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Abstract—In Time-Sensitive Networking (TSN), it is important
to formally prove per flow latency and backlog bounds. To this
end, recent works apply network calculus and obtain latency
bounds from service curves. The latency component of such
service curves is directly derived from upper bounds on the values
of the credit counters used by the Credit-Based Shaper (CBS),
an essential building-block of TSN. In this paper, we derive and
formally prove credit upper bounds for CBS, which improve on
existing bounds.

Index Terms—Time-Sensitive Networking (TSN); Audio-Video
Bridging (AVB); Credit-Based Shaper (CBS); credit bounds;

I. INTRODUCTION

Time-Sensitive Networking (TSN) is an IEEE 802.1 work-

ing group that defines networking mechanisms for supporting

real-time data flows with latency guarantees and zero packet

loss [1]. TSN targets applications in avionics, automotive,

industrial networks, etc., where data loss or latency violation

causes catastrophic damage. One of the main building-blocks

of TSN is the Credit-Based Shaper (CBS), which provides rate

allocation for a number of priority classes, called Audio-Video

Bridging (AVB) classes, using a credit mechanism (Section

II). In recent studies [2]–[4], latency and backlog bounds in

TSN are derived by using network calculus and service curve

characterizations of CBS [5]. The latency parameters of such

service curves is directly derived from credit upper bounds, i.e.

bounds on the values of the credit counters of CBS. Two sets

of results were published for credit upper bounds. The former,

by J. De Azua and M. Boyer, (“J-bounds”, [6]) applies only

to the case with two AVB classes and its proof is not fully

described. The latter set of bounds, by H. Daigmorte et al

(“H-bounds”, [3]), applies to any number of AVB classes and

is formally proven. For the top priority AVB class, J- and H-

bounds are identical. For the second priority class, J-bounds

are generally smaller than H-bounds, but not always. For third

and lower priority classes, only H-bounds are available.

In this paper, we derive and formally prove credit upper

bounds for CBS with any number of AVB classes, which

improve on both sets of existing bounds. Specifically, our

bound is the same as J- and H-bounds for the top priority

AVB class. For the second priority class, our bound is lower

than the H-bound and is lower than or equal to the J-bound,

depending on maximum packet lengths. For all other priority

classes, our bounds are lower than the only available bounds,

namely the H-bounds. Moreover, we formally show that our

credit bounds are tight for the two classes of highest priority,

which is the first tightness result presented in the literature. In

Section IV, we perform numerical evaluations and show that

the improvement in latency guarantees is significant.

II. SYSTEM MODEL & EXISTING CREDIT BOUNDS

We assume a TSN scheduler with the following elements:

1) A set of queues representing a set of classes including, in

decreasing priority, one Control-Data Traffic (CDT) class, p

AVB classes 1, 2, 3, ..., p, and a set of Best Effort (BE) classes;

2) A set of gates, one per queue, such that if a gate is closed,

the corresponding queue cannot transmit. A Gate-Control List

(GCL) contains the information of the opening/closing times

of gates. Moreover, there are several integration policies that

determine the preemption or non-preemption of CDT over the

rest of the classes [3]. The analysis in this paper is valid for

all integration policies; 3) A set of CBSs, one per AVB queue,

to control the allocated rate of each AVB class. The CBS of

an AVB class i has two parameters: the idle slope, Ii > 0, and

the send slope, Si < 0. Note that Ii − Si = c, where c is the

line transmission rate. The idle slope is interpreted as the rate

guaranteed to class i and therefore, the condition
∑p

i=1 Ii < c

is assumed to hold. Packets are scheduled according to the

following rules (we repeat here the description in [3]):

R1: If the transmission line is free, the scheduler transmits

a packet of the highest priority class that satisfies all the

conditions: 1) it has a positive backlog; 2) its gate is open;

3) it has a nonnegative credit if it is an AVB class.

R2: The credit of the AVB class i reduces linearly with rate

the send slope, Si, if i transmits.

R3: The credit of the AVB class i increases linearly with

rate Ii, when the following conditions hold simultaneously

for class i: 1) its gate is open; 2) it has a positive backlog;

and 3) other AVB or BE classes are transmitting.

R4: The credit of an AVB class remains constant, if the cor-

responding gate is closed, and during any additional overhead

in the case of preemption mode for CDT.

R5: When class i has a positive credit and its backlog becomes

zero, the credit is set to zero; this is the credit reset. If the credit

is negative and the backlog becomes zero, the credit increases

with rate Ii until the zero value.

Let Vi(t) denote the value of the credit counter for AVB class

i at time t ≥ 0. We assume that the system is idle at time 0 and

Vi(0) = 0. The function Vi() may take positive or negative

values and is continuous, except at credit reset times, which,

by R5, may occur only when the queue of class i becomes
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empty. At all other times it is linearly increasing, decreasing

or constant. The J-bounds in [6] apply to the case p = 2, as:

V1(t) ≤ L̄
I1

c
:= V

max,J
1 , (1)

V2(t) ≤
I2

c

(

LBE + L1 + L̄
I1

−S1

)

:= V
max,J
2 , (2)

where Li and LBE are maximum packet lengths of AVB class

i and BE, and L̄ = max(L2, LBE) The proof of Eq. (2) in

[6] is not completely formal (in contrast, we provide formal

proofs for our improved credit bounds).

The H-bounds in [3] apply to any value of p and give, for

i = 1, ..., p:

Li

Si

c
≤ Vi(t) ≤

L̄i

c

i
∑

j=1

Ij −
i−1
∑

j=1

Sj

Lj

c
:= V max,H

i , (3)

where L̄i = max(LBE , L>i), and L>i is the maximum packet

length of the classes having less priority than class i. These

bounds are formally proven in [3].

When p = 2 we can compare the J- and H-bounds. For class

1 the bounds are identical, i.e., V max,J
1 = V max,H

1 . For class 2,

whenever L2 < LBE , which is often but not always assumed,

we have V
max,J
2 < V

max,H
2 ; otherwise it may happen that

V
max,J
2 > V

max,H
2 for some values of the system parameters.

We use the following result, proven as Theorem 7 in [3];

for i = 1...p:
i
∑

j=1

Vj(t) ≤
L̄i

c

i
∑

j=1

Ij . (4)

III. IMPROVED UPPER BOUND ON THE CREDIT OF AN

ARBITRARY AVB CLASS

Theorem 1 (Improved Credit Bounds). The credit of an AVB

class i, Vi(t), is upper bounded, ∀t ≥ 0, by:

V max
i =

Ii

c(c−
∑i−1

j=1 Ij)

(

cL̄i −

i−1
∑

j=1

SjLj

)

. (5)

Proof. Consider a time t ≥ 0 and define time instant s =
sup{u ∈ [0, t] : Vi(u) = 0}. Based on the definition of s: First,

Vi(u) 6= 0, ∀u ∈ (s, t]. This implies no credit reset during

[s, t], i.e., Vi(·) is continuous during this interval. Second, CDT

either finishes a transmission at s or is not transmitting at s.

Indeed, otherwise, since Vi(s) = 0, and the credit of i is

frozen during the transmission of CDT, it would be true that

Vi(s
+) = 0 and thus, s 6= sup{u ∈ [0, t] : Vi(u) = 0}.

If Vi(t) = 0, then s = t and the result is straightforward.

Since Vi() is continuous in [s, t], and Vi(u) 6= 0, ∀u ∈ (s, t],
then, either ∀u ∈ (s, t] : Vi(u) > 0 or ∀u ∈ (s, t] : Vi(u) < 0.

If Vi(t) < 0, then ∀u ∈ (s, t] : Vi(u) < 0 and the theorem

is straightforward to show. As a result, the rest of the proof

focuses on the case Vi(t) > 0, i.e., ∀u ∈ (s, t] : Vi(u) > 0.

The class i cannot start a transmission at time s, otherwise, by

rule R2 since Vi(s) = 0, its credit would decrease to negative

values, which contradicts our assumption that ∀u ∈ (s, t] :
Vi(u) > 0. Note that since the credit of class i is positive in

(s, t], its backlog is also positive in (s, t].

Since ∀u ∈ (s, t] : Vi(u) > 0 and due to rule R1, a class

with lower priority than i cannot start a transmission in (s, t].
However, in order to consider non-preemptive AVB and BE

classes, we should account for the case that a lower priority

class has initiated a transmission the latest on s and is still

transmitting at s. To do so, we define the time instant t0, with

s ≤ t0, as the end of the transmission of the residual of a lower

priority packet after time s. The latter is denoted by lLO ≤ L̄i.

If there is no transmission of a lower priority packet, then

lLO = 0. If CDT is preemptive then the transmission of

lLO may be interrupted and re-continued. Let dL0 be the

aggregated time period that the credit is frozen within [s, t0].

Then, t0 = s+ dL0 + lLO

c
and we assume t0 ≤ t.

The interval [t0, t] can be split into a sequence

of sub-intervals during which class i alternates

between non-transmission and transmission. Let

[t0, t1], [t1, t2], ..., [tn−1, tn] be such a sequence, with

t0 ≤ t1 < ... < tn = t. We allow t0 = t1 as this makes

it possible to assume that class i does not transmit in the

first interval [t0, t1] (i.e., if class i starts transmission at time

t0 we set t1 = t0). It follows that for the even intervals

[tk, tk+1], with k ∈ {0, 2, 4, ..., 2⌊n2 ⌋}, we have d
dt
Vi(u) ≥ 0,

∀u ∈ (tk, tk+1). Indeed, during non transmission, the

credit either increases or remains constant, by rules R3

and R4. Conversely, for the odd intervals [tk, tk+1],
with k ∈ {1, 3, 5, ..., 2⌈n2 ⌉ − 1}, we have d

dt
Vi(u) < 0,

∀u ∈ (tk, tk+1).
Let us define as dk the aggregated time period that the credit

is frozen within the even interval [tk, tk+1]. Next, we study the

credit variation for all classes, starting with the interval [s, t0],
then following with even and odd intervals in (t0, t]. In [s, t0]:

• Each class j < i gains credit if it has backlog or negative

credit (rule R3), except if CDT transmits, i.e.,

Vj(t0)− Vj(s) ≤ Ij(t0 − s). (6)

By summing up for all j < i, we have:

i−1
∑

j=1

(

Vj(t0)− Vj(s)
)

≤

i−1
∑

j=1

Ij(t0 − s). (7)

• Class i gains credit because it has backlog as explained

above, except if CDT transmits

Vi(t0)− Vi(s) = Ii(t0 − s)− Iid
LO, (8)

and since Vi(s) = 0 and t0 = s+ dLO + lLO

c
, we get:

Vi(t0) = Ii(t0 − s− dLO) ≤ Ii
lLO

c
≤ Ii

L̄i

c
. (9)

For the odd intervals, [t2k−1, t2k], (1 ≤ k ≤ ⌊n2 ⌋), we have:

• Since the credit of class i reduces, the higher priority

classes do not transmit within [t2k−1, t2k] and ∀j < i :
Vj(t2k−1) ≤ 0. They gain credit if they have positive

backlog or negative credit, i.e.,

Vj(t2k)− Vj(t2k−1) ≤ Ij(t2k − t2k−1). (10)



Summing them up for all j < i:

i−1
∑

j=1

(

Vj(t2k)− Vj(t2k−1)
)

≤

i−1
∑

j=1

Ij(t2k − t2k−1).

(11)

• The credit of class i reduces due to transmission (R2):

Vi(t2k)− Vi(t2k−1) = Si(t2k − t2k−1). (12)

In even intervals [t2k, t2k+1], (0 ≤ k ≤ ⌊n−1
2 ⌋), we have:

• There should exist an AVB class j < i that transmits or

all AVB and BE classes wait for CDT (for an aggregated

time d2k). Define aj,2k as the aggregated period of time

that class j transmits packets in [t2k, t2k+1]. Then, by

using that Ij − Sj = c, we obtain,

Vj(t2k+1)− Vj(t2k) ≤ Ij(t2k+1 − t2k)− caj,2k − Ijd2k.

(13)

Summing up for all j < i, and considering that t2k+1 −
t2k = d2k +

∑i−1
j=1 aj,2k, we obtain,

i−1
∑

j=1

(

Vj(t2k+1)− Vj(t2k)
)

≤ −
(

c−

i−1
∑

j=1

Ij

)

(t2k+1 − t2k) + (c−

i−1
∑

j=1

Ij)d2k.

(14)

• The credit of class i increases or is frozen for an

aggregated time d2k, i.e.,

Vi(t2k+1)− Vi(t2k) = Ii(t2k+1 − t2k)− Iid2k. (15)

Next, we study the credit variation within [t0, tn]. First we

assume that n is odd. By summing up the credit variations for

all intervals and all classes j < i, we have:

i−1
∑

j=1

[

(

Vj(t1)− Vj(t0)
)

+
(

Vj(t2)− Vj(t1)
)

+ ...

+
(

Vj(tn−1)− Vj(tn−2)
)

+
(

Vj(tn)− Vj(tn−1)
)

]

≤−
(

c−
i−1
∑

j=1

Ij

)

(t1 − t0) + ...+
i−1
∑

j=1

Ij(tn−1 − tn−2)

−
(

c−

i−1
∑

j=1

Ij

)

(tn − tn−1) +
(

c−

i−1
∑

j=1

Ij

)

k=⌊n
2
⌋

∑

k=0

d2k.

(16)

Therefore, by setting α = (t2 − t1)+ (t4− t3)+ ...+(tn−1−

tn−2) and ∆t = tn − t0 −
∑k=⌊n

2
⌋

k=0 d2k, we can write,

i−1
∑

j=1

(

Vj(tn)− Vj(t0)
)

≤ −(c−

i−1
∑

j=1

Ij)∆t+ cα. (17)

Next, by summing up the credit variations for all intervals for

class i and considering Si = Ii − c,

Vi(tn)− Vi(t0) = Ii(t1 − t0) + (Ii − c)(t2 − t1) + ...

+ (Ii − c)(tn−1 − tn−2) + Ii(tn − tn−1)− Ii

k=⌊n
2
⌋

∑

k=0

d2k

= Ii∆t− cα. (18)

By Eq. (4), we obtain

i−1
∑

j=1

Vj(t0) ≤ −Vi(t0) +
L̄i

c
Ii +

L̄i

c

i−1
∑

j=1

Ij . (19)

We lower bound the left hand-side of Eq. (17) using the lower

bound of Eq. (3) and the bound of Eq. (19); therefore,

Vi(t0)−K ≤ cα− (c−

i−1
∑

j=1

Ij)∆t, (20)

where K = −
∑i−1

j=1 Lj
Sj

c
+

¯
Li

c
Ii +

¯
Li

c

∑i−1
j=1 Ij ≥ 0.

Eq. (20) gives an upper bound on ∆t, i.e.,

∆t ≤
cα+K − Vi(t0)

c−
∑i−1

j=1 Ij
. (21)

By using Eq. (21) in Eq. (18), we obtain:

Vi(tn) ≤ Ii

(

cα+K − Vi(t0)

c−
∑i−1

j=1 Ij

)

− cα+ Vi(t0)

= Ii

(

K

c−
∑i−1

j=1 Ij

)

+ Vi(t0)

(

c−
∑i−1

j=1 Ij − Ii

c−
∑i−1

j=1 Ij

)

− cα

(

c−
∑i−1

j=1 Ij − Ii

c−
∑i−1

j=1 Ij

)

. (22)

Next, considering
∑i

j=1 Ij < c, and since by Eq. (9) Vi(t0) ≤
¯
Li

c
Ii, we obtain:

Vi(tn) ≤
Ii

c
(

c−
∑i−1

j=1 Ij

)

(

cK + L̄i

(

c−
i−1
∑

j=1

Ij − Ii

)

)

.

(23)

By replacing the value of K , the credit of class i at time

tn, where n is odd, is upper bounded by V max
i given in the

statement. If n is even, then:

Vi(tn) = Vi(tn−1) + Si(tn − tn−1). (24)

Since Si(tn− tn−1) ≤ 0, it is true that Vi(tn) ≤ Vi(tn−1). As

n is even, n−1 is odd. We have already found a bound for tk
when k is odd, which is V max

i . Since t = tn, and n is either

odd or even, then Vi(t) ≤ V max
i , ∀t ≥ 0 and this completes

the proof.

Proposition 1. The credit bound, V max
i , given in (5) is tight

for the two highest priority classes, i.e., for each set of

parameter values and each class 1,2, there is a scenario for

which the credit counter attains the bound.



Proof. The credit of class 1 achieves the value V max
1 in the

following scenario. Assume that all queues have zero backlog.

Just before the backlog of class 1 becomes positive, there is

an arrival of a lower priority class packet with length L̄1. This

packet starts being transmitted according to R1 (assuming the

gate is open for it). It takes
¯
L1

c
to transmit the lower priority

packet. During the transmission, since class 1 has positive

backlog it gains credit according to the rule R3. At the end

of the transmission, the credit of class 1 becomes I1
¯
L1

c
i.e.,

equal to V max
1 (Eq. (5)).

The tightness scenario for class 2 is as follows. Assume

that all queues for all classes have zero backlog. Just before

the backlog of class 2 becomes positive, there is an arrival

of a lower priority class packet with length L̄2. This packet

starts being transmitted (rule R1) since at this moment there

is no packet of class 1, 2 and the gate is open. Just after the

transmission, the backlog of class 1 becomes also positive.

Due to positive backlog, the classes 1,2 gain credit according

to the rule R3. At the end of transmission of the lower priority

packet, the credit values of classes 1 and 2 are I1
¯
L2

c
and

I2
¯
L2

c
, respectively. Then, class 1 starts transmission for a time

interval I1
−S1

¯
L2

c
until its credit becomes zero. During the latter

transmission, class 2 gains credit of I2
I1

−S1

¯
L2

c
. When the credit

value of class 1 is zero, it transmits a packet with maximum

length L1 for a time interval L1

c
, during which class 2 gains

credit equal to I2
L1

c
. The total credit gained by class 2 is

I2
¯
L2

c
+ I2

I1
−S1

¯
L2

c
+ I2

L1

c
= I2

c(c−I1)
(cL̄2 − S1L1), which is

equal to Eq. (5).

We now formally compare V max
i with the existing J- and

H-bounds and show that our bounds improve on all existing

bounds.

Proposition 2. 1) V max
1 = V

max,J
1 = V

max,H
1 .

2) V max
2 ≤ V

max,J
2 and the inequality is strict if L2 >

LBE .

3) For j = 2, ...p, V max
j < V

max,H
j .

Proof. 1) is straightforward. For 2), observe that V max
2 can

be obtained by replacing L̄ with LBE in V
max,J
2 . For 3), after

some algebra we find:

V
max,H
i − V max

i =
c−

∑i

j=1 Ij

c
(

c−
∑i−1

j=1 Ij

)

(

L̄i

i−1
∑

j=1

Ij −

i−1
∑

j=1

SjLj

)

.

(25)

By hypothesis, c >
∑i

j=1 Ij . Since Ij > 0, Sj < 0 and

i ≥ 2, it follows that L̄i

∑i−1
j=1 Ij −

∑i−1
j=1 SjL

j > 0, thus the

last term of Eq. (25) is strictly positive.

IV. NUMERICAL EVALUATION

Consider a TSN scheduler with one CDT, three AVB and

one BE classes, that is connected to a link with line rate c =
100 Mbps. Assume I1, I2, and I3 are 50%, 15%, and 10%
of the link rate, and for any AVB class i, Si = Ii − c. Also,

L1 = 0.2KB, L2 = 1.5KB, and L3 = 0.5KB; LBE = 1KB.

TABLE I: Credit upper bounds of three AVB classes obtained

by [6] (V
max,J
i ), [3] (V

max,H
i ), and Theorem 1 (V max

i ).

i = 1 i = 2 i = 3

V max

i (Kb) 6 2.64 5.43

V
max,J

i
(Kb) 6 3.24 -

V
max,H

i
(Kb) 6 6 17

The CDT is is constrained by an affine arrival curve a(t) =
rt+ b [5] with parameters r = 12.8Kbps and b = 1.6Kb.

The credit upper bounds for the three AVB classes computed

by J-bounds (1), H-bounds (3), and Theorem 1 are shown

in Table I. As we know, the bounds coincide for class 1. In

contrast, for class 2, our new credit bound is less than the J-

bound by 18.5%1 and than the H-bound by 56%. For class 3

the bound by Theorem 1 is less than the H-bound by 68.1%,

while the J-bound does not exist for class 3.

As discussed, the credit upper bound has an impact on

the latency bound of a FIFO system and subsequently of the

end-to-end latency, as shown in [2]. This can be seen by the

improvement in the latency term of the service curves provided

to the AVB classes, analyzed below. According to Eq. (22) of

[7] (that is the companion paper of [2]), a service curve for

the AVB class i is:

βi(t) =
(c− r)Ii
Ii − Si

[

t−
cVM

i

(c− r)Ii
+

b+ rLN

c

c− r

]+

, (26)

where V M
i is a credit bound for class i and LN is the maximum

packet length of all classes except CDT. For class 2, the service

curve latency in microseconds is 192.02, 232.02 and 416.05 if

computed with V max
2 , V

max,J
2 and V

max,H
2 , respectively. Thus,

Theorem 1 improves the service curve latency of class 2 by

17% compared with [6] and by 53.8% compared with [3]. For

class 3, the service curve latency in microseconds is 558.93
and 1716.22 if computed with V max

3 and V
max,H
3 , respectively.

Thus, Theorem 1 improves the service curve latency of class

3 by 67.4% compared with [3].
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