
\

Shawky, M. A., Jabbar, A. , Usman, M., Imran, M. , Abbasi, Q. H. , Ansari,

S. and Taha, A. (2023) Efficient blockchain-based group key distribution

for secure authentication in VANETs. IEEE Networking Letters, (doi:

10.1109/LNET.2023.3234491)

The material cannot be used for any other purpose without further

permission of the publisher and is for private use only.

There may be differences between this version and the published version.

You are advised to consult the publisher’s version if you wish to cite from

it.

https://eprints.gla.ac.uk/288768/

 Deposited on 04 January 2023

Enlighten – Research publications by members of the University of

 Glasgow

http://eprints.gla.ac.uk

https://doi.org/10.1109/LNET.2023.3234491
https://eprints.gla.ac.uk/288768/
http://eprints.gla.ac.uk/

Efficient Blockchain-based Group Key Distribution
for Secure Authentication in VANETs

Mahmoud A. Shawky , Abdul Jabbar , Student Member, IEEE, Muhammad Usman , Muhammad Imran ,
Qammer H. Abbasi , Shuja Ansari , Senior Member, IEEE, and Ahmad Taha , Member, IEEE

Abstract—This paper proposes a group key distribution scheme
using smart contract-based blockchain technology. The smart
contract’s functions allow for securely distributing the group
session key, following the initial legitimacy detection using public
key infrastructure-based authentication. For message authenti-
cation, we propose a lightweight symmetric key cryptography-
based group signature method, supporting the security and
privacy requirements of vehicular ad hoc networks (VANETs).
Our discussion examined the scheme’s robustness against typical
adversarial attacks. To evaluate the gas costs associated with
smart contract’s functions, we implemented it on the Ethereum
main network. Finally, comprehensive analyses of computation
and communication costs demonstrate the scheme’s effectiveness.

Index Terms—Authentication, Blockchain technology, Group
key distribution, Public key infrastructure, Smart contracts.

I. INTRODUCTION

Intelligent transportation systems are highly beneficial in
improving transportation safety and increasing productivity by
offering direct communication from vehicle to vehicle (V2V)
and from vehicle to infrastructure (V2I) [1]. In this context,
each vehicle in the vehicular ad hoc network (VANET) broad-
casts a traffic-related message to nearby terminals within a
time range of 100 to 300 msec [2]. This message contains
information regarding the vehicle’s location, speed, heading,
etc [1]. Considering the open nature of wireless vehicular
communication, VANETs are susceptible to passive and active
attacks such as interception, fabrication, and modification [3].
These attacks can be avoided by authenticating the received
message to determine the legitimacy of the sender [4]. Gener-
ally, a VANET architecture involves a trusted authority (TA),
roadside units (RSUs), and vehicles’ wireless communication
devices known as “onboard units” (OBUs) [3].

Conventional approaches of authentication in VANETs have
traditionally been investigated using elliptic curve cryptosys-
tem (ECC) [5], [6], bilinear pairing (BP) [7]–[9], and hashing
operations. Many factors have to be considered when devel-
oping an authentication scheme, including latency, complexity,
security, and privacy. The state-of-the-art for authentication is
divided into three categories: public key infrastructure (PKI),

This work was supported by the Egyptian Government and a grant funded
by the Egyptian Ministry of Defence.

M. Shawky, A. Jabbar, M. A. Imran, Q. H. Abassi, S. Ansari, and A.
Taha are with the Communication Sensing and Imaging group, James Watt
School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK
(m.shawky.1@research.gla.ac.uk, [Abdul.Jabbar, Muhammad.Imran, Qam-
mer.Abbasi, Shuja.Ansari, Ahmad.Taha]@glasgow.ac.uk).

M. Usman is with the School of Computing, Engineering and Built Envi-
ronment, Glasgow Caledonian University, Glasgow, G4 0BA, UK (muham-
mad.usman@gcu.ac.uk)

identity (ID), and group signature (GS)-based schemes [3].
For PKI-based schemes, each transmission is accompanied by
a digital certificate which certifies that the attached public key
belongs to the sender [3]. However, attaching a certificate to
each transmission creates a significant communication over-
head. Furthermore, a large storage capacity is needed to store
a large number of digital certificates (∼ 43800 [1]). For ID-
based schemes, messages are verified by the recipient using the
sender’s public key and signed by the terminal’s private key
[5]. Nevertheless, generating and verifying signatures based
on public key cryptography is computationally expensive [10].
For GS-based schemes, group members sign messages anony-
mously, supporting identity anonymity [7]. However, existing
GS-based schemes suffer from high computation and commu-
nication costs for generating and distributing group public and
private keys. In addition, these keys must be updated periodi-
cally to provide forward and backward secrecy. To overcome
these limitations, blockchain-based authentication has emerged
in recent studies. In [11], Otoum et al. introduce a Federated
Learning-based framework for authenticating transactions in a
decentralized pattern. Lu et al. [12] employed the blockchain
to develop a proof of revocation and issuance of certificates.
Son et al. [13] proposed a consortium blockchain-based V2I
handover authentication protocol. Nevertheless, developing a
reliable group key distribution method remains challenging,
particularly in high mobility and dense traffic environments.

The following is a summary of the paper’s contributions.
• We propose a blockchain-based group key distribution

method that enables the RSU as a group manager to dis-
tribute and update the group session key between group
members with minimum communication and computation
costs using a smart contract. Accordingly, we develop a
lightweight GS-based message authentication process.

• The smart contract’s functionality is evaluated by imple-
menting its built-in functions and measuring its associated
gas costs using Ethereum’s main network (MainNet).

• Besides security analysis, the proposed scheme is exten-
sively compared to conventional approaches to prove its
superiority in reducing the computation and communica-
tion costs of verifying and transmitting messages.

The paper is organized as follows. Section II describes the
proposed scheme. Sections III and IV evaluate the security and
performance aspects. Finally, Section V concludes the paper.

II. THE PROPOSED SCHEME

This section goes into detail about the system and scheme
modeling. For simplicity, Table I lists the scheme’s notations.

https://orcid.org/0000-0003-3393-8460
https://orcid.org/0000-0002-5815-8412
https://orcid.org/0000-0001-6170-0922
https://orcid.org/0000-0003-4743-9136
https://orcid.org/0000-0002-7097-9969
https://orcid.org/0000-0003-2071-0264
https://orcid.org/0000-0003-1246-8981

TABLE I: Notations

Symbol Definition
SkTA, PkTA The system secret and private keys, respectively
SkRSUk

, PkRSUk
RSUk’s private and public keys, respectively

SkVi
, PkVi

Vi’s private and public keys, respectively
KGS , CGS The group session key and its encrypted parameter
SCRSUk

The smart contract deployed by RSUk

SCIDRSUk
The smart contract’s address

Ti, Tr σi’s timestamp and receiving time, respectively
T∆ The freshness expiry period [00:00:59]
PIDVi

The pseudo-identity of the vehicle Vi

Cert, TR The terminal’s digital certificate and its expiry date

N N+1 N-1

Blockchain Network
Cloud

Server
RSU

OBU

RSU Communication

Range

V2V

V2I

OBU

OBU

Fig. 1: System modeling.

A. System modeling

The network comprises the following entities - see Fig. 1.
1) Trusted authority (TA): The TA is a trusted third party

that initialises the system’s parameters and registers network
terminals. It is the only terminal that holds the link between
the vehicle’s real identity and its digital certificate. It also can
expose the vehicle’s real identity in case of misbehaving (i.e.,
constructing attacks or driving an unregistered vehicle).

2) Roadside units (RSUs): The RSUk serves as a group
manager responsible for the enrolment/revocation of vehicles
getting in/out from its coverage area. In addition, it updates
the group session key KGS dynamically to ensure forward
and backward secrecy. It is able to deploy and interact with its
smart contract SCRSUk

through transactions in the blockchain.
3) Vehicles’ onboard units (OBUs): Each vehicle serves as

a group member in a specific region and has a wireless com-
munication device to communicate with surrounding vehicles.
It is also capable of accessing the blockchain network and
invoking the ViewGSK function using SCRSUk

.
4) Smart contract-based blockchain: Smart contracts are

code-based digital agreements whose terms and conditions
are published on the decentralized blockchain network via
transactions and written in the Solidity programming lan-
guage. Algorithm (1) presents the smart contract of the KGS

distribution process with a command-by-command explana-
tion. In the proposed smart contract, four functions are in-
volved: Deployer, IssueGSK, UpdateGSK, and ViewGSK.
The Deployer() function is used to define the owner of

Algorithm 1: Smart Contract for GSKdistribution
Given: function name, parameter settings
Require: Setting up functions
struct V2V {uint PID; uint CGS;
} //Defining the types of the input parameters
address RSU = 0xcbb21012b86b594223E43FB9c5017662
4F357463b; //Defining the address of the RSU
mapping (uint → uint256) private PID2TX;//Defining a local
function “PID2TX” that maps PIDVi

to TxID
function Deployer () public {RSU = msg.sender;
} //Defining the SC’s deployer as the RSU
modifier onlyowner {require (msg.sender == RSU);
; }//Only the RSU can successfully run the Deployer function

V2V GSKdistribution1;
function IssueGSK (uint PID, uint CGS)
onlyowner public returns (uint, uint) {
GSKdistribution1.PID = PID;
GSKdistribution1.CGS = CGS;
return (GSKdistribution1.PID, GSKdistribution1.CGS)
} //Publishing a transaction Tx by the owner “RSU”, which
contains CGS associated with PIDVi

and retrieving TxID
function UpdateGSK (uint PID, uint256 TxID)
onlyowner public {PID2TX [PID] = TxID;
} //The owner “RSU” maps PIDVi

to TxID.
function ViewGSK (uint PID) public view returns
(uint256) {return PID2TX [PID];
} //This function can be invoked by any vehicle Vi using its
corresponding PIDVi

to retrieve TxID

the smart contract SC. In our scenario, the RSUk in
each region acts as the owner and the deployer of the
SCRSUk

. The IssueGSK(uint PID, uint CGS) function
can only be invoked by the owner RSUk to publish a
transaction Tx contains the encrypted group key CGS as-
sociated to the vehicle Vi’s pseudo-identity PIDVi , retriev-
ing the published Tx’s address TxID. Similarly, the Up-
dateGSK(uint PID, uint TxID) function can only be in-
voked by the owner RSUk and it is used to map the retrieved
TxID to PIDVi

. At last, the ViewGSK(uint PID) function
is invoked by Vi to retrieve TxID related to PIDVi

. Using
TxID, Vi obtains Tx’s contents, CGS , from the blockchain.

B. Scheme modeling
The proposed blockchain-based group signature scheme

involves four phases, i.e., initialisation, registration, group
session key generation, signature generation and verification.

1) Initialisation phase: TA performs the following steps to
initialise the system’s public and private parameters.

• TA chooses two prime numbers, p and q, with a length
of 160 bits used to initialise the elliptic curve E : y2 =
x3 + ax+ b mod p, where (a, b) ∈ Z∗

q in a condition of
∆ = 4a3 + 27b2 ̸= 0.

• TA chooses the generator g of length q and creates the
cyclic additive group G that combines all points on E
along with the infinity point O.

• TA randomly chooses the system secret key SkTA ∈ Z∗
q ,

then computes its related public parameter PkTA =
SkTA.g. In addition, TA chooses the SHA-256 hash
function H1 : {0, 1}∗ → {0, 1}N1 , where N1 = 256 bits.

• Finally, the public parameters are PPs = ⟨a, b, p, q, g,
PkTA, H1⟩.

2) Registration phase: TA performs the following steps to
register all network terminals.

• For each RSU, TA publishes RSUk’s smart con-
tract SCRSUk

and retrieves its associated address

N N+1 N-1

Blockchain Network
Cloud

Server

2.1. 𝑉𝑖 checks 𝑇1’s freshness.

2.2. 𝑉𝑖 checks if 𝐶𝑒𝑟𝑡𝑅𝑆𝑈𝑘 ∈ 𝐶𝑅𝐿.

2.3. 𝑉𝑖 verifies 𝜎1.

2.4. 𝑉𝑖 selects at random 𝑃𝐼𝐷𝑉𝑖.

2.5. 𝑉𝑖 encrypts 𝑃𝐼𝐷𝑉𝑖 to get 𝑀𝑉𝑖
 as

𝑀𝑉𝑖
= Enc𝐾𝑉𝑖−𝑅𝑆𝑈𝑘

(𝑃𝐼𝐷𝑉𝑖)

 where 𝐾𝑉𝑖−𝑅𝑆𝑈𝑘 = 𝑆𝑘𝑉𝑖 . 𝑃𝑘𝑅𝑆𝑈𝑘.

3.1. 𝑅𝑆𝑈𝑘 checks 𝑇2’s freshness.

3.2. 𝑅𝑆𝑈𝑘 checks if 𝐶𝑒𝑟𝑡𝑉𝑖 ∈ 𝐶𝑅𝐿.

3.3. 𝑅𝑆𝑈𝑘 verifies 𝜎2.

3.4. 𝑅𝑆𝑈𝑘 decrypts 𝑀𝑉𝑖
 to get 𝑃𝐼𝐷𝑉𝑖 as

𝑃𝐼𝐷𝑉𝑖 = Dec𝐾𝑉𝑖−𝑅𝑆𝑈𝑘
(𝑀𝑉𝑖

).

 where 𝐾𝑉𝑖−𝑅𝑆𝑈𝑘 = 𝑆𝑘𝑅𝑆𝑈𝑘 . 𝑃𝑘𝑉𝑖.

3.5. 𝑅𝑆𝑈𝑘 stores 〈𝐶𝑒𝑟𝑡𝑉𝑖 , 𝑃𝐼𝐷𝑉𝑖〉.

4.1. 𝑅𝑆𝑈𝑘 encrypts 𝐾𝐺𝑆 to get 𝐶𝐺𝑆 as

𝐶𝐺𝑆 = Enc𝐾𝑉𝑖−𝑅𝑆𝑈𝑘
(𝐾𝐺𝑆).

4.2. 𝑅𝑆𝑈𝑘 publishes 𝐶𝐺𝑆 by invoking

IssueGSK(𝑃𝐼𝐷𝑉𝑖 , 𝐶𝐺𝑆) and retrieving 𝑇𝑥𝐼𝐷.

4.3. 𝑅𝑆𝑈𝑘 maps 𝑇𝑥𝐼𝐷 to 𝑃𝐼𝐷𝑉𝑖 using

UpdateGSK(𝑃𝐼𝐷𝑉𝑖 , 𝑇𝑥𝐼𝐷).

Fig. 2: Group session key distribution process.

SCIDRSUk
. After that, TA chooses the RSUk’s pri-

vate key SkRSUk
∈ Z∗

q and computes its related pub-
lic parameter PkRSUk

= SkRSUk
.g. Then, TA gener-

ates RSUk’s long term digital certificate CertRSUk
=

⟨PkRSUk
, TR, σTA⟩, where TR is the expiry date and

σTA = SignSkTA
(PkRSUk

∥TR). At last, TA stores
⟨PPs, SkRSUk

, CertRSUk
, SCIDRSUk

⟩ onto RSUk.
• As for each vehicle Vi, TA checks the Vi’s real identity

RIDVi , chooses the Vi’s private key SkVi ∈ Z∗
q and com-

putes its related public parameter PkVi = SkVi .g. Then,
TA generates Vi’s long term digital certificate CertVi

=
⟨PkVi

, TR, σTA⟩, where σTA = SignSkTA
(PkVi

∥TR).
At last, TA stores ⟨PPs, SkVi

, CertVi
⟩ onto Vi.

3) Group session key generation phase: As shown in Fig.
2, this phase comprises the following steps:

• Step 1: In each region, there is a RSUk that period-
ically broadcasts an enrollment message in the form
of ⟨T1, SCIDRSUk

, CertRSUk
, σ1⟩, where T1 is the

timestamp and the signature σ1 = SignSkRSUk
(T1∥

SCIDRSUk
∥ CertRSUk

).
• Step 2: For each vehicle Vi in the communica-

tion range of the RSUk, Vi checks T1’s freshness
by finding out if Tr − T1 ≤ T∆ holds or not
to avoid replay attacks, verifies the signature σ1 as
VerfPkRSUk

(σ1) to avoid impersonation attacks, and
checks if CertRSUk

∈ CRL. Then, Vi replies with a mes-
sage in the form of ⟨T2,MVi , CertVi , σ2⟩, where MVi =
EncKVi−RSUk

(PIDVi
), KVi−RSUk

= SkVi
.PkRSUk

,
PIDVi

is a random number {0, 1}N2 of length N2 = 256
bits chosen by Vi, and σ2 = SignSkVi

(T2∥MVi∥CertVi).
• Step 3: The RSUk in turn checks T2’s freshness,

verifies the signature σ2 as VerfPkVi
(σ2), checks if

CertVi
∈ CRL, then decrypts MVi

to get PIDVi
as

DecKVi−RSUk
(MVi

), where KVi−RSUk
= SkRSUk

.PkVi

(using Diffie-Hellman key exchanging protocol). At last,
RSUk stores CertVi and its associated PIDVi .

• Step 4: The RSUk encrypts the group session key KGS

to get CGS = EncKVi−RSUk
(KGS) and uses the Is-

sueGSK(PIDVi , CGS) function to publish CGS related
to PIDVi through a transaction Tx. At last, RSUk

maps the transaction address TxID to PIDVi
using the

UpdateGSK(PIDVi
, TxID) function.

• Step 5: Finally, Vi retrieves TxID by calling the
ViewGSK(PIDVi) function using SCIDRSUk

. By using
TxID, Vi can obtain the transaction Tx information,
including CGS . At last, Vi decrypts CGS to get KGS

as DecKVi−RSUk
(CGS).

Note that the SC’s IssueGSK and UpdateGSK functions
allow the RSUk to dynamically update KGS of group mem-
bers without incurring an additional communication cost.

4) Signature generation and verification phase: In this
phase, the signature is generated by Vi and verified by the
group members Vj (i.e., surrounding vehicles) ∀j ∈ [1, N−1],
where N is the total number of vehicles in the communication
range of RSUk. This phase is presented in a two-step process.

• Step 1: Vi broadcasts a safety-related message m to
surrounding vehicles in the form of ⟨m,T3, P IDVi

, σ3⟩,
where σ3 = EncKGS

(H1(m∥T3∥PIDVi
)).

• Step 2: ∀j ∈ [1, N−1], Vj checks T3’s freshness and ver-
ifies σ3 by testing if H1(m∥T3∥PIDVi

)
?
= DecKGS

(σ3)
holds or not.

III. SECURITY ANALYSIS

In this section, we demonstrate that the proposed scheme
complies with VANET security and privacy requirements.

A. Message authentication

The proposed scheme allows the group manager RSUk to
initially authenticate Vi using TA’s signature σTA ∈ CertVi

,
which proves Vi’s ownership to PkVi . Thus, it is hard to forge
a valid signature signed by SkVi under the difficulty of solving
the elliptic curve discrete logarithm problem (ECDLP). While
Vj verifies Vi’s signature for subsequent transmissions by
checking whether H1(m∥Ti∥PIDVi

)
?
= DecKGS

(σi) holds,

wherein σi’s security level depends on the key length |KGS |
used for generating σi using symmetric key cryptography.

B. Conditional privacy/Identity anonymity

Conditional privacy is maintained since only TA retains the
link between CertVi and RIDVi , preventing the identification
of RIDVi

by any other terminals inside the network.

C. Unlinkability

The proposed SCRSUk
supports unlinkability as no terminal

can link between CertVi
and the dynamically updated PIDVi

since PIDVi is sent encrypted to RSUk and published de-
crypted in the blockchain, making it infeasible to track Vi’s
transmitted messages from different sessions.

D. Resistance to active attacks

This scheme proves to be resistant to the following attacks.
1) Resistance to modification: To modify the message con-

tents, an attacker needs to forge a valid signature which is in-
feasible without having the group session key KGS . Therefore,
the recipient can easily detect modification attacks by verifying
the attached signature H1(m∥Ti∥PIDVi

)
?
= DecKGS

(σi).
2) Resistance to impersonation: To impersonate Vi, an

attacker needs to generate a valid signature using SkVi at
the first transmission slot. In other words, the attacker needs
to deduce SkVi

from PkVi
= SkVi

.g under the difficulty of
solving the ECDLP.

3) Resistance to replaying: The attached timestamp Ti

allows the recipient to verify the received messages’ freshness
in the same session by checking if Tr−Ti ≤ T∆ holds. While
the dynamically updated KGS resists replaying attacks from
different sessions, supporting forward and backward secrecy.

IV. PERFORMANCE ANALYSIS

This section evaluates the performance of the proposed
scheme by implementing it on the Ethereum blockchain and
measuring its computation and communication costs.

A. Implementation in the Ethereum blockchain

To discuss the feasibility of our scheme, we implement
SCRSUk

on the Remix 0.25.4 compiler, an open-source smart
contracts-based blockchain system. Remix-based smart con-
tracts are written in Solidity, a javascript-like language. Using
the MeteMask, a chrome plug-in extension, we deploy
and interact with SCRSUk

’s functions in the Ethereum
MainNet. Following are the details of the implementation.

1) In MeteMask, we set up two accounts with different
addresses for the RSUk and Vi, as shown in Fig. 3(a).
Then, we charge the RSUk’s account and deploy the
smart contract SCRSUk

in the blockchain network,
retrieving its associated address SCIDRSUk

=
0xCF180843dA8E6fe5Ae3F7baE982e62640d430C.
Fig. 3(b) shows SCRSUk

’s functions. More details
about the deployment are given in Fig. 3(c), including
the gas cost of deploying SCRSUk

.
2) We simulate that RSUk generates CGS and publishes

it using the IssueGSK function, invoking the published

(a) Terminals’ accounts. (b) Smart contract’s functions.

(c) The cost of deploying the smart contract.

Fig. 3: Terminals’ addresses and SCRSUk
’s functions.

transaction’s address TxID. At last, the RSUk maps
TxID to PIDVi using the UpdateGSK function.

3) Switching to Vi’s account and using SCIDRSUk
, Vi

obtains TxID by calling the ViewGSK function. At
last, Vi retrieves Tx contents, CGS , from the blockchain
using TxID.

In Table II, we show the gas costs per Wei for SCRSUk
’s

functions, where Wei is the smallest unit in ETH, 1 ETH
= 1018 Wei. It is noteworthy to mention that the Deployer
function is the most expensive in terms of gas costs. Since this
process is only performed once, it is relatively inexpensive. As
for the actual costs of IssueGSK, UpdateGSK, and ViewGSK
functions, these are 0.0024, 0.0004, and 0.0003 ETH, respec-
tively, which is acceptable for group key distribution.

B. Computation and communication comparisons

This subsection shows a detailed analysis of computation
and communication costs.

1) Computation comparison: We use the same estimates of
time costs for different cryptographic operations in [13], see
Table III. This evaluation is based on the MIRACL crypto-
graphic library [14] using a quad-core i7 system with 16GB
RAM. Based on that, we evaluate the time taken to verify
a number of n received messages by the schemes presented
in [5], [6], [9], and Ours, see Table IV. As can be seen,
[5], [6], and [9] take ≈ (4.489n + 2.97), (2.992n + 2.978),
and (7.62n+5.042) msec, respectively to verify n messages.
While the proposed scheme costs ≈ 0.004n msec. Fig. 4(a)
shows the time taken to verify 1000 messages. In compar-
ison with [5], [6], and [9], the proposed scheme is more
computationally efficient since [5], [6], and [9] are public-
key cryptography-based, whereas Ours is a symmetric key
cryptography-based.

2) Communication comparison: For the evaluation of com-
munication costs, we define different parameters’ lengths. For
ECC’s parameters of curve type y2 = x3 + ax+ b mod p, the

TABLE II: Gas costs associated with SCRSUk
’s functions

Function Gas used (Wei) Actual cost (ETH)
Deployer 263591 0.002445
IssueGSK 69064 0.00049
UpdateGSK 46594 0.000308
ViewGSK No fees No fees

TABLE III: The average execution time of different crypto-
graphic operations in msec [13]

Operation Definition Time
T bp The bilinear pairing operation e(., .) in G1 13.44
T sm
bp The scalar multiplication operation in G1 2.521

T pa
bp The point addition operation in G1 0.018

T sm
ecc The scalar multiplication operation in G 1.489

T pa
ecc The point addition operation in G 0.008

Th The hashing operation (SHA-256) 0.003
T enc
AES Encryption operation using the AES algorithm 0.002

T dec
AES Decryption operation using the AES algorithm 0.001

TABLE IV: Computation and communication comparisons

Scheme Verification cost Transmission cost
[5] (3n+ 2)T sm

ecc + (2n− 1)T pa
ecc +

(2n)Th ≈ 4.489n+ 2.97 msec
144n bytes

[6] (2n+ 2)T sm
ecc + (n)T pa

ecc + (2n)Th 144n bytes
≈ 2.992n+ 2.978 msec

[9] (3n+ 2)T sm
bp + (3n)T pa

bp + (n)Th 408n bytes
≈ 7.62n+ 5.042 msec

Ours (n)Th + (n)T dec
AES 68n bytes

≈ 0.004n msec

length of an element in G and Z∗
q are 40 and 20 bytes, respec-

tively. For BP’s parameters of curve type y2 = x3+x mod p,
the length of an element in G1 and Z∗

q are 128 and 20
bytes, respectively. While the length of the hashed value and
timestamp are 32 and 4 bytes, respectively. According to [5],
⟨PID1

i , P ID2
i , Ri, Ti, σm⟩ represents the signature, where

{PID1
i , P ID2

i , Ri} ∈ G, σm ∈ Z∗
q , and Ti is the timestamp.

Thus, the total signature size is (3×40+4+20) = 144 bytes.
Similarly, we calculated the transmission costs of [6] and [9],
as presented in Table IV. According to Ours, ⟨Ti, P IDVi

, σi⟩
represents the signature, where PIDVi

and σi have the same
length, 32 bytes each, and Ti is the timestamp. Thus, the total
signature size is (2 × 32 + 4) = 68 bytes. Fig. 4(b) shows
the communication cost of transmitting 1000 messages. From
Fig. 4(b), we conclude that the proposed scheme saves high
communication costs over those in [5], [6], and [9].

V. CONCLUSIONS

This paper proposes a blockchain-based group key distri-
bution technique that exploits the immutability of blockchain
technology to distribute group session keys among group
members via a smart contract. The smart contract’s functions
enable the group manager to distribute and update the group
key in a secure manner without violating VANET’s security or
privacy requirements. The scheme was tested for its resistance
to active attacks. Additionally, the computation comparison
demonstrated that the proposed scheme reduces the time

(a) Computation comparison. (b) Communication comparison.

Fig. 4: Computation and communication costs of verifying and
transmitting a number of n messages.

needed to verify 1000 messages by 99% when compared to
that of [5], [6], and [9]. While the transmission cost is reduced
by 52.7% and 83.3% compared to that of [5], [6] and [9],
respectively. Our future research will include examining how
physical layer-based key extraction can be used to design a
dynamic message authentication scheme for VANETs.

REFERENCES

[1] M. A. Al-Shareeda, M. Anbar, and I. H. Hasbullah, “Survey of Authen-
tication and Privacy Schemes in Vehicular Ad Hoc Networks”, IEEE
Sensors Journal, vol. 21, no. 2, Jan. 2021.

[2] J. B. Kenney, “Dedicated Short-Range Communications (DSRC) Stan-
dards in the United States”, in Proceedings of the IEEE, vol. 99, no. 7,
pp. 1162-1182, Jul. 2011.

[3] I. Ali, A. Hassan, and F. Li, “Authentication and Privacy Schemes
for Vehicular Ad Hoc Networks (VANETs): A Survey”, Vehicular
Communications, vol. 16, pp. 45-61, Apr. 2019.

[4] D. D. N. Nguyen, K. Sood, M. R. Nosouhi, Y. Xiang, L. Gao, and L Chi,
“RF Fingerprinting-Based IoT Node Authentication Using Mahalanobis
Distance Correlation Theory”, IEEE Net. Let., vol. 4, no. 2, Jun. 2022.

[5] D. He, S. Zeadally, B. Xu, and X. Huang, “An Efficient Identity-based
Conditional Privacy-Preserving Authentication Scheme for Vehicular Ad
Hoc Networks”, IEEE Trans. Inf. Forensics Security, vol. 10, no. 12, pp.
2681–2691, Dec. 2015.

[6] J. Li, K. -K. R. Choo, W. Zhang, et al., “EPA-CPPA: An Efficient,
Provably-Secure and Anonymous Conditional Privacy-Preserving Au-
thentication Scheme for Vehicular Ad Hoc Networks”, Journal of
Vehicular Communications, vol. 13, Jul. 2018.

[7] C. Zhang, X. Xue, L. Feng, X. Zeng, and J. Ma, “Group-Signature and
Group Session Key Combined Safety Message Authentication Protocol
for VANETs”, IEEE Access, vol. 7, pp. 178310-178320, Jan. 2019.

[8] H. Liu, H. Wang, and H. Gu, “HPBS: A Hybrid Proxy based Authen-
tication Scheme in VANETs”, IEEE Access, vol. 8, Sep. 2020.

[9] J. Li, Y. Ji, K. -K. R. Choo, and D. Hogrefe, “CL-CPPA: Certificate-Less
Conditional Privacy-Preserving Authentication Protocol for the Internet
of Vehicles”, IEEE Internet of Things Journal, vol. 6, no. 6, pp. 10332-
10343, Dec. 2019.

[10] G. Bansal, and Biplab Sikdar, “Location Aware Clustering: Scalable
Authentication Protocol for UAV Swarms”, IEEE Net. Let., vol. 3, no.
4, Dec. 2021.

[11] S. Otoum, I. A. Ridhawi, and H. Mouftah, “A Federated Learning and
Blockchain-enabled Sustainable Energy-Trade at the Edge: A Frame-
work for Industry 4.0”, IEEE Internet of Things Journal, Jan. 2022.

[12] Z. Lu, W. Liu, Q. Wang, G. Qu, and Z. Liu, “A Privacy-Preserving
Trust Model Based on Blockchain for VANETs”, IEEE Access, vol. 6,
pp. 45655-45664, Aug. 2018.

[13] S. Son, J. Lee, Y. Park, Y. Park, and A. K. Das, “Design of Blockchain-
Based Lightweight V2I Handover Authentication Protocol for VANET”,
IEEE Trans. on Net. Sci. and Eng., vol. 9, no. 3, Jun. 2022.

[14] MIRACL Crypto Library: Multiprecision Integer and Rational Arith-
metic C/C++ Library. Available: https://github.com/miracl/MIRACL.

	Cover Sheet (AFV)
	288768
	Introduction
	The proposed scheme
	System modeling
	Trusted authority (TA)
	Roadside units (RSUs)
	Vehicles' onboard units (OBUs)
	Smart contract-based blockchain

	Scheme modeling
	Initialisation phase
	Registration phase
	Group session key generation phase
	Signature generation and verification phase

	Security Analysis
	Message authentication
	Conditional privacy/Identity anonymity
	Unlinkability
	Resistance to active attacks
	Resistance to modification
	Resistance to impersonation
	Resistance to replaying

	Performance analysis
	Implementation in the Ethereum blockchain
	Computation and communication comparisons
	Computation comparison
	Communication comparison

	Conclusions
	References

