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Abstract—A multi-agent deep reinforcement learning frame-
work is proposed to address link level throughput maximization
by power allocation and modulation and coding scheme (MCS)
selection. Given the complex problem space, reward shaping is
utilized instead of classical training procedures. The time-frame
utilities are decomposed into subframe rewards, and a stepwise
training procedure is proposed, starting from a simplified power
allocation setup without MCS selection, incorporating MCS
selection gradually, as the agents learn optimal power allocation.
The proposed method outperforms both weighted minimum
mean squared error (WMMSE) and Fractional Programming
(FP) with idealized MCS selections.

Index Terms—Resource Allocation, Link-level Throughput,
Reinforcement Learning, DDPG.

I. INTRODUCTION

HE problem of resource allocation in cellular networks

has been extensively investigated and different algorithms

have been proposed for different objectives; e.g. for power
allocation [1] and spectrum access [2]. In the context of
densely deployed intelligent wireless networks, most of the
research has focused on power allocation [3], and differ-
ent model-based optimization algorithms, such as weighted
minimum mean squared error (WMMSE) [1] and fractional
programming (FP) [4], have been proposed. However, these
methods generally rely on perfect channel state information
(CSI) of the whole network, which is a strong and impractical
assumption; futhermore, delayed or partial CSI is shown to
deteriorate their performance. Another approach is to use
machine learning algorithms, such as deep reinforcement
learning, which has seen a surging interest in the context
of wireless networks. Their applications include resource
allocation and management, e.g. power allocation [3], [5],
spectrum management [6], and caching and beamforming [7].
Different reinforcement learning (RL) algorithms have re-
cently been compared to WMMSE and FP for power allocation
[3, 5, 8] and were shown to outperform them, especially with
imperfect or delayed CSI [5]. RL algorithms are also less
computationally expensive in comparison to WMMSE and FP
[3]. In spite of the desirable performance of the RL methods,
the studied scenarios are generally not realistic; for example,
their objective is to maximize sum capacity of the network,
which cannot be achieved in practice due to limited code block
lengths and the inefficiency of realistic modulation schemes.
In this paper, we consider a more realistic setting by
maximizing the link level throughput in a cellular network,
which is defined as the sum of users’ data rates which depends

on their modulations, coding rates, and transmission powers.
The main challenge, however, is that due fo the complexity of
the state-action space of such a realistic scenario, reinforce-
ment learning algorithms, with common exploration strategies,
do not converge to optimal policies, and fail to outperform
random resource allocation.

To solve the shortcomings in exploration while keeping
the model practical, we have proposed: a) A multi-agent RL
framework where the agents (each of the eNB-UE links) make
decisions based on partial network CSI; i.e. their own CSI
and the information from their immediate neighbors. b) To
accommodate for more complex requirements such as fairness
among users, a long-term utility function (instead of a single
shot one) defined over multiple subframes (time slots). The
idea of reward shaping has been applied to solve the slow
convergence problem in these settings. ¢) Inspired by [9], we
propose a step by step training procedure which starts from
a simpler power allocation task without MCS selection and
gradually becomes more difficult, culminating in joint power
allocation and MCS selection.

The remainder of this paper is organized as follows: the
system model is defined in Section II, the proposed method,
along with the training strategy is discussed in Section III,
Simulation setup is provided in Section IV, and the results are
discussed in Section V. Section VI concludes the paper.

II. SYSTEM MODEL

The downlink transmission of a cellular network with N
cells, K users per cell (M = N x K users in total), cell size
(eNB to eNB distance) d,,q,, and minimum allowable eNB
to UE distance d,,;, is considered. The positions of eNBs are
deterministic (fixed). The users are located randomly in the
habitable zones of the cells (K users in each cell).

While most previous studies consider single shot scenarios,
a frame-based scheduling scheme is analyzed here where each
frame consists of 1" subframes (time slots). The goal of frame-
based scheduling is to maximize the total transmission rate of
the users during each frame (7" subframes). This model enables
us to study the fairness of a scheduling algorithm along with
throughput analysis. Fairness study is not possible in single
shot cases where transmission are only analyzed during one
single subframe.

Rayleigh fading and log-normal shadowing are taken into
account; resulting in channel gain h;[t] between user ¢ and
its corresponding eNB, in subframe (time slot) {. A random
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velocity vector is assigned to the users, which along with their
initial positions determines their positions in the following
subframes. During each subframe, the channel gains between
all UEs and eNBs are calculated based on their distances,
log-normal shadowing and Rayleigh fading. Channel gains
are assumed to be constant during one subframe but varying
from one subframe to another. h;;[t] denotes the channel gain
between user ¢ and the eNB to which user j is assigned.

The data rate of link i (between user ¢ and its associated
eNB) in subframe ¢, using modulation order 90;[¢] and coding
rate €;[t] can be calculated by [10]:

rlf] = MG - BLER([), ()

where BLER(v;[t]) is the block error rate of the selected
modulation/coding scheme at SINR ~;[t]. SINR ~;[t], itself,
depends on the assigned power to link i (P;[t]), hs[t], the
power assigned for each of the neighboring users j, and h;;[t].

In order to simulate a realistic combination of modulation
schemes and code rates (91;[¢] and &;[t]), the pairs defined
in 3GPP LTE release 11 standards have been used. Under
release 11 standards of the LTE, 15 standardized Modulation
and Coding Scheme (MCS) are defined [11]. In this paper,
m;[t] denotes the MCS that link ¢ uses at time t. e.g.
mz[3] = 4 means that in subframe 3, link 2 will use the 4th
modulation/coding pair defined in the LTE standard, which is
QPSK modulation and with coding rate 308/1024 [11].

In order to optimize both throughput and fairness, we aim
to maximize a-fair [12] link level throughput of this network
in each frame. The «-fair utility function is defined as follows:

M
D;|T l—a
U—E;llu, @)

where 0 < o <1, and D;[t], i € {1,..., M}for t € {1,...,T}
is the amount of data transmitted on link 7 upto time ¢ (sum
of the data rate of link ¢ upto subframe ¢):

Dylt = 1] + 7,1 3)
Di0] = o. @)

When a = 0, (2) reduces to sum of link level throughput.
When o = 1, U is not well-defined (its denominator is zero),
but maximizing it is equivalent to maximizing U — 1%, since

1 «

1—o Is constant with respect to powers and MCS’s, and by

applying 1’Hopital’s rule, we can obtain [12]:

M
D;lt l—a _ 1
argmax lim (Z L)
Pmg ot 1-a

M

= argmax (
Pi[t],mi[t] 722;
M

= argmax (
Py[t],milt] ;

In(D;[t]) — 1) (5)

In(D;[t])).

The goal of this paper is to solve the following optimization
problem:
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max
P; [t] ,M; [ﬂ

where P,,,, is the maximum possible transmission power and
the second constraint ensures that the all links select their
modulation orders and coding rates in accordance with the
standard LTE pairs.

III. THE PROPOSED RL FRAMEWORK

A multi-agent reinforcement learning system is proposed
to solve the optimization problem (6), where each agent is a
Deep Deterministic Policy Gradients (DDPG) agent which de-
termines the power and MCS of each eNB-UE link (Fig. 1). As
stated earlier, contrary to network capacity maximization, link
level throughput maximization cannot be solved using classical
RL training schemes. The environment and the action space
of the framework are briefly defined below. Then in order to
explain the techniques utilized to improve the convergence of
RL training, the state (observation) space, reward function,
and the stepwise training procedure are described in detail in
subsections A through C, respectively.

Environment: The cellular network defined in Section II
serves as the environment of the proposed reinforcement
learning framework. The actions (power and MCS) of the
agents are applied to the environment, and the rewards and
the next states (as described below) are returned to the agents.

Action space: The action space is two dimensional and
corresponds to 1) power level and 2) MCS scheme assigned
to each link. The MCS output of the network is mapped to
the modulation indices and code rates of the LTE rel. 11
standard [11]. A non-integer MCS output is regarded as a
probabilistic selection of one of the two integer values that it
falls in between.

A. State (Observation) Space

If the states contain the full CSI of all users, the prob-
lem can easily be modeled as a Markov decision process
(MDP). However, such state definition, requires large signaling
overhead to exchange CSI between eNBs. In this study, the
state space is defined in a way that would provide the agents
with enough information to solve the problem, while keeping
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the state space as local and low dimensional as possible. To
simplify notations, I;;[t] is defined as:
R[]
2
w2l

I;;[t] provides information about the coupling between link
i and j in subframe ¢, which contributes to the interference
received by user ¢ from transmission aimed at user j.

The state of agent ¢ in subframe ¢ is then defined as:

Sit] = [RI[t], I t], -+, Lina[t],
Pl[t — 1],m1[t — 1],Ti[t — 1]7p2[t — 1]7t] .

Note that with the exception of p;[t — 1], all terms of (8),
depend only on the status of the agent in the last subframe.
pilt — 1] (defined in section III-B) is proportional to the
accumulated rewards that an agent receives from subframe
zero to subframe ¢, and provides the agents with a memory of
the previous subframes. An agent with a high p;[t — 1] might
decide to refrain from transmissions in future subframes in
favor of other agents to accommodate for fairness.

®)

B. Reward Function - Reward shaping idea

In the following section, two extremes of «-fair utility
function (o = 0 and o = 1) are analyzed, and reward shaping
is used to distribute the frame reward among subframes.

1) a = 1: The a-fair utility function with a@ = 1 results
in equation (5). This utility forces all agents in the network
to transmit data at some subframe during the frame, thereby
ensuring fairness. Due to the long-term nature of this reward
function, such a system cannot be implemented using a single
step approach, since it is not practical to serve all users in
each single subframe in an interference channel. As a results,
rewards are defined for a complete frame (RL episode) as
opposed to a single subframe:

pilt] = 0 Vvite{1,2,3,...T—1}
pilT] = U

This definition of rewards is accurate but will adversely
affect the convergence behavior of the system [6]. To improve
convergence, the idea of reward shaping is used, [6]. In
this method, the episode reward is broken down between
subframes, such that their summation yields the original utility

function. The following approximation is used here to imple-
ment reward shaping [13]:

"1
In(n) ~ H, = Z o
k=1

where it can be shown that ﬁ < H, —In(n) —v < 5,
where n € N and v is the Euler-Mascheroni constant. The
bounds are quite tight for large values of n.

In order to use this approximation for D;[t], which is neither

integer nor large, we first rewrite (6) as:

©))

(10)

M M
U= D) =3 (m(A.DZ- 7)) — 1n(A))
=1 i=1

M
~ (X m(lADT))) - MIn(a),
=1 (11)

where A is a tuning parameter that determines the precision
of the approximation, and |z | is the floor of x. This approxi-
mation is valid for large values of A. Equation (10) can now
be used to further simplify (11):

[A.D;[T]]

1
U~ (Z 3 —,) — MIn(A), (12)
-1 =1
which can be expanded as:
M T LA.D;[t]] 1 1
i=1t=1 j=|A.D;[t—1]] (13)
T
= > pltl,
t=1
where
M |A.Di[t]] 1 M
ptl=> > iTT In(A). (14)

i=1 j=|A.D;[t—1]]

plt] is the short term reward in each subframe, derived from
the reward function of the whole frame.

2) a = 0: Similar to the previous case, distributing the
rewards between subframes as opposed to waiting until the
end of a frame to deliver the rewards to the agents improves
convergence rate. Reward shaping is simple in this case as
with o = 0, the a-fair utility reduces to the sum rate of all
links in all subframes. The per subframe reward value can be

evaluated as:
M

plt] =Y rilt].

i=1

15)

It is easy to verify that the sum of p[t] over all subframes is
equal to O-fair utility function.

C. Exploration - Stepwise training and exploration procedure

The success of a reinforcement learning system is heavily
dependent upon the effectiveness of the employed exploration
strategy. The main challenge in the link level throughput
maximization problem is that the reward function of each agent
depends not only on its own actions, but also on the actions of
its neighbors. The reward-action mapping of this problem is
very difficult to explore, and classical exploration techniques
fail to converge to optimal policies.

To explore the problem space efficiently, we have applied
the idea presented in [9], where the authors observe that
agents usually fail to learn a complex task when they start
from random initial conditions. They propose to simplify the
task and let the agents learn it, then make it gradually more
complex. Motivated by this approach, we simplify the task of
our agents by omitting MCS and defining rate function as:

rift] = logy (1 +t]),

Training of the agents starts with this reward function. When
the agents learn this task, we switch the reward function from
eqn. (16) to eqn. (17). The first term in equation (17) is

(16)
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capacity (as in (16)), and the second term (R(m;,y;)) is the
achievable data rate in SINR ~; with MCS scheme m;.

rift] = (1 = A) logy (1 +ilt]) + AR(m[t], 7i[t])-

where A is gradually increased from zero to one during
the training procedure, changing the reward function slowly
from capacity to throughput. Such gradual increase in the
complexity of the environment enables the RL agents to learn
the new environment better, as they have already trained for
an environment that is just a little simpler.

7)

IV. SIMULATION RESULTS

A cellular network with 25 eNBs and 100 users (4 users
per cell) is simulated using Tensorflow 1.9.0, Python 3.6.7
and NVIDIA GK107 GPU. All scenarios are simulated with
a frame size of 9 subframes, acceptable powers in range of
0-6 Watts and 15 MCS options obtained from LTE standards.
The proposed method is compared to the following baseline
algorithms:

o Proposed method: A two dimensional DDPG system

that assigns power and MCS.

e WMMSE: Weighted minimum mean squared error

method.

o FP: Fractional programming method.

o Full-Power: All agents transmitting with full power.

o« DQN: A DQN that assigns power and MCS, trained using

the conventional exploration method.

o Genie-aided DQN: A DQN that just assings power, to

which the ideal MCS is provided by a genie.

To calculate the link level throughput of the benchmark
algorithms, WMMSE/FP/Full-power/DQN are first utilized to
allocate power levels, and then the MCS leading to the highest
link level throughput is assigned to each agent. Although such
MCS selection is in favor of the benchmark algorithms, the
results show the superiority of the proposed method. The RL
methods are all trained first, and their weights are fixed after
convergence. They are tested with these fixed weights.

Fig. 2 presents the link-level throughput (per subframe)
that users can achieve on average, using each method. The
results are obtained assuming o = 0, dp,, = 0.5Km and
dmaz = 4K'm. Since rates depend on users’ positions, we have
simulated 20 different randomly initiated cellular networks and

averaged users’ achievable data rates. Fig. 2 depicts the aver-
ages of these rates with one standard deviation of the results
highlighted on each curve. It can be seen that the proposed
method outperforms all benchmarks except the genie-aided
DQN upper bound. It can be also verified that DQN with
conventional exploration strategy cannot learn the state-action-
reward mapping which leads to a inferior performance.

The following figures are provided to investigate the effect
of reward function parameters on the behavior of the agents.
Figure 3 presents the histograms of the rates of different links
with different reward function parameters. Simply put, Fig. 3
shows the rates that each percentile of users achieve in each
case. Additionally, in each case, the average (over all users) of
the achievable throughput is presented in Fig. 4. Like Fig. 2,
the mean and one standard deviation of the results (obtained
from multiple random user drops) are plotted for each case.

When a = 0 the utility function is simply sum rate. In
this case, as can be seen in Fig. 3a, the majority of agents
do not transmit data at all, and about 25% of the agents
achieve non-zero data rates. More specifically, only the UEs
closest to the eNBs are chosen to be active and no service
is provided to the rest. Since eNBs can transmit with higher
rates to closer UEs, this strategy results in a high link level
throughput for the whole network, (Fig. 4, the o = 0 case).
The issue, however, is that some UEs always receive data in
all subframes while others are always inactive, hence fairness
is not achieved among users.

When @« = 1 and A = 4, the objective function is an
approximation of the sum of log rates (which guarantees
fairness). As can be seen in Fig. 3b, the strategy that the
RL agents use in this case leads to a significant drop in
the number of users that do not receive transmissions at any
point during a frame (from 75% to 30%). By increasing A
to 20, the users that do not receive any transmissions drops
down to only about 5% (Fig. 3c). It is safe to conclude that
the increase in A improves fairness without any effect on
average data rate (Fig. 3). This stems from the fact that a
larger A results in a better approximation of the network utility
function, subsection III-B.

To analyze the sensitivity of the proposed method to cell
size, throughputs of networks with different d,,,, are com-
pared in Fig. 5. When the difference between d,,q, and dp,in
is high enough, cell size doesn’t affect the performance of
the proposed method considerably. However, when d,, ., and
dmin are close, e.g2. dmer = 1Km and dpi = 0.5Km, the
cell turns into a ring (all users have roughly the same UE-
eNB distance) and the agents cannot learn to well differentiate
among users, leading to inferior performance.

V. CONCLUSION

In this paper, a multi-agent RL framework is presented for a
cellular network where: a) link level throughput is maximized
instead of capacity. b) Power allocation and MCS selection
are performed simultaneously using DDPG agents. c¢) The
information of each agent is limited to its neighboring cells.
Due to the complexity of this problem, RL methods with
conventional exploration strategies cannot outperform random
resource allocation. This problem is addressed by utilizing the
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