
ar
X

iv
:1

71
0.

07
89

8v
2

 [
cs

.D
C

]
 2

4
M

ay
 2

02
0

1

Meta-Key: A Secure Data-Sharing Protocol under

Blockchain-Based Decentralised Storage

Architecture
Dagang Li∗†, Rong Du∗, Yue Fu∗, Man Ho Au‡

∗School of Electronic and Computer Engineering, Peking University, China
†PKU-HKUST ShenZhen-HongKong Institution, Shenzhen, China

‡Department of Computing, The Hong Kong Polytechnic University, Hong Kong, China

Email: fuyuefyu@126.com

Abstract—In this letter we propose Meta-key, a data-sharing
mechanism that enables users share their encrypted data under
a blockchain-based decentralized storage architecture. All the
data-encryption keys are encrypted by the owner’s public key
and put onto the blockchain for safe and secure storage and
easy key-management. Encrypted data are stored in dedicated
storage nodes and proxy re-encryption mechanism is used to en-
sure secure data-sharing in the untrusted environment. Security
analysis of our model shows that the proxy re-encryption adopted
in our system is naturally free from collusion-attack due to the
specific architecture of Meta-key.

I. INTRODUCTION

Security and reliability of traditional centralized cloud-

storage architecture rely solely on the cloud-service provider.

Data hold by third-party servers may be eavesdropped, stolen

or destroyed by politic, technological or legal means. Users

are unable to get their data when vendors stop their service.

A blockchain-based decentralized storage system can offer

service without dependence on a specific vendor: nodes in the

network contribute their disk space to store data for others,

each node can be space demander, provider or both. Data

are encrypted and cipher-texts are distributed to anonymous

nodes in the network so security is also strengthened by the

hiding of location. The location information is encrypted and

put to a blockchain maintained by all nodes as meta-data.

Such mechanism realizes a true decentralized storage: data

are managed and stored among all nodes securely, from whom

owners can access their data any time they want.

However, data-sharing becomes rather cumbersome under

such architecture for two reasons: first, traditional data-sharing

mechanisms are not applicable to this architecture; second,

sharing of encrypted data requires compatible key management

protocol for blockchain. Aimed at the two problems we pro-

pose Meta-key as a feasible key-management and data-sharing

mechanism compatible with blockchain-based decentralized

storage. Proxy re-encryption is introduced to realize cipher-

text transformation and restoration to solve the security issues

of key-sharing under untrustworthy environments. A security

Corresponding author: Yue Fu. This work was supported by Shenzhen
Key Lab Project (ZDSYS201703031405137) and the Shenzhen Municipal
Development and Reform Commission (Disciplinary Development Program
for Data Science and Intelligent Computing)

model is constructed to prove the collusion-free property of

Meta-key.

The contributions of this letter are summarized as the

following:

1) Meta-key. We propose a Meta-key mechanism, where

data decryption keys are stored in a blockchain as part

of the metadata and protected by user’s private key. This

efficiently realizes an easy and secure key-management

mechanism in a decentralized fashion.

2) Secure proxy re-encryption. We prove that Meta-key

is naturally free from collusion-attack under untrusted

environments, even if the adopted proxy re-encryption

scheme for secure data-sharing doesn’t hold this property.

The rest of the letter is organized as following. In section II,

some background and related work are introduced briefly. In

section III, details of Meta-key mechanism will be elaborated.

In section IV, security discussion and proof of our protocol will

be given. Finally, the conclusions will be drawn in section V.

II. BACKGROUND & RELATED WORK

Blockchain technology [1] can be directly applied to cloud-

storage architecture. Due to the large volume of the data, only

meta-data of them can be stored on-chain, protected by the

owner’s private key. When data are stored, data-owner chooses

a feasible location among the nodes and put his encrypted

data there, and the location information is put on-chain as

part of the meta-data. When the owner wants to read back his

data, he can retrieve the meta-data from the blockchain and

decrypt with his private key to reveal the data-location. Then,

he downloads the data from the corresponding nodes.

Nowadays, many blockchain-based cloud-storage systems

are coming to the fore, such as Storj [2], Enigma [3], Metadisk

[4]. Xunlei Network Corp. also encourages its users to share

their idle bandwidth & hard disk resources by Onethingcloud

(a small device linked to family routers) and reward them

with Linktoken1. As of this writing, Xunlei claimed that

over 1,500,000 nodes share 1500PB of storage for them

voluntarily2.

1https://www.onethingcloud.com/uk/site/index.html
2http://www.onethingtech.net/news/20180522.php

http://arxiv.org/abs/1710.07898v2

2

III. META-KEY MECHANISM

Data-sharing turns out to be a problem under blockchain-

based storage architecture. Existing data-sharing strategies

are based on centralized cloud-service providers. Data-owners

simply authorize the trusted service providers and let them

carry out the sharing process. However, in blockchain stor-

age where every node is untrustworthy, existing data-sharing

schemes can not be applied directly. We need a secure data-

sharing scheme that can work under blockchain-based storage

architecture.

Furthermore, if data are shared in their encrypted form,

owners must provide their decryption key to others, which

either undermines the security of the owner’s other data in an

untrusted environment or we need a better key-management

mechanism to encrypt each piece of data with a separate key.

In this section, we propose a series of policies as an attempt to

solve these problems. The definition of symbols used in this

letter is given in Table I.

TABLE I
SYMBOL DEFINITION

Symbol Definition

M Meta-data
C Original data-ciphertext
C’ Re-encrypted data-ciphertext
S Original encryption key kept by data-owner A

S’
Generated decryption key for recipient B

to decrypt re-encrypted ciphertext
R Proxy re-encryption key, generated from S and S’
N1 Location of original data-ciphertext
N2 Location of randomly picked data-sharing node

PRec Proxy Re-encryption
Gen Key generation
Dec Decryption

A. Blockchain as a metadata store

Blockchain is naturally a decentralized storage system

maintained by all nodes in the network, which leads to the

blockchain bloat problem: every node must store a copy of

every transaction in the blockchain so it will soon expand to

an unmanageable size when storing large data. As mentioned

before, to address this problem, some meta-data of the data

are extracted and stored in blocks on-chain rather than the

complete data themselves, which may include date, hashing

outputs, storage location, etc. The full data are stored into

dedicated storage nodes off-chain. Both data and meta-data

are encrypted by the data-owners [4].

Secure data-sharing of a general cloud storage system is

commonly performed in the following way. When any recip-

ient sends a sharing-request, the data-owner encrypts his data

and uploads the data cipher-text to cloud-storage. Then, he

applies that recipient’s public key to encrypt the decryption

key and sends the key cipher-text to the recipient through

some secure channels. The recipient decrypts the key cipher-

text with his private key to get the decryption key and then

download the data cipher-text to decrypt.

In the untrusted environment we have, the only secure

and reliable channel for decryption key transport will be the

blockchain, therefore in Meta-key we put the key cipher-text

also on-chain as a part of the meta-data, and use the blockchain

for both key-management and key-distribution, and thus comes

the name of our proposal. Since the meta-data on-chain are

protected by the owner’s private key, a secure data-sharing

now turns into the generation of a new record of meta-data on-

chain owned by the recipient for his copy of the shared data.

Fig.1 shows how Meta-key mechanism works compatibly with

blockchain-based cloud-storage architecture.

Block

chain

systemfile

encryption key

public key

User file
File

ciphertext

Cloud disk

system

encryption

Key

ciphertext

encryption

Fig. 1. Meta-key mechanism for blockchain-based cloud-storage architecture

In a blockchain-based cloud storage, the security of data is

both protected by encryption and the conceal of the location.

These locations are recorded into meta-data that can only be

read by data-owners, therefore we need to use new decryption

key and location for the shared data different from the original

copy and only known to the recipient to ensure the level of

security for both parties after the sharing. Since the data-to-

be-shared are very likely already encrypted and stored in the

cloud, asking the data-owner to download, decrypt, re-encrypt

(with a new decryption key) and upload again (to a different

location) is not only very inefficient, but also poses security

risks because the plain-text needs to be recovered during the

sharing process.

To tackle these issues, proxy re-encryption is chosen as the

foundation of key and cipher-text transformation mechanism.

It will be introduced in the following part.

B. Proxy re-encryption

Proxy re-encryption is a cipher transformation scenario

that is widely used in the context of data-sharing in cloud-

environment. It was first proposed by Blaze et al. in 1998

[5]. Without revealing any information about key or plain-

text, it allows a semi-trusted proxy to transfer Alice’s cipher-

text to Bob’s cipher-text with the same plain-text. “Semi

trusted” means the proxy will strictly execute the encryption

steps as the algorithm. Ateniese et al. formalized it into

strict definition and proposed a series of proxy re-encryption

schemes. Application in distributed storage systems are also

discussed. It is widely used in many fields such as mail filter

[6], distributed file system management [7] and intellectual

property protection [8].

As shown in Fig.2, in traditional cloud-service, it can be

applied in this way: suppose Alice and Bob are two users

of the same cloud-service provider. Alice uploads her data

encrypted by her public key Pa. Hence, the provider knows

nothing about the plain-text. When Alice requests to share her

data with Bob, she combines her private key and Bob’s public

3

Algorithm 1 Data-sharing in Meta-key

1: Dec(M) → S,N1;

2: Gen S’;

3: Gen(S,S’)→ R;

4: Alice send R → N1;

5: N1 PRec (C) → C’ with R;

6: N1 send C’ → N2;

7: Alice send S’ & N2 → Bob via blockchain;

8: Bob download C’ from N2, Dec(N2) with S’;

key Pb to generate a transformation key Rk and sends it to

the cloud-service provider. Acting as a proxy, the provider

operates the re-encryption with Rk. Hence, it’s easy for Bob

to download the re-encrypted cipher-text on-cloud and decrypt

it by his private key.

Fig. 2. Proxy re-encryption on-cloud.

C. Overall process of data-sharing

Our design follows the concept of proxy re-encryption

with some modification described below, because here in a

decentralized environment we can’t completely trust the proxy

who might collude with the recipient to attack on the data-

owner’s private key. We choose to avoid direct interact and

keep anonymity between the proxy and the recipient during

the whole process of data sharing. Furthermore, since in our

design different data are encrypted with different keys, we can

let Alice choose a random key for the shared data and don’t

need to bother asking Bob. The new key can be safely given

to Bob as part of the on-chain meta-data of Bob’s copy.

Therefore let N1 be the proxy and the data-owner be Alice

whose encryption key is S. Alice chooses a new S’ and picks

a new server N2 for the copy of Bob. She generates R from S

and S’, and put S’ and N2 on-chain encrypted by Bob’s public

key. R and N2 are sent to the proxy who re-encrypt the cipher-

text and store it to N2. Bob will get his copy from N2 using

the meta-data from the blockchain without knowing anything

about N1. The detailed data-sharing process is summarized

into Algorithm 1. The overall system framework is shown in

Fig.3.

IV. SECURITY ANALYSIS

In this section we will analyze the security of Meta-key. We

will prove that Meta-key is naturally free from collusion-attack

N !"

SS
1
p

2
p

1
p

2
p

S

S

S

Fig. 3. The final data-sharing process.

benefiting from its architecture, even if the specific proxy re-

encryption scenario does not have such property.

A. Security model of Meta-key

There are two layers of security in the context of this

architecture. The first layer is the indistinguishably of cipher-

text location, that is, attackers are not able to determine the

owner of a given cipher-text and therefore are not able to

distinguish his target cipher-text from others. The second layer

is that, even if an attacker can determine where his target

cipher-text is and succeed in stealing it, he is still not able to

read it without the decryption key. Clearly, layer 2 is general

so we will only discuss the security of layer 1 in details. We

will start by a series of definitions.

Definition 1. Cipher-text location security game.

1) Preparing process. A challenger C chooses a location l

from n possible nodes. He then hides his cipher-text C

into l.

2) Assume that there is an attacker A who is not able to

read the ciphertext. He guesses a location l′ for his target

cipher-text based on the information he owns.

3) If l = l′, we say A wins this game. The superiority of A

winning this game is further defined as Pro(l = l′)− 1

n
,

where Pro refers to the probability of an event.

With the concept of attacker’s superiority, the indistinguish-

ably of cipher-text location security can be defined as follow:

Definition 2. Cipher-text location secure (CLS). A strat-

egy is defined to be cipher-text location secure, if and only if

the superiority of any potential attacker A is ignorable.

In Meta-key, the delegator Alice requests N1, the node

where the original cipher-text C is stored, to re-encrypt C to

C’ as a proxy and to send C’ to N2, then the delegatee Bob

can read C’ from N2. Clearly, in this process the location of

N2 must be revealed to both Bob and N1 by Alice, therefore

neither C for N1 nor C’ for Bob and N1 is CLS. Then we

have the lemma:

Lemma 1. C for Bob and N2, C’ for N2 are both CLS.

Proof. It’s clear that both Bob and N2 has no information

about the location of C so they are CLS. For N2, even though

it knows C’ comes from N1, he doesn’t know it is actually

from Alice. Besides, C and C’ are indistinguishable to N2 if

it can not read the cipher-text. Hence, C’ is also CLS to N2.�

4

TABLE II
KNOWLEDGE OF NODES, INCLUDING LOCATION OF NODES

Node Information

Bob S’, N2

N1 R, C, C’, N2

N2 C’

B. The collusion attack

So far the CLS property of Meta-key is defined and dis-

cussed. The existing CLS of C and C’ for a single node is also

shown in Lemma 1. However, nodes may conspire trying to

gain more information of locations and identities. Furthermore,

in the context of proxy re-encryption, a collusion attack may

be constructed between malicious nodes: Alice’s decryption

key S can be calculated with the knowledge of R, C, C’ and

Bob’s decryption key S’. Hence, when the proxy who knows

R, C colludes with Bob who knows C’ and S’, S is at risk of

being revealed.

Definition 3. A pair of nodes is called motivated co-

conspirators, if and only if the benefit increased on superiority

is greater than the potential cost paid to reach a collusion,

where the potential cost refers to the level of difficulty to

reach each other out of anonymity.

With definition 3, we have the following theorem:

Theorem 1. For delegatee Bob, proxy N1, data-sharing

node N2, who may be malicious, they are not motivated co-

conspirators to each other in the context of CLS.

Proof. Consider the collusion between Bob+N2 and N1 +
N2. According to Lemma 1, both C and C’ are CLS to

N2 so N2 reveals no information to its conspirators. Hence,

combination of Bob+N2 and N1 +N2 are not motivated co-

conspirators.

For N1+Bob, they can reveal information of C and C’

to each other. However, N1 only known to Alice, whose

location is totally random to Bob, vice versa. Suppose it

makes no difference to request and verify the following two

questions: “Are you N1 holding C, chosen by Alice?”, “Are

you the delegatee Bob chosen by Alice?” The difficulty of

their collusion equals to an attacker of a CLS game with no

superiority. Hence, they are not motivated co-conspirators. �

Now let us discuss the collusion attack in the context of

proxy re-encryption. In Meta-key, the role of proxy is in fact

divided to N1 and N2. N1 re-encrypts C by R and sends C’

to N2 and Bob gets C’ from N2. Hence, N1 holds C,C’ and

R, whereas Bob holds S’. Besides, the location of N2 should

be revealed to N1 and Bob by Alice. The knowledge of nodes

are induced in Table II.

From Table II we can see, similar to theorem 1, Bob and

N1 are not motivated to conspire with N2: though location of

N2 is revealed to Bob and N1, N2 is able to provide neither

C for Bob, nor S’ for N1. Therefore, only collusion between

N1 and Bob should be discussed: N1 doesn’t know anything

about S’ held by Bob, nor does Bob know anything about C

held by N1. The collusion will not happen if these information

are not exchanged. Hence, the hardness for such collusion is

at least equals to the level of difficulty to reach each other out

of anonymity. We have the following theorem:

Theorem 2. Even if the proxy re-encryption strategy is

not collusion-free secure, the hardness for collusion between

proxy and delegatee is at least no less than a CLS game.

Proof. It is a natural deduction of theorem 1. �

All in all, if the brute-force solution for a CLS game deems

to be hard, we’ve proven that Meta-key is naturally free from

collusion attack, benefiting from its architecture.

C. Reliability of data

The availability and reliability of on-chain meta-data is

guaranteed by the blockchain. However, reliability of off-chain

data cipher-text may still be at risk. Though encrypted, they

may still be distorted or lost in untrusted N1s hence they must

be redundantly stored. In Metadisk [4] simple replications are

adopted, where copies of C′ are sent to several N1s. Hash

authentication is applied to ensure the completeness of C’.

When any replication is corrupted, the failed node requests

other surviving nodes for repairing.

Erasure codes can be further introduced to enhance the se-

curity and reliability of data cipher-text, where ciphers are re-

encoded, split into pieces and redundantly stored in various of

nodes. The encoded data-shares can still be transferred, proxy

re-encrypted and repaired as we’ve described in the Meta-

key model. We just need to recombine enough data-shares

collected from surviving nodes. However, detailed discussions

are beyond the scope of this letter.

V. CONCLUSION

In this letter, we proposed a Meta-key based approach for

secure data sharing in a decentralized storage system based on

blockchain. We focused on the collusion-free property of the

proposed cryptographic protocol and proved it strictly.

ACKNOWLEDGEMENT

Special thanks to Prof. Chunming Tang in Guangzhou

University, who generously provided constructive discussions

on proxy cryptography.

REFERENCES

[1] S.Nakamoto, “Bitcoin: A peer-to-peer electronic cash system”, Consulted,
2008.

[2] S.Wilkison et al., “Storj: A Peer-to-Peer Cloud Storage Network”,
https://storj.io/storj.pdf, 2016.

[3] G.Zyskind, O.Nathan, A. Pentland, “Enigma: Decentralized Computation
Platform with Guaranteed Privacy”, Computer Science, 2015.

[4] S.Wilkison, J.Lowry, “MetaDisk: Blockchain-Based Decentralized File
Storage Application”, http://metadisk.org/metadisk.pdf, 2014.

[5] M.Blaze, G.Bleumer, M.Strauss, “Divertible protocols and atomic proxy
cryptography”, Lecture Notes in Computer Science, 1403:127-144, 1998.

[6] G.Ateniese et al., “Improved proxy re-encryption schemes with applica-
tions to secure distributed storage”, Acm Transactions on Information &
System Security, 9(1):1-30, 2006.

[7] L.Ibraimi et al., “A type-and-identity-based proxy re-encryption scheme
and its application in healthcare”, SDMc 08, Heidelberg: Springer,
pp.185-198, 2008.

[8] G.Taban, A.A.Crdenas, V.D.Gligoret, “Towards a secure and interoperable
DRM architecture”, Proceedings of the ACM Workshop on Digital Rights
Management 2006. New York, USA:ACM, pp.69-78, 2006.

http://metadisk.org/metadisk.pdf

	I Introduction
	II Background & Related work
	III Meta-key mechanism
	III-A Blockchain as a metadata store
	III-B Proxy re-encryption
	III-C Overall process of data-sharing

	IV Security analysis
	IV-A Security model of Meta-key
	IV-B The collusion attack
	IV-C Reliability of data

	V Conclusion
	References

