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Abstract

The fixed-point logic LREC= was developed by Grohe et al. (CSL 2011) in the quest for
a logic to capture all problems decidable in logarithmic space. It extends FO+C, first-order
logic with counting, by an operator that formalises a limited form of recursion. We show
that for every LREC=-definable property on relational structures, there is a constant k such
that the k-variable fragment of first-order logic with counting quantifiers expresses the
property via formulae of logarithmic quantifier depth. This yields that any pair of graphs
separable by the property can be distinguished with the k-dimensional Weisfeiler–Leman
algorithm in a logarithmic number of iterations. In particular, it implies that a constant
dimension of the algorithm identifies every interval graph and every chordal claw-free
graph in logarithmically many iterations, since every such graph admits LREC=-definable
canonisation.

Index Terms

counting logic, Weisfeiler–Leman algorithm, graph isomorphism, interval graphs

I. Introduction

By Fagin’s celebrated theorem [12], over all finite structures, the complexity class NP is
precisely the class of all computational problems that can be expressed via formulae in
existential second-order logic. This means that the problem to decide whether a structure
has a certain property is in NP if and only if there is a formula in existential second-order
logic that defines the property. The theorem can be seen as the starting point of the field
of descriptive complexity theory [31, 17], which aims at describing or capturing complexity
classes via logics. Milestones include the results that, on ordered structures, fixed-point
logic FP captures PTIME [29, 46] and deterministic transitive closure logic DTC captures
LOGSPACE [30]. However, on general unordered structures, neither of these two results
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holds; for both complexity classes, the quest for capturing logics still continues and has
possibly become the most important question in the field.

Concerning LOGSPACE, even adding counting operators to DTC does not capture the
class on trees yet [10]. Towards tackling this, Grohe et al. designed in [24] the logic
LREC, which captures LOGSPACE on directed trees and is strictly contained in FP+C,
the extension of FP by counting quantifiers. LREC extends first-order logic with counting
by an operator which enables a limited version of recursion. The idea behind it is that, as in
fixed-point logics, some power of fixed-point operators should be allowed, but the amount
of possible recursion shall not lead to the expressive power exceeding logarithmic-space
computation.

By extending LREC further to the logic LREC=, a logic to capture LOGSPACE on all
undirected trees and on all interval graphs was found [24]. LREC= is strictly contained in
FP+C [7] and in the logic Choiceless Logarithmic Space [15].

More standard “first-order” logics such as transitive closure logic and its fragments
quantify over vertices of the input graph. Addressing a single vertex in an n-element graph
requires logarithmically many bits. Thus, to remain in LOGSPACE, such a logic can only
store a bounded number of vertices at any time. This severely limits the expressiveness.
The limited-recursion operator of LREC as an explicit resource management allows it to
use the logarithmic space in a more effective way and look at more vertices at the same
time. An easy example illustrating how this might be possible is the following: suppose we
have already stored a vertex v of degree d. Then we only need log d bits to address any of
its neighbours. As d may be much smaller than n, this may allow us to save space. In this
way, the logic LREC is similar to choiceless polynomial time (CPT) [4, 14], which also has
an explicit resource control, albeit to be able to more effectively exploit polynomial time.
In the same way that CPT is strictly more powerful than FP+C and does not fit into the
standard framework of finite-variable logics, LREC is more powerful than deterministic
and symmetric transitive closure logic with counting, and it is not even contained in full
transitive closure logic with counting, a logic capturing nondeterministic logarithmic space
on ordered structures. Larger complexity classes such as AC1, which describes parallel
logarithmic-time complexity, are naturally described in terms of fixed-point logic with
logarithmically many iterations. While it is known that LREC is contained in FP+C, it is
not obvious that it can be simulated by logarithmically many fixed-point iterations, as the
limited recursion of LREC may be polynomially deep. This is the question we address in
this paper.

To understand the expressiveness of fixed-point logic with counting, it has turned out to
be very fruitful to embed it into the finite-variable logics of first-order logic with counting
[5, 44]. Then the number of fixed-point iterations corresponds naturally to the quantifier
depth.

Over the decades of research, these counting-logic fragments have exhibited links to
many other areas from practical and theoretical computer science [1, 2, 5, 8, 22, 18, 43].
A striking connection exists to the Weisfeiler–Leman algorithm, which is a procedure that
computes and refines in an iterative and isomorphism-invariant way colours in the input
graph. For every k ∈ N>0, its k-dimensional version runs in polynomial time and the
computed colourings can often be used to detect non-isomorphism of graphs. As it turns
out, the k-dimensional Weisfeiler–Leman algorithm (k-WL) is just as expressive as the logic
Ck+1, the (k + 1)-variable fragment of first-order logic enriched with counting quantifiers:
it computes distinct colourings on two input graphs if and only if there is a distinguishing
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formula in Ck+1 for them. Moreover, the number of iterations of the algorithm needed to
obtain distinct colourings corresponds to the quantifier depth of a distinguishing formula.
By this correspondence, from a perspective of descriptive complexity theory, both the
dimension of the algorithm and the number of iterations that it needs to produce an
output are parameters worth being studied.

Concerning the dimension of the algorithm that is needed to distinguish two graphs,
over the past years, many new insights have been obtained, also exploiting the link to
counting logics. For example, forests can be identified with 1-WL, interval graphs with
2-WL [11], and planar graphs with 3-WL [36]. Also for many other natural graph classes,
bounds on the necessary dimension to tackle the isomorphism problem in the class are
known [19, 21, 16, 34].

Concerning the number of iterations, much less is known. Fürer proved a linear lower
bound on the number of iterations of k-WL [13], which was improved to nΩ(k/logk) [3]
and recently to nΩ(k) [26] on k-ary relational structures. As to upper bounds, for k = 2,
first progress over the trivial upper bound of Θ(nk) has been made in [35], and the best
known upper bound is O(n log n) on graphs of order n [41]. This has been generalised
to a bound of O(nk−1 log n) for all k ≥ 2 in [26]. The number of iterations is crucial for
the parallelisability of the algorithm. For ` ≥ log n, it holds that ` iterations of k-WL can
be simulated in O(`) steps on a PRAM with O(nk) processors. This implies that if k-WL
distinguishes all pairs of graphs of order n in a class C in O(log n) iterations, then deciding
isomorphism for C is in the complexity class TC1. This is the case for all graph classes of
bounded treewidth and all maps [23] as well as all planar graphs [20].

In this paper, we extend the result to all classes of interval graphs and, as a by-product,
we obtain the same for chordal claw-free graphs.

Our results: We study the expressive power of the Weisfeiler–Leman algorithm when
restricted to a logarithmic number of iterations. This restriction was first introduced as a
means of showing that the graph isomorphism problem for graphs of bounded treewidth
is in TC1 [23]. In fact, we transcend to the logical perspective on the algorithm and prove
that for every property on relational structures that is definable in the logic LREC=, there
is a number k ∈N such that the logic Ck expresses the property via a family of formulae of
logarithmic quantifier depth, which is equivalent to (k− 1)-WL detecting the property in
a logarithmic number of iterations. That is, intuitively speaking, we can simulate logspace
recursion with a logarithmic number of iterations of a suitable dimension of the Weisfeiler–
Leman algorithm or, equivalently, with a logarithmic quantifier depth in Ck.

The formal statement of the result is as follows.

Theorem I.1 For every vocabulary τ and every LREC=[τ]-formula ϕ(x̄, κ̄), there is a constant
k ∈ N such that for every n ∈ N, there is a family of CO(log n)

k -formulae
(
ψm̄(x̄)

)
m̄∈[n]|κ̄| such

that for all τ-structures A of size |A| ≤ n, all v̄ ∈
(
V(A)

)|x̄|, and all m̄ ∈ [|A|]|κ̄|, it holds that

A |= ϕ(v̄, m̄) ⇐⇒ A |= ψm̄(v̄).

In the proof, we restructure the recursive computation of the LREC=-operator to obtain
a computation tree of logarithmic height and small bag overlap. The construction of the
desired formulae is then similar to the approach presented in [20]: we build the formula
from bottom to top along the tree decomposition, resulting in logarithmic quantifier depth.
Here, we need to take care that the number of variables really stays constant.
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As an example for the usefulness of the result, we then apply the result to the class
of all interval graphs, which is the class of graphs which initially motivated us to study
the power of the logarithmic Weisfeiler–Leman algorithm. The class of interval graphs is
relevant in many application areas, for example in biology [47] and in operations research
[6], and many usually computationally hard problems are known to be tractable on them
[28, 32]. Köbler et al. [37] gave a LOGSPACE-algorithm for the isomorphism problem
on interval graphs. Their result, however, is purely algorithmic and does not translate
to results in terms of logics, making it incomparable to our theorem. Since by [24], for
every interval graph, there is an LREC=-formula that identifies it, we can deduce that a
constant number of variables suffices to identify every interval graph with a C-sentence
of logarithmic quantifier depth.

Theorem I.2 There is a k ∈N such that for every n ∈N and interval graph G of order n, there
is a formula ΦG ∈ CO(log n)

k that describes G up to isomorphism.

As a by-product, using [27], we obtain an analogous statement for the class of chordal
claw-free graphs.

Theorem I.3 There is a k ∈N such that for every chordal claw-free graph G of order n, there is
a formula ΦG ∈ CO(log n)

k that describes G up to isomorphism.

Afterwards, we analyse interval graphs in more detail and sketch a second, direct
proof to show that isomorphism types of those graphs are definable in C with a constant
number of variables and logarithmic quantifier depth. The proof avoids translating LREC=-
formulae and proceeds straight via a decomposition of the graph.

II. Preliminaries

We denote a tuple of elements (x1, . . . , xk) as x̄. Two tuples x̄ = (x1, . . . , xk), ȳ =
(y1, . . . , y`) are said to be compatible if k = ` and hence |x̄| = |ȳ|. We refer to the ith
position of a tuple x̄ as x̄i. For all k, ` ∈ N, we define [k, `] := {i ∈N | k ≤ i ≤ `} and
[k] := [1, k].

A. Structures
A vocabulary is a non-empty finite set of relation symbols. Each symbol R ∈ τ has

a fixed arity aR ∈ N. A τ-structure A consists of a domain — a non-empty, finite set
V(A) — and, for each R ∈ τ, a relation R(A) ⊆ V(A)aR . By the order of a structure,
we refer to its cardinality |A|. We may write a1 . . . ak ∈ R(A) instead of (a1, . . . , ak) ∈
R(A). An isomorphism between τ-structures A and B is a relation-preserving bijection
µ : V(A) → V(B), i. e., for all k-ary R ∈ τ, and all a1, . . . , ak ∈ V(A), it must hold that
(a1, . . . , ak) ∈ R(A) ⇐⇒ (µ(a1), . . . , µ(ak)) ∈ R(B). We then call A and B isomorphic,
denoted as µ : A ∼= B. We may omit µ if the particular mapping does not interest us.

For a τ-structure A, we define the two-sorted structure A+ extending A as

A+ :=
(
V(A), {R(A)}R∈τ , N(A),≤, S, min, max

)
,

where N(A) := {0, . . . , |A|}, ≤ is the corresponding linear order, min, max are unary
singleton relations defining the minimum and maximum of ≤, and S is the binary successor
relation. Every domain variable then ranges over the universe V(A) and is from the set
x1, x2, . . . , whereas every number variable ranges on N(A) and is from the set ι1, ι2 . . . .
We may deviate from this convention and use the symbols x, y, z . . . for domain, resp.
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ι, κ, λ . . . for number variables. However, these should be understood to be placeholders for
values from x1, . . . resp. ι1, . . . used in an effort towards enhanced readability. To represent
elements of V(A) resp. N(A), we employ symbols from u, v, w, . . . resp. i, j, p, q, . . . .

Two two-sorted structures are isomorphic if their underlying τ-structures are isomor-
phic.

Although being limited to an initial segment of the natural numbers, we can represent
larger numbers through tuples ī ∈ N(A)k, which are then interpreted as base-(|A|+ 1)
numbers as

〈ī〉A :=
k

∑
j=1

īj · (|A|+ 1)j−1.

We define an interpretation (or assignment) to be a mapping α assigning, to each domain
variable xi a value in V(A) and to each number variable ιi a value in N(A). Since we con-
sider interpretations only together with concrete formulae, it is sufficient if every variable
occurring in the formula is assigned a value. Given domain resp. number variable tuples
x̄ and ῑ as well as compatible domain resp. number tuples v̄ ∈ V(A)k and p̄ ∈ N(A)`, we
write α[v̄/x̄, p̄/ῑ] to mean the assignment α modified to the effect that, for all i ∈ [k] and
j ∈ [`], x̄i is assigned the value v̄i and ῑj is assigned the value p̄j.

We call a variable bound if it occurs within the scope of a corresponding quantifier.
Otherwise, we call it free. In particular, given a formula ϕ, we write ϕ(x1, . . . , xk) to express
that free(ϕ) ⊆ {x1, . . . , xk} are distinct and that they are those variables that may occur
free within ϕ. Those formulae in which all variables occur bound are sentences.

B. Graphs
A (directed) graph is an {E}-structure G := (V(G), E(G)) over a domain of vertices V(G)

and a binary edge relation E(G). The order of G is |G| := |V(G)|.
A graph is undirected if E(G) is symmetric and irreflexive, in which case we consider the

elements vw ∈ E(G) to be unordered. For such G and v ∈ V(G), we denote by NG(v) :=
{w ∈ V(G) | vw ∈ E(G)} resp. NG[v] := NG(v) ∪ {v} the open resp. closed neighbourhood
of v in G. Letting W ⊆ V(G), we define the subgraph induced by W in G as G[W] :=
(W, {vw ∈ E(G) | v, w ∈W}).

A directed graph is acyclic if there is no k ∈ N for which there exists a sequence of
distinct edges (v1, v2), (v2, v3) . . . , (vk−1, vk) with vi 6= vj for distinct i, j ∈ [k− 1] such that
v1 = vk. We refer to directed acyclic graphs as DAGs. The height of a DAG is the length of
a longest path in it.

Now, let G be a directed graph of order n := |G|. For every v ∈ V(G), we let N+
G (v) :=

{w ∈ V(G) | vw ∈ E(G)} and N−G (v) := {u ∈ V(G) | uv ∈ E(G)} be the sets of out-neigh-
bours and in-neighbours of v, and deg+

G (v) :=
∣∣N+

G (v)
∣∣ and deg−G (v) :=

∣∣N−G (v)
∣∣ be the

out-degree and the in-degree of v.
Let EG denote the reflexive transitive closure of E(G). In these and similar notations, we

omit the subscript G if the graph G is clear from the context. We call a node of out-degree
0 a leaf of G. We call G rooted if E has a unique minimal element r that we call the root of
G. Note that every v ∈ V(G) is reachable from r.

C. Logics
This section presumes familiarity with first-order logic (FO) and standard model-theoretic

notation, suitable overviews for which can be found in [9, 40]. Given a formula ϕ, a
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structure A and an assignment α, we write (A, α) |= ϕ to express that the formula ϕ is
true given A and having assigned the variables as in α. In particular, we use the shorthands
> := ∀x (x = x) and ⊥ := ¬>.

Let us introduce an extension of FO, first-order logic with counting (FO+C), which operates
on the two-sorted structures described above (see also [17]). It extends FO over a second
domain and adds two quantifiers, which we now define recursively. In the remainder of
the section, let τ be an arbitrary vocabulary. Further, let A+ be a two-sorted τ-structure,
let ϕ be an FO+C[τ]-formula, α an interpretation and ι be a number variable. Then ∃ι ϕ is
an FO+C[τ]-formula, and it is satisfied by (A+, α) iff{

i ∈ N(A) | (A+, α[i/ι]) |= ϕ
}
6= ∅

holds.
FO+C also adds the #-quantifier, evaluating to some natural number. Let x be a domain

variable and κ an additional number variable. Then #x ϕ = κ and #ι ϕ = κ are FO+C[τ]-
formulae and

A+ |= #x ϕ = κ

⇐⇒
∣∣{v ∈ V(A) | (A+, α[v/x]) |= ϕ

}∣∣ = α(κ)

resp.

A+ |= #ι ϕ = κ

⇐⇒
∣∣{i ∈ N(A) | (A+, α[i/ι]) |= ϕ

}∣∣ = α(κ).

Given a formula ϕ(x̄, ῑ), we define the set of domain/number tuples satisfying ϕ as

ϕ[A+, α; x̄, ῑ] :={
v̄ī ∈ V(A)|x̄| × N(A)|ῑ| | (A+, α[v̄/x̄, ī/ῑ]) |= ϕ(x̄, ῑ)

}
.

We now turn towards describing LREC and LREC=, two extensions of FO+C which
were first introduced in [24] in the quest for a logic capturing LOGSPACE. The set of
all LREC[τ]-formulae is obtained by extending the syntax of FO+C[τ] by the following
rule. Let x̄, ȳ1, ȳ2 be compatible domain variable k-tuples, and ῑ, κ̄ be non-empty number
variable tuples. Then, if ϕE, ϕC are LREC[τ]-formulae,

ϕ := [lrecȳ1,ȳ2,ῑ ϕE, ϕC](x̄, κ̄)

is an LREC[τ]-formula with free(ϕ) := (free(ϕE) \ (ȳ1 ∪ ȳ2)) ∪ (free(ϕC) \ (ȳ1 ∪ ῑ)) ∪ x̄ ∪ κ̄.
Given a two-sorted τ-structure A+ and an assignment α, the formula ϕ recursively defines
a relation X ⊆ V(A)k ×N such that

(A+, α) |= ϕ ⇐⇒ (α(x̄), 〈α(κ̄)〉A) ∈ X.

We now describe how X is obtained. Initially, define a graph G := (V,E) with V := V(A)k

and E := ϕE[A, α; ȳ1, ȳ2]). That is, G is a directed graph on the k-tuples of V(A), and the
edges are precisely those pairs (v̄1, v̄2) with v̄1, v̄2 ∈ V(A)k such that (A, α[v̄1/ȳ1, v̄2/ȳ2]) |=
ϕE(ȳ1, ȳ2). Over G, the formula ϕC then defines a vertex labelling

C(v̄1) :=
{
〈ī〉A | ī ∈ ϕC[A+, α[v̄1/ȳ1]; ῑ]

}
.
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A tuple (v̄, ī) with v̄ ∈ V(A)k and a “resource term” ī ∈ N(A)|ι| is contained in X if
〈i〉A > 0 (that is, there are still resources left) and∣∣∣∣∣

{
w̄ ∈ N+

G (v̄)

∣∣∣∣∣
(

w̄,

⌊
〈i〉A − 1
deg−G (w̄)

⌋)
∈ X

}∣∣∣∣∣ ∈ C(v̄).
The logic LREC= replaces the lrec-operator by the lrec=-operator, which allows the

definition of an equivalence relation on the constructed graph. We recall the above defined
structure, assignment, and variable tuples. Then, letting ϕ=, ϕE, ϕC, be LREC=[τ]-formulae,
we obtain a new LREC=[τ]-formula

ϕ := [lrecȳ1,ȳ2,ῑ ϕ=, ϕE, ϕC](x̄, κ̄).

The semantics are a bit more complex. First, we construct a graph G’ as before. Then,
letting ∼ be the equivalence relation defined by ϕ=[A+, α; ȳ1, ȳ2] on V’, we define a new
graph

G :=
(
V := V’/∼,

E :=
{
(v̄1/∼, v̄2/∼) ∈ V2 | (v̄1, v̄2) ∈ E’

} )
contracting the vertices from V’ into their equivalence classes while maintaining the edges.
For all v̄1/∼ ∈ V, we define

C(v̄1/∼) :=
{
〈ī〉A | ∃v̄′ ∈ v̄1/∼ : ī ∈ ϕC[A+, α[v̄′/ȳ1]; ῑ]

}
.

The relation X is then defined as previously.
See Fig. 1 for an example of how the relation X is computed. Readers wishing to develop

a more in-depth understanding of LREC and LREC= may want to look into [24], which
also includes concrete examples of properties that can be expressed in these logics.

We now move towards defining the logic C, first-order logic with counting quantifiers, as
the syntactical extension of FO by C-quantifiers of the form ∃≥nx ϕ(x) (there are at least n
elements x satisfying ϕ(x)) for all n ∈ N, which immediately yields the related quantifiers
∃≤nx ϕ(x) ≡ ∃x ϕ(x) ∧ ¬∃≥n+1x ϕ(x) and ∃=nx ϕ(x) ≡ ∃≤nx ϕ(x) ∧ ∃≥nx ϕ(x).

Before continuing, it is worth noting that C and FO+C are two distinct, separate logics,
which happen to be similarly named. We attempt to shortly clarify their differences to
preempt any confusion. The logic C is only a syntactical extension of FO on relational
structures, whereas FO+C is defined on two-sorted structures and has some access to
quantification over the natural numbers. For example, whether a graph is regular or not
can be expressed by the FO+C-formula

ϕFO+C
regular := ∃ι

[
∀x#y E(x, y) = ι

]
,

which can be understood as “there exists a number ι such that every vertex x has exactly
ι neighbours”. On the other hand, as a consequence of the hardcoded aspect of numbers
in C-quantifiers, any C-formula characterising regularity can only do so for graphs of
bounded size:

ϕC
regular(n) :=

∨
0≤i≤n

∀x∃=iy E(x, y).

However, on graphs of fixed size, every FO+C-formula can be simulated by (a family
of) C-formulae [9, Proposition 8.4.18], which is foundational for our proof of Theorem I.1.

7



āb̄

c̄
d̄

ē

f̄

ḡ h̄

(a) A representation of the graph G’ on
V(A)k as defined by the formula ϕE. (Vertex
labels C omitted. Edge patterns are intended
as visual support only and do not carry
formal meaning.)

ā

C : {0, 2, 3}

b̄

C : {0, 1}

d̄

C : {3}

(b) A representation of the graph G by
closing G’ under the equivalence relation
defined by ϕ=. We assume this relation to
be ā/∼ = {ā, c̄, ē, ḡ}, d̄/∼ =

{
d̄, f̄ , h̄

}
, b̄/∼ ={

b̄
}

, and we assume C defined by ϕC to be
as given as vertex labels.

(
ā, 〈ī〉A

)
(

ā,
⌊
〈ī〉A−1

2

⌋)(
b̄,
⌊
〈ī〉A−1

1

⌋) (
d̄,
⌊
〈ī〉A−1

2

⌋)
ā,


⌊
〈ī〉A−1

2

⌋
−1

2

b̄,


⌊
〈ī〉A−1

2

⌋
−1

1

 d̄,


⌊
〈ī〉A−1

2

⌋
−1

2


(
ā, 3
)... (

d̄, 3
)

(
ā, 1
)(

b̄, 2
) (

d̄, 1
)

(c) A visualisation of the DAG resulting from the recursive unfolding of the graph G with
respect to the parameters (ā, ī). For every recursive step, the resource term (i. e., 〈ī〉A,⌊
〈ī〉A−1

2

⌋
, etc.) can be understood to be “split” equitably among the in-neighbours of the

vertex in G. Together with the requirement that the resource term must be positive, this
ensures a logarithmic space bound.

Fig. 1: A visualisation of the computation of the relation X conducted when evaluating an
LREC=[τ]-formula ϕ := [lrecȳ1,ȳ2,ῑ ϕ=, ϕE, ϕC](ā, ī). Let A+ be a two-sorted τ-structure. We
assume the graph G’, defined via the formula ϕE, to be as shown in Fig. 1a. We then assume
the formula ϕ= to yield the graph G and the formula ϕC to yield the vertex labelling C as
shown in Fig. 1b. Using Fig. 1c, we now describe how the DAG is evaluated and thereby
how the relation X is computed, in a bottom-to-top fashion. A leaf, say (b̄, 2), is part of
the relation X if 0 ∈ C(b̄), since the criterion is whether the number of (b̄, 2)’s children
which are in X (that is, 0) occurs in C(b̄). Therefore, here it holds that (b̄, 2), (ā, 1) ∈ X, but
(d̄, 1) 6∈ X. Then their predecessor (ā, 3) is in X since

∣∣{(b̄, 2), (ā, 1)
}∣∣ = 2 ∈ C(ā), whereas

(d̄, 3) 6∈ X because |{(ā, 1)}| = 1 6∈ C(d̄). This then continues up to the root (ā, 〈ī〉A), which
is contained in X if the number q of its children in X occurs in C(ā). Finally, ϕ is satisfied
iff the root is in X.
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In itself, C is exactly as expressive as FO considering that

∃≥nx ϕ(x) ≡ ∃x1 . . . ∃xn

 ∨
i,j∈[n]

i 6=j

xi 6= xj ∧
∧

i∈[n]
ϕ(xi)

 .

However, we are interested in the finite-variable fragments of C, denoted as Ck for k ∈
N, where Ck contains exactly those formulae from C which only use variables from
{x1, . . . , xk}.

We inductively define the quantifier depth qd(ϕ) of a formula ϕ ∈ C as

qd(ϕ) :=


0 if ϕ is atomic,
qd(ψ) if ϕ = ¬ψ,
max(qd(ψ1), qd(ψ2)) if ϕ = ψ1 ∨ ψ2,
qd(ϕ) + 1 if ϕ = ∃(≥n)x ψ.

Now, we can further restrict Ck to Cr
k, which we define as the subset of formulae ϕ of

Ck with qd(ϕ) ≤ r.

Example II.1 The C3
2-sentence

∃x ∃=3y
[

E(x, y) ∧ ∃=4x E(y, x)
]

expresses that a graph satisfying it must admit a vertex with exactly three neighbours, each in
turn admitting exactly 4 neighbours.

In the following, we will mostly be using the asymptotic notation CO(log n)
k , which should

be understood as follows. Let τ be a vocabulary, and T the class of all τ-structures. For any
m ∈N and τ-structure B ∈ T we denote, for all b̄ ∈ V(B)m, the pair of a structure and an
m-tuple of its elements as

(
B, b̄

)
. Let B be a class containing a subset of those pairs and

suppose B to be containing exactly those elements having some property P. We then say
that P can be expressed in CO(log n)

k if there exists a k ∈ N and a function f (n) ∈ O(log n)
such that for all n ∈ N, there exists a formula ϕ

(n)
B (v̄) ∈ C f (n)

k [τ] satisfying for all (B, b̄)
with |B| = n that B |= ϕ

(n)
B (b̄) ⇐⇒

(
B, b̄

)
∈ B.

D. The Weisfeiler–Leman Algorithm
The (k-dimensional) Weisfeiler–Leman Algorithm (k-WL, WLk) is a combinatorial algorithm

that iteratively computes a colouring c∗k : V(G)k → C on the k-vertex tuples of a graph.
Applied to two graphs, it may be used to decide whether these are isomorphic or not.
For our purposes, it suffices to know that the algorithm is initialised by colouring all k-
tuples of vertices by their atomic type, which contains all information regarding connectivity
and equality of the elements of such a tuple. The colouring is then iteratively refined by
computing, for each k-tuple of vertices, a new colour based on the colours of the adjacent
(that is, differing in one position) k-tuples. The final output is the first colouring ci

k that
partitions the k-tuples into the same colour classes as the previous iteration. More details
can be found, for example, in [25, 33].

We denote by WLr
k the restriction of WLk that terminates after the first r refinement

rounds, i. e., with cr
k; WLr

k then distinguishes two graphs G, H if there exists a colour c
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such that after r rounds, G and H admit a different number of vertex k-tuples of that
colour. WLr

k then identifies G if it distinguishes it from all non-isomorphic graphs H. The
connection between the Weisfeiler–Leman algorithm and the finite-variable fragment of
counting logic is as follows.

Lemma II.2 ([23, 5]) Let k ∈ N. For graphs G and H of the same order and all r ∈ N, the
following statements are equivalent:
• WLr

k distinguishes G and H.
• There is a Cr

k+1-sentence ϕ such that G |= ϕ ⇐⇒ H 6|= ϕ.

For all k ∈N, we define the logarithmic Weisfeiler–Leman algorithm, denoted as WLO(log n)
k ,

analogous to the asymptotic notation in CO(log n)
k . In particular, Lemma II.2 implies that if

there is a k ≥ 2 and a CO(log n)
k -sentence identifying a graph G, then WLO(log n)

k−1 identifies
G.

III. The Treelike Decompositions

This section serves us to compute treelike decompositions of logarithmic height, along
which we build our C-formulae of logarithmic quantifier depth in Section IV. We start
off with a DAG since, as we will see in Section IV, the computation of the relation X
from the definition of LREC results in such a graph. To account for X in C, we can
decompose the graph as we are about to describe next. Crucially, the trees underlying the
decomposition have logarithmic depth. We will then use the decomposition to construct
CO(log n)

k -formulae.
Throughout this section, we assume that G is a rooted DAG and that r is the root of G.
The tree unfolding of G is the tree TG whose vertices are paths v̄ = (v0, . . . , vk) in G with

v0 = r, and where w̄ = (w0, . . . , w`) is a child of v̄ if ` = k + 1 and wi = vi for i ∈ [0, k].
For every v ∈ V(G), let PG(v) be the set of all paths (v0, . . . , vk) in G with v0 = r and
vk = v. Note that all v̄ ∈ P(v) are vertices of TG. We call them the copies of v in TG.

We define the weight of a vertex v in G to be

wtG(v) := |P(v)| ,

of which we omit the subscript if it is clear from context. We define the aggregate weight
of G to be awt(G) := ∑v∈V(G) wt(v). Observe that

awt(G) = |TG| .

We define the multiplicity of a vertex v to be

mulG(v) := max

{
k

∏
i=1

deg−(vi)

∣∣∣∣∣ (v0, . . . , vk) ∈ P(v)
}

,

where the empty product is 1 (thus mulG(r) = 1). We may again omit the subscript.
Further, we let the aggregate multiplicity of G be defined as amul(G) := ∑v∈V(G) mul(v).

Lemma III.1 For all v ∈ V(G), we have wt(v) ≤ mul(v).

10



Proof: We prove the result by induction on the distance between v and the root r. For
the root r, we have wt(r) = mul(r) = 1. So let v be a node with in-neighbours u1, . . . , uk.
Then deg−(v) = k and

wt(v) =
k

∑
i=1

wt(ui) ≤
k

∑
i=1

mul(ui) ≤ k max
i∈[k]

mul(ui) = mul(v),

where the first inequality holds by the induction hypothesis.
For m ∈ N, we say that G has the m-path property if mul(v) ≤ m for all v ∈ V(G). The

m-path property allows us to control the size of a tree unfolding.

Corollary III.2 If G has the m-path property, then awt(G) ≤ amul(G) ≤ m · |G|.

Let v ∈ V(G) and W ⊆ V(G) be such that v EG w for all w ∈ W. Then, we define GW
v

to be the induced subgraph of G with vertex set{
u ∈ V(G)

∣∣ there is path (v0, . . . , v`) in G with v0 = v and

v` = u and {v0, v1, . . . , v`−1} ∩W = ∅
}

.

In the definition, we stipulate that for ` = 0, {v0, v1, . . . , v`−1} is the empty set. Thus, if
v ∈W, then GW

v = G[{v}]. Note that GW
v is a rooted DAG with root v. If W = ∅, we write

Gv instead of GW
v , and if v is the root, we write GW instead of GW

r . If W = {w1, . . . , wk},
we also write Gw1,...,wk

v instead of GW
v .

Lemma III.3 For all v ∈ V(G), it holds that awt(Gv) + awt(Gv) ≤ awt(G) + 1.

Proof: Let X := V(Gv) \V(Gv), Y := V(Gv) \V(Gv), and Z :=
(
V(Gv) ∩V(Gv)

)
\ {v}.

We have

awt(G) = wtG(v) + ∑
x∈X

wtG(x)

+ ∑
y∈Y

wtG(y) + ∑
z∈Z

wtG(z)

awt(Gv) = wtGv(v) + ∑
x∈X

wtGv(x)

+ ∑
z∈Z

wtGv(z)

awt(Gv) = wtGv(v)
+ ∑

y∈Y
wtGv(y) + ∑

z∈Z
wtGv(z).

We have wtGv(v) = 1 and wtGv(v) = wtG(v). Furthermore, for every z ∈ Z, we have
wtGv(z) +wtGv(z) ≤ wtG(z), because we can partition PG(z) into PGv(z), consisting of all
paths from r to z in G that avoid v, and the set Q consisting of all paths from r to z in G
that contain v. We have |PGv(z)| ≤ |Q|. With this, the assertion of the lemma follows.

Lemma III.4 Let v ∈ V(G) such that v is not a leaf of G. Then there is an a ∈ V(G) such that
v E a and

awt(Ga
v) ≤

awt(Gv)

2
, (1)

awt(Gb) ≤
⌈

awt(Gv)

2

⌉
for all b ∈ N+(a). (2)

11



Proof: Let m := awt(Gv) and note that m ≥ |Gv| ≥ 2.
Then awt(Gv

v) = 1 ≤ m
2 and awt(Gw

v ) = awt(Gv) = m > m
2 for every leaf w of Gv. Hence,

there is an a ∈ V(Gv) such that awt(Ga
v) ≤ m

2 and awt(Gb
v) >

m
2 for every b ∈ N+(a).

This a satisfies (1); to see that it satisfies (2), let b ∈ N+(a). Then awt(Gb
v) >

m
2 and thus

awt(Gb
v) ≥ bm

2 c+ 1. By Lemma III.3, we have awt(Gb) + awt(Gb
v) ≤ m + 1 and thus

awt(Gb) ≤ m + 1−
(⌊m

2

⌋
+ 1
)
=
⌈m

2

⌉
.

Lemma III.5 Let v, w ∈ V(G) be such that v /w. Then there is an a ∈ V(G) such that v E a /w
and

awt(Ga
v) ≤

awt(Gw
v )

2
, (3)

awt(Gw
b ) ≤

⌈
awt(Gw

v )

2

⌉
for all b ∈ N+(a) with b E w. (4)

Proof: Let m := awt(Gw
v ) and note that m ≥ |Gw

v | ≥ 2. Let v̄ = (v0, . . . , vk) be a path
in G with v0 = v and vk = w. We have awt(Gv0

v ) = 1 ≤ m
2 and awt(Gvk

v ) = awt(Gw
v ) >

m
2 .

Thus there is a (unique) i ∈ {0, . . . , k− 1} such that awt(Gvi
v ) ≤ m

2 and awt(Gvi+1
v ) > m

2 .
Let a(v̄) := vi, and let a be E-maximal among all a(v̄), where v̄ ranges over all paths from
v to w.

Then (3) is trivially satisfied by all a(v̄) and in particular by a.
To prove (4), let b ∈ N+(a) such that b E w. As v E a and ab ∈ E(G) and b E w, there

exists a path (v0, . . . , vk) from v to w such that a = vi and b = vi+1. By the maximality
of a, we have awt(Gb

v) > m
2 . By Lemma III.3 applied to the graph Gw

v and b, we get
awt(Gw

b ) ≤
⌈m

2
⌉
.

We can now use Lemmas III.4 and III.5 to inductively construct a representation of G
by a tree of logarithmic height.

Lemma III.6 There are a rooted tree T and mappings v : V(T) → V(G), W : V(T) → 2V(G)

such that the following conditions are satisfied.
1) |W(t)| ≤ 1 for all t ∈ V(T).
2) t ∈ V(T) is a leaf of T if and only if v(t) is a leaf of G or W(t) = {v(t)}.
3) If t ∈ V(T) is not a leaf of T and W(t) = {w}, then v(t) / w.
4) If t ∈ V(T) with children u1, . . . , uk for some k ≥ 1, then

V
(

GW(t)
v(t)

)
\ {v(t)} ⊆

k⋃
i=1

V
(

GW(ui)
v(ui)

)
.

5) The height of T is at most 2 log
(
awt(G)

)
.

Proof: We define the tree T inductively. We start with a root rT and let v(rT) := r and
W(rT) := ∅.

To extend the tree, let t be a node in T where the children are not yet defined. If v(t)
is a leaf of G or v(t) ∈ W(t), then t is a leaf of T. Now suppose that v(t) is not a leaf of
G and v(t) 6∈ W(t). Let v := v(t) and W := W(t). By induction, we assume |W| ≤ 1 and
v /G w if W = {w}.

12



Case 1: W = ∅. (We say that t is a node of type 0.)
Then GW

v = Gv. By Lemma III.4, there is an a ∈ V(Gv) such that awt(Ga
v) ≤

awt(Gv)
2 and awt(Gb) ≤

⌈
awt(Gv)

2

⌉
for all b ∈ N+(a).

We add a child ua of t with v(ua) := v and W(ua) := {a}. For every b ∈ N+(a),
we add a child ub with v(ub) := b and W(ub) := ∅.

Case 2: W = {w} for some w. (We say that t is a node of type 1.)
Then GW

v = Gw
v . By Lemma III.5, there is an a ∈ V(Gv) such that awt(Ga

v) ≤
awt(Gw

b )
2 and awt(Gb) ≤

⌈
awt(Gw

v )
2

⌉
for all b ∈ N+(a) with b E w.

We add a child ua of t with v(ua) := v and W(ua) := {a}. For every b ∈ N+(a)
with b E w, we add a child ub with v(ub) := b and W(ub) := {w}. For every
b ∈ N+(a) with b 6E w, we add a child ub with v(ub) := b and W(ub) := ∅.

It is immediate from the construction that T, v, W satisfy Items 1 to 4 of Lemma III.6.
We need to prove that they satisfy Item 5. For every t ∈ V(T), let A(t) := awt

(
GW(t)

v(t)

)
.

Observe that for all nodes t ∈ V(T) and all children u of t the following holds:
• A(u) < A(t);
• if t is of type 0, then A(u) ≤

⌈
A(t)

2

⌉
;

• if A(u) >
⌈

A(t)
2

⌉
, then t is of type 1 and W(u) = ∅, so u is of type 0.

This implies that for all grandchildren v of t, it holds that A(v) ≤ A(t)
2 , and as A(rT) =

awt(G), Item 5 follows.

IV. From LREC= to CO(log n)
k

Let G be a directed graph. A cardinality condition for G is a mapping C that associates to
each v ∈ V(G) a set C(v) ⊆ [0, deg+(v)]. Given a cardinality condition C, we define, anal-
ogously to the definition of LREC=, X = X(G, C) ⊆ V(G)×N>0 to be the inclusionwise
smallest set such that for all v ∈ V(G) and i ∈N>0, it holds that (v, i) ∈ X if and only if∣∣∣∣{w ∈ N+(v)

∣∣∣∣ (w,
⌊

i− 1
deg−(w)

⌋)
∈ X

}∣∣∣∣ ∈ C(v).

For every n ∈ N>0, we define a vocabulary τ(n) := {E, P0, . . . , Pn}, where E is a binary
relation symbol and the Pi are unary relation symbols. We can represent a tuple (G, C)
consisting of a directed graph G of order |G| ≤ n and a cardinality condition C for G as
a τ(n)-structure A = A(G, C) with V(A) := V(G), E(A) := E(G), and, for all i ∈ [0, n],

Pi(A) := {v ∈ V(G) | i ∈ C(v)} .

The following theorem enables us to check X-membership via formulae in counting
logics with logarithmic quantifier depth.

Theorem IV.1 There is a k ∈ N>0 such that for all n, r ∈ N>0 and i ∈ [(n + 1)r], there is a
CO(r log n)

k -formula ϕ
(n)
i (x) such that for all directed graphs G of order |G| ≤ n, all cardinality

conditions C for G, and all v ∈ V(G), it holds that

A(G, C) |= ϕ
(n)
i (v) ⇐⇒ (v, i) ∈ X(G, C).

Proof: Let n, r ∈N>0, and let i ∈ [(n + 1)r]. First, for every directed graph G of order
|G| ≤ n and every cardinality condition C on G, we are going to describe, for all v ∈ V(G),
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Hv,i (v, i)

(
w1,

⌊
i−1

deg−G (w1)

⌋)
. . .

(
wm,

⌊
i−1

deg−G (wm)

⌋)
...

...

Fig. 2: The recursive construction of Hv,i: in this example, it holds that N+
G (v) =

{w1, . . . , wm}.

rooted DAGs Hv,i that may be used to decide whether (v, i) is contained in X(G, C). Then,
Lemma III.6 yields trees Tv,i of logarithmic height based on the Hv,i. We describe how
to use those trees to decide whether (v, i) ∈ X(G, C) holds. At the end of this proof, we
recursively construct formulae that check containment in X(G, C) and have a structure
that closely follows the structure of the described trees. Since the tree from Lemma III.6
has logarithmic height, the formulae will have a logarithmic quantifier depth.

Let G be a directed graph of order |G| ≤ n, and let v ∈ V(G). We inductively define a
rooted DAG Hv,i, see also Fig. 2. We start with the root (v, i). Then, repeatedly, for every

vertex (v′, i′) ∈ V(Hv,i) and every neighbour w ∈ N+
G (v′) where for j :=

⌊
i′−1

deg−G (w)

⌋
, it

holds that j ≥ 1, we add a vertex (w, j) to Hv,i (unless it already exists) and insert an edge
from (v′, i′) to (w, j).

We could decide “(v, i) ∈ X(G, C)?” as follows. First, we go through all leaves (w, j) in
Hv,i and mark them as positive if 0 ∈ C(w) and as negative otherwise. Then, for every
vertex (w, j) that has only marked children, we mark the vertex as positive if and only if
the number of positively marked children is contained in C(w), and we mark it as negative
otherwise. Once all vertices have been marked, we have (v, i) ∈ X(G, C) if and only if (v, i)
is marked as positive. Since the height of Hv,i may be linear in the size of G, this process
might take a linear number of steps. Thus, we use a tree Tv,i of logarithmic height instead,
which we describe below.

Note that for a node (w, j) ∈ V(Hv,i), the graph Hw,j is the induced subgraph of Hv,i on
all nodes below (or equal to) (w, j).

Claim 1 Hv,i has the (n + 1)r-path property.

Proof: We prove the equivalent statement mulHv,i

(
(w, j)

)
≤
(
|Hv,i|+ 1

)r for all (w, j) ∈
V(Hv,i).

Let (v′0, . . . , v′p) be a path in Hv,i with v′0 = (v, i) and v′p = (w, j). Moreover, let (vs, `s) :=
v′s for all s ∈ [0, p]. Then, we have

`s =

⌊
`s−1 − 1

deg−G (vs)

⌋
≤ `s−1

deg−G (vs)
=

i
∏s

t=1 deg−G (vt)

for all s ∈ [p]. With `p = j ≥ 1, it holds that i ≥ ∏
p
s=1 deg−G (vs) ≥ ∏

p
s=1 deg−Hv,i

(vs). Thus,
mulHv,i

(
(w, j)

)
≤ i ≤ (n + 1)r. Hence, Hv,i has the (n + 1)r-path property. y
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Hv,i (v, i)

(v′, i′)

(a, `)

(b1, `′1) . . . (bm, `′m)

Tv,i r : ((v, i),∅) t : (v(t), W(t))

t : ((v′, i′),∅)

u0 : ((v′, i′), {(a, `)}) u1 : ((b1, `′1),∅) . . . um : ((bm, `′m),∅)

Fig. 3: Letting (v, i) be the vertex for which we want to know whether “(v, i) ∈ X(G, C)?”,
the figure shows how to recursively obtain Tv,i at a vertex t ∈ V(Tv,i) of type 0 with
v(t) = (v′, i′), W = ∅.

Next, we apply Lemma III.6 to Hv,i and obtain (the existence of) a rooted tree Tv,i and
mappings v : V(Tv,i)→ V(Hv,i) and W : V(Tv,i)→ 2V(Hv,i). Let Tv,i, v, W be as described in
the proof of Lemma III.6.

Now, we describe how to decide “(v, i) ∈ X(G, C)?” using Tv,i. Let H := Hv,i and
T := Tv,i. We start with the root r of T, which, by the construction from Lemma III.6, is a
node of type 0 (that is, at node t with W(t) = ∅) with v(r) = (v, i) and W(r) = ∅. At every
node t ∈ V(T) of type 0 with v(t) = (v′, i′) and W(t) = ∅, our goal is to decide whether
(v′, i′) ∈ X(G, C) by recursively checking the children of t. At every node t ∈ V(T) of type
1 with v(t) = (v′, i′) and W(t) = {(w, j)}, we are additionally given a number c and our
goal is to decide whether (v′, i′) ∈ X(G, C) by recursively checking the children of t under
the assumption that exactly c of the children of (w, j) in H are contained in X(G, C). In
detail, the computations work as follows.

For the following, see also Fig. 3. Consider a node t ∈ V(T) of type 0 with children
u0 of type 1 and u1, . . . , um of type 0. Let v(t) = (v′, i′), W(t) = ∅, v(u0) = (v′, i′),
W(u0) = {(a, `)}, and v(us) = (bs, `′s), W(us) = ∅ for all s ∈ [m]. By the construction of
T in Lemma III.6, we have (v, i) EH (v′, i′) /H (a, `) /H (bs, `′s) for all s ∈ [m], where the
(bs, `′s) are children of (a, `) in H.

To decide whether “(v′, i′) ∈ X(G, C)?”, we first decide (bs, `′s) ∈ X(G, C) recursively
for all s ∈ [m]. This is equivalent to running our procedure recursively on the children
u1, . . . , um of t of type 0. Let c be the number of the (bs, `′s) contained in X(G, C). We
then run our procedure recursively on the child u0 of type 1 with v(u0) = (v′, i′) and
W(u0) = {(a, `)} to check whether (v′, i′) is contained in X(G, C) under the assumption
that exactly c of the children of (a, `) are contained in X(G, C).

Now consider a node t ∈ V(T) of type 1 with children u0 of type 1, u1, . . . , um of
type 1, and um+1, . . . , um+p of type 0 (see Fig. 4). Let v(t) = (v′, i′), W(t) = {(w, j)},
v(u0) = (v′, i′), W(u0) = (a, `), v(us) = (bs, `′s), W(us) = {(w, j)} for all s ∈ [m], and
v(us) = (bs, `′s), W(us) = ∅ for all s ∈ [m + 1, p]. By the construction of T in Lemma III.6,
we have (v, i) EH (v′, i′) /H (a, `) /H (bs, `′s) for all s ∈ [m + p], where the (bs, `′s) are
children of (a, `) in H; we have (bs, `′s) EH (w, j) for all s ∈ [m] and (bs, `′s) 6EH (w, j) for
all s ∈ [m + 1, p].

To decide whether “(v′, i′) ∈ X(G, C)?” under the assumption that exactly c children of
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Hv,i (v, i)

(v′, i′)

(a, `)

(b1, `′1)
. . .

(bm, `′m)

(bm+1, `′m+1)

...

(bm+p, `′m+p)

(w, j)

Tv,i t : (v(t), W(t))r : ((v, i),∅)

t : ((v′, i′), {((w, j)})

u0 : ((v′, i′), {(a, `)})

u1 : ((b1, `′1), {((w, j)})

. . .

um : ((bm, `′m), {((w, j)}) um+1 : ((bm+1, `′m+1),∅)

...

um+p : ((bm+p, `′m+p),∅)

Fig. 4: Letting (v, i) be the vertex for which we want to know whether “(v, i) ∈ X(G, C)?”,
the figure shows how to recursively obtain Tv,i at a vertex t ∈ V(Tv,i) of type 1 with
v(t) = (v′, i′), W = {((w, j)}.

(w, j) in H are contained in X(G, C), we recursively run our procedure on the children
u1, . . . , um of type 1 under the above-mentioned assumption and thereby decide (bs, `′s) ∈
X(G, C) for s ∈ [m]. Next, we recursively run the procedure on the children um+1, . . . , um+p
of type 0 and thereby decide (bs, `′s) ∈ X(G, C) for s ∈ [m + 1, m + p]. Let c′ be the number
of (bs, `′s) ∈ X(G, C) for s ∈ [m + p]. Then, finally, we run our procedure recursively on the
child u0 of type 1 to check whether (v′, i′) is contained in X(G, C) under the assumption
that exactly c′ of the children of (a, `) are contained in X(G, C).

For now, we assumed that the considered nodes are not leaves. For a leaf t of type 0
with v(t) = (v′, i′) and W(t) = ∅, we have (v′, i′) ∈ X(G, C) if and only if 0 ∈ C(v′) since
(v′, i′) is a leaf of Hv,i by Lemma III.6 (Item 2). For a leaf t of type 1 with v(t) = (v′, i′), by
Lemma III.6 (Item 2), we have W(t) = {(v′, i′)}. Hence, we have to decide (v′, i′) ∈ X(G, C)
under the assumption that exactly c children of (v′, i′) in H are contained in X(G, C) for
some number c. This holds if and only if c ∈ C(v′).

Before we translate the structure of the trees Tv,i into formulae, we first check that the
trees are of logarithmic height. This is essential to obtain formulae of logarithmic quantifier
depth.

Claim 2 Tv,i has height at most (4r + 2) · log(n + 1).

Proof: By Claim 1, Hv,` has the (n + 1)r-path property. Thus, with Corollary III.2, we
obtain awt(Hv,`) ≤ (n+ 1)r ·

∣∣Hv,`
∣∣, and hence, by Lemma III.6, the height of Tv,` is at most

2 log
(
(n + 1)r ·

∣∣Hv,`
∣∣) ≤ 2 log

(
(n + 1)r · (n + 1)r · n

)
≤ 2 · (2r + 1) · log(n + 1). y

In the following, we recursively construct formulae of the form ψh,n
t0,i′(x) and ψh,n

t1,i′,j,c(x, y)
with domain variables x, y. Before beginning, it is appropriate to shortly analyse the syntax.
By n, we refer to the order of the structure, which is fixed. With t0 resp. t1, we keep
track of whether the formula at hand corresponds to a node of type 0 or 1. The number
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h ∈ N tracks our recursion depth and ensures that we do not produce formulae with
non-logarithmic depth.

The ultimate goal is to check whether (v, i) is contained in X(G, C). In the process, we
check for all (v′, i′) from the DAG Hv,i whether they are contained in X. We want that
G |= ψh,n

t0,i′(v
′) if and only if we can verify (v′, i′) ∈ X(G, C) with recursion depth h. This

corresponds to a node t of type 0 with height at most h in the tree Tv,i with v(t) = (v′, i′)
and W(t) = ∅, and (v′, i′) is in X(G, C). We want that G |= ψh,n

t1,i′,j,c(v
′, w) if and only

if we can verify (v′, i′) ∈ X(G, C) with recursion depth h while stopping the recursion
whenever we reach (w, j). In these cases, we assume that (w, j) has exactly c children that
are contained in X(G, C). This corresponds to a node t of type 1 with height at most h in
Tv,i with v(t) = (v′, i′), W(t) = {(w, j)}, and (v′, i′) ∈ X(G, C) holds if (v′, i′) has exactly
c children in Hv,` that are contained in X(G, C).

Since, for every i′ < 1, (v′, i′) is not contained in X(G, C), we can already set ψh,n
t0,i′(x) := ⊥

and ψh,n
t1,i′,j,c(x, y) := ⊥ for all h ∈ N, i′ ∈ Z≤0, j ∈ Z, and c ∈ N. Moreover, for all h ∈ N,

i′ ∈ Z, j ∈ Z≤0, and c ∈N, we set ψh,n
t1,i′,j,c(x, y) := ⊥.

Preparation: Before proceeding, let us introduce a few formulae. For all d ∈ N, let
deg−d (x) := ∃=d y

(
E(y, x)

)
. Then, G |= deg−d (v) if and only if deg−G (v) = d. Further, for all

`, `′ ∈N, we inductively define path0,n
`,`′(x, y) := (x = y) if ` = `′ and

path0,n
`,`′(x, y) = E(x, y) ∧

∨
d∈[n],b `−1

d c=`′

deg−d (y)

else, and, for h ≥ 1,

pathh,n
`,`′(x, y) = ∃ z

∨̀
j=`′

[
pathh−1,n

`,j (x, z) ∧ pathh−1,n
j,`′ (z, y)

]
.

We have G |= pathh,n
`,`′(v, w) if and only if there is a path in Hv,i (and thus also in any other

Hv′,j that includes (v, i)) from (v, `) to (w, `′) that can be verified in h recursion steps.
Formulae of type 0: First, we construct formulae corresponding to nodes of type 0. Let

T be a tree according to the proof of Lemma III.6 and let t ∈ V(T) be a node of type 0 of
the form v(t) = (v′, i′) and W(t) = ∅.

In the base case h = 0, where we do not have any further recursion steps left, we check
that t is a leaf in T. This is the case if v′ does not have any successors w in G with
b i′−1

deg−(w)
c ≥ 1, which is equivalent to i′ − 1 ≥ deg−(w). For a leaf t as described above,

we have (v′, i′) ∈ X(G, C) if and only if 0 ∈ C(v′). Thus, for all i′ ∈N>0, we set

ψ0,n
t0,i′(x) := P0(x) ∧ ∀ y

[
E(x, y)→

n∨
d=i

deg−d (y)

]
.

In the recursion step for h ∈ N>0, there is some vertex a ∈ V(G) and a number ` < i′

such that (v′, i′) /Hv,i (a, `), i. e., (a, `) is below (v′, i′) in Hv,i. Intuitively, the node (a, `)
should split the DAG Hv,i into parts of almost equal size. We guess the number c of
children of (a, `) in Hv,i that are in X(G, C). Then, we verify that exactly this number of
children is contained in X(G, C) via formulae of type 0 and h − 1 remaining recursion
steps. Using the number c, we can verify (v′, i′) ∈ X(G, C) with a formula of type 1 and
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h− 1 remaining recursion steps by passing the information that exactly c children of (a, `)
are contained in X(G, C).

Hence, for h, i′ ∈N>0, we set

ψh,n
t0,i′(x) :=ψ0,n

t0,i′(x) ∨ ∃ y
i′−1∨
`=1

n∨
c=0

[
pathh,n

i′,`(x, y)

∧ childrenh−1,n
t0,`,c (y) ∧ ψh−1,n

t1,i′,`,c(x, y)
]

with

childrenh,n
t0,`,c(y) :=

∃=c z

[
E(y, z) ∧

n∨
d=1

(
deg−d (z) ∧ ψh,n

t0,b `−1
d c

(z)
) ]

for all h ∈ N, ` ∈ N>0, and c ∈ N, expressing that “(y, `) admits c children of type 0
which lie in X(G, C). This can be verified in h recursion steps.”

Formulae of type 1: Now, we construct formulae corresponding to nodes of type 1. Let
T be a tree according to the proof of Lemma III.6 and let t ∈ V(T) be a node of type 1 of
the form v(t) = (v′, i′) and W(t) = {(w, j)}.

In the case h = 0, where we do not have any further recursion steps left, we check that
t is a leaf in T. This happens if v′ = w and i′ = j. For such a leaf, assuming that exactly c
children of (v′, i′) are in X(G, C), we have (v′, i′) ∈ X(G, C) if and only if c ∈ C(v′). Thus,
for all i′ ∈ N>0 and c ∈ N, we set ψ0,n

t1,i′,i′,c(x, y) := Pc(x) ∧ x = y. Furthermore, for all
i′, ` ∈N>0 and c ∈N with i′ 6= `, we set ψ0,n

t1,i′,`,c(x, y) := ⊥.
In the recursion step for h ∈N>0, there is some vertex a ∈ V(G) and an ` with j < ` < i′

such that (v′, i′) /Hv,i (a, `) /Hv,i (w, j). We guess the number c′ of children of (a, `) in Hv,i
that are in X(G, C). Then, we verify that exactly this number is contained in X(G, C). If
the child is not above (w, j) in Hv,i, then it is a node of type 0, and we use a formula of
type 0 with h− 1 remaining recursion steps. If the child is above (w, j) in Hv,i, then it is
a node of type 1, and we use a formula of type 1 with h− 1 remaining recursion steps,
passing the information that exactly c children of (w, j) are contained in X(G, C). Then,
using the guessed number c′, we can verify (v′, i′) ∈ X(G, C) with a formula of type 1
and h− 1 remaining recursion steps by passing the information that exactly c′ children of
(a, `) are contained in X(G, C).

Hence, for all h, i′, j ∈N>0 and c ∈N, we set

ψh,n
t1,i′,j,c(x, y) :=ψ0,n

t1,i′,j,c(x, y)

∨ ∃ z
i′−1∨
`=j+1

n∨
c′=0

(
pathh,n

i′,`(x, z) ∧ pathh,n
`,j (z, y)

∧ childrenh−1,n
t1,`,j,c,c′(z, y) ∧ ψh−1,n

t1,i′,`,c′(x, z)
)
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with

childrenh,n
t1,`,j,c,c′(z, y) :=

∃=c′ z′
(

E(z, z′) ∧
n∨

d=1

[
deg−d (z

′)

∧
( [

ψh,n
t0,b `−1

d c
(z′) ∧ ¬pathh,n

b `−1
d c,j

(z′, y)
]

∨
[

ψh,n
t1,b `−1

d c,j,c
(z′, y) ∧ pathh,n

b `−1
d c,j

(z′, y)
])])

for all h ∈ N, `, j ∈ N>0, and c, c′ ∈ N, expressing that “(z, `) admits c′ children which
lie in X(G, C) if c children of (y, j) are contained in X(G, C). The children of (z, `) above
(y, j) are of type 1 and those not above (y, j) are of type 0. All of this can be verified in h
recursion steps”

Nesting depth of the formulae: Since, by Lemma III.6, there is a tree Tv,i that, by Claim 2,
has height (4r+ 2) · log(n+ 1), it suffices to have formulae ψh,n

t0,i(x) with logarithmic nesting
depth. That is, we choose

ϕ
(n)
i (x) := ψ

((4r+2)·log(n+1)),n
t0,i (x).

Then, A(G, C) |= ϕ
(n)
i (v) if and only if (v, i) ∈ X(G, C) for all graphs G of size |G| ≤ n,

all cardinality conditions C for G, and all v ∈ V(G).
We are ready to prove the main result of this section.

Theorem I.1 For every vocabulary τ and every LREC=[τ]-formula ϕ(x̄, κ̄), there is a constant
k ∈ N such that for every n ∈ N, there is a family of CO(log n)

k -formulae
(
ψm̄(x̄)

)
m̄∈[n]|κ̄| such

that for all τ-structures A of size |A| ≤ n, all v̄ ∈
(
V(A)

)|x̄|, and all m̄ ∈ [|A|]|κ̄|, it holds that

A |= ϕ(v̄, m̄) ⇐⇒ A |= ψm̄(v̄).

Proof: We proceed by induction on the structure of ϕ. For formulae ϕ(x̄, κ̄) ∈ FO+C[τ],
since we only need equivalence on structures of size at most n, we can apply the arguments
from the proof of [9, Proposition 8.4.18], first replacing #-operators by counting quantifiers,
then hard-coding families of formulae inductively, beginning with > resp. ⊥ for atomic
number sentences (≤, min, max, S) and then replacing existential numeric quantification
by disjunctions over N(A) for every possible assignment of the previously quantified
variable. Hence, there are constants k, r ∈ N and, for every n ∈ N, a family of Cr

k[τ]-
formulae

(
ψj̄(x̄)

)
j̄∈[n]|κ̄| such that for all τ-structures A of size |A| ≤ n, all v̄ ∈

(
V(A)

)|x̄|,
and all j̄ ∈ [|A|]|κ̄|, it holds that

A+ |= ϕ(v̄, j̄) ⇐⇒ A |= ψj̄(v̄).

For ϕ = (¬ϕ1), ϕ = (ϕ1 ∨ ϕ2), ϕ = (∃y ϕ1), ϕ = (#ι ϕ1 = κ), or ϕ = (#y ϕ1 = κ), where
• y is a domain variable,
• ι, κ are number variables,
• x̄ is a tuple of domain variables,
• κ̄ is a tuple of number variables we assume to contain κ,
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• free(ϕ) ⊆ x̄ ∪ κ̄, and
• ϕ1, ϕ2 are LREC=-formulae,

we first construct families of CO(log n)
k -formulae

(
ψ1, j̄(x̄)

)
j̄∈[n]|κ̄| ,

(
ψ2, j̄(x̄)

)
j̄∈[n]|κ̄| recursively

and then again apply the arguments from the proof of [9, Proposition 8.4.18].
Now let ϕ =

[
lrecȳ1,ȳ2,ῑ ϕ=, ϕE, ϕC

]
(x̄, κ̄) for some compatible tuples of domain variables

ȳ1, ȳ2, x̄, non-empty tuples of number variables ῑ, κ̄, and LREC=-formulae ϕ=(ȳ1, ȳ2, x̄),
ϕE(ȳ1, ȳ2, x̄), ϕC(ȳ1, x̄, ῑ, κ̄).

By the induction hypothesis, there is a constant k′ ∈N such that for every n ∈N, there
are CO(log n)

k′ -formulae ψ=(ȳ1, ȳ2, x̄), ψE(ȳ1, ȳ2, x̄) as well as a family of CO(log n)
k′ -formulae(

ψC,ī j̄(ȳ1, x̄)
)

ī j̄∈[n]|ῑκ̄| with

A+ |= ϕ=(ū1, ū2, v̄) ⇐⇒ A |= ψ=(ū1, ū2, v̄),
A+ |= ϕE(ū1, ū2, v̄) ⇐⇒ A |= ψE(ū1, ū2, v̄), and

A+ |= ϕC(ū1, v̄, ī, j̄) ⇐⇒ A |= ψC,ī j̄(ū1, v̄)

for all structures A of size |A| ≤ n and all ū1 ∈
(
V(A)

)|ȳ1|, ū2 ∈
(
V(A)

)|ȳ2|, v̄ ∈
(
V(A)

)|x̄|,
ī ∈ N(A)|ῑ|, and j̄ ∈ N(A)|κ̄|. Moreover, by Theorem IV.1, there is a k′′ ∈N>0 such that for
all n ∈N>0 and ` ∈

{
1, . . . , (n + 1)|κ̄|

}
, there is a CO(log n)

k′′ [{E, P0, . . . , Pn}]-formula ϕX,`(x)
such that for all τ-structures A of size at most n, and for G = (V, E) and C from the LREC=

definition in Section II for ϕ, it holds that A(G, C) |= ϕX,`(v) ⇐⇒ (v, `) ∈ X(G, C) for all
v ∈ V(G). We turn these into CO(log n)

k [τ]-formulae ψX,`(x̄) by replacing every occurrence
of
• z1 = z2 by

∃ z1,1 · · · ∃ z1,|x̄|∃ z2,1 · · · ∃ z2,|x̄|
(
ψ=(z̄1, z̄2, x̄)

)
with z̄i = (zi,1, . . . , zi,|x̄|) for i ∈ {1, 2},

• ∃z1 by ∃z1,1 . . . ∃z1,|x|,
• E(z1, z2) by

∃ z′1,1 · · · ∃ z′1,|x̄|∃ z′2,1 · · · ∃ z′2,|x̄|
(

ψ=(z̄′1, z̄1, x̄) ∧ ψ=(z̄′2, z̄2, x̄) ∧ ψE(z̄′1, z̄′2, x̄)
)
,

• and Pi(z1) by ∃ z′1,1 · · · ∃ z′1,|x̄|
(
ψ=(z̄′, z̄, x̄) ∧ ψC,ī ¯̀(z̄

′, x̄)
)

for any variables z1, z2 that occur in ϕX,`.
Let ψm̄(x̄) := ψX,〈m̄〉(x̄) for all m̄ ∈ [n]|κ̄|. Then, for all τ-structures A of size |A| ≤ n, all

v̄ ∈
(
V(A)

)|x̄|, and all m̄ ∈ [|A|]|κ̄|, it holds that

A+ |= ϕ(v̄, m̄) ⇐⇒ (v̄, 〈m̄〉) ∈ X(G, C)
⇐⇒ A |= ψX,〈m̄〉(v̄)

⇐⇒ A |= ψm̄(v̄).
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Fig. 5: Part of an interval representation (left) and its interval graph G admitting nested
modules (right). The four (visible) maxcliques Ci,i∈[4] of G are {a, b, c, d}, {a, b, d, e, g},
{a, b, d, e, h}, and {a, b, e, f }.

V. Interval Graphs

In this section, we describe how the result from Theorem I.1 allows us to obtain, from
an LREC=-definable canonisation of interval graphs, a k ∈N such that, for every n ∈N,
CO(log n)

k identifies every interval graph of order n. We obtain a similar result for chordal
claw-free graphs. Finally, we sketch how the result we obtained for interval graphs can be
shown without the need for LREC=, using an STC+C-definable canonisation for a subclass
of interval graphs and the fact that every interval graph can be decomposed into interval
graphs of that subclass.

An interval is a set of consecutive integers. An interval representation I is a set of intervals,
from which we get its graph GI with V(GI ) := I and E(GI ) := {{I, J} ⊆ I | I ∩ J 6= ∅}.
An undirected graph G is an interval graph if there exists an interval representation I such
that G ∼= GI , see Fig. 5 for an example. An interval representation I is (cardinalitywise)
minimal if

⋃ I ⊂N is minimal with respect to all interval representations I ′ with GI ∼= GI ′ .
An interval graph G is proper if there is an interval representation I with GI ∼= G and, for
all I, J ∈ I , I 6⊆ J.

Lemma V.1 ([24]) There exists an LREC=-definable canonisation of interval graphs ψ(ι, κ) such
that, for all n ∈N and interval graphs G of order n, it holds that µ : G+ ∼= ([n], ψ[G+; ι, κ]).

In particular, since ψ is the result of a canonisation, it holds for all n ∈ N and interval
graphs G and H of order n that G ∼= H iff ([n], ψ[G+; ι, κ]) = ([n], ψ[H+; ι, κ]).

Applying Theorem I.1, we obtain:

Corollary V.2 There exists a k ∈N such that for all n ∈N there is a family of CO(log n)
k -sentences(

ψij
)

i,j∈[n] such that for all interval graphs G of order n and i, j ∈ [n]

G |= ψij ⇐⇒ G+ |= ψ(i, j).
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Fig. 6: Part of a possible path decomposition for the graph G from Fig. 5. In particular,
observe that other possible path decompositions can be obtained by totally reversing the
contents of the four, resp. two centremost nodes.

Now, let, for every n ∈N, interval graph G of order n and all i, j ∈ [n],

ψG
ij :=

{
> if G |= ψij,
⊥ if G 6|= ψij.

Lemma V.3 There exists a k ∈N such that, for every n ∈N, every interval graph G of order n
admits a CO(log n)

k -formula ϕG satisfying, for every interval graph H of order n,

H |= ϕG ⇐⇒ H ∼= G.

Proof: Let G be an interval graph of order n. We claim that

ϕG :=
∧

i,j∈[n]
ψij ↔ ψG

ij

is that formula. To that end, let H be an interval graph of order n.
(=⇒ ) Suppose that H |= ϕG. Then, for all i, j ∈ [n], H |= ψij ↔ ψG

ij , implying that
H |= ψij iff G |= ψij. Thus, ([n], ψ[G+; ι, κ]) = ([n], ψ[H+; ι, κ]) and hence, G ∼= H.
(⇐=) Suppose that G ∼= H. Then, ([n], ψ[G+; ι, κ]) = ([n], ψ[H+; ι, κ]). Thus, for all

i, j ∈ [n], H |= ψij iff G |= ψij and thus ψij ↔ ψG
ij . Hence, H |= ϕG.

It thus remains to show that we can separate an interval graph from those that are not
interval graphs or are of a different order. For this, we need the logics STC and STC+C.

Symmetric transitive closure logic STC (see [39]) extends FO by the stc-operator, which,
for all vocabularies τ, τ-structures A and k ∈ N, allows the definition of an undirected
graph over vertex k-tuples. Syntactically, if ψ is an STC[τ]-formula, x̄ and ȳ are k-tuples of
variables, and v̄, w̄ ∈ V(A)k, then ϕ := [stcx̄,ȳψ](v̄, w̄) is also an STC-formula. Concerning
the semantics, it suffices for us to know that in ϕ, ψ defines an undirected graph over
V(A)k. The stc-operator then tests whether (v̄, w̄) is an edge in the symmetric transitive
closure of said graph. In that sense, it is very close to, though more restrictive than, the tc-
operator from transitive closure logic [31]. The extension of STC to two-sorted structures
then yields STC+C, where the stc-operator is extended over mixed domain/number tuples.
STC+C has been found to be contained in LREC=.

Lemma V.4 ([24]) STC+C ≤ LREC=.

Thus, applying Theorem I.1, we immediately obtain the following.
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Lemma V.5 For every vocabulary τ and every STC+C[τ]-formula ϕ(x̄, ῑ), there is a constant
k ∈N such that for every n ∈N, there is a family of CO(log n)

k -formulae
(
ψī(x̄)

)
ī∈[n]|ῑ| such that

for all τ-structures A of size |A| ≤ n, all v̄ ∈
(
V(A)

)|x̄|, and all ī ∈ (N(A))|ῑ|, it holds that

A+ |= ϕ(v̄, ī) ⇐⇒ A |= ψī(v̄).

It is worth mentioning that we can also obtain the above result without passing through
LREC=. The approach is similar to the one of Theorem I.1, an induction over the structure
of the formula, although easier, as the stc-operator can be modelled as a simple connectivity
test on a graph defined over vertex/number k-tuples. This can be expressed through a
formula of depth logarithmic in the size of the graph (see [20, Example 3]).

Lemma V.6 ([39]) The class of interval graphs is STC-definable.

Corollary V.7 There is a k ∈ N such that, for every n ∈ N, there exists a CO(log n)
k -sentence

ϕ
(n)
interval such that for every graph G of order n, it holds that G |= ϕ

(n)
interval if and only if G is an

interval graph.

By combining Lemma V.3 and Corollary V.7, we can now prove our main theorem of
this section.

Theorem I.2 There is a k ∈N such that for every n ∈N and interval graph G of order n, there
is a formula ΦG ∈ CO(log n)

k that describes G up to isomorphism.

Proof: Let H be a graph with G 6∼= H. If |V(H)| 6= |V(G)|, then G and H are separated
by the formula ∃=nx (x = x), where n is the order of G. Thus, let |V(H)| = |V(G)|. If
V(H) is not an interval graph, then, by Corollary V.7, G and H are separated by some
formula ϕ

(n)
interval ∈ CO(log n)

k′ [{E}] for some fixed k′ ∈ N. Therefore, suppose that H is an

interval graph of order n. Then, by Lemma V.3 H 6|= ϕG with ϕG ∈ CO(log n)
k′′ [{E}] for some

fixed k′′ ∈N. Hence, letting k = max(k′, k′′), the formula ΦG ∈ CO(log n)
k [E] defined as

ΦG := ∃=nx (x = x) ∧ ϕ
(n)
interval ∧ ϕG

describes G up to isomorphism.

Corollary V.8 There is a k ∈N such that WLO(log n)
k identifies every n-vertex interval graph.

We obtain a similar result for chordal claw-free graphs. A graph is chordal if every cycle
of length at least 4 admits a chord. This can be expressed by an STC-sentence which, for
every path of length 3 of a graph G, tests that it cannot be closed to an induced cycle
of length at least 4. A graph is claw-free if it has no induced subgraph isomorphic to the
complete bipartite graph K1,3. It is clear that this can be tested by a C4

4-formula. Thus,
whether a graph is chordal and claw-free can be tested by an STC-sentence. In addition,
chordal claw-free graphs admit LREC=-definable canonisation.

Lemma V.9 ([27]) There exists an LREC=-definable canonisation of chordal claw-free graphs
ψ(ι, κ) such that, for all interval graphs G,

µ : G+ ∼= ([n], ψ[G+; ι, κ]).

An analogous argumentation yields Theorem I.3.
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Fig. 7: A simplified sketch of the modular decomposition corresponding to G from Fig. 5.
Letting M 6= Ci,i∈[4] be a possible end of G, the vertex set S :=

⋃
i∈[4] Ci \

⋃
(M(G) \{

Ci,i∈[4]

}
) = {c, d, e, f , g, h} is a module of G, whereas the vertex sets {g} and {h} are

modules of G[S], with {c, d} and {e, f } as possible ends of G[S].

Theorem I.3 There is a k ∈N such that for every chordal claw-free graph G of order n, there is
a formula ΦG ∈ CO(log n)

k that describes G up to isomorphism.

A. Circumventing LREC=

Finally, we sketch how Theorem I.2 can be proved directly without considering LREC=

and applying the results due to Laubner [38] and Grußien [27]. We begin with some
insights into the properties of interval graphs. A maxclique of a graph G is a vertex subset
C ⊆ V(G) such that C forms a clique and, for all v ∈ V(G) \ C, C ∪ {v} does not form a
clique. By M(G), we denote the set of all maxcliques of G.

Observe that interval graphs are exactly those graphs whose maxcliques can be brought
into a (not necessarily unique) linear order such that every vertex is contained in consec-
utive maxcliques of that order [42]. Equivalently, they are those graphs admitting path
decompositions (see [45]) of which every bag corresponds to a maxclique, as shown in
Fig. 6.

A possible end of an interval graph G is a maxclique M ∈ M(G) such that G admits a
path decomposition (P, β) satisfying, for some p ∈ V(P) with degP(p) = 1, that β(p) = M.
Given such a possible end M of an interval graph G, we can obtain an STC-definable strict
weak order ≺M which captures all the information about the order of the maxcliques [38].
Formally, ≺M is initialised as M ≺M C for all C ∈ M(G) \ {M} and is then recursively
extended through

C ≺M D if ∃X ∈ M(G) :

{
X ≺M D, (X ∩ C) \ D 6= ∅,
C ≺M X, (X ∩ D) \ C 6= ∅.

Notably, for some interval graphs G and possible ends M, the order ≺M becomes a linear
order overM(G); it can be shown that extending it over V(G) induces a strict weak order
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Fig. 8: First members of a family (Gi)i≥1 of interval graphs such that, for all i ∈N>0, the
modular decomposition of Gi has a height of i. This is because, for Gi,i≥2, a large fraction(
> |V(G)|

2

)
of its vertices is contained in its (unique) module.

<G in which two vertices v, w ∈ V(G) are <G-incomparable iff NG[v] = NG[w]. This yields
an STC+C-definable canonisation for those interval graphs [38]. In particular, thanks to
Lemma V.5, we obtain a fixed k∗ and a CO(log n)

k∗ -formula for each such interval graph
describing it up to isomorphism.

Now, we consider those interval graphs G for which ≺M is not a linear order. A set
C ⊆ M(G) of maxcliques is incomparable wrt. ≺M if for all pairwise distinct maxcliques
C1, C2 ∈ C, neither C1 ≺M C2 or C2 ≺M C1. A set C ⊆ M(G) is maximal if, for all C1 ∈ C
and C ∈ M(G) \ C, C1 ≺M C or C ≺M C1. For each such maximal incomparable set of
maxcliques C ⊆ M(G) and D :=M(G) \ C, the vertex set SC :=

⋃ C \ ⋃D is a module, a
vertex subset with a uniform connectivity behaviour towards the rest of the graph, that is,
for every v ∈ V(G) \ SC , either vw ∈ E(G) or vw 6∈ E(G) for all w ∈ SC . In the following,
we consider only those modules that are obtained through maximal incomparable sets of
maxcliques. Note that for each module SC , it holds that G[SC ] is also an interval graph,
see Fig. 7.

There, we see how inductively replacing modules by individual vertices (which maintain
the same connectivity to the rest of the graph as the modules they replace) yields a
modular decomposition (tree) T. Let GS denote the copy of G in which all modules have
been contracted to vertices. Conveniently, each such GS admits a linear order ≺M over
its maxcliques for some possible end M ∈ M(GS) and can thus be described up to
isomorphism in CO(log n)

k∗ by Lemma V.5.
Thus, for each t ∈ V(T), the subgraph it corresponds to can be described in CO(log n)

k∗ .
Hence, developing a formula which, in an inductive, bottom-up fashion, characterises G
up to isomorphism is not very difficult. The main issue is the height of T. This is due to the
fact that an interval graph G may have up to and at most one module SC with |SC | > |G|/2.
Thus, we can construct families of interval graphs whose modular decomposition trees are
linear in the size of the graph (see Fig. 8 for an example).

The idea is thus to build a treelike decomposition of the modular decomposition tree
similarly as Lemma III.6. Since this decomposition has a logarithmic height in the size of
the input graph, it then suffices to inductively describe our graph based on it, yielding
formulae of logarithmic quantifier depth.

VI. Conclusion

We have shown that for every LREC=-definable property, there is a constant k such that
for every size bound n, the property can be expressed on structures of size at most n
via a family of CO(log n)

k -formulae. This implies that the k-dimensional Weisfeiler–Leman
algorithm distinguishes every pair of graphs separable by the property in a logarithmic
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number of iterations. Moreover, building on results by Grohe et al. [24] and Grußien [27],
this yields that the algorithm identifies every interval graph and every chordal claw-free
graph in logarithmically many iterations.

It remains an interesting project to investigate the power of counting logics with logarith-
mic quantifier depth, or equivalently, a logarithmic number of iterations of the Weisfeiler–
Leman algorithm, on other graph classes. A natural target class would be graphs defined
by a finite set of excluded minors.

Also, since our results are non-uniform as we obtain formulae for each size bound
n, a follow-up question could ask how to obtain similar uniform statements: is every
LREC=-formula equivalent to a formula of fixed-point logic with counting that only uses
logarithmically many iterations?
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