result of this
paper, we are only interested in weak derivability for func-
tions between (ungraded) string types, i.e. between types that
do not use !. The purpose of ! is to get the strong derivations.

Theorem 5.3. A function between (ungraded) list types is
polyregular if and only if it is weakly derivable.

The proof has two parts: soundness and completeness.

5.2 Completeness
The completeness part of Theorem 5.3 is that every polyregu-
lar function can be weakly derived. Unlike the quantifier-free
system in Theorem 4.1, completeness is relatively easy. This
is because fold is a powerful combinator, and we can draw
on a prior complete system for the polyregular functions [5,
p. 64]. In the completeness proof, the polynomial growth
output size will come from a single quadratic function.

Claim 5.4. One can weakly derive the following function

(︀𝑎1, . . . , 𝑎𝑛⌋︀ ↦ (︀(︀𝑎𝑛, . . . , 𝑎1⌋︀, (︀𝑎𝑛−1, . . . , 𝑎1⌋︀, . . . , (︀𝑎1⌋︀⌋︀
)︁⌊︂]︂⌊︂)︂

call this the prefixes function

.

Proof
Consider an automaton, where the input alphabet is !Σ, the
state space is Σ∗∗×!Σ∗, the initial state is the pair of empty
lists, and the transition function is

10

!Σ*

Σ**

Σ**

Σ

Σ*

!Σ

!Σ*

Σ* Σ

append

Σ*

absorption

append

dotted box
represents
functoriality
of !

By applying fold to this automaton, we get a function of type

!!Σ∗ → Σ∗∗×!Σ∗

which returns the output of the prefixes function on the first
output coordinate. Observe that in this proof, we applied the
fold to a transition function that already uses !. ◻

Using the above function, in the appendix we show that
the weakly derivable functions contain an already existing
complete system for the polyregular functions [5, p. 64].

Before discussing the soundness proof in the theorem,
let us comment on the minimality of its system. The system
inherits all of the primes and combinators from the quantifier-
free system in Theorem 4.1. In the presence of fold, some of
these primes and combinators can be derived thus leading
to a smaller system.

Theorem 5.5. The system from Theorem 5.3 remains com-
plete after removing the map combinator, as well as all prime
functions and combinators that involve the list type, and adding

1 + Σ → Σ∗ lists of length at most one

Σ∗ × Σ∗ → Σ∗ binary list concatenation.

5.3 Soundness
The rest of this section is devoted to the proof of soundness
for Theorem 5.3, which is that all weakly derivable functions
are polyregular. We will define an invariant on strongly
derivable functions, which is satisfied by the prime functions,
is preserved by the combinators, and which implies that a
function is polyregular. This invariant can be seen as giving
a semantic explanation of the ! constructor and the strongly
derivable functions.

The invariant uses a more refined notion of mso interpreta-
tions, called gradedmso interpretations. These interpretations
operate on graded structures, as described in the following
definition.

Definition 5.6 (Graded structure). A graded structure is a
structure, together with a grading function that assigns to each
element in the universe a grade in {0, 1, . . .}.

The idea is that the grade of an element is the number of
times that ! has been applied, as in the following example

(1⟩︀
grade
zero

, !(︀1, 1, 1⌋︀
)︁⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂]︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂)︂

grade
one

).

A graded list type can be seen as describing a class of graded
structures, with the constructor ! incrementing the grade of
all elements, and the remaining constructors treated in the
same way as in Definition 2.4.

If 𝐴 is a graded structure, we write 𝐴⋃︀ℓ for the structure
that is obtained from𝐴 by restricting its universe to elements
that have grade at least ℓ . In the definition of a graded mso
interpretation, we use the grades to control how an mso
interpretation 𝑓 uses quantifiers. The general idea is that
𝑓 (𝐴)⋃︀ℓ depends on𝐴⋃︀ℓ in a quantifier-free way, and on𝐴⋃︀ℓ+1
in an mso definable way.

Before presenting the formal definition, we introduce
some notation, in which a polynomial functor 𝐹 is applied
to a tuple of elements 𝑎, yielding a new (typically longer)
tuple of elements 𝐹(𝑎). If an input set 𝐴 for a polynomial
functor 𝐹 is equipped with some linear order, then this linear
order can be extended to a linear order on the output set
𝐹(𝐴), by using some fixed order on the components, and
ordering tuples lexicographically. This way we can think of
a polynomial functor as transforming linearly ordered sets,
i.e. lists. We will care about lists of fixed length, which we
call tuples. For example if the polynomial functor is 𝐴 +𝐴2,
then applying it to the tuple (1, 2) gives the tuple

(1, 2, 1, 2, (1, 1), (1, 2), (2, 1), (2, 2)) ∈ 𝐹({1, 2})6.

In the definition below, we will care about the theories of
tuples of the form 𝐹(𝑎), with the theories defined as in Defi-
nition 3.3, but extended to mso formulas of given quantifier
rank (the quantifier rank of an mso formula is the nesting
depth of the quantifiers, with first-order and second-order
quantifiers counted in the same way). Recall that these theo-
ries allow for distinguished elements that are not part of the
universe in a structure. Equipped with this notation, we are
ready to define the graded version of mso interpretations.

Definition 5.7. A function 𝑓 ∶ Σ → Γ is called a graded mso
interpretation if there is some polynomial functor

𝐹(𝐴) = 𝐴⟩︀
this is called the
quantifier-free

component

+ 𝐹0(𝐴) +⋯ + 𝐹𝑚(𝐴)
)︁⌊︂]︂⌊︂)︂
components from this part
of the functor are called the
downgrading components

such that the following conditions hold:

1. Universe and grades. The universe of the output struc-
ture is contained in

𝐴 + 𝐹0(𝐴⋃︀1) + 𝐹1(𝐴⋃︀2) +⋯ + 𝐹𝑚(𝐴⋃︀𝑚 + 1).
11

The grades in the output structure are defined as follows:
elements from 𝐹ℓ have grade ℓ , and elements from the
quantifier-free component inherit their grade from 𝐴.

2. Continuity. For every 𝑘, ℓ ∈ {0, 1, . . .} there is some
quantifier rank 𝑟 ∈ {0, 1, . . .} such that for every in-
put structure 𝐴 and distinguished elements 𝑎 ∈ 𝐴𝑘 , the
quantifier-free theory of the tuple 𝐹(𝑎) in 𝑓 (𝐴)⋃︀ℓ is
uniquely determined by the following two theories:

a. the quantifier-free theory of 𝑎 in 𝐴⋃︀ℓ ;
b. the rank 𝑟 mso theory of 𝑎 in 𝐴⋃︀ℓ + 1.

If we ignore the grades, then a graded mso interpretation
is a special case of an mso interpretation. This is because
the types mentioned in the continuity condition will tell us
which output candidates from 𝐹(𝐴) are in the universe of
the output structure, and how the relations of the output
structure are defined on them. Therefore, the continuity
condition tells us that the output can be defined in mso, and
even in a way that respects the grades.

Conversely, we can also view each (ungraded) mso inter-
pretation as a graded mso interpretation with a trivial grade
structure: namely all input elements have nonzero grade, say
grade one, and all output elements have zero grade. With
such a trivial grade structure, the continuity condition col-
lapses to the usual condition in an mso interpretation.

Graded mso interpretations also generalize quantifier-free
interpretations – this happens in the case when all elements
in the input and output structures have grade zero. In this
case, only the quantifier-free component is useful, and all
formulas are quantifier-free.

In the appendix, we show that all strongly derivable prime
functions are graded mso interpretations. This will imply
that all weakly derivable functions are ungraded mso inter-
pretations, since the continuity condition becomes vacuous
when the input type is sufficiently upgraded. The proof is an
induction on the size of a strong derivation, with the most in-
teresting cases being composition and safe fold. Composition
is a corollary of composition closure for mso interpretations
on string types [9, Corollary 8], while safe fold is treated in
the same way as in Theorem 3.2.

6 Linear regular functions
The last group of results from this paper concerns the linear
regular functions, i.e. polyregular functions of linear growth.
We show that a small change to the system from Theorem 5.3
will give exactly the linear regular functions. As we will see,
superlinear growth in the system from Theorem 5.3 is not
created by the fold combinator, with the culprit instead being

!Γ → !Γ × Γ absorption.

This function allows us to create an unbounded number
of copies of an element of Γ, as witnessed in the proof of
Claim 5.4. If we simply remove this function, then the system
will become too weak, since all other prime functions and

combinators preserve the property that the universe of the
output structure is contained in the universe of the input
structure. The solution is to add a weaker form of absorption

!Γ → Γ × Γ linear absorption.

In other words, removing all occurrences of ! is the price paid
for copying. The corresponding system describes exactly the
linear regular functions, as stated in the following theorem.

Theorem 6.1. A function 𝑓 ∶ Σ → Γ between string types
is linear regular if and only if it can be weakly derived in
a system that is obtained from the one in Theorem 5.36 by
replacing absorption with linear absorption.

The proof for the above theorem, which is in the appen-
dix, is based on Example 7 about streaming string transduc-
ers. The idea is that linear absorption together with fold is
enough to simulate streaming string transducers, which are
expressively complete the linear regular functions.

6.1 Tree types
It turns out that the system for linear regular functions from
Theorem 6.1 can be generalized without much further diffi-
culty to trees. This is in contrast to a prior combinator system
for trees [8, Theorem 7.1], which had an involved proof using
approximately fifty prime functions. We believe that this is
evidence for the usefulness of the fold combinator.

Consider a type for trees, defined inductively by

TΣ = 1 +TΣ × Σ ×TΣ
)︁⌊︂]︂⌊︂)︂

a tree is either a leaf, or has two
subtrees and a root label

A tree type is a type that is constructed using the types from
Definition 2.3, together with the tree type. Tree types can be
seen as structures, using the same construction as for lists
in Defintion 2.4, except that instead of one linear order, we
have two orders: the descendant order (which is not a linear
order) and the document order (aka infix order) given by

left subtree < root < right subtree.

Define a linear regular tree function to be a function between
tree types that is defined using linear mso transductions.

Following Wilke [28], we view trees as an algebra. In this
algebra, there is an additional type constructor CΣ, which
describes contexts. A context is a tree with a distinguished
leaf (called the hole) where other trees can be inserted. This
is not a primitive type constructor, only syntactic sugar for
a certain combination of the list and tree type constructurs:

CΣ def= ((TΣ × Σ)
)︁⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂]︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂)︂
the hole is in

the right subtree

+ (Σ ×TΣ)
)︁⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂]︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂)︂
the hole is in

the left subtree

)∗ .

6One can also start with the smaller system from Theorem 5.5.

12

To operate on trees and contexts, we use the following oper-
ations, called Wilke’s operations, see [28, Figure 1]:

1 +TΣ × Σ ×TΣ → TΣ tree constructor

CΣ ×TΣ → TΣ replace hole by a tree

CΣ × CΣ → CΣ context composition

1 + (TΣ × Σ) + (Σ ×TΣ)→ CΣ context creation

All of these operations are quantifier-free interpretations,
and we will use them as primes. The last two operations
need not be explicitly added, since they can derived using
the system from Theorem 3.2.

Theorem 6.2. A function 𝑓 ∶ Σ → Γ between tree types is
linear regular if and only if it can be derived in a system that
is obtained from the system in Theorem 6.1 by adding the tree
type, Wilke’s operations, the prime function

!TΣ↔ T!Σ ! commutes with T

and the following combinator

!𝑘1→ Γ Γ × Σ × Γ → Γ

!𝑘TΣ → Γ
safe tree fold,

which can be applied whenever Γ has grade < 𝑘 .

Proof (Sketch)
As in Theorem 6.1. We use the same soundness proof, except
that tree automata are used instead of string automata. For
completeness, we use a result of Alur and D’Antoni, which
says that every linear mso interpretation is computed by a
streaming tree transducer [3, Theorem 4.6]. Adjusting for
notation, a streaming tree transducer is defined in the same
way as in Example 7, except that instead of lists, registers
store trees and contexts. The registers in the transducer are
manipulated using Wilke’s operations; and thus for the same
reason as in Example 7, the corresponding tree function is
weakly derivable. This completeness proof takes into account
only functions of type TΣ → TΓ where Σ and Γ are finite
alphabets, but the extension to other tree types is easily
accomplished by encoding tree types into such trees. ◻

Tree polyregular functions. It is natural to ask about a
polyregular system for trees. We conjecture that if we add
absorption to the system from Theorem 6.2, and possibly a
few extra prime functions, then the system will define exactly
the mso interpretations on tree types. This conjecture would
imply that tree-to-tree mso inprepretations are closed under
composition, which is an open problem.

7 Perspectives
We finish the paper with some directions for future work.

In our proofs, we are careless about the number of times
that ! is applied. Maybe a more refined approach can give
a better understanding of the correspondence between the
nesting of ! and the resources involved, such as quantifiers

or copying. Alternatively, one could try to do away with !
entirely, and use some proof system where the safety of fold
is captured by a structural property of the proof. One idea
in this direction is to look at cyclic proofs [11]. Another idea
would be to capture the structural property using the visual
language of string diagrams.

Another question that concerns string diagrams is about
the equivalence problem. Decidability of the equivalence
problem for polyregular functions is an open problem, but
in the case of linear functions the problem is known to be
decidable [17, Theorem 1]. Maybe one can express the de-
cision procedure in terms of string diagrams, by designing
equivalences on string diagrams which identify exactly those
diagrams that describe the same function.

The system in this paper is based on combinators. A more
powerful system would also allow for variables, _, and higher-
order types. Such a system exists without fold [6, Section 4],
and it is tempting to see if it can be extended with fold. This
extension is not guaranteed to work, since there are exam-
ples of higher-order linear calculi where the corresponding
complexity is super-polynomial, in fact primitive recursive,
e.g. [22, Theorem 5] or [21, Theorem 2.15]. If successful, the
extension would be an expressive functional programming
language that can only define regular functions.

References
[1] Rajeev Alur and Pavol Černý. Expressiveness of streaming string

transducers. In Foundations of Software Technology and Theoretical
Computer Science, FSTTCS 2010, Chennai, India, volume 8 of LIPIcs,
pages 1–12. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2010.

[2] Rajeev Alur and Loris D’Antoni. Streaming Tree Transducers. J. ACM,
64(5):31:1–31:55, August 2017.

[3] Rajeev Alur, Adam Freilich, and Mukund Raghothaman. Regular
combinators for string transformations. In Computer Science Logic and
Logic in Computer Science, CSL-LICS 2014, Vienna, Austria,, pages 1–10.
ACM, 2014.

[4] Stephen Bellantoni and Stephen Cook. A new recursion-theoretic
characterization of the polytime functions. In Proceedings of the twenty-
fourth annual ACM symposium on Theory of computing, pages 283–293,
1992.

[5] Mikołaj Bojańczyk. Polyregular Functions. CoRR, abs/1810.08760,
2018.

[6] Mikołaj Bojańczyk. Transducers of polynomial growth. In Proceedings
of the 37th Annual ACM/IEEE Symposium on Logic in Computer Sci-
ence, LICS ’22, New York, NY, USA, 2022. Association for Computing
Machinery.

[7] Mikołaj Bojańczyk, Laure Daviaud, and Shankara Narayanan Krishna.
Regular and First-Order List Functions. In Logic in Computer Science,
LICS, Oxford, UK, pages 125–134. ACM, 2018.

[8] Mikołaj Bojańczyk and Amina Doumane. First-order tree-to-tree
functions. In Holger Hermanns, Lijun Zhang, Naoki Kobayashi, and
Dale Miller, editors, LICS ’20: 35th Annual ACM/IEEE Symposium on
Logic in Computer Science, Saarbrücken, Germany, July 8-11, 2020, pages
252–265. ACM, 2020.

[9] Mikolaj Bojanczyk, Sandra Kiefer, and Nathan Lhote. String-to-string
interpretations with polynomial-size output. In 46th International
Colloquium on Automata, Languages, and Programming, ICALP 2019,
July 9-12, 2019, Patras, Greece, pages 106:1–106:14, 2019.

13

[10] Mikołaj Bojańczyk and Janusz Schmude. Some remarks on decid-
ing equivalence for graph-to-graph transducers. In Javier Esparza
and Daniel Král’, editors, 45th International Symposium on Mathemati-
cal Foundations of Computer Science, MFCS 2020, August 24-28, 2020,
Prague, Czech Republic, volume 170 of LIPIcs, pages 19:1–19:14. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2020.

[11] James Brotherston and Alex Simpson. Sequent calculi for induction
and infinite descent. Journal of Logic and Computation, 21(6):1177–
1216, 2011.

[12] Bob Coecke and Alex Kissinger. Picturing quantum processes. Cam-
bridge University Press, 2017.

[13] Bruno Courcelle and Joost Engelfriet. Graph Structure and Monadic
Second-Order Logic - A Language-Theoretic Approach, volume 138 of En-
cyclopedia of Mathematics and Its Applications. Cambridge University
Press, 2012.

[14] Joost Engelfriet and Hendrik Jan Hoogeboom. MSO Definable String
Transductions and Two-way Finite-state Transducers. ACM Trans.
Comput. Logic, 2(2):216–254, 2001.

[15] Joost Engelfriet and Sebastian Maneth. Two-way finite state transduc-
ers with nested pebbles. In International Symposium on Mathematical
Foundations of Computer Science, pages 234–244. Springer, 2002.

[16] Noa Globerman and David Harel. Complexity results for two-way and
multi-pebble automata and their logics. Theor. Comput. Sci., 169(2):161–
184, 1996.

[17] Eitan M. Gurari. The Equivalence Problem for Deterministic Two-Way
Sequential Transducers is Decidable. SIAM J. Comput., 11(3):448–452,
1982.

[18] Jörg Flum Heinz-Dieter Ebbinghaus. Finite Model Theory. Springer
Monographs in Mathematics. Springer, 2nd edition, 2006.

[19] Graham Hutton. A tutorial on the universality and expressiveness of
fold. Journal of Functional Programming, 9(4):355–372, 1999.

[20] Kenneth Krohn and John Rhodes. Algebraic theory of machines. i.
prime decomposition theorem for finite semigroups and machines.
Transactions of the American Mathematical Society, 116:450–450, 1965.

[21] Denis Kuperberg, Laureline Pinault, and Damien Pous. Cyclic proofs,
system T, and the power of contraction. Proceedings of the ACM on
Programming Languages, 5(POPL):1–28, 2021.

[22] U Dal Lago. The geometry of linear higher-order recursion. In 20th
Annual IEEE Symposium on Logic in Computer Science (LICS’05), pages
366–375. IEEE, 2005.

[23] Damiano Mazza. Simple parsimonious types and logarithmic space. In
24th EACSL Annual Conference on Computer Science Logic (CSL 2015).
Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2015.

[24] Tova Milo, Dan Suciu, and Victor Vianu. Typechecking for XML
transformers. J. Comput. Syst. Sci., 66(1):66–97, 2003.

[25] Lê Thành Dung Nguyên, Camille Noûs, and Pierre Pradic. Comparison-
free polyregular functions. In 48th International Colloquium on Au-
tomata, Languages, and Programming, ICALP 2021, July 12-16, 2021,
Glasgow, Scotland (Virtual Conference), pages 139:1–139:20, 2021.

[26] Lê Thành Dung Nguyên and Pierre Pradic. Implicit automata in
typed _-calculi I: aperiodicity in a non-commutative logic. In Artur
Czumaj, Anuj Dawar, and Emanuela Merelli, editors, 47th International
Colloquium on Automata, Languages, and Programming, ICALP 2020,
July 8-11, 2020, Saarbrücken, Germany (Virtual Conference), volume
168 of LIPIcs, pages 135:1–135:20. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2020.

[27] J. C. Shepherdson. The reduction of two-way automata to one-way
automata. IBM Journal of Research and Development, 3(2):198–200,
April 1959.

[28] Thomas Wilke. An algebraic characterization of frontier testable tree
languages. Theoretical Computer Science, 154(1):85–106, 1996.

A The quantifier-free system
In this part of the appendix, we prove Theorem 4.1. In the
proof, a derivable function is a function that can be derived
using the system from Theorem 4.1. In other parts of the
paper, derivable functions will refer to other systems.

The proof of Theorem 4.1 has two parts: soundness (i.e. all
derivable functions are quantifier-free interpretations) and
completeness (i.e. all quantifier-free interpretations are deriv-
able).

A.1 Soundness
To prove soundness of the system, we show that all prime
functions from Figure 1 are quantifier-free interpretations,
and that the class of quantifier-free interpretations is closed
under applying all combinators from Figure 2.

Several of the prime functions from Figure 1 where already
shown to be quantifier-free interpretations in Examples 9, 10
and 12. The remaining prime functions are left to the reader.

Let us now consider the combinators from Figure 2.
The first observation is that quantifier-free interpretations

are closed under composition. This is because: (a) the functor
in a quantifier-free interpretation is the identity functor, and
composing this functor with itself gives the same functor;
and (b) quantifier-free formulas are closed under substitu-
tion.

The other combinators are easiily seen to preserve quantifier-
free interpretations. We only discuss one case in more detail,
namely the combinator

Σ → Γ

Σ∗ → Γ∗
functoriality of ∗,

which is also known as the map combinator. The difficulty
with this combinator is that in the structure that represents
a list of elements (︀𝐴1, . . . ,𝐴𝑛⌋︀ ∈ Σ, as per Definition 2.4, the
nullary predicates from the structures𝐴1, . . . ,𝐴𝑛 are replaced
by unary predicates. However, since the same replacement is
done for the output list, it follows that a straightforward syn-
tactic construction can be applied to transform the quantifier-
free interpretation from the assumption of the combinator
into a quantifier-free interpretation from the conclusion.

A.2 Completeness
The rest of this section is devoted to the completeness proof.
We begin with some notation and preparatory lemmas that
will be used in the proof.

Zero type. We will use an extended system, which has an
additional type called 0, as discussed in Example 11. This
type represents a class that contains one structure, and that
structure has an empty universe. (This class is terminal, in
the sense that every class of structures admits a unique
quantifier-free interpretation to 0.) The corresponding prime

14

functions are

Σ → Σ × 0 add 0

0→ Σ∗ create an empty list

One should not confuse 0 with the empty class ∅ (which
anyway is not part of our type system). For example,

0 + Σ ≠ Σ = ∅ + Σ.

The extended system with 0 is equivalent to the original
system, since we can view 0 as 1∗, but with only the empty
list used. In particular, the extended system is conservative
in the following sense: if a function between types that do
not use 0 is derivable in the extended system, then it is also
derivable in the non-extended system. For this reason, we
can do the completeness proof in the extended system, which
will be slightly more convenient. From now on, list types
can use 0.

Disjunctive normal form. It will be useful to consider
list types in a certain normal form, which is achieved using
distributivity. We say that a list type is in disjunctive normal
form if it is of the form

∐
𝑖∈𝐼
∏
𝑗∈𝐼 𝑗

Σ𝑖, 𝑗

where each Σ𝑖, 𝑗 is one of the types 0 or 1, or a list Σ∗ where
Σ is in disjunctive normal form. In other words, the list type
does not contain any product of co-products.

In our proof, the main advantage of this normal form
concerns nullary relations. Recall that the nullary relations
in Definition 2.4, appear only in the co-product, and they
are removed when applying the list constructor. Therefore,
if a type in disjunctive normal form is not a co-product type,
then its vocabulary contains no nullary relations.

The following lemma shows that every list type admits
a derivable isomorphism with some list type in disjunctive
normal form. Here, a derivable isomorphism is a derivable
function that has a derivable inverse.

Lemma A.1. Every list type admits a derivable isomorphism
with some list type in disjunctive normal form.

Proof
Using distributivity and functoriality. ◻

Thanks to the already proved soundness part of the theo-
rem, the derivable isomorphism is also quantifier-free. There-
fore, to prove completeness of the system, it is enough to
prove completeness only for functions where both the input
and output types are in disjunctive normal form. From now
on, we only consider list types in disjunctive normal form.

Safe pairing. The last issue to be discussed before the
completeness proof concerns pairing functions. Suppose that

𝑓 ∶ Σ → Γ1 × Γ2

is a quantifier-free interpretation. In the completeness proof,
we will want to show that it is derivable. A natural idea
would be to use an inductive argument to derive the two
quantifier-free interpretations

𝑓𝑖 ∶ Σ → Γ𝑖

that arise from 𝑓 by projecting it onto the two output coordi-
nates, and to then pair these two derivations into a derivation
of 𝑓 . Unfortunately, combining these two derviations would
require some kind of pairing combinator, or a duplicating
function of type Σ → Σ × Σ, none of which are available in
our system (because they would be unsound).

For these reasons, we need to be a bit careful with pairing.
The crucial observation is that pairing is not always unsound,
because some functions can be paired. For example, the two
functions 𝑓1 and 𝑓2 described above can be paired, because
they use disjoint parts of the input structure. More formally,
the universe formulas are disjoint, i.e. no element can be
selected by both universe formulas. This view will be used in
the completeness proof. To formalize it, we use the following
lemma.

Lemma A.2. Let Σ be a list type in disjunctive normal form,
and let 𝜑(𝑥) be a quantifier-free formula over its vocabulary.
There is a list type, denoted by Σ⋃︀𝜑 , and a quantifier-free in-
terpretation

Σ Σ⋃︀𝜑projection of 𝜑

such that the following conditions are satisfied.
1. For every quantifier-free interpretation 𝑓 ∶ Σ → Γ, such

that the universe formula of 𝑓 is contained in 𝜑 (which
means that the universe formula of 𝑓 implies the formula
𝜑), there is a decomposition

Σ Γ

Σ⋃︀𝜑

𝑓

projection of 𝜑 𝑓 ⋃︀𝜑

where 𝑓 ⋃︀𝜑 is a quantifier-free interpetation.
2. Safe pairing. Suppose that 𝜑1, . . . , 𝜑𝑛 are formulas as

in the assumption of the lemma, which are pairwise
disjoint. Then one can derive the function

Σ (Σ⋃︀𝜑1) ×⋯ × (Σ⋃︀𝜑𝑛)

that produces all projections in parallel.

Proof
The purpose of the type 0 is in this lemma. The type 0 is
used for Σ⋃︀𝜑 when the formula 𝜑(𝑥) selects no elements. The
lemma is proved by induction on the structure of the type Σ.
● Suppose that Σ is the zero type 0. In this case, the

formula 𝜑 must be equivalent to “false”. We define 0⋃︀𝜑
to be the same type 0, and the projection is the identity.
The safe pairing condition holds because of the prime
function Σ → Σ × 0.

15

● Suppose that Σ is the unit type 1. In this case, the
formula 𝜑 is equivalent to either “false” or “true”, since
the unique structure in 1 has a universe that has only
one element. We define 1⋃︀𝜑 to be the 0 or 1, depending
on which of the two cases holds, with the projection
being the unique function 1 → 1⋃︀𝜑 . The safe pairing
condition is proved using the prime function Σ →
Σ × 0, since the list of quantifier-free formulas in the
condition can have at most one formula that is not
“false”.
● Consider a list type of the form Σ∗. The main obser-

vation in the proof is that for quantifier-free formulas
𝜑(𝑥) with one free variable, there is a bijective corre-
spondence between formulas over the vocabularies of
Σ and Σ∗. This correspondence is defined as follows:
for every formula 𝜑 over the vocabulary of Σ with one
free variable, there is a formula 𝜑∗ over the vocabulary
of Σ∗ such that for every list

𝐴 = (︀𝐴1, . . . ,𝐴𝑛⌋︀ ∈ Σ∗,

an element 𝑎 ∈ 𝐴𝑖 is selected by 𝜑∗ in the entire list
𝐴 if and only if 𝑎 is selected by 𝜑 in the list element
𝐴𝑖 . It is not hard to see that such a formula exists, and
furthermore, every formula over the vocabulary of Σ∗
is of equivalent to a formula of the form 𝜑∗.
Therefore, in the case when the type is a list Σ∗, we can
assume that the formula over the vocabulary of Σ∗ is
of the form 𝜑∗ for some formula 𝜑 over the vocabulary
of Σ. Define

Σ∗⋃︀𝜑∗ def= (Σ⋃︀𝜑)∗,

with the projection function for 𝜑∗ being the result of
applying the map combinator to the projection func-
tion for 𝜑 . The safe pairing property is proved by using
the induction assumption, and using the function

(Σ1 ×⋯ × Σ𝑛)∗ → Σ∗1 ×⋯ × Σ∗𝑛 ,
which can easily be seen to be derivable.
● The case when Σ is a co-product Σ1 + Σ2 is proved

similarly to the list case. Here, we use a bijective cor-
respondence between quantifier-free formulas 𝜑 over
the vocabulary of Σ with pairs (𝜑1, 𝜑2), where 𝜑𝑖 is a
quantifier-free formula over the vocabulary of Σ𝑖 .
● The case when Σ is a product Σ1 × Σ2 is proved simi-

larly to the co-product case. Again, there is a bijective
correspondence between quantifier-free formulas 𝜑
over the vocabulary of Σ with pairs (𝜑1, 𝜑2), where 𝜑𝑖
is a quantifier-free formula over the vocabulary of Σ𝑖 .
For the existence of such a bijective correspondence,
we use the assumption that the type is in disjunctive
normal form. Thanks to the assumption, the vocabu-
lary has no nullary relations; if there would be nullary
relations then there could be some communication
between the two coordinates in the product.

◻

Completeness. Consider a quantifier-free interpretation

𝑓 ∶ Σ → Γ.

Let 𝜑 be the universe formula of 𝑓 , and let Σ⋃︀𝜑 be the type
obtained by applying Lemma A.2. We write dom𝑓 for this
type. The corresponding function in the decomposition as
in item 1 is then

𝑓 ⋃︀dom𝑓 ∶ dom𝑓 → Γ.

We will use the following terminology for this decomposi-
tion: the type Σ⋃︀𝑓 will be called the reduced domain of 𝑓 , the
projection will be called the domain reduction of 𝑓 , and the
function 𝑔 will be called reduced 𝑓 . Here is a diagram that
displays this terminology

Σ Γ

reduced domain of 𝑓

𝑓

domain reduction of 𝑓 reduced 𝑓

Because the domain reduction is derivable, and derivable
functions are closed under composition, it is enough to show
that for every quantifier-free interpretation, its reduced ver-
sion is derivable. This will be shown in the following lemma.

Lemma A.3. For every quantifier-free interpretation

𝑓 ∶ Σ → Γ

with universe formula 𝜑 , one can derive the function

𝑓 ⋃︀𝜑 ∶ Σ⋃︀𝜑 → Γ

from item 1 in Lemma A.2.

Proof
The lemma is proved by structural induction on the input
and output types. In the induction step, we will replace either
the input or output type by a simpler one. The induction
step is shown in Sections A.2.2–A.2.5 below, which consider
the following cases:

A.2.1 the input type is a co-product;
A.2.2 the output type is a co-product;
A.2.3 the output type is a product;
A.2.4 the input type is 0 or 1;
A.2.5 the input type is a list;
A.2.6 the input type is a product.

These cases are exhaustive, i.e. at least one of them always
applied, but they are not disjoint. When applying some case,
we assume that none of the previous cases can be applied.
The induction basis corresponds to case A.2.4.

16

A.2.1 The input type is a co-product. In the represen-
tation of the co-product type from Definition 2.4, the infor-
mation about whether the structure comes from the first or
second case is stored in a nullary predicate. Therefore, by
a straightforward syntactic manipulation of quantifier-free
interpretations, from a quantifier-free interpetation

𝑓 ∶ Σ1 + Σ2 → Γ,

we can obtain two quantifier-free interpretations

𝑓1 ∶ Σ1 → Γ 𝑓2 ∶ Σ2 → Γ

which describe the behaviour of 𝑓 on inputs from Σ1 and Σ2,
respectively. Let 𝜑 be the universe formula of 𝑓 , and let 𝜑1

and 𝜑2 be the universe formulas of 𝑓1 and 𝑓2. By induction
assumption, we can derive

𝑓𝑖 ⋃︀𝜑𝑖 ∶ Σ𝑖 ⋃︀𝜑𝑖 → Γ

and derive their reduced versions. Since by definition we
have

(Σ1 + Σ2)⋃︀𝜑 = Σ1⋃︀𝜑1 + Σ2⋃︀𝜑2,

we can combine these two derivations into a derivation 𝑓 ⋃︀𝜑 ,
by using the combinator

Δ1 → Γ Δ2 → Γ

Δ1 + Δ2 → Γ
cases,

which itself can be derived using functoriality of + and the
co-diagonal.

A.2.2 The output type is a co-product. Consider a func-
tion

𝑓 ∶ Σ → Γ1 + Γ2

whose output type is a co-product. In this case, we assume
that the previous case cannot be applied, i.e. the input type
is not a co-product.

To produce the output structure, we need to define the
nullary predicate that says which of the two cases in the
output type is used. In a quantifier-free interpretation, this
nullary predicate is defined by a quantifier-free formula, with
no free variables, which is evaluated in the input structure.
Since there are no nullary predicates in the input structure
(because otherwise, the input type would be a co-product,
and we could apply the case from the previous section), it
follows that this quantifier-free formula is either “true” or
“false”. This means that the function 𝑓 must always use the
same variant Γ1 or Γ2 in the co-product from the output
type, regardless of the choice of input structure. Therefore,
we can replace 𝑓 by a corresponding function of type Σ →
Γ𝑖 , apply the induction assumption, and conclude by using
composition and the co-projection.

A.2.3 The output type is a product. Consider a function

𝑓 ∶ Σ → Γ1 × Γ2
whose output type is a product. We split this function into
two quantifier-free interpretations

𝑓1 ∶ Σ → Γ1 𝑓2 ∶ Σ → Γ2,

which produce the two coordinates in the output of 𝑓 . These
two functions must have disjoint universe formulas, since
otherwise the same element in the output structure would
belong to both coordinates of a pair. We can apply the induc-
tion assumption, and then combine these derivations into a
derivation of 𝑓 by using safe pairing from Lemma A.2.

A.2.4 The input type is 0 or 1. By cases A.2.2 and A.2.3,
we can assume that the output type of the unique function
in the family is either 0, 1, or a list type Γ∗.

When the output type is 0 or 1, then we are dealing with
a quantifier-free interpretation which has one of the types

0→ 0 0→ 1 1→ 0 1→ 1.

There is no quantifier-free interpretation of the type 1→ 0,
and for the remaining types there is exactly one quantifier-
free interpretation, which is easily seen to be derivable.

We are left with the case when the output type is Γ∗. If
the input type is 0, then the quantifier-free interpretation
necessarily produces the empty list, and it is therefore deriv-
able. If the input type is 1, then the function always produces
the same output, which is either the empty list, in which
case it can be derived using the list constructor, or a single-
ton list (︀𝐴⌋︀ for some fixed structure 𝐴 ∈ Γ. In the singleton
case, we can use the induction assumption to derive the func-
tion 1 ↦ 𝐴, and pack the result as a list using the list unit
operation.

A.2.5 The input type is a list. We now arrive at the most
interesting case in the proof, which is when the input type is
a list Σ∗. Because the previously studied cases A.2.2 and A.2.3
cannot be applied, the output type is one of 0, 1, or Γ∗. When
the output type is 0, there is only one possible function,
which is easily derivable. The output type 1 is impossible,
since the function could not handle an empty list on the
input. We are left with a list-to-list function. To prove the
inductive step for such functions, we use the analysis from
the following claim.

Claim A.4. For every quantifier-free interpretation

𝑓 ∶ Σ∗ → Γ∗

one can find quantifier-free interpretations

𝑓1, . . . , 𝑓𝑘 ∶ Σ∗ → Γ∗

with disjoint universe formulas such that 𝑓 is equal to

𝐴 ∈ Σ∗ ↦ 𝑓1(𝐴)⋯𝑓𝑘(𝐴)
)︁⌊︂]︂⌊︂)︂
list concatenation

and each 𝑓𝑖 has one of the following properties:
17

1. all output lists of 𝑓𝑖 have length at most one.
2. there is some quantifier-free interpretation

𝑔 ∶ Σ → Γ∗

such that 𝑓𝑖 is equal to

(︀𝐴1, . . . ,𝐴𝑛⌋︀↦ 𝑔(𝐴1)⋯𝑔(𝐴𝑛)
)︁⌊︂]︂⌊︂)︂
list concatenation

3. as in item 2, but with reverse list order 𝑔(𝐴𝑛)⋯𝑔(𝐴1).

Before proving the claim, we use it to complete the in-
duction step of the lemma in the present list-to-list case.
Apply Claim A.4 to the function 𝑓 , yielding a decomposition
into functions 𝑓1, . . . , 𝑓𝑘 . The induction assumption can be
applied to these functions, since item 1 in the claim gives
a smaller output type (namely Γ instead of Γ∗ for the only
list element), while the remaining two items give smaller
input types. Finally, these derivations can be combined into a
derivation of 𝑓 , using the pairing operation from Lemma A.2,
the function for list concatenation from Figure 3, and the
prime function

(Σ × Γ)∗ → Σ∗ × Γ∗ list distribute

which is used to separate the domains of the functions 𝑓1, . . . , 𝑓𝑘
from the input list. It remains to prove the claim.
Proof (of Claim A.4)
Consider the universe formula 𝜑(𝑥) of 𝑓 . Decompose this
formula as a finite union

𝜑(𝑥) = ⋁
𝜎∈Φ

𝜎(𝑥)

of quantifier-free theories as in Definition 3.3, i.e. quantifier-
free formulas that specify all relations satisfied by 𝑥 . Take
some input structure in Σ∗. For elements of this structure
that satisfy the universe formula, there are two orders: the
input order that describes the order in the input list

𝐴 = (︀𝐴1, . . . ,𝐴𝑛⌋︀ ∈ Σ∗

and the output order that describes the order in the output
list

𝑓 (𝐴) = (︀𝐵1, . . . , 𝐵𝑚⌋︀ ∈ Γ∗ .

In the proof of the claim, we will analyze the relationship
between these two orders. Both of these orders are reflex-
ive, total, and transitive, but not necessarily anti-symmetric,
since two elements may belong to the same list element.

For an element 𝑎 in an input structure𝐴 ∈ Σ∗ that satisfies
the universe formula 𝜑(𝑥), the unary theory of 𝑎 is defined
to be the unique quantifier-free theory 𝜎 ∈ Φ that is satis-
fied by 𝑎. If 𝑎 is strictly smaller than 𝑏 in the input order,
then by compositionality, the output order on 𝑎 and 𝑏 will
be uniquely determined by the unary theories of the two

individual elements 𝑎 and 𝑏. This means that exactly of the
following three implications must hold

𝑎 is strictly before 𝑏
in the output order

𝑎 is strictly before 𝑏
in the input order

and the unary theories
of 𝑎 and 𝑏 are 𝜎 and 𝜏

𝑎 is equivalent to 𝑏

in the output order

𝑎 is strictly after 𝑏
in the output order

𝜎<𝜏

𝜎∼𝜏

𝜎>𝜏

Depending on which implication holds, we write one of

𝜎 < 𝜏 𝜎 ∼ 𝜏 𝜎 > 𝜏 .

Before continuing, we make two cautionary remarks about
the notation involving the relations < and > described above.
The first cautionary remark is that the notation is not sym-
metric, since < and > describe relations that are not neces-
sarily converses of each other. This is because one of the
conditions 𝜎 < 𝜏 or 𝜏 > 𝜎 could be true without the other one
being true. The second cautionary remark is that 𝜎 < 𝜏 is
not necessarily obtained from some partial order by looking
at strictly growing pairs. For example, we could have both
𝜎 < 𝜏 and 𝜏 < 𝜎 .

To prove the claim, we make five observations about the
relations <, > and ∼. In these observations, we use partial
equivalence relations; a partial equivalence relation is defined
to be a binary relation that is symmetric and transitive but
not necessarily reflexive. Equivalence classes of partial equiv-
alence relations are defined in the expected way; the only
difference is that some elements of the domain might not
belong to any equivalence class.

1. The first observation is that 𝜎 ∼ 𝜏 is a partial equiva-
lence relation. It is easy to see that the relation 𝜎 ∼ 𝜏
is transitive. We now argue that it is symmetric. (This
is not immediately obvious.) Suppose that 𝜎 ∼ 𝜏 . Con-
sider a list in 𝐴 ∈ Σ∗ with four distinguished elements

𝑎1⟩︀
unary
type 𝜎

< 𝑎2⟩︀
unary
type 𝜏

< 𝑎3⟩︀
unary
type 𝜎

< 𝑎4⟩︀
unary
type 𝜏

with the order relationship describing the input order.
From the assumption on 𝜎 ∼ 𝜏 we can conclude that
three pairs (depicted by lines in the following diagram)
belong to the same elements in the output list:

𝑎1 𝑎2 𝑎3 𝑎4.

𝜎∼𝜏

𝜎∼𝜏 𝜎∼𝜏
18

Since belonging to the the same element in the output
list is a transitive relation, we can deduce that 𝑎2 and
𝑎3 belong to the same element in the output list, thus
establishing 𝜏 ∼ 𝜎 .

2. The next observation is that (𝜎 < 𝜏 ∧𝜏 < 𝜎) is a partial
equivalence relation. It is symmetric by definition, and
it is transitive because each of the two conjuncts is
transitive.

3. By the same proof as in the previous item, (𝜎 > 𝜏 ∧𝜏 >
𝜎) is a partial equivalence relation.

4. We now show that the equivalence classes of the par-
tial equivalence relations described in the first three
observations are disjoint, and give a partition of

Φ = Φ1 ∪⋯ ∪ Φ
of all unary types inΦ. For every𝜎 ∈ Φ, we have exactly
one of the cases 𝜎 ∼ 𝜎 , 𝜎 < 𝜎 , or 𝜎 > 𝜎 . This proves
that every 𝜎 belongs to exactly one of the equivalence
classes in the previous three items.

5. The last observation is that the order on equivalence
classes in the previous item can be chosen so that for
all 𝑖 < 𝑗 we have

𝜎 ∈ Φ𝑖 and 𝜏 ∈ Φ𝑗 ⇒ 𝜎 < 𝜏 .
Let Φ𝑖 and Φ𝑗 be different equivalence classes from the
previous item. For every 𝜎 ∈ Φ𝑖 and 𝜏 ∈ Φ𝑗 we have
exactly one of the three cases

𝜎 < 𝜏 or 𝜎 > 𝜏 or 𝜎 ∼ 𝜏 .
The third case cannot hold, since otherwise Φ𝑖 and
Φ𝑗 would be in the same equivalence class from the
first observation. Therefore, one of the two first cases
must hold. A short analysis, which is left to the reader,
also shows that which of the two cases holds (first
or second) does not depend on the choice of the 𝜎

and 𝜏 . This means that there is an unambiguous order
relationship between Φ𝑖 and Φ𝑗 , and this relationship
can be used to prove item 5 of the claim.

Let Φ1, . . . ,Φ𝑚 be as in the last of the above observations.
We know that for every input structure 𝐴 ∈ Σ∗, the output
list can be decomposed as

𝑓 (𝐴) = 𝑓1(𝐴)⋯𝑓𝑛(𝐴)
where 𝑓𝑖 is the function obtained from 𝑓 by restricting the
output elements to those that have type from Φ𝑖 in the in-
put structure. To complete the proof of the claim, we will
show that each function 𝑓𝑖 has one of the three kinds in the
statement of the claim.

Suppose first that Φ𝑖 is an equivalence class defined by
𝜎 ∼ 𝜏 as in the first observation. This means that all outputs
produced by 𝑓𝑖 are equivalent in the output order. Hence this
𝑓𝑖 is of kind 1 as in the statement of the claim.

Suppose now that Φ𝑖 is an equivalence class defined by
(𝜎 < 𝜏 ∧ 𝜏 < 𝜎) as in the second observation. This means

that for every input list 𝐴 ∈ Σ∗, if we take two elements 𝑎
and 𝑏 that have unary theory in Φ𝑖 , then

𝑎 is strictly before 𝑏 in the input order

𝑎 is strictly before 𝑏 in the output order

Hence this 𝑓𝑖 is of kind 2 as in the statement of the claim.
A symmetric argument works for an equivalence class

defined by (𝜎 > 𝜏 ∧ 𝜏 > 𝜎), except that this time the output
order is reversed, giving a function as in item 3 of the lemma.
◻

A.2.6 The input type is a product. The final case in the
proof of Lemma A.3 is when the input type is a product.
Since all types are in disjunctive normal form, the input type
is a product

Σ = Σ1 ×⋯ × Σ𝑚
where each Σ𝑖 is either 1 or a list. (The type 0 can be removed
from a product.) Because the previously studied cases A.2.2
and A.2.3 about output types that are products or co-products
cannot be applied, the output type is either 0, 1, or a list type
Γ∗.

If the output type is 0, then the function is easily derivable.
Consider now the case when the output type is 1. It cannot

be the case that each of the input types Σ1, . . . , Σ𝑚 is a list,
since the quantifier-free interpretation would be unable to
handle the case when all lists are empty. Therefore, one of
the input types is the unit type 1, and the conclusion of the
lemma can be proved by using 1→ 1.

We are left with the case when the ouput type is of the form
Γ∗. Here, we proceed in the same way as in Section A.2.5,
with the corresponding version of Claim A.4 being the fol-
lowing claim. The proof of the claim, which uses a similar
analysis of unary quantifier-free theories as in Claim A.4, is
left to the reader.

Claim A.5. For every quantifier-free interpretation

𝑓 ∶ Σ1 ×⋯ × Σ𝑚
)︁⌊︂]︂⌊︂)︂

Σ

→ Γ∗

one can find quantifier-free interpretations

𝑓1, . . . , 𝑓𝑘 ∶ Σ → Γ∗

with disjoint universe formulas such that 𝑓 is equal to

𝐴 ∈ Σ ↦ 𝑓1(𝐴)⋯𝑓𝑘(𝐴)
)︁⌊︂]︂⌊︂)︂
list concatenation

and each 𝑓𝑖 has one of the following properties:
1. all output lists of 𝑓𝑖 have length at most one; or
2. 𝑓𝑖 factors through the projection

Σ1 ×⋯ × Σ𝑚 → Σ 𝑗 for some 𝑗 ∈ {1, . . . ,𝑚}.
19

𝐺∗ →𝐺 group multiplication

Σ → Σ × Σ diagonal

Σ∗ → 1 + Σ × Σ∗ list destructor

(Σ + Γ)∗ → (Σ∗ + Γ∗)∗ block

Σ∗ → (Σ∗ × Σ∗)∗ split

Figure 4. Additional polyregular prime functions from [5].

This completes the last of the cases in the induction step,
and thus also the proof of the lemma, which also completes
the proof of Theorem 4.1. ◻

B Completeness for polyregular functions
In this section, we prove the completeness of the system in
Theorem 5.3, i.e. we show that every polyregular function
can be weakly derived. This implication is the less interesting
one, since our system is designed to be powerful, i.e. it should
be easy to derive functions in it. We will deduce the com-
pleteness of our system with fold from another completeness
result that uses a system without fold.

We begin by describing the system that we reduce to.
It has all of the combinators from Figure 2, and its prime
functions are contained in those from Figure 1 plus certain
additional functions that are described in Figure 4. The first
three primes from Figure 4 have already been discussed in
the paper, so we only explain the block and split functions.
The split function of type

Σ∗ → (Σ∗ × Σ∗)∗

outputs all possible ways of splitting the input list into (prefix,
suffix) pairs, as explained in the following example:

(︀1, 2, 3⌋︀
↧

(︀((︀⌋︀, (︀1, 2, 3⌋︀), ((︀1⌋︀, (︀2, 3⌋︀), ((︀1, 2⌋︀, (︀3⌋︀), ((︀1, 2, 3⌋︀, (︀⌋︀)⌋︀.
The other additional function is the block function of type

(Σ + Γ)∗ → (Σ∗ + Γ∗)∗,
which blocks the elements of the input list into maximal
blocks of same type, as illustrated in the following example
that uses numbers for elements of Σ and letters for elements
of Γ:

(︀1, 2, 𝑎, 3, 4, 5, 𝑏, 𝑐⌋︀
↧

(︀(︀1, 2⌋︀, (︀𝑎⌋︀, (︀3, 4, 5⌋︀, (︀𝑏, 𝑐⌋︀⌋︀.

Theorem B.1. [5, p. 64] A function between list types is
polyregular if and only if it can be derived using the prime
functions and combinators from the quantifier-free system
Theorem 4.1, plus the prime functions from Figure 4.

In contrast to the system with fold from this paper, the
system from the above theorem was designed to be minimal,
and therefore, the completeness proof for the system with
fold will be a simple corollary of completeness of the system
from the above theorem. Thanks to Theorem B.1, to prove the
completeness result for our system with fold, it is enough to
show that (a) all prime functions in Theorem B.1 are weakly
derivable; and (b) the combinators in Theorem B.1 preserve
the weakly derivable functions.

Combinators. Consider first (b), about the combinators.
The combinators are those from Figure 2. There is one com-
binator for function composition, and three combinators
for functoriality. The combinators for functoriality are dealt
with using the prime functions about ! commuting with the
remaining constructors. The combinator for function com-
position is explained in the following diagram:

Σ Γ Δ

!𝑘Σ !ℓΓ

!𝑘+ℓΣ

derivable

weakly derivable

upgrading

Prime functions. Consider now (a), about the prime func-
tions. Clearly all prime functions in the quantifier-free sys-
tem are weakly derivable, since they are even strongly deriv-
able. Weak derivability of the additional functions for group
multiplication and the list destructor was already discussed
in Examples 2 and 15. The diagonal function can easily be
weakly derived using absorption. We are left with the split
and block function.

Lemma B.2. Split and block are weakly derivable.

Proof
Apply two times in a row the weakly derivable prefixes
function Claim 5.4 to a list of the form

(︀𝑎1, . . . , 𝑎𝑛⌋︀ ∈ Σ∗.

The output is a list in Σ∗∗∗ of length 𝑛 whose 𝑖-th element is

(︀(︀𝑎1, . . . , 𝑎𝑛⌋︀, (︀𝑎1, . . . , 𝑎𝑛−1⌋︀, . . . , (︀𝑎1, . . . , 𝑎𝑖⌋︀⌋︀. (2)

Since weakly derivable functions are closed under compo-
sition, this output can be produced by a weakly derivable
function. Since weakly derivable functions are also closed
under map, to complete the proof that split is weakly deriv-
able, it remains to show that a weakly derivable function
can transform the 𝑖-th element in (2) into the corresponding
element in the output of split, namely

((︀𝑎1, . . . , 𝑎𝑖⌋︀, (︀𝑎𝑖+1, . . . , 𝑎𝑛⌋︀). (3)

20

This is done as follows: we reverse the list in (2), and then
apply the weakly derivable list destructor to get the pair
consisting of the head and tail:

head =(︀𝑎1, . . . , 𝑎𝑖⌋︀
tail =(︀(︀𝑎1, . . . , 𝑎𝑖+1⌋︀, (︀𝑎1, . . . , 𝑎𝑖+2⌋︀, . . . , (︀𝑎1, . . . , 𝑎𝑛⌋︀⌋︀.

The head is already in the form required by (3). In the tail,
we replace each list element (which itself is a list) by its
last element; this can be done using map and the weakly
derivable function that replaces a list with its last element.

We now turn to the block function. One approach is to
derive the block function from split – thus showing that
it is not needed in the system. This is shown in [5, p.90].
However, since we will later use a system that uses block but
not split, we show how to derive block directly. To compute
the block function, we use an automaton where the input
alphabet is Σ + Γ, the state space is

Δ = (Σ∗ + Γ∗)∗ × (Σ∗ + Γ∗)
)︁⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂]︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂)︂

most recent block

and the transition function is illustrated in the following
diagram (by symmetry, we only draw the left half):

(Σ* + Γ*)* × (Σ* + Γ*) × (Σ + Γ)

(Σ* + Γ*)* × (Σ* + Γ*)

(Σ* + Γ*)* × Σ* × Σ (Σ* + Γ*)* × Γ* × Σ

(Σ* + Γ*)* × Σ*

(Σ* + Γ*)* × Σ*

(Σ* + Γ*)* (Σ* + Γ*)*

(Σ* + Γ*)*

Σ* Γ*

Σ*+Γ*Σ*

Σ*

Σ Σ

append co-projection

append unit

distribute

distribute-1

In the diagram, the unit function is the function 𝑥 ↦ (︀𝑥⌋︀
which can be derived as in Figure 3. If we set the initial state
of the above automaton to be a pair of empty lists (the second
one having type, say, Σ∗), then after reading a list in !(Σ+Γ)∗,
its state will store the output of the block operation, except
that the last list element will be held separately and will need
to be added using append. ◻

B.1 A smaller system
A corollary of the completeness proof is Theorem 5.5, which
shows that certain primes and combinators can be removed
from the system in Theorem 5.3, while keeping it complete.
We remove the map combinator, as well as all quantifier-free
functions from Figure 1 that involve the list type, namely
the functions

Σ∗ × Σ → Σ∗ append

Σ∗ → Σ∗ reverse

Σ∗∗ → Σ∗ concat

Σ → Σ × Γ∗ create empty

(Σ × Γ)∗ → Σ∗ × Γ∗ list distribute

In their place, we have only two functions

1 + Σ → Σ∗ lists of length at most one

Σ∗ × Σ∗ → Σ∗ binary list concatenation.

We will show that the smaller system remains complete,
because it can weakly derive the removed functions, and
furthermore, the weakly derivable functions in the smaller
system are closed under the map combinator.
Proof (of Theorem 5.5)
Consider first the prime functions that are removed from the
smaller system. The append function can be (strongly) de-
rived in the smaller system. Using append, we can (strongly)
derive the left list constructor, whose safe folding gives the
list reversal in type

!Σ∗ → Σ∗ .

is obtained by composing a co-projection with the right
list constructor. Applying the safe fold combinator to the left
list constructor (after swapping the order of its arguments)
shows that the reverse function can be derived in type

!Σ∗ → Σ,

and hence it is weakly derivable. The concat function is
derived in type

!Σ∗∗ → Σ∗

by folding binary list concatenation. To weakly derive the
create empty function, we observe that for every type Σ we
can derive the unique function

!Σ → 1,

and this derivation can be used together with absorption to
derive the create empty function in type

!Σ → Σ × Γ∗ .
Finally, the list distribute function can be derived in type

!(Σ × Γ)∗ → Σ∗ × Γ∗

by a straightforward application of safe fold.
21

1 + Σ → Σ∗ lists of length at most one

Σ∗ × Σ∗ → Σ∗ binary list concatenation

!(Γ + Σ)↔ !Γ+ !Σ ! commutes with +
!(Γ × Σ)↔ !Γ× !Σ ! commutes with ×
(!Γ)∗ ↔ !(Γ∗) ! commutes with ∗

!Γ → !Γ × Γ absorption

Γ × Σ↔ Σ × Γ commutativity of ×
Γ + Σ↔ Σ + Γ commutativity of +

Γ × (Σ × Δ)↔ (Γ × Σ) × Δ associativity of ×
Γ + (Σ + Δ)↔ (Γ + Σ) + Δ associativity of +
Γ × (Σ + Δ)↔ (Γ × Σ) + (Γ × Δ) distributivity

Γ1 × Γ2 → Γ𝑖 projections

Γ𝑖 → Γ1 + Γ2 co-projections

Γ + Γ → Γ co-diagonal

!𝑘1→ Γ Γ × Σ → Γ

!𝑘Σ∗ → Γ
safe fold

Γ → Σ Σ → Δ

Γ → Δ
function composition

Γ1 → Σ1 Γ2 → Σ2

Γ1 × Γ2 → Σ1 × Σ2
functoriality of ×

Γ1 → Σ1 Γ2 → Σ2

Γ1 + Γ2 → Σ1 + Σ2
functoriality of +

Γ → Σ

!Γ →!Σ functoriality of !

Figure 5. A complete system for weakly deriving the
polyregular functions. The safe fold combinator can only
be applied when the type Γ has grade < 𝑘 .

Finally, we can also eliminate the map combinator (func-
toriality of ∗), since using safe fold we obtain a version of
the map combinator in type

Γ → Σ

!Γ∗ → Σ∗
weak map,

which is strong enough to replace the usual map combinator
in the completeness proof of the system in Theorem 5.3.
Summing, up we can reduce the system as stated in the
present Theorem 5.5, thus completing its proof. ◻

For easier reference, the system in the above theorem is
described in Figure 5.

C Soundness for polyregular functions
In this section, we prove the soundness implication in The-
orem 5.3. We prove that every strongly derivable function
is a graded mso interpretations. The prime functions from
Figure 1 are quantifier-free, and therefore they are a special
case of graded mso interpretations. The extra prime func-
tions from Theorem 5.3, namely absorption and those about
! commuting with the remaining type constructors, are eas-
ily seen to be graded mso interpretations. The combinators
for functoriality are also easily seen to preserve graded mso
interpretations. There are two interesting cases, namely the
combinators for function composition and safe fold.

C.1 Function composition
We first show that the graded mso interpretations are closed
under composition, as long as the input and output types are
graded list types. In the proof, we use the following result
about composition of (non-graded) mso interpretations on
(non-graded) list types.

Lemma C.1. Let 𝑓 ∶ Σ → Γ be a non-graded mso interpreta-
tion between non-graded list types, with the underlying functor
being 𝐹 . For every 𝑘, 𝑟 ∈ {0, 1, . . .}, the following function is
mso definable.
Input A structure 𝐴 ∈ Σ with distinguished elements 𝑎 ∈ 𝐴𝑘 .
Output The rank 𝑟 mso theory of the tuple 𝐹(𝑎) in 𝑓 (𝐴).

Proof
This lemma is a corollary of the closure under composition
of (non-graded) mso interpretations for (non-graded) list
types [9, Corollary 8]. The cited result is non-trivial, and
depends on the fact that the input and output types are list
types. ◻

Using the above lemma for non-graded intepretations,
we prove closure under composition of graded mso inter-
pretations over graded list types. Consider two graded mso
interpretations

Σ Γ Δ.
𝑓 𝑔

where all types involved are graded. We want to show that
their composition

𝑓 ;𝑔 ∶ Σ → Δ

is a graded mso interpretation. Let the corresponding polyno-
mial functors be 𝐹 and 𝐺 . Naturally, the polynomial functor
for the composition is going to be the composition functor
𝐹 ;𝐺 . The partition into grades of the output elements will
be inherited from the second functor 𝐺 .

It remains to prove that the composition 𝑓 ;𝑔 satisfies the
continuity condition from Definition 5.7. The continuity con-
dition says that every 𝑘, ℓ ∈ {0, 1, . . .}, and for every input
structure 𝐴 ∈ Σ with distinguished elements 𝑎 ∈ 𝐴𝑘 ,

(1) the quantifier-free theory of (𝐹 ;𝐺)(𝑎) in (𝑓 ;𝑔)(𝐴)⋃︀ℓ
22

is uniquely determined by the quantifier-free theory of 𝑎
in 𝐴⋃︀ℓ , and the mso theory of 𝑎 in 𝐴⋃︀ℓ + 1 for some suitable
quantifier rank that depends only on 𝑓 and the parameters
𝑘, ℓ .

By the continuity condition for the second graded mso
interpretation 𝑔, we know that the quantifier-free theory in
(1) is uniquely determined by

(2) the quantifier-free theory of 𝐹(𝑎) in 𝑓 (𝐴)⋃︀ℓ ; and
(3) the rank 𝑟 mso theory of 𝐹(𝑎) in 𝑓 (𝐴)⋃︀ℓ + 1.

By the continuity condition for the first graded mso inter-
pretation 𝑓 , we know that the quantifier-free theory in (2) is
uniquely determined by

(4) the quantifier-free theory of 𝑎 in 𝐴⋃︀ℓ ;
(5) the rank 𝑠 mso theory of 𝑎 in 𝐴⋃︀ℓ + 1.

for some quantifier rank 𝑠 . Consider now the mso theory
in (3). We want to show that this theory is also determined
by suitable quantifier-free and mso theories in the original
structure 𝐴. Consider the (non-graded) mso interpretation

𝐴⋃︀ℓ + 1 ↦ 𝑓 (𝐴)⋃︀ℓ + 1,
which is well-defined by the continuity condition for 𝑓 . By
applying Lemma C.1 to this interpretation, we see that the
mso theory in (3) is uniquely determined by the

(6) the rank 𝑡 mso theory of 𝑎 in 𝐴⋃︀ℓ + 1.
for some quantifier rank 𝑡 . Summing up, the quantifier-free
theory in (1) is uniquely determined by the quantifier-free
theory in item (4), and the mso theories in items (5) and (6).
The latter two mso theories are determined by the single
mso theory for the higher quantifier rank among 𝑠 and 𝑡 .
Summing up, we have proved the continuity condition for
the composed graded mso interpretation 𝑓 ;𝑔.

C.2 Safe fold
We are left with showing that graded mso interpretations are
closed under the safe fold combinator. All of the conceptual
pieces are already in place, and we will simply show that the
proof of Theorem 3.2 works, with minor adjustments to take
into account the added generality of graded structures.

Suppose Γ is a type where all grades are < 𝑘 , and we apply
the safe fold combinator to graded mso interpretations of
types

!𝑘1→ Γ and Γ × Σ → Γ,

yielding a function of type

!𝑘Σ → Γ.

By choice of 𝑘 , in the resulting function every element in the
input structure has strictly bigger grade than every element
in the ouput structure. For such functions, the continuity
condition in Definition 5.7 becomes trivial, and there is no
difference between graded and un-graded mso interpreta-
tions. Therefore, in order to prove the soundess of fold, it
is enough to show the following lemma, that applying fold

to a graded mso interpretation yields an (ungraded) mso
interpretation.

Lemma C.2. For every graded mso interpretation

𝛿 ∶ Γ × Σ → Γ,

between graded list types, and every 𝐵0 ∈ Γ, the following
function is an (ungraded) mso interpretation

𝐴 = (︀𝐴1, . . . ,𝐴𝑛⌋︀
)︁⌊︂]︂⌊︂)︂

list of structures in Σ,
with the grades forgotten

↦ 𝐵𝑛⃒
defined based on 𝐴

as in the proof of Claim 3.4

.

Proof
Let 𝑚 be the maximal grade that appears in Γ, and let the
polynomial functor in the transition function 𝛿 be

𝐹(𝐴) = 𝐹0(𝐴) +⋯ + 𝐹𝑚(𝐴) +𝐴.
By the continuity condition for the gradedmso interpretation
𝛿 , the elements of grade ℓ in 𝐵𝑛 are the disjoint union of two
sets:

1. grade ℓ elements in 𝐵𝑛−1 or 𝐴𝑛 ; or
2. 𝐹ℓ applied to grade > ℓ elements in 𝐵𝑛−1 or 𝐴𝑛 .

By unfolding the inductive definition of 𝐵𝑛−1 in the first item
of the above description, we see that the elements of grade ℓ
in 𝐵𝑛 are the disjoint union of two sets:

1*. grade ℓ elements in 𝐵0 or 𝐴1, . . . ,𝐴𝑛 ; or
2*. 𝐹ℓ applied to grade > ℓ elements in 𝐵𝑖−1 or 𝐴𝑖 for some

𝑖 ∈ {1, . . . , 𝑛}.
We will represent the elements that satisfy 1* or 2* as a subset
of 𝐺ℓ(𝐴) for some polynomial functor 𝐺ℓ . This functor is
defined as follows by induction on ℓ , in reverse order𝑚, . . . , 0.
Suppose that we want to define 𝐺ℓ and assume that we have
already defined𝐺ℓ′ for ℓ ′ > ℓ . (In the induction basis of ℓ =𝑚
the assumption is empty.) To represent the elements in item
1*, we use the functor

𝐴 + 1 +⋯ + 1
)︁⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂]︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂)︂

number of elements
in 𝐵0 that have grade ℓ

.

A tempting idea for item 2* is to use the functor

𝐻ℓ(𝐴) = 𝐹ℓ(𝐺ℓ+1(𝐴) +⋯ +𝐺𝑚(𝐴) + 𝐴⟩︀
represents elements of grade >𝑚

in the input structure

).

Unfortunately, this idea is not correct. The reason is that in
item 2*, there is a dijsoint union ranging over 𝑖 ∈ {1, . . . , 𝑛},
and the disjointness of this union is not taken into account
by 𝐻ℓ . The problem is that the universe of the structures
𝐵0, . . . , 𝐵𝑛 are not disjoint, and the functor𝐻ℓ can incorrectly
identify elements that are obtained by applying 𝐹ℓ to the
same elements that appear in both 𝐵𝑖 and 𝐵 𝑗 for 𝑖 ≠ 𝑗 . To
eliminate this problem, we will add an explicit identifier for
the index 𝑗 to the functor. To view the index 𝑖 as an element
of the input structure 𝐴𝑖 , we use the first element in the
universe of the corresponding list element𝐴𝑖 . Here, when we

23

refer to the first element in the universe, we mean the natural
linear order on the universe in a structure from a graded list
type, which arises from the ordered nature of lists and pairs.
Therefore, instead of 𝐻ℓ(𝐴), to represent item 2* we use the
product 𝐴 ×𝐻ℓ(𝐴), with the 𝐴 part representing the index 𝑖 .
Summing up, the functor 𝐺ℓ that describes elements in each
𝐵𝑖 is

𝐺ℓ(𝐴) = 𝐴 + 1 +⋯ + 1)︁⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂]︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂)︂
number of elements

in 𝐵0 that have grade ℓ

+𝐴 ×𝐻ℓ(𝐴).

In the rest of this proof, we will view the universe of 𝐵𝑛
as being a subset of

𝐺(𝐴) =𝐺0(𝐴) +⋯ +𝐺𝑚(𝐴),

with𝐺ℓ(𝐴) representing the elements of grade ℓ . The polyno-
mial functor𝐺(𝐴)will be the polynomial functor for the mso
interpretation in the conclusion of the lemma. To conclude
the proof of the lemma, we need to show that in mso we can
define which elements of 𝐺(𝐴) belong to the universe of 𝐵𝑛 ,
and what relations from the output vocabulary are satisfied
by tuples of such elements. In other words, we need to define
in mso the quantifier-free theory of tuples from 𝐺(𝐴) in the
output structure. This is done in the following claim, which
completes the proof of the lemma.

Claim C.3. For every ℓ, 𝑘 ∈ {0, 1, . . .} the following function
is mso definable:

● Input. A structure 𝐴 ∈ Σ∗ with elements 𝑎 ∈ 𝐴𝑘 .
● Output. The quantifier-free theory of 𝐺(𝑎) in 𝐵𝑛 ⋃︀ℓ .

Furthermore, the output depends only on 𝐴 and 𝑎 restricted to
elements of grade at least ℓ .

Proof
Fix some ℓ and 𝑘 as in the statement of the claim. The claim is
proved by induction on ℓ , in reverse order 𝑚, . . . , 0. Suppose
that we want to prove the claim for some grade ℓ , and assume
that it has already been proved for strictly bigger grades.

We use the same idea as in the proof of Claim 3.4. Con-
sider a finite automaton, in which the states are all possible
theories that arise by taking some 𝑘-tuple 𝑎, and returning
the quantifier-free theory of 𝐺(𝑎) in some structure from Γ.
This set of states is finite, since the length of the tuple and
the vocabulary are fixed.

We will design an automaton with this set of states, to-
gether with an input string (which will be called the advice
string), so that it satisfies the following invariant: after read-
ing the first 𝑖 letters of the advice string, the state of the
automaton is the quantifier-free theory of 𝐺(𝑎) in 𝐵𝑖 ⋃︀ℓ .

The initial state of the automaton is determined by the
invariant, it must be the quantifier-free theory of 𝐺(𝑎) in
𝐵0. Since the universe of 𝐵0 is equal to 𝐺(∅), it follows that
the initial state does not depend on the tuple 𝑎 or the input
structure 𝐴.

We now describe the transition function of the automaton,
as well as the advice string. By unfolding the definition of
the graded mso interpretation 𝛿 , there is some quantifier
rank 𝑠 such that the state of the automaton after reading 𝑖

letters is uniquely determined by the following four pieces
of information:

1. the quantifier-free theory of 𝐺(𝑎) in 𝐵𝑖−1,
2. the quantifier-free theory of 𝐺(𝑎) in 𝐴𝑖 ,
3. the rank 𝑠 mso theory of 𝐺(𝑎) in 𝐵𝑖−1⋃︀ℓ + 1,
4. the rank 𝑠 mso theory of 𝐺(𝑎) in 𝐴𝑖 ⋃︀ℓ + 1.

The first piece of information is the previous state of the
automaton. The remaining infomration will be the stored
in the advice string; i.e. the 𝑖-th letter of the advice string
will contain the information described the last three items
above. Note that the advice string can be computed in mso,
by the induction assumption. Therefore, since the automaton
can be simulated in mso, it follows that the last state of this
automaton can be defined in mso, thus proving the claim. ◻

◻

D Proof of Theorem 6.1
In this section, we prove that the system in Theorem 5.3 is
sound and complete with respect to linear regular functions.

Soundness. The soundness proof follows the same lines
as the soundness proof in Theorem 5.3. The general idea is
that we use gradedmso interpretations where all components
have dimension at most one. This, however, on its own is
not going to be enough. To see why, let us compare the two
absorption functions

!Σ → Σ×!Σ
)︁⌊︂]︂⌊︂)︂

not allowed

!Σ → Σ × Σ
)︁⌊︂]︂⌊︂)︂

allowed

.

Both of them have linear size increase – each element of the
input structure contributes two copies to the output structure.
What is wrong with the function that is not allowed? The
problem is that one of the copies has the same grade, and
the other has lower grade. In the presence of folding, we
can get an unbounded number of copies, by spawning a new
lower grade copy in each iteration. This phenomenon will
not occur in the allowed function, since both copies have
lower grade. The phenomenon discussed above is formalised
in the following definition:

Definition D.1. A linear graded mso interpretation is a
graded mso interpretation in which the underlying functor
is linear, i.e. all components have dimension one, and which
furthermore satisfies the following downgrading condition: if
an element of the input structure has at least two copies in
the output structure, then all of the copies have strictly lower
grade.

24

In the definition above, the copies of an element in the
output structure are defined in the natural way; this defini-
tion makes sense when the functor is linear. For example, if
the functor is

𝐴 +𝐴 +𝐴 + 1 + 1
then each input element spawns at most three copies. The
components of dimension zero, of which there are two in
the above example, are not counted as copies of any input
elment.

To prove completeness of the system from Theorem 6.1,
we show that all functions that are strongly derived in it
are linear graded mso interpretations. The proof is a simple
inducton on the derivation. The most interesting cases are
composition and folding. For composition, we simply observe
that the condition on lower grades from Definition D.1 is
preserved under composition.

We are left with folding. where we use the following
lemma, which is the same as Lemma C.2 except that the
functions in the assumption and conclusion are required to
be linear. In the assumption, we use linearity as defined in
Definition D.1, in particular the downgrading condition is
assumed; in the conclusion we have an ungraded function,
and therefore only the linearity of the functor and not the
downgrading condition are assumed.

Lemma D.2. For every linear graded mso interpretation

𝛿 ∶ Γ × Σ → Γ,

between graded list types, and every 𝐵0 ∈ Γ, the following
function is an (ungraded) linear mso interpretation

𝐴 = (︀𝐴1, . . . ,𝐴𝑛⌋︀
)︁⌊︂]︂⌊︂)︂

list of structures in Σ,
with the grades forgotten

↦ 𝐵𝑛⃒
defined based on 𝐴

as in the proof of Calim 3.4

.

Proof
We use the same proof as in Lemma C.2. However, there is
one difficulty, which is that the functor 𝐺 defined in that
proof is not linear, even if 𝛿 is linear. This is because of the
product 𝐴 × 𝐻ℓ(𝐴) which is used to code indexes. In fact,
the functor 𝐺 can have arbitrarily high dimension. How-
ever, thanks to the downgrading condition on 𝛿 , one show
by induction that for every grade ℓ there is some constant
𝑐ℓ ∈ {0, 1, . . .} such that for every grade ℓ element 𝑎 in the
input structure, there are at most 𝑐ℓ elements in the output
structure which use 𝑎. Here, we say that an element uses
𝑎 if it belongs to 𝐺(𝐴) but not to 𝐺(𝐴 ∖ {𝑎}). Using this
property, we can turn 𝐺 into a linear functor. ◻

This finishes the soundness proof. Below, we give two
completeness proofs.

Proof (First completeness proof.)
This proof uses the sst model from Example 7, which is
complete for linear regular functions, in the case where the
input and output types are strings over finite alphabets [1,

Theorem 3]. In Example 7, we show how to weakly derive
every sst that uses each input letter at most once. To get
the general form of sst, where an input letter can be used
a constant number of times, it is enough to generalize the
model from Example 7 so that the initial function is weakly
derivable, and the transition function can be derived in type

Δ×!𝑘Σ → Δ

for some 𝑘 . With these relaxations, we get all copyless sst,
and retain weak derivability. This proof works only for func-
tions of string-to-string type (admittedly, this is the case that
we really care about), and for this reason we also present a
second proof, which can also handle types such as strings of
strings or pairs of strings. ◻
Proof (Second completeness proof.)
In this proof, similarly to the completeness proof from Theo-
rem 5.3, we reduce to a known complete system. In the case
of linear mso interpretations, the corresponding known sys-
tem is from [7]. It is the same as in Theorem B.1, except that
the split function is removed. In the completeness proof of
Theorem 5.3, only the proof for split used general absorption
(as opposed to linear absorption). Therefore, the system with
linear absorption is complete for the linear regular functions.
◻

25

	Abstract
	1 Introduction
	2 Interpretations
	2.1 Definition of mso interpretations
	2.2 List types

	3 The fold combinator
	3.1 On the dangers of folding
	3.2 Quantifier-free interpretations and their folding

	4 Deriving quantifier-free functions
	4.1 String diagrams

	5 Deriving polyregular functions
	5.1 Graded types and their derivable functions
	5.2 Completeness
	5.3 Soundness

	6 Linear regular functions
	6.1 Tree types

	7 Perspectives
	References
	A The quantifier-free system
	A.1 Soundness
	A.2 Completeness

	B Completeness for polyregular functions
	B.1 A smaller system

	C Soundness for polyregular functions
	C.1 Function composition
	C.2 Safe fold

	D Proof of Theorem 6.1

