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UAV Trajectory Optimization for Time Constrained
Applications

Emmanouil Fountoulakis, Georgios S. Paschos, and Nikolaos Pappas

Abstract—In this paper, we consider a UAV flying over multiple
locations and serves as many users as possible within a given time
duration. We study the problem of optimal trajectory design,
which we formulate as a mixed-integer linear program. For
large instances of the problem where the options for trajecto-
ries become prohibitively many, we establish a connection to
the orienteering problem, and propose a corresponding greedy
algorithm. Simulation results show that the proposed algorithm is
fast and yields solutions close to the optimal ones. The proposed
algorithm can be used for trajectory planning in content caching
or tactical field operations.

I. INTRODUCTION

The growing popularity of mobile devices and applications
that require bandwidth hungry services has fueled an increase
in mobile traffic which in many cases, limits the ability of
systems to offer high quality communications. For example, in
peak demand hours, or during a popular event in specific areas,
communication systems become congested and service quality
is critically impaired. In addition, applications that require
operations in areas without infrastructure, called tactical field
operations, raise the need for fast and reliable reaction from
the communication systems. In such situations, it is desirable
to have helpers to offload traffic from congested networks
or areas without infrastructure [1], [2]. Unmanned Aerial
Vehicles (UAVs) can fly and serve congested network areas
or specific areas that require urgently specific information.
However, UAVs have limited flight time duration. Therefore, a
UAV may not have the energy resources to visit all the areas.
In this paper, our goal is to design an optimal trajectory in
order to serve areas with higher emergency within a certain
time.

Recently, research on UAVs that act as small base stations
or caching helpers, has attracted a lot of interest [1]–[3]. The
authors in [4] consider a UAV that flies from one location to
another and accomplishes a certain amount of computation
tasks. UAVs are used as small cells with caches in [5].
Caching and UAV placement strategies are provided while
considering limited UAV battery budget constraints. Authors
in [6] consider that a UAV transmitting files to a group of
ground terminals (GTs). Based on device-to-device (D2D)
communications, GTs can share the files, received by the
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UAV, to their adjacent GTs when they are requested. In
[7], a proactive caching technique is considered. The authors
propose a solution for UAVs deployment and caching content
placement in order to maximize the quality-of-service (QoS).
In [8], the authors consider the UAV deployment for data
delivery in vehicular networks. To the best of our knowledge,
there is no work that considers a UAV that flies over multiple
areas with high importance and serve as many as possible
within a certain time. The importance of each area is expressed
with a score. We formulate an optimization problem whose
solution provides a trajectory for the UAV for which the
collected score is maximized. By drawing an analogy from
the orienteering problem [9], we prove that the problem is NP-
hard. We provide a greedy algorithm that finds an approximate
solution to the optimization problem in scalable manner.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a UAV that flies over multiple geographical
areas and collects the corresponding scores. Location i has
a score which is denoted by λi

1. Our goal is to design a
trajectory that maximizes the scores collected by the UAV.

Trajectory selection. We consider that each location i ∈ I
may be the barycenter (or centroid) of that area, or some
central hotspot point. Let xi denote its coordinates on the
plane. The UAV forms a trajectory by visiting a subset of
locations in a specified order.

For two locations i, j ∈ I, let dij = dji ∝ ‖xi − xj‖2
be a distance that measures the amount of time it takes the
UAV to move from one location to the other (for example the
Euclidean distance of xi, xj divided by the maximum velocity
of the UAV). Consider an undirectional complete graph G =
(I, E,d), where E = {{i, j} : i, j ∈ I, i 6= j} is the set of
links connecting the locations, and for each link {i, j} we have
an associated distance dij (or dji). A trajectory T is a tour on
graph G, i.e., an ordered set of nodes T , (i1, i2 . . . , ik, i1),
such that the UAV visits the nodes in the described order and
all nodes are visited once, except i1. An example of our system
model is shown in Fig. 1, where T = (6, 4, 2, 3, 6).

For each link (i, j) ∈ E, we introduce flow variables fij ∈
{0, 1}, where fij = 1 if and only if nodes i, j appear in the
trajectory T . The flow that enters node i must be equal with
the one that goes out:∑

j

fji =
∑
j

fij =

{
1, if i ∈ T
0, if i /∈ T , ∀i ∈ I. (1)

However, including only the constraints in (1), we may
produce tours that are not connected. In order to create

1E.g. the reward can play the role of user demand in that location.
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Fig. 1: Illustration of our system model with six areas.

solutions that do not contain disconnected tours, we introduce
the following subtour elimination constraints:∑

(i,j)∈I, i 6=j

fij ≤ |S| − 1, ∀S ⊂ I. (2)

For each nonempty subset S of the set of nodes I, (2) ensures
that the number of edges of S must be at most |S| − 1.
Hence, (2) eliminates solutions with two or more disconnected
subtours. Note, that any non-zero integer flow f that satisfies
(1) and (2) is a tour, i.e., a path on graph G that starts and
ends at the same node. In case we need a trajectory that starts
and ends at a specific node s ∈ I, we can include

∑
j fsj = 1

as a constraint.
The total time of the trajectory T is denoted by D and is

equal to the sum of all traversed distances, D =
∑

(i,j) dijfij .
A trajectory is called feasible if its total time is no larger than
a specified limit Dmax:

D =
∑
(i,j)

dijfij ≤ Dmax. (3)

Our target is to compute a UAV trajectory that passes
through the areas with highest scores in time less than Dmax.
To this end, we formulate the UAV Trajectory Design (UTD)
problem as:

max
f

∑
(i,j)

fijλi (4a)

s. t. (1), (2), (3), (4b)∑
j

fij ≤ 1, ∀i ∈ I, (4c)

f ∈ {0, 1}|I|×|I|. (4d)

Constraint (4c) ensures that up to one flow can enter and exit
node i.

A. Strategic Content Placement Use Case

In this subsection, we discuss the potential application of the
trajectory design to the content caching problem. We assume
that each area contains users that request popular file content.
Furthermore, we assume that the UAV carries a cache in which
we can cache popular file content and deliver the files to the
users. However, the capacity of the cache is limited and the
time flight of the UAV is limited as well. Therefore, we should
jointly decide the trajectory and the file placement. Then, in
problem (4), the reward would be the product of demand times
the popularities of the files at each visited location.

III. ALGORITHM FOR UAV TRAJECTORY DESIGN

A. Orienteering

First, we characterize the complexity of this problem by
drawing an analogy from the Orienteering Problem (OP)
[9], a sport in which starting and ending points are specified
in a forest along with other locations (checkpoints) with
associated scores for visiting. Boyscouts must travel from the
starting to the ending point before a certain deadline expires,
and on their way they seek to visit a subset of the locations
that maximizes the total collected score. Consider, in the
OP problem, that λi are the boyscout rewards collecting
from each checkpoint i, dij is the travel distance between
the checkpoints i and j, and Dmax is the total time frame
available for waypoint collection. Then, there is an 1-1
mapping between the UTD and OP problem. Since the OP
problem is NP-hard and particularly APX-hard, we get the
following result.

Corollary 1. The UTD problem in (4) is NP-hard, and
particularly, APX-hard. 2

Remark. The authors in [9] first defined the Orienteering
problem, and show that is NP-hard with a reduction from
the Travelling Salesman Problem. The work in [11] shows
that the Orienteering is APX-hard, i.e., any polynomial time
algorithm will fail to approximate the optimal within 1481

1480
(unless P=NP). Also, it was provided a 4–approximation using
dynamic programming to compute min-excess paths, i.e.,
paths that achieve a targeted prize by introducing a minimum
amount of excess cost. [12] provides a 3–approximation of the
rooted Orienteering problem, based on Linear Programming
relaxation and rounding. Improved guarrantees are also given
in [10], [13] where a 2–approximation guarantee is provided
using k-TSP techniques.

B. Subtour elimination: lazy constraints approach

Note that if the number of nodes is of size n, then, there
are 2n − 2 subsets of S of I, excluding S = I and S = ∅.
In order to avoid constructing an exponential number of
constraints for each scenario resulting in a formulation that
is complex even to state, we include the constraints in (2)
in a lazy fashion. More specifically, we relax all subtour
elimination constraints (SECs) (2) and solve the remaining
Integer Linear Program (ILP) by using Gurobi solver3. When
the solver finds a feasible solution that satisfies the other
constraints, we check the number of edges and determine
whether the found solution has disconnected subtours or not.
If the number of edges of the shortest tour is equal to the
number of visited nodes, the found solution has no subtours,
hence it satisfies the subtour elimination constraints (even
if we did not require them) and the optimization problem
is solved. Otherwise, we add the corresponding subtour

2 It is APX-hard because it has a 2+e poly-time algorithm, but it has no
Polynomial-time Approximation Scheme (PTAS), i.e., it cannot be approxi-
mated to within any constant larger than 1 [10].

3Note that in order to obtain an optimal solution from the solver, we do
not restrict its runtime.
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Algorithm 1: UAV trajectory design algorithm
1 Input: Graph= (I, E,d), budget tour Dmax, start/end node s
2 Output: trajectory T
3 td ← 0 //traversed time
4 next node ←∞
5 P ← {s, s} //we start and end at the node s
6 next segment ←∞
7 do
8 if (next node < I + 1) then
9 `← |P|

10 m← next segment
11 td ← td + dm,next node + dnext node,m+1 − dm,m+1

12 Pm+2:`+1 ← Pm+1:`

13 Pm+1 ← next node

14 for ∀j ∈ |T | − 1 do
15 `c ← ∅, `e ← ∅
16 for ∀i ∈ I do
17 if (i /∈ T ) then
18 i1 ← Tj
19 i2 ← i
20 i3 ← Tj+1

21 if (td + dj,i + di,j+1 − dj,j+1 ≤ Dmax) then
22 `c ← `c ∪ i //local candidates
23 `e ← `e ∪ {td + dj,i + di,j+1 − dj,j+1}

//add extra distance

24 if (`c = ∅) then
25 gcj,: ← {I + 2, 0} // we didn’t find any candidate
26 else
27 uk ← λk

`ek
, ∀k ∈ `c // Score

28 `cmax ←
find the node with the maximum utility value

29 gc ← `cmax ∪max(u) //assign the maximum
utility value and the corresponding node

30 next node ← ∅, next segment ← ∅
31 if (max(gc:,2 > 0)) then
32 //we found some candidates
33 u← gc:,2 //assign all rows of the second column
34 next segment ← find node with the maximum utility
35 next node ← gcnext segment,1

36 while next node 6= ∅;
37 return T

elimination constraint that is violated and solve the problem
again. We repeat until the found solution has no subtours.

Theorem 1. Lazy constraints approach is optimal.

Proof. At each iteration, we find a solution of minimum cost
of the relaxed problem. We denote the relaxed minimum cost
by cmin. cmin is a lower bound to the optimal cost of the original
problem copt. After the last iteration of SEC approach, we find
an optimal solution to the relaxed problem that is actually
feasible in the original problem. Hence, it must be cmin ≥ copt.
Therefore we conclude that cmin = copt.

We note that this approach provides no guarantees that
we will not have to eventually add all subtour elimination
constraints (and hence it requires exponentially many steps),
however, experience shows that it can be quite efficient in
some problems [14].

C. UAV trajectory algorithm

Even with the lazy constraints approach, the OP problem
is APX-hard, and as the instance of the problem increases,
the solver will take too long to return a solution (if ever).
In order to have a solution in reasonable time, we propose
a heuristic that is described in Algorithm 1. Our approach is
inspired from a recent study that proposes touristic itineraries
on Google maps [15]. Although our algorithm provides no
guarantees, it follows the ideas of the knapsack relaxation,
i.e., greedily adding waypoints that maximize the efficiency
ratio reward

added time .
The algorithm builds a trajectory by progressively adding

waypoints considering: (i) the feasibility of the tour (step 21),
(ii) the cost efficiency of a waypoint addition by means of
ratio of reward/added travel time (step 23). Specifically, we
begin with the origin and add the waypoint a that maximizes
the ratio reward/distance (step 28). At this point the trajectory
is simply origin → a → origin. Next, for every hop in the
trajectory, we find the maximal node that if added in the hop,
it will maximize the ratio reward/added distance (step 34).
Hence it could be o → b → a → o or o → a → b → o.
Specifically for the second step, there is symmetry and both
solutions will be equal. But for the following steps, every hop
results in a possibly different maximal waypoint, and we must
select the best. At every step of the way, a waypoint can be
added only if the new total travel time does not exceed our
constraint. When no such node can be found (step 36), our
heuristic has converged.

IV. SIMULATION RESULTS

We consider that the velocity of the UAV is equal to 70
km/h4 and 100 different topologies with 50 nodes each. The
location of each node is randomly generated according to
a normal distribution that takes values in [−1, 1]. For each
topology, we generate score λi for each node. Each score
takes values according to a normal distribution in [0, 10]. We
consider that the UAV always starts from (0, 0) location points.
Optimal and suboptimal trajectories are designed by the solver
and algorithm, respectively, for each topology. Then, we take
the average of the collected score, execution time, number of
visited nodes, and total journey over the topologies. We repeat
for different values of Dmax. We obtain the optimal solution
by using Gurobi software.

In Fig. 2a, we compare the collected score for the solution
provided by the solver and algorithm. We observe that the
score collected by greedy algorithm solution is very close to
the optimal one. The algorithm utilizes the available budget
in an efficient way, as shown in Fig. 2c and Fig. 2d. The
algorithm needs less than 1 sec to provide an approximate
solution, as shown in Fig. 2b, that is important when we have
a large system to solve or need to run the routine multiple
times within another algorithm. On the other hand, the solver
needs more than 1 min to provide an optimal solution, and as
Dmax increases its runtime increases dramatically. However,
we observe that the runtime of the solver decreases after a
certain point, as shown in Fig. 2b. The constraint that affects

4 https://www.drone-world.com/dji-phantom-4-specs/.

https://www.drone-world.com/dji-phantom-4-specs/
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TABLE I: The case with 80 nodes. Execution time. Optimal solution vs greedy algorithm.
Dmax (min) 2 4 6 8 10 12 14 16

Solver 103.22 sec 377.95 sec > 2h > 2h > 2h > 2h > 2h 41 sec
Greedy 0.35 sec 0.27 sec 0.25 sec 0.25 sec 0.25 sec 0.39 sec 0.31 sec 0.31 sec
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(a) Collected score by the UAV.
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(d) Total journey time.

Fig. 2: The case with 60 nodes. Optimal solutions vs greedy algorithm.

the number of the trajectory options is (3), i.e., the flight time
budget of the UAV. As the time flight budget increases, the
number of nodes that can be visited without violating the
constraint, approaches the number of the nodes that cannot be
visited as shown in Fig. 2c. Therefore, the trajectory options
increase and the solver needs more time to provide the optimal
solution. However, when Dmax is greater than 6 min, we
observe that the number of visited nodes is greater than the
number of not visited ones. For example, for Dmax = 8 min,
the UAV visits 35 nodes out of total 60 nodes, as shown in Fig.
2c. Therefore, it is easier now for the solver to find an optimal
solution. To give a better intuition on this, consider that the
flight time budget is infinite. Then, the solution is trivial; visit
all the nodes without taking into account the order. The order
does not affect the value of the objective function.

Additional results are provided in Table I, for a larger
topology with 80 nodes. We see that for some cases, the solver
needs more than 2 h to provide the solution5. On the other
hand, our proposed algorithm can provide an approximate
solution in reasonable time for arbitrary number of nodes.

V. CONCLUSIONS

In this paper, we study the trajectory design problem of a
UAV that flies over multiple areas and collects the correspond-
ing scores. We formulate an optimization problem in order
to maximize the collected score over multiple geographical
locations. We show that the problem is equivalent to the
Orienteering Problem from operation research, and therefore it
is APX-hard. We then provide a fast heuristic algorithm, and
a simplified MIP approach and compare their performance.
Simulation results show that the algorithm performs well and
provides solutions for the cases where the solver collapses.
The proposed UAV trajectory design problem can be applied
for tactical network and strategic content caching applications.
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