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Abstract—The massive exploitation of robots for industry 4.0
needs advanced wireless solutions that replace less flexible and
more costly wired networks. In this regard, millimeter-waves
(mm-waves) can provide high data rates, but they are character-
ized by a spotty coverage requiring dense radio deployments. In
such scenarios, coverage holes and numerous handovers may de-
crease the communication throughput and reliability. In contrast
to conventional multi-robot path planning (MPP), we define a
type of multi-robot association-path planning (MAPP) problems
aiming to jointly optimize the robots’ paths and the robots-access
points (APs) associations. In MAPP, we focus on minimizing the
path lengths as well as the number of handovers while sustaining
connectivity. We propose an algorithm that can solve MAPP in
polynomial time and it is able to numerically approach the global
optimum. We show that the proposed solution is able to guarantee
network connectivity and to dramatically reduce the number of
handovers in comparison to minimizing only the path lengths.

Index Terms—Cable replacement, handovers, Industry 4.0,
millimeter-waves, multi-robot path planning.

I. INTRODUCTION

The digital transformation of the manufacturing processes
that characterizes the fourth industrial revolution (industry 4.0)
requires new networking solutions. In this regard, wireless
technologies reduce the cost for cable installation and main-
tenance and they enable the deployment of capillary sensor
networks and moving robots for a full industrial automation.
Moreover, the increasing throughput demand of new industrial
applications, e.g., remote controlling, assembly, and surveil-
lance, makes the millimeter-wave (mm-wave) frequency range
(30-300 GHz) an attractive solution [1], [2]. However, block-
age sensitivity at such high frequencies makes the coverage
spottier, requiring dense radio deployments. In such scenarios,
a robot moving from a starting position to a destination may
be subject to coverage holes and numerous handovers that
reduce communication throughput and reliability. Namely, a
handover requires an initial access phase, the complexity of
which is increased by the use of directional beams that need
to be aligned. This procedure is costly in terms of energy
and time [3]. Thus, both robot path planning and association
between access points (APs) and robots need to be optimized
to satisfy throughput, reliability, and latency requirements.

Multi-robot path planning (MPP) problems have been ana-
lyzed before [4], [5]. In the past few years, joint robot mobility
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Fig. 1: A scenario consisting of a 3 x 3 grid forming a graph with
7 vertices and 7 edges covered by two APs. Vertices and edges of
positions 4 and 9 are not included in G. Namely, the former position
is occupied by an obstacle, whereas the latter position is not covered
neither by AP 1 because it is too far, nor AP 2 because of a blockage.

and communication optimization, e.g., motion-transmission
energy minimization, has been attracting an increasing amount
of interest [6], [7]. However, to the best of our knowl-
edge, none of the previous studies has considered multi-robot
association-path planning (MAPP) problems.

In this work, we propose a general formulation for MAPP
problems in mm-wave scenarios. MAPP aims to jointly find
the paths that the robots traverse to reach the respective
destinations and the sequence of APs with which they are
associated. More precisely, we focus on the type of MAPP
with the goal of i) selecting paths for reaching the destinations
in the shortest possible time, ii) minimizing the number of
handovers, and iii) avoiding coverage holes, robot collisions,
and AP overloading. To solve the MAPP problems, we propose
an algorithm that is based on a column generation scheme and
can run in polynomial time. The algorithm can dramatically
reduce the number of handovers per robot with a slightly
increase in the path lengths in comparison to minimizing only
the latter.

II. SYSTEM MODEL AND ASSUMPTIONS

We consider an industrial scenario, e.g., an industrial plant,
where a set of N robots need to move from their starting
positions oi to their goals di , with 1 ≤ i ≤ N , within a time
horizon of duration T . The robots can move on an undirected
graph G = (V, E) that is covered by a set A of A APs using
mm-wave. More precisely, V is the set of vertices and E
the set of edges, with cardinality V and E , respectively. Each
vertex v ∈ V represents a physical position with coordinates
(xv, yv). An edge e = {v, u} ∈ E, with v, u ∈ V, represents
a segment between the points (xv, yv) and (xu, yu). Some
positions may be occupied by 3-dimensional (3D) obstacles
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with certain sizes. As shown in Fig. 1, vertices and edges of
G are defined only for positions that are free from obstacles
and covered by at least one AP. This guarantees network
connectivity. For this reason, we assume a radio map that for
each vertex and edge of G provides the APs that cover them.

The radio map can be either obtained by measurements,
which are easily collected for highly controlled scenarios
like industrial ones, or by computing the signal-to-noise ratio
(SNR) at each position. By using the second method, a robot
is covered by AP a if and only if (iff) the SNR at the receiver
is higher than a threshold γ, i.e., SNRa(x, y) ≥ γ. In order
to obtain SNRa(x, y), we first compute whether a robot at
the position (x, y) is in line-of-sight (LOS) or non line-of-
sight (NLOS) with the a-th AP. This depends only on the
positions and the heights of the robots, the obstacles, and the
APs, which are assumed to be known. Both robots and APs use
directional transmissions with a certain beamwidth. When this
is narrow enough, we can assume that the interference among
robots becomes negligible [8]. Moreover, we assume that the
receiving antenna is located at the center on the top of the
robots. These have the same height, thus, they can not obstruct
each other’s LOS with an AP. In Section V, we provide more
details of the channel model and its parameters.

We consider slotted time, t = 0, ...,T and in each timeslot,
a robot may either stay at the current vertex or move to an
adjacent one. We assume that the robots move at a constant
speed and take one timeslot to traverse an edge. Moreover, in
any timeslot, an edge or vertex can be traversed or occupied by
at most one robot. At each position, a robot is associated with
one AP. While traversing an edge or remaining at a vertex,
a robot may face a handover, maximum one per timeslot.
A handover to a new AP is needed when: i) load balancing
among the APs is necessary, or ii) the robot exits the coverage
area of the currently associated AP. The latter event occurs
mainly because either the distance between the robot and the
AP becomes too long or because one or multiple obstacles
block the signal [9]. For this reason, the selection of both the
paths and the AP association must be optimized.

III. PROBLEM FORMULATION

In this section, we first provide a formulation for MAPP
problems as an integer linear program (ILP) that aims to
minimize the total robot path cost, while avoiding robot
collisions, and AP overloading. As explained in Section II, the
connectivity at each position with at least one AP is guaranteed
by the radio map and the definition of G. The path cost can be
defined in order to minimize several objective functions. In this
work, we focus on a particular instance of MAPP of which the
priority is to minimize the number of handovers (MAPP-HP).
Since multiple paths can have the same number of handovers,
MAPP-HP selects the paths with the shortest traversal times
among those of minimum number of handovers.

We consider a path-based formulation as in [10], where a
path of a robot is fully described by an ordered set of tuples.
Each tuple consists of an edge, the timeslot when the robot
enters the edge, and the associated AP, e.g., ({v, u}, t, a). For
each robot i, we consider the sets Si of all the possible paths

that connect the source oi and the destination di . For each
path, we define a cost cis and a binary variable xis that is
equal to 1 if the i-th robot uses path s ∈ Si and 0 otherwise.
Moreover, we define the following binary parameters:
• biets is equal to 1 if path s of the i-th robot enters edge

e at time t, and 0 otherwise,
• givts is equal to 1 if path s of the i-th robot stays at vertex
v at time t, and 0 otherwise,

• liats is equal to 1 if along path s, the i-th robot is
associated with AP a at time t, and 0 otherwise.

Then, we can write the following ILP:

M APP : min
xis

N∑
i=1

∑
s∈Si

cisxis (1a)

s.t.
∑
s∈Si

xis = 1, ∀i = 1, ..., N, (1b)

N∑
i=1

∑
s∈Si

bietsxis ≤ 1, ∀e ∈ E, t = 1, ...,T, (1c)

N∑
i=1

∑
s∈Si

givtsxis ≤ 1, ∀v ∈ V, t = 1, ...,T, (1d)

N∑
i=1

∑
s∈Si

liatsxis ≤ m, ∀a ∈ A, t = 1, ...,T, (1e)

xis ∈ {0, 1} ∀i = 1, ..., N, s ∈ Si . (1f)

The objective function (1a), represents the sum of the robots’
path costs, which, for MAPP-HP, are defined in Section IV-A.
Constraint (1c) prevents multiple robots from traversing the
same edge e in the same timeslot, whereas, constraint (1d)
allows at most one robot per timeslot to stay at a vertex v. Fi-
nally, (1e) limits the number of robots that are simultaneously
associated to an AP a to be at most m.

MAPP-HP is NP-hard. Namely, MPP for traversal time
minimization (MTATMPP) has been proven to be NP-hard
in [11]. Since MTATMPP is equivalent to MAPP-HP with only
one AP, we have that MAPP-HP is NP-hard. Moreover, the
cardinality of Si grows exponentially with T , the number of
edges, and the number of APs. However, most of the paths are
not relevant for constructing the optimal solution. Therefore,
to solve MAPP problems, we consider an algorithm based on a
column generation scheme that is presented in the next section.

IV. ALGORITHM

In this section, we present a column generation based
algorithm to deal with the exponential growth of paths, and
thereby solving MAPP problems. The basic idea of column
generation is to solve a linear programming problem (LP)
for MAPP with a restricted set of variables (paths) and then
add paths that may improve the solution. Before applying
column generation, we first expand G to a directed graph G′,
whose edges and vertices include association and handover
information. This allows us to use shortest path algorithms to
both find an initial solution and generate new paths. Then, we
construct a continuous relaxation of the restricted MAPP, with
restricted set of paths Ŝi , called master problem. The initial
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Fig. 2: Time-coverage expansion of vertices 1 and 2 of Fig. 1. Vertex
1 is covered by AP 1, whereas vertex 2 is covered by both the APs.
Edge {1, 2} in G corresponds to either the red or the green edges of
G′, depending on whether the robot is performing an handover or
not, respectively. Black and blue edges represent waiting times at a
vertex, with the latter including a handover.

solution of the master problem may be far from optimality.
For this reason, we expand the paths of the master problem by
adding new ones that can improve the objective function. Then,
we find an integer solution by reducing the generated paths to
only one per robot, as will be explained in Section IV-C. The
resulting algorithm is called Path Generation with Cooperative
Pruning (PGCP). This is shown in Algorithm 1 and described
in the following sections.

A. Time-Coverage Expanded Graph

In this section, we expand the graph G to a directed time-
coverage expanded graph G′ = (V ′, E ′) with V ′ and E ′
being the expanded vertex and edge sets, respectively. For each
vertex v ∈ V, AP a that covers v, and timeslot t = 0, ...,T , we
create a copy vat ∈ V ′. Then, for each edge e = {v, u} ∈ E
and timeslot t, we define an edge e′ = {vat, ubt+1} ∈ E ′ for
any two APs a, b ∈ A that cover vertices v and u, respectively.
Moreover, to represent the waiting time of a robot at a vertex
v, for any two APs a, b ∈ A that cover v, we add an edge
e′ = {vat, vbt+1} ∈ E ′ between any two consecutive timeslots.
An example of expanded graph is given in Fig 2. For MAPP-
HP, the cost ce′ for an edge e′ = {vat, ubt+1} is defined as
follows:

ce′ =

{
ch + ct if a , b,
ct otherwise,

(2)

where, ch is the handover cost, and ct represents the traversal
time of the edge that is set to 1 timeslot1. Since in MAPP-
HP, we penalize the handovers more than the traversal time,
we set ct � ch = T , where T is the time horizon that is the
maximum possible traversal time for a path. The cardinalities
of V ′ and E ′ are V A(T + 1) and (2E + V)T A2, respectively.

B. Path Generation

Given G′, we find an initial solution by using the coopera-
tive A* algorithm [12]. This provides one path for each robot
that are added to the restricted sets Ŝi of the master problem
and converted to constraints (1c), (1d), and (1e). However,

1This work can be generalized to the case of edges with different traversal
times by modifying the expanded graph.

cooperative A* may fail to find a feasible solution. Thus, we
add an artificial path for each robot’s source-destination pair
with a cost much higher than any real path.

Starting from the initial solution, we solve the master prob-
lem and add new paths that can improve the current solution.
Namely, for each robot, we find the path with the minimum
reduced cost by solving the following pricing problem:

min
s∈Ŝi

cis − φi −
∑
e∈E

T∑
t=0

πetbiets −
∑
v∈V

T∑
t=0

γvtgivts

−
∑
a∈A

T∑
t=0

λat liats, (3)

where, the objective (3) is to find the path of minimum reduced
cost of robot i. Then, s is added to Ŝi only when its reduced
cost is negative. The path generation concludes when there are
no more paths having negative reduced costs among those that
are not included in subsets Ŝi . The term cis of (3) is the sum of
the edges’ cost ce′ that belong to path s. The terms φi , πet , γvt ,
and λat are the dual variables associated with constraints (1b),
(1c), (1d), and (1e), respectively. Note that −πet contributes
to the reduced cost iff biets is equal to 1. This occurs when
the i-th robot enters edge e at time t. Namely, for each edge
e = {v, u} ∈ E of the original graph G, we can add −πet to
cost ce′ of the corresponding edges on the expanded graph G′,
i.e., e′ = {vat, ubt+1} ∈ E ′, ∀ a, b ∈ A. The same reasoning
can be applied for givts and liats and we add −γvt to the cost
of the edges that enter vertex v at time t. Moreover, we add
−λat to the cost of those edges that, at time t, enter a vertex
that is covered by AP a.

Thus, we can minimize (3), by finding the shortest path
from oi to di on the expanded graph G′ with the edge costs
modified by the dual variables πet , γvt , and λat . This problem
can be solved in polynomial time. More specifically, in this
work, we use the A* algorithm.

C. Finding an Integer Solution: Cooperative Pruning

When the path generation concludes, we can not guarantee
that the solution of the master problem is integer. To find
an integer solution, we proceed as follows. For each robot
i, we construct a mixed-integer linear program (MILP) from
the master problem by setting the variables xis to be binary.
The variables corresponding to the other robots, i.e., xjs , with
j , i, remain continuous. Since constraints (1b), the solution
of MILP has exactly one variable xis that is equal to one.
If this does not correspond to the artificial path, we delete
all the other paths and the corresponding variables xip with
p , s from the master problem. Otherwise, if the artificial
path variable is equal to 1, we continue generating paths, as
done in Section IV-B until none of them has negative reduced
cost. This repeats until all robots have one path selected. In
case any robot uses the artificial path and no more path is
generated, the algorithm declares infeasibility.

D. Algorithm Complexity

In this section, we conclude that PGCP can run in polyno-
mial time. We first note that the pricing problem represents
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a separation problem for the dual of the master [13]. Now,
we can use Theorem 3.3 on p. 163 in [13]. Namely, an LP
is solvable in polynomial time iff the separation problem is
solvable in polynomial time. In PGCP, the separation problem
is a shortest path problem solved by algorithm A* that is
polynomial. This result applies to both the path generation
part and the column generation for finding an integer solution.
Moreover, solving the MILP for robot i (in Line 16) is
equivalent to solving several LPs, one for each path s ∈ Si
with xis = 1, and consider the best solution.

Algorithm 1 PGCP
1: Construct expanded graph G′

Initial solution:
2: Find initial paths with Cooperative A* and add them to Ŝi
3: Add artificial paths to Ŝi

Path Generation:
4: repeat
5: Construct the master problem from restricted ILP with paths in Ŝi
6: Solve the master problem and add πet , γvt , and λat to edge costs ce′
7: for each robot i ∈ R do
8: Compute shortest path on G′ with A* algorithm
9: if path cost < 0 then

10: Add the path to Ŝi
11: end if
12: end for
13: until no new paths are added to Ŝi, ∀i ∈ R

Cooperative Pruning:
14: repeat
15: for each robot i ∈ R do
16: Construct MILP from the master problem with xis = {0, 1}
17: Solve MILP
18: if MILP solution is feasible then
19: ∀s ∈ Ŝi : xis = 0 delete path s from Ŝi
20: else
21: Repeat Steps 8-11
22: end if
23: end for
24: until no new paths are added to Ŝi, ∀i ∈ R

V. NUMERICAL RESULTS

In this section, we provide a numerical evaluation of PGCP
for solving MAPP-HP. The result of PGCP is compared with
the initial solution obtained by Cooperative A*. Moreover,
we show the results of applying PGCP to other two MAPP
objectives: MAPP with traversal time priority (MAPP-TP) and
MAPP with maximum SNR criteria (MAPP-SNR). The former
considers an opposite criterion to MAPP-HP. Namely, MAPP-
TP jointly minimizes path traversal time and the number of
handovers with the former having priority over the latter, i.e.,
ch � ct . MAPP-SNR has the same formulation of MAPP and
minimizes only the total traversal time, i.e., ch = 0, while
selecting the AP with the maximum SNR at each position.

For our simulations we consider a grid of 20 x 20 vertices
covering a square-shaped indoor scenario with a side length of
60 m. Obstacles, with a height of 2 m, are randomly dropped
and occupy almost 30% of the vertices. There are 4 APs,
operating at different frequency channels in the 60 GHz band.
The APs are equally distributed and placed at a height of
5 m, whereas, we set the antenna height at the robot equal
to 0.5 m. To compute the coverage and the radio map, we use
the 3GPP model for indoor scenarios [14] for computing the
SNR. The model considers the distance between the AP and
the robot, whether they are in LOS or NLOS, and several other
parameters. More precisely, we set the transmit and the noise
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Fig. 3: Solution ratio for PGCP and cooperative A* for MAPP-HP
with varying N and m.

TABLE I: Success Rate of PGCP and Cooperative A* for
MAPP-HP.

m = 15 m = 50
Cooperative A* PGCP Cooperative A* PGCP

T = 60 67 % 91 % 83 % 95 %
T = 90 84 % 96 % 89 % 99 %

powers to 24 dBm and −80 dBm, respectively. The antenna
gain at the APs and at the robots are ga = 15 dB and gr = 1 dB,
respectively. The SNR threshold is equal to γ = 10 dB. Unless
specified otherwise, the time horizon is T = 60 timeslots. With
these parameters, the resulting time-coverage expanded graph
has an average of 50000 vertices and 600000 edges.

In Fig. 3, we show the solution ratio for both PGCP and
Cooperative A* (initial solution) for MAPP-HP with respect
to the number of robots (N) and the maximum number of
robots associated per AP (m). The solution ratio of PGCP
is defined as the ratio between the total path costs obtained
by PGCP and the solution of the master problem when the
path generation ends. The latter is guaranteed to be a lower
bound to the optimal solution of MAPP-HP. The same ratio is
defined for Cooperative A*. We can observe that PGCP is able
to approach the global optimum and the solution ratio is an
increasing function of N , whereas, it decreases with increasing
values of m. This is more clear for m � N . Moreover, when
N is small with respect to the dimension of the graph, PGCP
and cooperative A* have similar solution ratios. Namely, the
robots are not in conflict with each other in the choice of the
paths and APs.

Note that, the results shown in the figures of this section,
are based on cases for which feasible solutions are found by
both algorithms. Both PGCP and cooperative A* can terminate
with infeasible solutions. However, as we show in Table I,
PGCP can provide a higher percentage of feasible solutions
(success rate) than cooperative A*. We can observe that higher
values of m and T lead to a higher number of feasible paths
that increases the success rate. However, higher values of T
lead to larger time-coverage expanded graphs that increase
the computational time. For the analyzed scenario, this is
approximately 30 secs for PGCP with N = 50 and T = 60,
with a laptop with 8 GB of RAM and a 7th generation, Intel
Core i7 processor. This value can be further improved by
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Fig. 4: Average number of handovers per robot by applying PGCP
to MAPP-HP, MAPP-TP, and MAPP-SNR. We vary N and show
the results for m = 50 and m = 15 with solid and dashed lines,
respectively.

parallelizing the implementation of PGCP.
Now, we separately analyze the two components of the

path cost, namely handover and traversal time. In Fig. 4 and
Fig. 5, we show the average number of handovers and the
average path traversal time per robot by applying PGCP to
MAPP-HP, MAPP-TP and MAPP-SNR. In Fig. 4, as expected,
the solution of MAPP-SNR presents the highest number of
handovers, whereas, an optimized selection of APs is able to
dramatically reduce the handovers per robot. In this regard,
MAPP-HP reduces the number of handovers by 50% with
respect to MAPP-TP. As shown in Fig. 5, MAPP-TP provides
the shortest traversal time per robot, which coincide with that
of MAPP-SNR. However, optimizing handovers by MAPP-HP
results in an increase of only the 5% with respect to MAPP-TP
that prioritizes the traversal time. We can observe that both in
Fig. 4 and Fig. 5, for all the presented MAPP objectives, the
handovers and the traversal time per robot increase either when
N increases or m decreases. More precisely, as introduced also
for Fig. 3, when N is large with respect to the value of m
and to the graph dimension, it is more likely that the robots’
paths diverge from the optimal ones in order to avoid collisions
or AP overloading. This results in longer traversal times and
higher number of handovers.

VI. CONCLUSION

In this work, we have proposed a novel type of multi-
robot association-path planning (MAPP) problems. In con-
trast to conventional robot path planning, MAPP takes into
consideration the radio coverage and aims to jointly optimize
robots’ paths and robot-AP associations. The optimization of
MAPP problems can be fundamental to satisfy throughput and
reliability requirements in mm-wave industrial scenarios.

We proposed an algorithm (PGCP) based on a column
generation scheme for solving several MAPP objectives. These
aim to jointly minimize the number of handovers and the path
traversal time. We have shown that PGCP can solve MAPP
in polynomial time and it is able to numerically approach the
global optimum. Moreover, PGCP is able to improve the initial
solution (provided by cooperative A*) while guaranteeing
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Fig. 5: Average path traversal time per robot by applying PGCP to
MAPP-HP and MAPP-TP with varying N and m. We show the results
for m = 50 and m = 15 with solid and dashed lines, respectively.
Note that MAPP-SNR presents the same average path traversal time
of MAPP-TP.

higher success rate. When handovers are prioritized over the
path traversal time, PGCP can reduce the handovers by 50%
with respect to problems that aim first to minimize the path
lengths and then optimize the robot-AP association. The gain
in terms of handovers is even higher with respect to solutions
without an optimized robot-AP association policy.

REFERENCES

[1] M. Cheffena, “Industrial wireless communications over the millimeter
wave spectrum: opportunities and challenges,” IEEE Communications
Magazine, vol. 54, no. 9, pp. 66–72, Sep. 2016.

[2] S. Saponara, F. Giannetti, B. Neri, and G. Anastasi, “Exploiting mm-
wave communications to boost the performance of industrial wireless
networks,” IEEE Transactions on Industrial Informatics, vol. 13, no. 3,
pp. 1460–1470, June 2017.

[3] S. Kutty and D. Sen, “Beamforming for millimeter wave communica-
tions: An inclusive survey,” IEEE Communications Surveys Tutorials,
vol. 18, no. 2, pp. 949–973, Second-quarter 2016.

[4] T. Standley, “Finding optimal solutions to cooperative pathfinding prob-
lems,” in AAAI Conference on Artificial Intelligence, July 2010.

[5] J. Yu and S. M. LaValle, “Optimal multirobot path planning on graphs:
Complete algorithms and effective heuristics,” IEEE Transactions on
Robotics, vol. 32, no. 5, pp. 1163–1177, Oct. 2016.

[6] G. A. Hollinger and S. Singh, “Multirobot coordination with periodic
connectivity: Theory and experiments,” IEEE Transactions on Robotics,
vol. 28, no. 4, pp. 967–973, Aug. 2012.

[7] U. Ali, H. Cai, Y. Mostofi, and Y. Wardi, “Motion-communication
co-optimization with cooperative load transfer in mobile robotics: An
optimal control perspective,” IEEE Transactions on Control of Network
Systems, vol. 6, no. 2, pp. 621–632, June 2019.

[8] R. Baldemair et al., “Ultra-dense networks in millimeter-wave frequen-
cies,” IEEE Communications Magazine, vol. 53, no. 1, pp. 202–208,
Jan. 2015.

[9] M. Xiao et al., “Millimeter wave communications for future mobile
networks,” IEEE Journal on Selected Areas in Communications, vol. 35,
no. 9, pp. 1909–1935, Sept. 2017.

[10] M. Van Den Akker, R. Geraerts, H. Hoogeveen, and C. Prins, “Path
planning for groups using column generation,” in Proceedings of the
Third International Conference on Motion in Games. Springer-Verlag,
2010, pp. 94–105.

[11] J. Yu, “Intractability of optimal multirobot path planning on planar
graphs,” IEEE Robotics and Automation Letters, vol. 1, no. 1, pp. 33–40,
Jan. 2016.

[12] D. Silver, “Cooperative pathfinding,” in AAAI Conference on Artificial
Intelligence, 2005, pp. 117–122.

[13] G. L. Nemhauser and L. A. Wolsey, Integer and Combinatorial Opti-
mization. Wiley-Interscience, 1988.

[14] 3GPP, “Study on channel model for frequencies from 0.5 to 100 GHz,”
Technical Report (TR) 38.901, 2017, version 14.2.0.


	I Introduction
	II System Model and Assumptions
	III Problem Formulation
	IV Algorithm
	IV-A Time-Coverage Expanded Graph
	IV-B Path Generation
	IV-C Finding an Integer Solution: Cooperative Pruning
	IV-D Algorithm Complexity

	V Numerical Results
	VI Conclusion
	References

