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Abstract—Network calculus is often used to prove delay bounds
in deterministic networks, using arrival and service curves.
We consider a FIFO system that offers a rate-latency service
curve and where packet transmission occurs at line rate without
pre-emption. The existing network calculus delay bounds take
advantage of the service curve guarantee but not of the fact that
transmission occurs at full line rate. In this letter, we provide
a novel, improved delay bound which takes advantage of these
two features. Contrary to existing bounds, ours is per-packet and
depends on the packet length. We prove that it is tight.

I. INTRODUCTION

In the context of deterministic networking [1] or time-
sensitive networking [2], delays at network elements have to
be bounded in the worst case, not in average. Computing
and formally verifying delay bounds is often done by using
network calculus [3, Section 1.4]. For a FIFO network element,
this involves two steps. First, an arrival curve, say α, is
formulated for the aggregated input traffic. Specifically, α(t)
is an upper bound on the number of bits that may be submitted
by the traffic of interest into the network element within any
t time units. The function α depends on the knowledge of
the applications that generates the traffic and on the speed at
which data can arrive the network element. Second, the details
of the inner workings of the network element are abstracted by
using a service curve, say β (also called “minimum” service
curve). This service curve is typically a rate-latency function,
i.e., of the type β(t) = max(0, R(t− T )), where R (the rate)
and T (the latency) are fixed parameters that are specific to the
network element and to the traffic class. An exact definition
of service curve can be found in [3, Section 1.3], [4, Section
2.3], and is recalled in Section III, Eq. (10). Roughly speaking,
such a rate-latency service curve means that the input traffic is
guaranteed to receive a service rate at least equal to R, except
for possible service interruptions that may impact the delay
by at most T units of time.

Then, a delay bound given by network calculus is the
horizontal deviation between the arrival and service curves
[3, Section 3.1.11], which in this case is

∆ = T + sup
t≥0

{
α(t)

R
− t
}
. (1)

(In the above formula, ∆ is finite if the supremum is finite,
otherwise ∆ is infinite). This methodology has been success-
fully applied to many network elements involving a variety
of schedulers such as priority schedulers [5, Chapter 7], all
schedulers that fall in the class of guaranteed rate scheduling

[6], [3, Section 2.1] (including the widespread deficit round
robin scheduler [5, Chapter 8]), and more recently Audio-
Video Bridging [7] and the Credit Based Shaper [8]–[10].

The bound in Eq. (1) is tight if the only information
available is the arrival curve α and the service curve β.
However, in all of the examples we just mentioned, there is
an additional information that is not taken into account by Eq.
(1) Specifically, packet transmission occurs at the physical line
rate c, which is often much larger than the rate R guaranteed
by the rate-latency service curve. For example, with a Deficit
Round Robin (DRR) scheduler that handles n classes of traffic
of equal importance, for every class the rate R is equal to c/n.
Using both the information of the rate-latency service curve,
β, and of the constant transmission rate, c, to compute a delay
bound is not straightforward. This was not done before, and
is the contribution of this paper.

In this paper, we exploit the information on the transmission
rate to provide a bound on the delay at a FIFO system that
improves on the network calculus bound in (1). Specifically,
the bound is per-packet and depends on the packet length.
We reached this improved bound by combining the min-plus
representation of service curve and max-plus representation of
arrival curve [11]. We show that the bound is tight, at least
when the arrival curve is concave.

II. SYSTEM MODEL

We consider a FIFO system with a queue and a transmission
subsystem, as in Fig. 1. Upon arrival, packets enter the queue
and are stored in FIFO order. A scheduler decides when the
packet at the head of the queue is selected for transmission.
The scheduler typically arbitrates between this queue and other
queues (not shown), therefore the packet at the head of the
queue have to wait even if there is no packet of this queue
in transmission. When the packet at the head of this queue
is selected for transmission, it is transmitted at a constant
rate c until it is completely transmitted, i.e., there is no pre-
emption. Let An be the arrival time of the packet n, where the
numbering of packets is by order of arrivals, and let Qn be the
time at which packet n is selected for transmission. The FIFO
assumption means that Qn ≤ Qn+1. Let ln be the length of
packet n and Lmax the maximum packet length. The packet
n leaves the system at time Dn = Qn+ ln

c . We call Dn−An
the “response time” of packet n.

Furthermore, we assume that the scheduler is such that the
complete system offers to the total flow of all incoming packets
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Fig. 1: Model of the considered FIFO system.

a service curve β(t) = max(0, R(t−T )) with R ≤ c. In many
cases, the rate R is much less than c; this occurs for example
when the transmission capacity c is shared between this FIFO
system and other subsystems dedicated to other classes of
traffic, as in [9].

We also assume that the total flow of all incoming packets
is packetized, i.e., we consider that all bits of packet n arrive
at the same time instant An. Furthermore, we assume that the
total flow of all incoming packets is constrained by an arrival
curve α.

III. IMPROVED DELAY BOUND

In this section, we derive a delay bound for a general FIFO
system as described in Section II.

Theorem 1. (Upper bound on the response time at a FIFO
system) Consider a FIFO system as in Section II, i.e., one
that offers a rate-latency service curve with parameters (R,T ),
and where, as soon as a packet starts to be transmitted, it is
transmitted at a constant rate c ≥ R. Assume that the total
input is packetized and has an arrival curve α. For a packet
of length l, the response time is upper bounded by:

∆l = ∆− l
(

1

R
− 1

c

)
, (2)

where ∆ is the network calculus bound, given in Eq. (1).

Proof. We use the notation in Section II and call lk the length
of the kth packet with k = 1, 2.... Now, let n be the index
of the packet of interest, which has length l, i.e., ln = l. By
Lemma 1 there exists an m ≤ n such that:

β(Qn −Am) ≤
n−1∑
k=m

lk, (3)

where β(t) = max(0, R(t − T )) is the rate-latency service
curve. Let β↑ be the upper pseudo-inverse of β, defined by
β↑(t) = sup{s ≥ 0|β(s) ≤ t} = inf{s ≥ 0|β(s) > t}. By
[12, Section 10.1], for a wide-sense increasing function F (.),
F (x) ≤ y ⇒ x ≤ F ↑(y). Then, from Eq. (3), Qn − Am ≤
β↑
(∑n−1

k=m lk

)
. Therefore, Qn satisfies,

Qn ≤ max
m≤n

{
Am + β↑

( n−1∑
k=m

lk

)}
. (4)

The input traffic has an arrival curve α, thus by the max-plus
representation of arrival curves in [11, Theorem 1]:

n∑
k=m

lk ≤ α+(An −Am), (5)

where α+ is the right-limit of α. By excluding the packet of
interest from the summation in Eq. (5), we obtain:

n−1∑
k=m

lk ≤ α+(An −Am)− l. (6)

By using Eq. (6) in Eq. (4), we have,

Qn ≤ max
m≤n

{
Am + β↑

(
α+(An −Am)− l

)}
. (7)

By defining t := An −Am ≥ 0, we further obtain,

Qn −An ≤ sup
t≥0

{
− t+ β↑

(
α+(t)− l

)}
. (8)

Note that β↑(x) = x
R + T , therefore

Qn −An ≤ sup
t≥0

{
− t+

α+(t)− l
R

+ T

}

= T − l

R
+

1

R
sup
t≥0

{
α+(t)−Rt

}
. (9)

By applying Lemma 2 in Eq. (9), we have:

Qn −An ≤ T −
l

R
+

1

R
sup
t≥0

{
α(t)−Rt

}
= ∆− l

R
,

where ∆ is the network calculus bound, given in (1). Now
observe that Dn = Qn + l

c , which concludes the proof.

Lemma 1. If a FIFO system has (i) β as a service curve,
and (ii) packetized input, then for every packet n, there exists
a packet index m ≤ n such that, β(Qn − Am) ≤

∑n−1
k=m lk,

where lk is the length of the kth packet.

Proof. The network calculus framework uses cumulative func-
tions I(t) and O(t), where I(t) is the number of bits that have
arrived up to (excluding) time t and O(t) is the number of bits
that have been served up to (excluding) time t. Then [3], [4]
the system is said to offer the flow a service curve β if for
any t ≥ 0, there exists an s ∈ [0, t] such that

O(t) ≥ I(s) + β(t− s). (10)

Let n be some packet index. We have O(Qn) =
∑n−1
i=1 li,

since Qn is the time at which packet n starts being transmitted
and, by the FIFO property, all packets before n have been
served by that time.

Now apply (10) with t = Qn. For the resulting s, let m
be the smallest packet index such that, s ≤ Am and thus
I(s) =

∑m−1
i=1 li, with the convention that an empty sum is

equal to 0 (which occurs when m = 1). Note that, at this
point, we do not know if n ≤ m or if n > m (we know that



s ≤ Qn, but, this does not imply that m ≤ n, for example it is
quite possible that An+1 < Qn since packets may wait in the
queue). But, in any case, since s ≤ Am and β is wide-sense
increasing:

β(Qn − s) ≥ β(Qn −Am). (11)

By using (11) and the expressions of O(Qn) and I(s) in
10, we obtain:

n−1∑
i=1

li ≥
m−1∑
i=1

li + β(Qn −Am). (12)

If m > n, we obtain β(Qn − Am) < 0, which is a
contradiction; therefore, m ≤ n.

Lemma 2. If f(.) is a wide-sense increasing function and
f+(.) is its right-limit, then for any R > 0:

sup
t≥0

(
f+(t)−Rt

)
= sup

t≥0

(
f(t)−Rt

)
. (13)

Proof. Let K = supt≥0

(
f(t) − Rt

)
and K ′ =

supt≥0

(
f+(t) − Rt

)
. We want to prove that K = K ′. To

do so, first we show that K ≤ K ′; and second that K ≥ K ′.
K ≤ K ′: The function f is wide-sense increasing; therefore

for any t ≥ 0, we have:

f(t) ≤ f+(t) =⇒ f(t)−Rt ≤ f+(t)−Rt. (14)

Using (14), it is trivially shown that K ≤ K ′.
K ≥ K ′: The function f is wide-sense increasing; therefore

for any t ≥ 0 and ε > 0, we have f+(t) ≤ f(t+ ε); thus:

f+(t)−Rt ≤ f(t+ ε)−Rt
= f(t+ ε)−R(t+ ε) +Rε

≤ sup
u≥0

(
f(u)−R(u)

)
+Rε = K +Rε, (15)

i.e., K +Rε is an upper bound on f+(t)−Rt. By definition,
K ′ is the lowest such upper bound. Thus K ′ ≤ K+Rε. This
holds for any ε > 0, thus K ′ ≤ K.

Remark. If the input in the FIFO system consists of multiple
flows, then the arrival curve, α(t), is an envelope for the
aggregate of the flows. If the flows have different minimum
packet lengths, then Theorem 1 provides a distinct delay bound
for every flow, ∆Lf

min
, where Lfmin is the minimum packet

length of flow f .
Case Studies: Hereafter we provide two examples that

illustrate the improvement of Theorem 1 over the network
calculus delay bound.

In the first example, we compute delay bounds for two
Audio-Video Bridging (AVB) classes in a TSN scheduler [8],
[9]. We consider the traffic specification in [10]. Also, the
idle slopes of the TSN scheduler for classes A and B are set
the same as [10] and are respectively equal to 60% and 15%
of the link rate. In addition, we use the rate-latency service
curves of Theorem 1 in [8]. For a link rate c = 1 Gbps, we
find that the delay bound improvement for a packet of class A

with length 1.499 KB is 8µs per hop. Also, the improvement
for a packet of class B with length 1.438 KB is 66 µs per
hop. When the link rate is 100Mbps, the improvement for the
packet of class A is 98 µs and for the packet of class B is 736
µs per hop. For both link rates the delay bound of Theorem 1
improves the network calculus bound for classes A and B by
around 2% and 10%, respectively. The improvement is small
but non-negligible.

In the second example, we consider a node with per-flow
queuing and DRR arbitration policy, where n flows share a
link with rate c. We assume that all flows have the same
maximum packet length L and the same quantum value,
Q = L. Therefore, the rate-latency service curve parameters
for all flows are the same given by (Section 9.2.3 of [5]):

R =
Q∑n
j=1Q

c =
c

n
, (16)

T =

∑n
j=1,j 6=i(L+Q)

c
+ L

( 1

R
− 1

c

)
=

3L

c
(n− 1).

Assume that the maximum burstiness of each flow is limited
by its maximum packet length, i.e., L. Then, the network
calculus bound is ∆ = (4n−3)L

c and the improvement in
the delay bound for a packet with length L is (n−1)L

c ,
approximately 25%, which is significant.

IV. TIGHTNESS OF THE IMPROVED DELAY BOUND

In this section, we prove that Theorem 1 is tight for a
concave arrival curve α. Observe that, since the input is
packetized, α+(0) is an upper bound on the length of any
packet (where α+ is the right-limit of α). Therefore, we need
to assume that α+(0) ≥ Lmax, where Lmax is the maximum
packet length. Also, the bound in Theorem 1 is of interest only
when the network calculus bound is finite.

Theorem 2. If the network calculus bound in Eq. (1) is finite,
and the arrival curve α is concave such that α+(0) ≥ Lmax,
the bound of Theorem 1 is tight.

Specifically, consider: a rate R, a latency T , a maximum
packet length Lmax, a concave arrival curve α such that
α+(0) ≥ Lmax and the bound in Eq. (1) is finite, a transmis-
sion rate c ≥ R, and a packet length l ≤ Lmax. There exists
a FIFO system where the input is packetized and has arrival
curve α, which offers a rate-latency service curve guarantee
with rate R and latency T , and in which there is an execution
trace where a packet of length l has a delay equal to (2).

Proof. Step 1. We construct a simulation trace.
(a) For the input, we first determine a time instant t′ that

achieves the network calculus bound ∆ in (1). Since the arrival
curve α is concave, it is continuous, except perhaps at t = 0.
Therefore, there are two cases for ∆: either ∆ = T+ α(t′)

R −t
′

for some t′ > 0 or ∆ = T + α+(0)
R . In the first case, due to

continuity at t′, α+(t′) = α(t′); in both cases there is some
t′ such that:

∆ = T +
α+(t′)

R
− t′. (17)



Fig. 2: The execution trace used in the proof of Theorem 2.
The delay bound of the packet with length l that arrives at
time t′ is ∆l.

Then we construct the function Ĩ(t) = min(α(t), α+(t′)),
which represents a fluid input that has α as arrival curve and
delivers α+(t′) bits in total (the gray line in Fig. 2).

(b) Since the system should have packetized input, we
transform Ĩ(t) into a train of packets. We determine the packet
length sequence {li}ni=1 by the conditions:

∑n
i=1 li = α+(t′)

and ln = l. This gives:

n =

⌈
α+(t′)− l
Lmax

⌉
+ 1, (18)

li = Lmax, i = 1 . . . (n− 2), (19)

ln−1 = α+(t′)− (n− 2)Lmax − l, ln = l. (20)

Then we apply the packetizer function PL and obtain I(t) =
PL(Ĩ(t)). The packetizer function PL (Definition 1.7.3, [3])
is defined by PL(x) := supj∈N{L(j)1L(j)≤x} with L(j) :=∑j
i=1 li. It transforms the bit stream Ĩ(t) (gray line in Fig. 2)

into entire packets I(t) (green staircase line in Fig. 2). Note
that the packet of interest, i.e., packet n, arrives at time t′.

(c) For the output, we first construct the fluid output curve
F (t) (orange dotted-line in Fig. 2) given by

F (t) = inf
0≤s≤t

{I(s) + β(t− s)} , (21)

with β(t) = max(0, R(t−T )), so that the service curve prop-
erty in (10) would be automatically satisfied if we would let
O(t) = F (t). However, we cannot take O(t) = F (t) because
F (t) does not satisfy the condition that packet transmission
is at rate c. In order to obtain the output function O(t), we
first observe that under the fluid output F (t), packet i starts
transmission at Qi = T +

∑i−1
i=1 lj
R and finishes at Qi + li

R . For
the output function O(t), we keep the same time Qi for the
start of transmission of packet i, but, we let the transmission
finish at time Di = Qi + li

c (O(t) is the red line in Fig. 2).
Obviously, O(t) ≥ F (t) for all t ≥ 0, therefore, the service
curve property is also satisfied when the output is O(t).

Step 2. We verify that all requirements in the theorem are
satisfied. We have already shown the service curve property.
Furthermore, by construction the system is FIFO, the input is
packetized and packet transmission occurs at rate c.

We also need to show that the input I(t) has α as arrival
curve. Observe here that this is true by construction for the

fluid input Ĩ(t), but is less obvious for I(t) since we applied
the packetizer. This is where we need the assumption that the
arrival curve α(t) is concave. We use Section 1.7.3 of [3].
Define the step function U by U(t) = α+(t′) for all t > 0,
and U(0) = 0. Then we have Ĩ(t) = Cα

(
PL (U (t))

)
, where

Cα is the shaper with shaping curve α. By definition, we have
I(t) = PL(Ĩ(t)) = PL

(
Cα
(
PL (U (t))

))
. Thus, by Theorem

1.7.2 in [3], I(t) has α as arrival curve.
Last, we show that packet n achieves the delay bound. We

have Qn = T+
∑n−1

i=1 lj
R = T+ α+(t′)−l

R . Furthermore, An = t′

and Dn = Qn + l
c , therefore,

Dn −An = T +
α+(t′)− l

R
+
l

c
− t′ = ∆− l

R
+
l

c
. (22)

V. CONCLUSION

We considered a network element that offers a rate-latency
service curve and has a known transmission rate larger than
the rate guaranteed by the service curve. We have obtained a
delay bound that uses both the information of the rate-latency
service curve and the constant transmission rate. It improves
on the existing network calculus bound by an amount that
depends on the length of the packet being transmitted. The
improvement is larger for larger packet lengths.
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