
Lawrence Berkeley National Laboratory
LBL Publications

Title

Caffeine: CoArray Fortran Framework of Efficient Interfaces to Network Environments

Permalink

https://escholarship.org/uc/item/27f7564x

ISBN

9781665475587

Authors

Rouson, Damian
Bonachea, Dan

Publication Date

2022-11-13

DOI

10.25344/S4459B

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/27f7564x
https://escholarship.org
http://www.cdlib.org/

The Eighth Annual Workshop on the LLVM Compiler Infrastructure in HPC (LLVM-HPC2022)

Caffeine: CoArray Fortran Framework of Efficient
Interfaces to Network Environments

Damian Rouson, Dan Bonachea
Computer Languages and Systems Software Group

Lawrence Berkeley National Laboratory, USA
{Rouson, DOBonachea}@lbl.gov

Abstract—This paper provides an introduction to the CoAr-
ray Fortran Framework of Efficient Interfaces to Network
Environments (Caffeine), a parallel runtime library built atop
the GASNet-EX exascale networking library. Caffeine leverages
several non-parallel Fortran features to write type- and rank-
agnostic interfaces and corresponding procedure definitions that
support parallel Fortran 2018 features, including communication,
collective operations, and related services. One major goal is to
develop a runtime library that can eventually be considered for
adoption by LLVM Flang, enabling that compiler to support the
parallel features of Fortran.

The paper describes the motivations behind Caffeine’s de-
sign and implementation decisions, details the current state of
Caffeine’s development, and previews future work. We explain
how the design and implementation offer benefits related to
software sustainability by lowering the barrier to user contri-
butions, reducing complexity through the use of Fortran 2018
C-interoperability features, and high performance through the
use of a lightweight communication substrate.

Index Terms—HPC, PGAS, RMA, LLVM Flang, Exascale
Computing, Runtime Libraries, GASNet-EX

I. INTRODUCTION

A. Why Fortran matters

Rumors of Fortran’s demise are greatly exaggerated. Sixty-
five years after the publication of the language’s seminal
description [1], Fortran has reached Medicare age and survived
longstanding calls for its retirement [2]. Despite published de-
scriptions of Fortran as an “infantile disorder,” [3] the world’s
first widely used high-level programming language remains
relevant. User surveys and system monitoring at the National
Energy Research Scientific Computing Center (NERSC) [4]
over the past several years reveal that Fortran remains very
popular in the workload of this production supercomputing
center (Fig. 1). Fortran plays important roles in fields ranging
from weather [5] and climate [6] to nuclear energy [7],
aerospace engineering [8], and fire protection engineering [9].
If you looked at a weather forecast today, received electricity
from a power plant licensed by the U. S. Nuclear Regulatory
Commission, rode in any one of numerous car or aircraft
models, or live in one of 195 countries that signed the Paris
climate accord, then Fortran codes impacted your life in one
or more ways today even before you encountered this paper.

To ensure a sustainable path for future Fortran code de-
velopment, a vibrant community of developers at varying
educational and career stages has undertaken an effort to
grow and modernize the Fortran ecosystem [11], including

extending the application of the language into non-traditional
domains such as software package management [12]. Among
the other many signs of new growth in the Fortran world is the
increase in the number of production Fortran compiler projects
over the past 5 years. These projects include new, open-source
compilers, such as LFortran [13] and LLVM Flang, along
with proprietary compilers from vendors who either did not
previously produce a Fortran compiler or vendors who have
undertaken the replacement of their legacy Fortran compiler
with a new compiler. The LLVM compiler infrastructure [14]
plays a central role in many such efforts. Recent versions
of the Intel [15] and IBM [16] Fortran compiler front ends,
for example, now use an LLVM back end. Recent versions
of the the NVIDIA, Arm, AMD, and Huawei compilers
are essentially private forks of “Classic Flang” [17], which
also targets LLVM but with plans for eventual replacement
by LLVM Flang, presumably sometime after LLVM Flang
reaches feature parity with Classic Flang. All of these develop-
ments portend potentially broad impact for work that advances
LLVM Flang.

B. Motivation and Objectives

Because of the paramount importance of parallelism in
High-Performance Computing (HPC), our work centers around
the Fortran 2018 parallel programming feature subset that is
commonly called “Coarray Fortran”. This feature subset adds
Single-Program, Multiple-Data (SPMD) multi-process support
to Fortran. Coarrays provide a Partitioned Global Address
Space (PGAS) memory model; every coarray represents a

Compiled languages used at NERSC

● Fortran remains a common language for
scientific computation.

● Noteworthy increases in
C++ and multi-language

● Language use inferred from runtime
libraries recorded by ALTD.
(previous analysis used survey data)

○ ALTD-based results are mostly in
line with survey data.

○ No change in language ranking
○ Survey underrepresented Fortran

use.

● Nearly ¼ of jobs use Python.

Totals exceed 100% because some users rely on multiple languages.

Fig. 1. Programming languages used at the National Energy Research
Scientific Computing Center (reproduced with permission from [10])

c⃝2022 LBNL doi:10.25344/S4459B 1

https://doi.org/10.25344/S4459B

Rouson, Bonachea: Caffeine: CoArray Fortran Framework of Efficient Interfaces to Network Environments

distributed data structure, where the array elements are spread
across all the processes (images), and any element can be
directly accessed by any process using one-sided Remote
Memory Access (RMA) communication. The Fortran 2018
parallel feature subset also includes various collective commu-
nication operations (such as broadcasts and reductions), inter-
process synchronization operations (such as event semaphores
and barriers), and a process grouping abstraction (teams).
Tbl. 1 defines several Fortran terms used throughout this paper.

LLVM Flang currently provides an experimental capability
for compiling Fortran 95 programs [18]. However, the LLVM
Flang front end can parse standard Fortran 2018 [19] and
can perform compile-time checks of static semantics. The
Berkeley Lab Flang project [20] focuses on testing. Following
Test-Driven Development (TDD) practices, we aim to develop
a comprehensive set of unit tests and to use the resulting
test suite as a specification for functionality that Flang and
Caffeine must support to comply with the 2018 standard.
Our tests fall into two categories: (1) compile-time, static
semantics tests for Flang [21] and (2) runtime behavioral tests
for Caffeine. Consistent with TDD, we add features to the
Flang frontend when our tests expose missing features such
as Flang not recognizing a procedure as intrinsic.

As of this writing, we have pushed 30 commits with static
semantics tests to the main branch of the LLVM-Project repos-
itory, and we have merged runtime tests with 44 assertions
exercising ten parallel features into the main branch of the
Caffeine repository [22]. Section III-C of this paper describes
the runtime tests. Ultimately, we aim to either merge Caffeine
into LLVM Flang or establish it as an external dependency,
providing Flang users with access to Fortran’s parallel features.

C. Contributions

The remainder of this paper is organized as follows: Sec-
tion II provides an overview of the Caffeine software stack
and the compiler development workflow that Caffeine’s design
implicitly proposes; Section III presents the status of Caf-
feine development, Caffeine’s compiler-facing interface, and
the runtime unit tests that serve as the specification driving
Caffeine development; Section IV describes some future work
required for Caffeine to cover all of Fortran’s parallel features.

The main contributions of this paper are the following:
• We posit that a subset of modern Fortran’s non-parallel

features are sufficient to write a runtime library, mostly
in Fortran, that provides the parallel Fortran features.

• Furthermore, we maintain that the use of type-agnostic
procedure arguments liberates the runtime from directly
referencing compiler-specific data structures, enabling the
parallel runtime to be portable across compilers.

• We also suggest that use of 2018 type- and rank-agnostic
arguments greatly reduces the complexity of the resulting
runtime relative to using earlier Fortran standards.

• Finally, we present initial work on Caffeine that deploys
these techniques to deliver a portable implementation of
Fortran’s parallel features, suitable for eventual adoption
into compilers such as LLVM Flang.

 
GASNet-EX

System Runtime & Memory Technologies

Application
C O

M
P
I
L
E

R

 
Caffeine

Fig. 2. Caffeine system stack

II. METHODOLOGY: STRUCTURE AND WORKFLOW

A. System Stack

Fig. 2 depicts our envisioned system stack, in which an
application developer writes standard Fortran, including some
Coarray Fortran syntax. The compiler translates that syntax
into Caffeine [22] procedure invocations and data structures,
which Caffeine supports using GASNet-EX procedures and
data structures. GASNet-EX supports Caffeine’s procedure in-
vocations using lower-level, platform-specific communication
protocols. For demonstration purposes, the first author has
integrated direct references to Caffeine procedures into an
application, Matcha [23], using the Fortran use statement’s
renaming capability to replace standard Fortran syntax with
Caffeine procedure invocations. Such direct references can be
removed when using a compiler that has adopted Caffeine as
its parallel runtime library.

B. GASNet-EX

GASNet-EX [24] is a language-independent, networking
middleware layer that provides network-independent, high-
performance communication primitives for HPC, including
one-sided RMA and Active Messages. Unlike the dominant
Message Passing Interface (MPI) communication standard,
the GASNet-EX interface and implementation are designed
specifically to meet the needs of alternative programming

TABLE 1
FORTRAN STANDARD TERMS AND DEFINITIONS (ADAPTED FROM [19])

Term Definition
assumed unlimited polymorphic data object declared with
-type type(*), described informally here as “type-agnostic”
assumed data-object dummy argument that assumes the rank of
-rank its effective argument, described here as “rank-agnostic”
coarray data structure partitioned across a team’s images and

accessible by each image in the corresponding team
effective entity that is argument-associated with a dummy
argument argument in a procedure call
image instance of a Fortran program
intrinsic entity or operation defined in the Fortran standard and

accessible without further definition or specification
rank number of array dimensions of a data entity (zero for a

scalar entity)
team ordered image set created by executing a form team

statement, or the initial ordered set of all images
unlimited able to have any dynamic type during program
polymorphic execution

2

Rouson, Bonachea: Caffeine: CoArray Fortran Framework of Efficient Interfaces to Network Environments

models on emerging exascale systems. GASNet-EX is im-
plemented directly over the native/proprietary APIs of many
networks, including all of those in use at the HPC centers
of the U. S. Department of Energy’s Office of Science [25].
GASNet-EX’s interface is primarily intended as a compilation
target and for use by runtime library writers (as opposed to
domain scientists), and the primary goals are high perfor-
mance, interface portability, and expressiveness. GASNet-EX
provides communication services for many projects, including
both programming models and other parallel libraries and
frameworks. Examples of alternative HPC programming mod-
els using GASNet-EX include: UPC++ [26–28], the Legion
programming system [29], HPE’s Chapel language [30], the
Omni Xcalable Compiler [31], and many UPC [32–34] and
CAF/Fortran [22, 35–37] compiler runtimes. GASNet-EX has
also been adopted for communication services by a number
of parallel libraries and frameworks, including [38, 39]. See
[40] for full details on current client software, and Fig. 3 for
an overview of the GASNet-EX software ecosystem.

GASNet-EX’s long-established track record of providing
robust and portable communication services to a wide range
alternative programming models, including several parallel
Fortran implementations, made it a natural choice as the initial
communication backend for Caffeine. In addition, GASNet-
EX delivers very competitive RMA performance on most
network hardware of interest to HPC, often rivaling vendor-
provided MPI implementations. Fig. 4 is reproduced with per-
mission from [24] and compares the flood bandwidth perfor-
mance of GASNet-EX RMA operations with the vendor MPI
implementation on the Haswell partition of NERSC’s Cray
XC40 Cori [41] supercomputer (using a Cray Aries [42, 43]
network). The main observation is that GASNet-EX RMA of-
ten reaches higher bandwidths at smaller transfer sizes than the
equivalent operation in MPI. Similarly for fine-grained/small-
payload transfers, GASNet-EX RMA latency performance is
routinely over 2x better than MPI [44]. These benefits are
attributed primarily to GASNet-EX’s lighter-weight interfaces
providing a closer semantic match to network hardware capa-
bilities. See [24, 44] for detailed methodology and additional,
qualitatively comparable results on other supercomputers of
interest. GASNet-EX’s proven ability to deliver very efficient
one-sided RMA will enable Caffeine to deploy very efficient
coarray access operations.

 GASNet-EX

......

SHMEM

Network Hardware

(InfiniBand, Cray Aries, HPE Slingshot, Ethernet, Intel Omni-Path, ...)

Active Messages

One-sided Get/Put RMA

CollectivesAtomics

Non-contiguous RMA

Memory Technologies

(Host memory, GPUs, ...)

Fortran

coarrays
UPCChapel ...

NWChemEx
ExaGraph
FLeCSI FlexFlow
 ExaBiome

Legion UPC++

AMReX
Arkouda

Scientific Applications

Fig. 3. GASNet-EX software ecosystem

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

256 B 512 B 1kiB 2kiB 4kiB 8kiB 16kiB 32kiB 64kiB 128kiB 256kiB 512kiB 1MiB 2MiB 4MiB

Cori-I:
Haswell

Aries
Cray MPI

B
a
n
d
w

id
th

 (
G

iB
/s

)

GASNet-EX Put
MPI RMA Put
GASNet-EX Get
MPI RMA Get
MPI ISend/IRecv

Fig. 4. Microbenchmark performance comparison of GASNet-EX RMA on
NERSC Cori, versus Cray MPI’s RMA and message-passing (from [24])

C. Caffeine
1) A Sustainable Workflow: Four actively developed com-

pilers support parallel Fortran 2018 features: the HPE Cray,
Intel, GNU Compiler Collection (GCC), and Numerical Al-
gorithms Group (NAG) compilers. These compilers have each
been under development for roughly 20-40 years concurrently
with the publication of several Fortran standards. Hence, the
compilers have progressed through the standards chronologi-
cally. The dormant g95 project [45] followed a more nonlinear
development timeline by layering parallel features from the
Fortran 2008 standard [46] atop a Fortran 95 compiler that
only partially supported the Fortran 2003 standard [47].

The choice between a chronological or a nonlinear
development timeline harbors several subtleties at the
intersection of history, technology, and sociology. Historically,
coarray features formally entered the language in the 2008
standard, but Coarray Fortran [48] was initially developed
as an extension to Fortran 95 and thus has very little
explicit interaction with Fortran 2003 features. This makes
it feasible to leapfrog the 2003 standard and support 2008
coarrays without impacting ongoing 2003 development in any
significant way. Technologically, the chronological approach
defers one of the most compelling HPC language properties,
parallelism, until later in the timeline than is necessary.
Sociologically, the chronological approach usually leads to
writing the parallel runtime library in the compiler’s primary
implementation language, typically C/C++, which raises the
barrier to user contributions because the users are Fortran
programmers and not necessarily C/C++ programmers. In an
open-source project, lowering barriers to user contributions
improves a software project’s long-term sustainability.

The key insight that inspired Caffeine follows:

Insight 1. A subset of Fortran’s non-parallel 2003, 2008,
and 2018 features collectively provide a compelling platform
for writing a runtime library, mostly in Fortran, that supports
the parallel features of Fortran 2008 and 2018.

Fig. 5 details the proposed compiler development timeline.
In the envisioned scenario, early in implementing the 2003
standard, a Fortran 95 compiler’s developers would prioritize
certain 2003 C-interoperability features that are used in Caf-
feine. The compiler developers would then leapfrog the 2008

3

Rouson, Bonachea: Caffeine: CoArray Fortran Framework of Efficient Interfaces to Network Environments

Support 2003 C Interoperability

Support 2018 Further Interoperability with C

Support 2008 Submodules

Integrate Caffeine into Compiler

Support 2008 Parallel Features

Support 2018 Additional Parallel Features

Fig. 5. A possible Coarray Fortran support Gantt chart color-coded for compiler prerequisites for building Caffeine (red), Caffeine integration process (yellow),
and resulting 2008/2018 parallel feature availability (green)

standard to implement certain 2018 C-interoperability features
used in Caffeine. Along the way, if the compiler developers
can implement 2008 submodules, then such a compiler could
compile Caffeine in its current form. If necessary, however,
it would be straightforward to refactor Caffeine to remove
submodules, which are used to facilitate modest reductions
in compile time.

The result of integrating Caffeine into a compiler with
the described workflow could be early support for all 2008
and 2018 parallel programming features before even reaching
full 2003 compliance. Such an outcome could positively
influence parallel programming practice and performance as
well as prospects for user adoption and the likelihood of user
contributions.

Writing a parallel runtime library in Fortran has the ad-
ditional portability benefit of facilitating use by any Fortran
compiler, which further broadens the potential community of
adopters and contributors. This contrasts starkly with every
parallel runtime library developed for Fortran compilers to
date. Each of the aforementioned commercial compiler ven-
dors developed one or more proprietary runtimes that are us-
able by only the corresponding commercial compiler. The one
non-commercial, parallel Fortran compiler, GCC gfortran,
uses the OpenCoarrays [37] parallel runtime library developed
by the first author and his collaborators. Although open-source
and therefore hypothetically usable by other compilers, 14 of
37 OpenCoarrays procedures require a gfortran-specific
data descriptor as one argument. Section III-B details how
Proposition 1 obviates the need for such compiler specificity.

III. DISCUSSION OF RESULTS

A. Status of parallel feature support

Tbl. 2 details the status of Caffeine’s support for Fortran’s
parallel features. The first column denotes the standard version
in which a feature first appeared. In some cases, a feature
introduced in 2008 has expanded capabilities in 2018. For ex-
ample, in 2008, the intrinsic function num_images accepted

no arguments, but in 2018, it accepts an optional argument of
type team_type, an intrinsic derived type that entered the
language in the 2018 standard. Our num_images intrinsic
function support is currently partial because we have not yet
added support for team_type.

B. Compiler-facing interface

Fig. 6 depicts the interface body for the Caffeine subrou-
tine supporting Fortran’s co_sum collective subroutine. One
salient feature of this interface body was the second key insight
that inspired Caffeine’s design:

Insight 2. The use of Fortran 2018 assumed-type (type(*))
and assumed-rank (e.g., a(..)) dummy arguments obviates
the need for passing compiler-specific data descriptors to the
runtime library.

Assumed-type, assumed-rank procedure dummy arguments
are part of the 2018 standard’s expansion of the 2003 stan-
dard’s C-interoperability features. These 2018 features add
type- and rank-agnostic capabilities to the language. Their in-
troduction was largely inspired by a desire to facilitate a more
modern Fortran interface to implementations of the MPI stan-
dard [49] through MPI’s unfortunately misnamed mpi_f08
module. Assumed-type entities are unlimited polymorphic (i.e.
type-agnostic) data objects, so the effective argument passed
in the procedure call may have any type. When a Fortran
2018 compiler generates code for invoking a procedure via
an interface body with an assumed-type dummy argument,
what gets passed is a Fortran-defined, C-language structure,

Fig. 6. A sample interface body for co_sum.

4

Rouson, Bonachea: Caffeine: CoArray Fortran Framework of Efficient Interfaces to Network Environments

TABLE 2
STATUS OF CAFFEINE’S SUPPORT FOR THE PARALLEL FEATURES OF FORTRAN 2008 AND 2018.

Standard Feature Status
2008 Program launch yes
2008 Normal termination: stop and end program statements yes
2008 Error termination: error stop statement yes
2008 Image enumeration: this_image and num_images intrinsic functions partial
2008 Synchronization: sync {all,images,memory,team} statements partial
2008 Coarrays: declaration, access, (de)allocation, inquiry functions no
2008 Critical construct: critical and end critical no
2008 Atomics: atomic_{int,logical}_kind kind parameters and atomic_{define,ref,...} subroutines no
2008 Locks: lock and unlock constructs no
2018 Collective subroutines: co_{broadcast,sum,min,max,reduce} yes
2018 Events: event_type intrinsic type, event_query subroutine and event {post,wait} statements no
2018 Teams: team_type intrinsic type and {form,change,end} team statements no
2018 Failed/stopped images: fail image statement, {failed,stopped}_image intrinsic functions, related constants no

CFI_cdesc_t, that serves as a descriptor of the effective
argument, including its base address, storage size, type and
other information. The ability to ensure that information gets
passed into the runtime in a compiler-independent, standard-
conforming way liberates the runtime from being “hard-wired”
to one compiler. The fact the enabling mechanism is C-
interoperable is a bonus, given that the communication soft-
ware employed by any parallel runtime library is likely to be
C/C++ code such as GASNet-EX or an MPI implementation.

Fortran 2003 provided a different form of unlimited poly-
morphic declaration, class(*), that we employed in the
early stages of writing Caffeine. However, passing such an
argument to C necessitated first inserting type-guarding blocks
of the form select type(a) followed by a proverbial
combinatorial explosion of type-selection branches of the
form type is(real), type is(integer), etc., each
of which must precede a rank-guarding block select rank
containing a list of all supported ranks such as rank is(0)
for scalars, rank is(1) for one-dimensional arrays, etc.
Switching to 2018-style assumed-type, assumed-rank dummy
arguments led to an order-of-magnitude reduction in code
complexity with several files shrinking from over 400 lines
to approximately 40 lines. This observation yielded the third
key insight that enabled Caffeine:

Insight 3. The use of Fortran 2018 assumed-type, assumed-
rank dummy arguments offers considerable complexity re-
duction relative to using the Fortran 2003 C-interoperability
feature set.

Such complexity reduction implies more concise and main-
tainable code. It also likely yields increased code robustness:
earlier attempts to use class(*) instead of type(*)
yielded massively replicated code, which is harder to manually
audit for correctness.

A final important feature of Caffeine is that the compiler-
facing interface makes no reference to a specific communica-
tion substrate, leaving the option to swap the communication
backend between GASNet-EX, MPI, or OpenSHMEM [50],
for example. The choice of which backend to use could even
be delayed until link-time so that a parallel Fortran software

package could be compiled into object files and subsequently
linked to either of the aforementioned communication li-
braries without rewriting or even recompiling a single line
of Fortran source code. If this plan comes to fruition, then
we envision delivering on the one of the original aims of
OpenCoarrays [37], which developed experimental GASNet
and OpenSHMEM options before settling on MPI as the only
maintained solution.

C. Unit tests

The Caffeine test suite uses the open-source Veg-
gies [51] unit testing framework and its companion pro-
gram Cart [52]. Given a test suite comprised of test files,
test/*_test.f90 containing modules that use Veggies
derived types and functions, Cart writes a driver program
that executes the entire test suite. Because the construction
of the driver is automated, there is no need to consider its
internal details in presenting the test suite. Each file with a
name of the form *_test.f90 tests one Caffeine feature.
For example, caf_co_sum_test.f90 verifies the behavior
of the co_sum collective subroutine.

Fig. 7 shows the beginning of the co_sum test module.
At line 10, the caf_co_sum_test module’s first function,
test_caf_co_sum, produces a tests object containing
the results of each of the module’s tests. Lines 13–24 define the
tests object by invoking the Veggies describe function
with two arguments:

1) a string, “The caf_co_sum subroutine”, describing
what is being tested, and

2) an array constructor with elements intended to be read as
sentences detailing what it (the subroutine being tested)
must do to satisfy the tests.

For example, “it sums default integer scalars with no optional
arguments present.” Following each such description is the
name of the function that performs the described check:
sums_default_integer_scalars in this case. Lines
27-34 define that function. In this manner, the Caffeine test
suite reads as a hybrid natural-language/formal specification
of the required behavior. The natural language aspects derive
from the juxtaposition of Veggies procedure names with re-

5

Rouson, Bonachea: Caffeine: CoArray Fortran Framework of Efficient Interfaces to Network Environments

Fig. 7. A partial listing of the co_sum unit test, from test/caf_co_sum_test.f90 in the Caffeine repository.

lated strings. The formal aspect comes from expressing the
specification in a language with a standard grammar. When
compiled and executed, the specification also serves as the
verification system.

IV. FUTURE WORK

Although the project began only recently, Caffeine already
implements many of the parallel Fortran features (shown in
Tbl. 2). However several important features remain to reach
Caffeine’s goals of providing a complete set of parallel features
for use with a serial Fortran compiler.

The most significant remaining work for Caffeine is sup-
porting coarray allocation and access. We expect to follow
the general coarray design used in the OpenUH Coarray
Fortran compiler [36], which was implemented using the GAS-
Net-1 [53] communication layer (the predecessor to GASNet-
EX). We expect to directly utilize GASNet-EX’s powerful
and efficient RMA capabilities to implement coarray access
operations as a lightweight pass-through. The trickiest part
is designing coarray memory management to provide the
heap symmetry and team-entangled semantics required by the
Fortran standard. Ge [54] describes the algorithm used to
provide standard-compliant coarray memory management in
the OpenUH runtime. We expect to implement a similar al-
gorithm in Caffeine, with some simplifications enabled by the
robust support for subset teams and team-aware hierarchical
collective operations introduced in GASNet-EX.

Another notable remaining feature is Fortran image teams
(team_type and associated functions and statements), which
should naturally map to a combination of GASNet-EX teams

and some Caffeine logic and local metadata used to implement
Fortran-specific semantics in form team, change team
and coarray management.

Atomics (atomic_{int,logical}_kind and
atomic_* subroutines) should map naturally to GASNet-
EX remote atomic memory operations, which automatically
leverage any available NIC offload capabilities to accelerate
these operations. We also expect that events (event_type,
the event post and event wait statements, and the
event_query subroutine), locks (the lock and unlock
statements), critical blocks and sync images
will be straightforward to implement using GASNet-EX
Active Messages and traditional distributed synchronization
algorithms.

V. CONCLUSIONS

Fortran remains relevant through its impact on daily life
and its common use in HPC. Due to the importance of
parallelism in HPC, Berkeley Lab’s Flang testing project
focuses on advancing frontend support for modern Fortran’s
parallel features. Our current work in Flang is timely because
it begins the transition to supporting serial Fortran features
beyond the 95 standard.

Modern serial Fortran provides a viable path for writing
a parallel runtime library that supports Fortran’s parallel fea-
tures. Writing a parallel runtime library primarily in Fortran
offers several key benefits, including software sustainability
through lowering the barrier to user contributions, reduced
complexity through a type- and rank-agnostic compiler-facing

6

Rouson, Bonachea: Caffeine: CoArray Fortran Framework of Efficient Interfaces to Network Environments

interface, and portability across compilers through liberation
from compiler-specific data structure descriptors.

We detailed the current status of parallel Fortran-standard
feature support in Caffeine. We gave an overview of the
Caffeine system stack, including the expected performance
benefits associated with choosing GASNet-EX as the ini-
tial communication substrate. We also gave a description
of Caffeine’s test suite as a compilable specification that
describes and verifies Caffeine’s intended behaviors. Lastly,
we presented our plans for future work to complete Caffeine’s
support for Fortran’s parallel feature set.

ACKNOWLEDGMENTS

This research was supported by the Exascale Computing
Project (17-SC-20-SC), a collaborative effort of the U.S.
Department of Energy Office of Science and the National
Nuclear Security Administration.

This research used resources of the National Energy Re-
search Scientific Computing Center, a DOE Office of Science
User Facility supported by the Office of Science of the
U.S. Department of Energy under Contract No. DE-AC02-
05CH11231.

ACRONYMS

GCC GNU Compiler Collection

HPC High-Performance Computing

MPI Message Passing Interface

NAG Numerical Algorithms Group

NERSC National Energy Research Scientific Computing
Center

PGAS Partitioned Global Address Space

RMA Remote Memory Access

SPMD Single-Program, Multiple-Data

TDD Test-Driven Development

REFERENCES

[1] J. W. Backus, R. J. Beeber, S. Best, R. Goldberg, L. M.
Haibt, H. L. Herrick, R. A. Nelson, D. Sayre, P. B.
Sheridan, H. Stern et al., “The FORTRAN automatic
coding system,” in Papers presented at the February 26-
28, 1957, western joint computer conference: Techniques
for reliability, 1957, pp. 188–198, doi:10.1145/1455567.
1455599.

[2] D. Cann, “Retire Fortran? a debate rekindled,” Commu-
nications of the ACM, vol. 35, no. 8, pp. 81–89, 1992,
doi:10.1145/135226.135231.

[3] E. W. Dijkstra, “How do we tell truths that might hurt?”
ACM Sigplan Notices, vol. 17, no. 5, pp. 13–15, 1982,
doi:10.1145/947923.947924.

[4] National Energy Research Scientific Computing Center
(NERSC), https://www.nersc.gov.

[5] W. C. Skamarock, J. B. Klemp, J. Dudhia, D. O. Gill
et al., “A description of the advanced research WRF
model version 4,” National Center for Atmospheric Re-
search: Boulder, CO, USA, vol. 145, p. 145, 2019, doi:
10.5065/1dfh-6p97.

[6] G. Danabasoglu, J.-F. Lamarque, J. Bacmeister, D. Bai-
ley, A. DuVivier, J. Edwards, L. Emmons et al., “The
community earth system model version 2 (CESM2),”
Journal of Advances in Modeling Earth Systems, vol. 12,
no. 2, 2020, doi:10.1029/2019MS001916.

[7] M. Ding, X. Zhou, H. Zhang, H. Bian, and Q. Yan, “A
review of the development of nuclear fuel performance
analysis and codes for PWRs,” Annals of Nuclear Energy,
vol. 163, p. 108542, 2021, doi:10.1016/j.anucene.2021.
108542.

[8] R. T. Biedron, J.-R. Carlson, J. M. Derlaga, P. A. Gnoffo,
D. P. Hammond, W. T. Jones, B. Kleb, E. M. Lee-
Rausch, E. J. Nielsen, M. A. Park et al., “FUN3D
Manual: 13.2,” NASA TM, vol. 219661, 2017, https:
//fun3d.larc.nasa.gov/papers/FUN3D Manual-13.2.pdf.

[9] K. B. McGrattan, R. J. McDermott, C. G. Weinschenk,
and G. P. Forney, “Fire dynamics simulator user’s guide,”
NIST special publication, vol. 1019, 2013, doi:10.6028/
NIST.sp.1019.

[10] B. Austin et al., NERSC-10 Workload Analysis, 2020,
doi:10.25344/S4N30W.

[11] L. J. Kedward, B. Aradi, O. Čertı́k, M. Curcic, S. Ehlert,
P. Engel, R. Goswami, M. Hirsch, A. Lozada-Blanco,
V. Magnin et al., “The state of Fortran,” Computing in
Science & Engineering, vol. 24, no. 2, pp. 63–72, 2022,
doi:10.1109/MCSE.2022.3159862.

[12] Fortran Package Manager (fpm), https://github.com/
fortran-lang/fpm.

[13] LFortran, https://lfortran.org.
[14] LLVM Compiler Infrastructure project, https://github.

com/llvm/llvm-project.
[15] Intel Corporation, Porting Guide for ifort Users to

ifx, https://www.intel.com/content/www/us/en/developer/
articles/guide/porting-guide-for-ifort-to-ifx.html.

7

https://doi.org/10.1145/1455567.1455599
https://doi.org/10.1145/1455567.1455599
https://doi.org/10.1145/135226.135231
https://doi.org/10.1145/947923.947924
https://www.nersc.gov
https://doi.org/10.5065/1dfh-6p97
https://doi.org/10.5065/1dfh-6p97
https://doi.org/10.1029/2019MS001916
https://doi.org/10.1016/j.anucene.2021.108542
https://doi.org/10.1016/j.anucene.2021.108542
https://fun3d.larc.nasa.gov/papers/FUN3D_Manual-13.2.pdf
https://fun3d.larc.nasa.gov/papers/FUN3D_Manual-13.2.pdf
https://doi.org/10.6028/NIST.sp.1019
https://doi.org/10.6028/NIST.sp.1019
https://doi.org/10.25344/S4N30W
https://doi.org/10.1109/MCSE.2022.3159862
https://github.com/fortran-lang/fpm
https://github.com/fortran-lang/fpm
https://lfortran.org
https://github.com/llvm/llvm-project
https://github.com/llvm/llvm-project
https://www.intel.com/content/www/us/en/developer/articles/guide/porting-guide-for-ifort-to-ifx.html
https://www.intel.com/content/www/us/en/developer/articles/guide/porting-guide-for-ifort-to-ifx.html

Rouson, Bonachea: Caffeine: CoArray Fortran Framework of Efficient Interfaces to Network Environments

[16] IBM Developer Blog, IBM C/C++ and
Fortran compilers to adopt LLVM open source
infrastructure, https://developer.ibm.com/blogs/
c-and-fortran-adopt-llvm-open-source/.

[17] Classic Flang, https://github.com/flang-compiler/flang.
[18] Experimental Flang support for executable generation,

https://go.lbl.gov/flang-new-experimental.
[19] Fortran Standards Committee JTC1/SC22/WG5, Infor-

mation technology — Programming languages — For-
tran, ISO/IEC 1539-1:2018. International Organization
for Standardization (ISO), Nov 2018, https://www.iso.
org/standard/72320.html.

[20] Lawrence Berkeley National Lab, Flang Testing project,
https://go.lbl.gov/flang-testing.

[21] K. Rasmussen, D. Rouson, N. George, D. Bonachea,
H. Kadhem, and B. Friesen, “Agile Acceleration of
LLVM Flang Support for Fortran 2018 Parallel Pro-
gramming,” in Research Poster at the International Con-
ference for High Performance Computing, Networking,
Storage, and Analysis (SC22), Nov 2022, doi:10.25344/
S4CP4S.

[22] Caffeine: CoArray Fortran Framework of Efficient In-
terfaces to Network Environments, https://go.lbl.gov/
caffeine.

[23] Motility Analysis of T-Cell Histories in Activation
(Matcha), https://go.lbl.gov/matcha.

[24] D. Bonachea and P. H. Hargrove, “GASNet-EX: A High-
Performance, Portable Communication Library for Exas-
cale,” in Proceedings of Languages and Compilers for
Parallel Computing (LCPC’18), ser. LNCS, vol. 11882.
Springer, October 2018, doi:10.25344/S4QP4W.

[25] DOE Advanced Scientific Computing Research (ASCR)
Facilities, https://science.energy.gov/ascr/facilities.

[26] J. Bachan, S. B. Baden, S. Hofmeyr, M. Jacquelin,
A. Kamil, D. Bonachea, P. H. Hargrove, and H. Ahmed,
“UPC++: A High-Performance Communication Frame-
work for Asynchronous Computation,” in Proceedings
of the International Parallel & Distributed Processing
Symposium (IPDPS), 2019, doi:10.25344/S4V88H.

[27] D. Bonachea and A. Kamil, “UPC++ v1.0 Specification,
Revision 2022.3.0,” Lawrence Berkeley National Labo-
ratory, Tech. Rep. LBNL-2001452, March 2022, doi:10.
25344/S4530J.

[28] J. Bachan, S. B. Baden, D. Bonachea, M. Grossman, P. H.
Hargrove, S. Hofmeyr, M. Jacquelin, A. Kamil, B. van
Straalen, and D. Waters, “UPC++ v1.0 Programmer’s
Guide, Revision 2022.3.0,” Lawrence Berkeley National
Laboratory, Tech. Rep. LBNL-2001453, March 2022,
doi:10.25344/S41C7Q.

[29] M. Bauer, S. Treichler, E. Slaughter, and A. Aiken, “Le-
gion: expressing locality and independence with logical
regions,” in Proceedings of the International Conference
on High Performance Computing, Networking, Storage
and Analysis (SC’12), 2012, doi:10.1109/SC.2012.71.

[30] B. L. Chamberlain, D. Callahan, and H. P. Zima, “Parallel
programmability and the Chapel language,” in Interna-

tional Journal of High Performance Computing Applica-
tions (IJHPCA), vol. 21, no. 3, August 2007, pp. 291–
312, doi:10.1177/1094342007078442.

[31] H. Murai, M. Nakao, H. Iwashita, and M. Sato, “Pre-
liminary Performance Evaluation of Coarray-based Im-
plementation of Fiber Miniapp Suite Using XcalableMP
PGAS Language,” in Proceedings of the Second Annual
PGAS Applications Workshop (PAW’17), 2017, doi:10.
1145/3144779.3144780.

[32] W. Chen, D. Bonachea, J. Duell, P. Husband, C. Iancu,
and K. Yelick, “A Performance Analysis of the Berkeley
UPC Compiler,” in Proceedings of the 17th International
Conference on Supercomputing (ICS), June 2003, doi:10.
1145/782814.782825.

[33] GCC/UPC Compiler, Intrepid Technology, Inc., https://
github.com/Intrepid/GUPC.

[34] Clang UPC Compiler, http://clangupc.github.io.
[35] Y. Dotsenko, C. Coarfa, and J. Mellor-Crummey, “A

Multi-platform Co-Array Fortran Compiler,” in Parallel
Architecture and Compilation Techniques (PACT), 2004,
doi:10.1109/PACT.2004.1342539.

[36] D. Eachempati, H. J. Jun, and B. Chapman, “An Open-
source Compiler and Runtime Implementation for Coar-
ray Fortran,” in Proceedings of the Fourth Conference on
Partitioned Global Address Space Programming Models
(PGAS’10), 2010, doi:10.1145/2020373.2020386.

[37] A. Fanfarillo, T. Burnus, V. Cardellini, S. Filippone,
D. Nagle, and D. Rouson, “OpenCoarrays: Open-source
Transport Layers Supporting Coarray Fortran Compil-
ers,” in Partitioned Global Address Space Programming
Models (PGAS), 2014, doi:10.1145/2676870.2676876.

[38] B. Brock, A. Buluç, and K. A. Yelick, “BCL: A cross-
platform distributed container library,” Proceedings of
the 48th International Conference on Parallel Processing
(ICPP), 2019, doi:10.1145/3337821.3337912.

[39] C. Chan, B. Wang, J. Bachan, and J. Macfarlane, “Mo-
biliti: Scalable Transportation Simulation Using High-
Performance Parallel Computing,” in IEEE International
Conference on Intelligent Transportation Systems (ITSC),
Nov 2018, doi:10.1109/ITSC.2018.8569397.

[40] GASNet, http://gasnet.lbl.gov.
[41] NERSC, “Cori Haswell Nodes,” doi:10.25344/S4859K.
[42] B. Alverson, E. Froese, L. Kaplan, and D. Roweth,

“Cray XC Series Network,” Cray Inc., White Paper WP-
Aries01-1112, November 2012, doi:10.25344/S4RW2H.

[43] P. H. Hargrove and D. Bonachea, “GASNet-EX perfor-
mance improvements due to specialization for the Cray
Aries network,” in 2018 IEEE/ACM Parallel Applications
Workshop, Alternatives To MPI (PAW-ATM), November
2018, pp. 23–33, doi:10.25344/S44S38.

[44] P. H. Hargrove and D. Bonachea, “GASNet-EX RMA
Communication Performance on Recent Supercomput-
ing Systems,” in 2022 IEEE/ACM Parallel Applications
Workshop, Alternatives To MPI (PAW-ATM), November
2022, doi:https://doi.org/10.25344/S40C7D.

[45] The G95 Fortran compiler, http://g95.sourceforge.net.

8

https://developer.ibm.com/blogs/c-and-fortran-adopt-llvm-open-source/
https://developer.ibm.com/blogs/c-and-fortran-adopt-llvm-open-source/
https://github.com/flang-compiler/flang
https://go.lbl.gov/flang-new-experimental
https://www.iso.org/standard/72320.html
https://www.iso.org/standard/72320.html
https://go.lbl.gov/flang-testing
https://doi.org/10.25344/S4CP4S
https://doi.org/10.25344/S4CP4S
https://go.lbl.gov/caffeine
https://go.lbl.gov/caffeine
https://go.lbl.gov/matcha
https://doi.org/10.25344/S4QP4W
https://science.energy.gov/ascr/facilities
https://doi.org/10.25344/S4V88H
https://doi.org/10.25344/S4530J
https://doi.org/10.25344/S4530J
https://doi.org/10.25344/S41C7Q
https://doi.org/10.1109/SC.2012.71
https://doi.org/10.1177/1094342007078442
https://doi.org/10.1145/3144779.3144780
https://doi.org/10.1145/3144779.3144780
https://doi.org/10.1145/782814.782825
https://doi.org/10.1145/782814.782825
https://github.com/Intrepid/GUPC
https://github.com/Intrepid/GUPC
http://clangupc.github.io
https://doi.org/10.1109/PACT.2004.1342539
https://doi.org/10.1145/2020373.2020386
https://doi.org/10.1145/2676870.2676876
https://doi.org/10.1145/3337821.3337912
https://doi.org/10.1109/ITSC.2018.8569397
http://gasnet.lbl.gov
https://doi.org/10.25344/S4859K
https://doi.org/10.25344/S4RW2H
https://doi.org/10.25344/S44S38
https://doi.org/https://doi.org/10.25344/S40C7D
http://g95.sourceforge.net

Rouson, Bonachea: Caffeine: CoArray Fortran Framework of Efficient Interfaces to Network Environments

[46] Fortran Standards Committee JTC1/SC22/WG5, Infor-
mation technology — Programming languages — For-
tran, ISO/IEC 1539-1:2010. International Organization
for Standardization (ISO), Oct 2010, https://www.iso.org/
standard/50459.html.

[47] Fortran Standards Committee JTC1/SC22/WG5, Infor-
mation technology — Programming languages — For-
tran, ISO/IEC 1539-1:2004. International Organization
for Standardization (ISO), Nov 2004, https://www.iso.
org/standard/39691.html.

[48] R. W. Numrich and J. Reid, “Co-Array Fortran for
parallel programming,” in ACM Sigplan Fortran Forum,
vol. 17, no. 2, 1998, pp. 1–31, doi:10.1145/289918.
289920.

[49] Message Passing Interface Forum, MPI: A Message-
Passing Interface Standard Version 4.0, Jun. 2021.
[Online]. Available: https://www.mpi-forum.org/docs/
mpi-4.0/mpi40-report.pdf

[50] B. Chapman, T. Curtis, S. Pophale, S. Poole, J. Kuehn,
C. Koelbel, and L. Smith, “Introducing OpenSHMEM:
SHMEM for the PGAS community,” in Proceedings of
the Fourth Conference on Partitioned Global Address
Space Programming Model, 2010, doi:10.1145/2020373.
2020375.

[51] Veggies Fortran unit testing framework, https://www.
archaeologic.codes/veggies.

[52] Cart test suite tool, https://www.archaeologic.codes/
cart-repo.

[53] D. Bonachea and P. H. Hargrove, “GASNet specifica-
tion, v1.8.1,” Lawrence Berkeley National Laboratory,
Tech. Rep. LBNL-2001064, August 2017, doi:10.2172/
1398512.

[54] S. Ge, “Implementation and evaluation of additional
parallel features of Coarray Fortran,” Master’s thesis,
University of Houston, May 2016, http://hdl.handle.net/
10657/3268.

9

https://www.iso.org/standard/50459.html
https://www.iso.org/standard/50459.html
https://www.iso.org/standard/39691.html
https://www.iso.org/standard/39691.html
https://doi.org/10.1145/289918.289920
https://doi.org/10.1145/289918.289920
https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf
https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf
https://doi.org/10.1145/2020373.2020375
https://doi.org/10.1145/2020373.2020375
https://www.archaeologic.codes/veggies
https://www.archaeologic.codes/veggies
https://www.archaeologic.codes/cart-repo
https://www.archaeologic.codes/cart-repo
https://doi.org/10.2172/1398512
https://doi.org/10.2172/1398512
http://hdl.handle.net/10657/3268
http://hdl.handle.net/10657/3268

	I Introduction
	I-A Why Fortran matters
	I-B Motivation and Objectives
	I-C Contributions

	II Methodology: Structure and Workflow
	II-A System Stack
	II-B GASNet-EX
	II-C Caffeine
	II-C1 A Sustainable Workflow

	III Discussion of Results
	III-A Status of parallel feature support
	III-B Compiler-facing interface
	III-C Unit tests

	IV Future Work
	V Conclusions
	Acknowledgments
	References

