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Optimal Task Allocation for Battery-Assisted and
Price-Aware Mobile Edge Computing

Tao Deng, Lei You, Zhanwei Yu, and Di Yuan

Abstract—In this paper, we propose a battery-assisted ap-
proach to improve energy efficiency for mobile edge computing
(MEC) networks by utilizing the space-time-varying charac-
teristics of electricity price. We formulate a price-aware task
allocation problem (PATA) that jointly considers the cost for
task computation, the cost of task offloading, and the cost of
battery degradation. PATA is seemingly a mixed integer non-
linear programming problem. By a graph-based reformulation,
solving PATA is mapped to finding minimum cost flows or convex
cost flows in the graph. This discovery reveals that the global
optimum of PATA is obtained in polynomial time. Performance
evaluation manifests that the proposed approach significantly
outperforms other approaches.

Index Terms—Battery-assisted, convex cost flow, minimum cost
flow, mobile edge computing.

I. INTRODUCTION

Mobile Edge Computing (MEC) is one of the key tech-
nologies of future sixth-generation (6G) networks, with the
concept of deploying computing capabilities at the communi-
cation network edge [1], e.g., base stations (BSs). Some MEC
systems provide energy-demanding services, for which the
impact on energy consumption is non-negligible [2]. Thus, it is
important to improve the energy efficiency in MEC networks.
The existing works have made a lot of efforts. For example,
the works in [3] and [4] propose a cloud-edge collabora-
tive framework to optimize task offloading. The works in
[5] and [6] optimize the training process of a system-level
computing model in a cloud-edge collaborative framework.
The work in [7] investigates nonorthogonal multiple access
assisted computation offloading in multiaccess mobile edge
computing, and models a minimization problem of energy
consumption. For problem solving, the work proposes effective
algorithms for a static channel scenario and a dynamic channel
scenario, respectively. The works in [8] and [9] use energy
harvesting devices. All these works target energy efficiency as
a performance metric.

At present, in order to balance the energy usage and the
peak-to-average energy consumption ratio, the grid corpora-
tions are allowed to dynamically adjust the electricity price
[10]. The electricity price in off-peak periods is considerably
lower than that of peak-demand periods. Thus, the electricity
price varies in space as well as time. The works in [11]–
[14] investigate this aspect. In [11], the authors propose a
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framework for optimizing the use of renewable energy, and
formulate a energy cost minimization problem. For problem
solving, two approaches, based on quadratic programming
and variational methods, are developed. In [12], the authors
assume that the BSs are equipped with batteries and renewable
energy harvesting devices. The renewable energies can be
shared with each other. In [13], the work proposes a genie-
assisted strategy to optimize the renewable energy allocation.
The strategy considers the distance-induced energy loss and
the varying energy price. Simulation results show that the
renewable energy allocation is affected by the transmission
losses, the energy price, and the loads. In [14], the work
considers geographically varying energy prices and carbon
emission rates, and proposes a fuzzy set technique-based
algorithm to optimize the resources of both communication
and computation. Simulation results show that the proposed
algorithm achieves the tradeoff between energy cost and
carbon emissions. However, there is no work that utilizes the
space-time-varying characteristics of electricity price for MEC
networks with task offloading, thus motivating us to investigate
this aspect. Our contributions are as follows.

• We propose a battery-assisted MEC approach where the
batteries charge in off-peak periods, and then power MEC
servers in peak-demand periods. The price gap between
the two periods yields an energy cost gain. We consider
the cost of battery degradation as the battery powered
depth that is relevant to the battery lifetime. We formulate
a price-aware task allocation problem (PATA) jointly
considering the cost of task computation, the cost of task
offloading, and the cost of battery degradation.

• A direct formulation of our optimization problem falls
into the domain of mixed integer non-linear program-
ming, for which it is generally hard to derive the global
optimum of the problem. However, by a graph-based re-
formulation, we prove that solving PATA can be mapped
to finding minimum cost flows or convex cost flows in a
graph. Thus, the global optimum of PATA can be derived
in polynomial time.

• Via performance evaluations, we compare the proposed
approach to the energy sharing approach through the
smart grid and the task offloading approach with sleeping
mechanism. The results show that the proposed approach
achieves significantly improvements.

II. SYSTEM MODEL

A. System Scenario

Fig. 1 shows the battery-assisted MEC system scenario with
B base station (BS) and one management system unit (MSU).
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Figure 1. System scenario.

Each BS is equipped with a local MEC server and a battery.
Denote by B the set of BSs, B = {1, 2, . . . , B}. For each BS
i, computation tasks arrive its MEC server i with arrival rate
λi. We consider that λi is integer. The task arrival process is
assumed to follow a Poisson distribution. The service process
is assumed to follow an exponential distribution. Denote by
µi the service rate of server i. The MSU is responsible for
allocating computation tasks and energy management.

B. Electricity Price Model

Fig. 2 shows a typical electricity load and price shape in a
summer day in Pennsylvania, USA [10]. We observe that the
electricity price follows the load. When the load peaks, the
price also peaks. In addition, the electricity price in the peak
hour (at 18:00) is almost three times of that of an off-peak hour
(at 4:00). Based on this, we propose the approach of charging
the batteries in an off-peak period, and then battery-powering
MEC servers in a peak period. The price gap between the two
periods yields an energy cost gain. Denote by PS

i the energy
of battery i at the end of off-peak period. Denote by PD

i the
total consumed energy of battery i in the peak period. Denote
by cDi and cGi the electricity prices during off-peak and peak
periods for BS i, respectively, i ∈ B. If we consider the case
of dynamic loads and electricity prices over time in a day, the
modeling aspect becomes very complex. In order to derive
a tractable model, in our paper we consider the electricity
prices of two periods, i.e., the off-peak and peak periods, and
the load of the peak period. In fact, our model can tell the
cost benefit of the battery-assisted approach for any two time
periods by changing the values of cDi and cGi . Typically, there
are a few periods of busy hours and off-peak hours of a day,
and our approach target an off-peak period and the next peak
period. Thus, our approach can optimize task allocation at
an aggregate level, and a more micro-level adjustment can
then be applied in a later stage. In the peak period, the tasks
can be offloaded optimally among MEC servers, utilizing the
heterogenous electricity prices. That is, the allocation tells the
amount of tasks at aggregate level and therefore the time scale
between the varying electricity price and the task offloading
is consistent.
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Figure 2. Electricity load and price in a summer day in Pennsylvania [10].

Table I
AVERAGE ELECTRICITY PRICE BY STATE IN USA (UNIT: CENTS PER

KWH) [15].

State Residential Commercial Industrial
California 27.27 24.62 19.91

Oregon 11.59 9.09 7.33
Washington 10.37 9.48 7.19
Oklahoma 14.45 12.23 8.16

C. Computational and Offloading Costs
Table I shows an average electricity price for four states of

USA in August 2022 [15]. It can be observed that there are
large differences between the states. For example, the price
of California is two times higher than that of Washington.
Even in the same state, the prices of urban and rural areas are
different [16]. The former is typically higher than the latter.
Based on this, if some tasks are offloaded to other MEC servers
with lower electricity price, the total energy cost of completing
the tasks will be reduced. Denote by xij the number of tasks
offloaded from server i to server j, i, j ∈ B, i ̸= j. We consider
M/M/1 queuing model for a MEC server [17], by which the
total response time of completing the computation tasks in
server i, denoted by ti, is expressed in (1).

ti =
1

µi
(λi −

∑
j∈B,j ̸=i

xij +
∑

j∈B,j ̸=i

xji). (1)

In (1), if B = 1, The tasks are computed only by the MEC
server with respect to the BS. Denote by δi the power of server
i. Thus, the total energy for completing the computation tasks
on server i, denoted by Ei, is expressed as

Ei = tiδi. (2)

Thus, the total energy cost on server i, denoted by ∆1
i , is

expressed as

∆1
i = (Ei − PD

i )cGi + PD
i cDi , (3)

where the term Ei − PD
i represents that the amount of

consumed energy from the local grid. In (3), ∆1
i is a function

with respect to the decision variables of xij and PD
i . Denote

by ∆T
ij the transmission cost of a task from server i to server

j, accounting for the energy consumption incurred by the
transmission process [12]. The total transmission cost of tasks
from server i to other servers, denoted by ∆2

i , is expressed as

∆2
i =

∑
j∈B,j ̸=i

xij∆
T
ij . (4)
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D. Cost Model of Battery Degradation

A battery-assisted system can achieve the energy cost
gain, but it will also generate battery usage cost due to the
shortening of battery lifetime. In general, the battery-powered
depth is relevant to the battery lifetime [18]. For example, the
results in [19] manifest that battery lifetime is an exponential
function with respect to the battery-powered depth. However,
the exponential relation may not represent all the battery types.
For some battery technologies, the relation could be more
toward a linear one. Based on this, we assume that if the
battery powered depth increases, the battery lifetime decreases,
and the battery degradation increases. Thus, the degradation
cost of battery i, denoted by ∆3

i , is modeled as

∆3
i = α(

PD
i

PS
i

)n, (5)

where PD
i /PS

i , α, and n (n ≥ 1) denote the battery-
powered depth, the normalization factor with respect to the
grid’s electricity price in the peak-demand period, and a given
constant, respectively.

Therefore, the total cost including the energy consumption
cost for task completion, the task transmission cost, and the
battery degradation cost, denoted by ∆, is expressed in (6).

∆ =
∑
i∈B

(∆1
i +∆2

i +∆3
i ). (6)

III. PROBLEM FORMULATION

Our problem is to minimize ∆. PATA is expressed in (7).
The constraint in (7b) requires that for each server, the total

min
x,PD

∆ (7a)

s.t.
∑

j∈B,j ̸=i

xij ≤ λi, i ∈ B, (7b)

1

µi
(λi −

∑
j∈B,j ̸=i

xij +
∑

j∈B,j ̸=i

xji)δi ≥ PD
i , (7c)

0 ≤ PD
i ≤ PS

i , xij ∈ N, i, j ∈ B, i ̸= j (7d)

offloaded tasks to others do not exceed the number of tasks
arrived locally. The constraint in (7c) states that the total
consumed energy from the grid cannot be negative.

The objective function ∆ in (6) can be reexpressed as

∆ =
∑
i∈B

1

µi
(λi −

∑
j∈B,j ̸=i

xij +
∑

j∈B,j ̸=i

xji)δic
G
i

+
∑
i∈B

∑
j∈B,j ̸=i

xij∆
T
ij +

∑
i∈B

[
PD
i (cGi − cDi )− α(

PD
i

PS
i

)n
]
.

In the above function, the first two terms denote the cost com-
pleting all the tasks’ computation in the absence of batteries.
The last term denotes the total cost gain due to using the
batteries. We construct the function f(PD), which denotes
the last term and is expressed as

f(PD) =
∑
i∈B

[
PD
i (cGi − cDi )− α(

PD
i

PS
i

)n
]
. (8)

In f(PD), there are two terms with respect to PD
i , i.e.,

α(
PD

i

PS
i
)n and PD

i (cGi − cDi ). The function represents the cost
gain via using the batteries, and it is a convex function. Via
solving f(PD) = 0, we obtain two solutions, i.e., PD∗

i1
= 0

and PD∗

i2
= PS

i

[
(cGi −cDi )PS

i

α

] 1
n−1

. Comparing PD∗

i2
with the

domain of PD
i , we can determine the range of the optimum

of PD
i .

• If α ≤ PS
i (cGi −cDi ), PD∗

i2
≥ PS

i . In this case, f(PD) ≥
0 for any PD.

• If α > PS
i (cGi − cDi ), PD∗

i2
< PS

i : 1) When 0 ≤
PD
i ≤ PD∗

i2
, f(PD) ≥ 0. 2) When PD∗

i2
< PD

i ≤ PS
i ,

f(PD) < 0. Therefore, the optimum of PD
i will be in

the range of [PD∗

i1
, PD∗

i2
] in the global optimum of (7).

IV. PROBLEM SOLVING

Although PATA is formulated as a mixed integer non-linear
programming problem (MINLP), we will prove that obtaining
the global optimum of PATA is tractable. The idea is that
by a graph-based reformulation, solving PATA is mapped to
finding minimum cost flows or convex cost flows in the graph,
as shown in Fig. 3. The construction process of this graph,
however, is non-trivial.

A. Minimum Cost Flow Problem

The minimum cost flow problem (MCFP) is to send flow(s)
from supply node(s) to demand node(s) in a directed graph,
at minimum possible cost. Each arc in this graph has two
attributes, i.e., the cost per unit flow and flow capacity. A
feasible flow solution must satisfy two constraints, i.e., flow
balance constraint and capacity constraint. The former states
that for any node, the total incoming flow to the node plus
the supply of itself (if any) is equal to the total outgoing flow
of the node plus the demand of the node (if any). The latter
requires that for any arc, the flow does not exceed the capacity
of the arc.

B. Convex Cost Flow Problem

In MCFP, the cost of the flow on an arc is a linear function
with respect to the amount of flow. Different from MCFP,
in a convex cost flow problem (CCFP), the cost is a convex
function with respect to the amount of flow.

C. Graph-Based Reformulation

In Fig. 3, the red nodes are supply nodes, the black node
is a sink node, and the other nodes are transshipment nodes.
The red and yellow nodes represent MEC servers, and the
green nodes represent the batteries. The flows represent task
allocation, i.e., the optimization variable xij in PATA. There
are six types of entities, i.e., supply node i, arc (i, i′), arc (i, j),
arc (i′, Di), arc (i′, S), and arc (Di, S), i, j ∈ B, i ̸= j, where
i′ is an auxiliary node defined for node i.

1) Supply Nodes: The supply of node i represents tasks
that arrive MEC server i. Its amount supply is set to be λi.

2) Arc (i, i′): The arc (i, i′) models that some tasks are
computed in the supply node i. The cost of this arc is zero.
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3) Arc (i, j): The arc (i, j) allows the supply node i to
offload some tasks to node j, i, j ∈ B, i ̸= j. The cost
of this arc is ∆T

ij due to task transmission. The total cost
of these arcs is expressed as

∑
i∈B

∑
j∈B,j ̸=i xij∆

T
ij , which

corresponds to the second term of our objective function in
(6). Due to the flow balance constraint, for any supply node
i, the total outgoing flow to other nodes does not exceed the
supply of this node, i.e.,

∑
j∈B,j ̸=i xij ≤ λi, i ∈ B, which

corresponds to constraint (7b).
4) Arc (i′, Di): The arc (i′, Di) represents that the battery

i powers server i. The cost of this arc is equal to δi
µi
cDi , and the

capacity of this arc is equal to the maximum number of tasks
that can be supported by this battery, i.e.,

⌊
µi

δi
PS
i

⌋
. Here, note

that our optimization variable PD
i in fact is the flow on this arc

multiplied by δi
µi

. The total cost of these arcs corresponds to
the second term of ∆1

i . Due to the capacity and flow balance
constraints in the graph, constraints (7c) and (7d) are satisfied.

5) Arc (i′, S): The arc (i′, S) represents that server i is
powered by the grid. The cost of this arc is δi

µi
cGi , and the

capacity of this arc is infinity. The total cost of these arcs
corresponds to the first term of ∆1

i .
6) Arc (Di, S): The arc (Di, S), i ∈ B, represents the cost

of battery degradation. The cost of this arc is α( δi
µiPS

i
)n. If

n = 1, the cost is a linear function with respect to the flow.
For n > 1, it is a nonlinear but convex function with respect
to the flow. The capacity of this arc is µi

δi
PS
i due to the flow

balance constraint. The total cost of these arcs corresponds to
the last term of our objective function in (6).

By the above analysis, the objective function and constraints
in PATA are mapped to the total flow cost of the arcs and the
flow balance constraints, respectively. Therefore, solving PATA
corresponds to finding minimum cost flows (n = 1) or convex
cost flows (n > 1) in the graph.

.
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Unit flow cost

Unit flow cost

Capacity 
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nit flow
 costUnit flow cost

.

.

.
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Figure 3. Solving PATA corresponds to finding minimum cost flows or
convex cost flows from the supply nodes to the sink node.

D. Algorithm Summary

As the capacities of all the arcs and the supplies of all the
nodes are integer, the global optimum of MCFP can be derived
in polynomial time, e.g., by Orlin’s algorithm [20]. CCFP
has been widely studied in the existing works. For example,
the work in [21] has proposed a capacity scaling algorithm
to derive the global optimum of CCFP in polynomial time.
The proposed network flow algorithm (NFA) is summarized
in Algorithm 1.

Theorem 1. The global optimal solution of PATA can be
derived in polynomial time.

Algorithm 1: NFA algorithm
1: Map the objective function and constraints of PATA in (7) to the total

flow cost of the arcs and the flow balance constraints in the graph, as
shown in Fig. 3.

2: if n = 1 then
3: Solve PATA in (7) as to finding minimum cost flows in the graph,

and obtain its global optimum by Orlin’s algorithm [20].
4: else
5: Solve PATA in (7) as to finding convex cost flows in the graph, and

obtain its global optimum by a capacity scaling algorithm [21].

Proof: When n = 1, the graph in Fig. 3 can be solved in
polynomial time, with complexity O(Elog(E(E + V logV )))
(Orlin’s algorithm [20]), where E and V are the total number
of arcs and nodes, with E = B2+3B and V = 3B+1 respec-
tively. When n > 1, the graph in Fig. 3 can be solved in poly-
nomial time, with complexity O((ElogU)(V E + V 2logV ))
(capacity scaling algorithm [21]), where U is the maximum
capacity of any arc. Hence the theorem.

V. PERFORMANCE EVALUATION

The proposed approach is evaluated by comparing it to the
energy sharing approach (ESA) in [12] and the task offloading
approach with sleeping mechanism (TOAS) in [22]. In the
ESA algorithm, the total cost is minimized by exchanging
energy among BSs through the smart grid. In the TOAS
algorithm, the lightly loaded BSs are switched off in order
to save power. The tasks of a sleeping BS are offloaded to
other active BSs. The sleeping initiator is determined by the
average arrival rates of tasks The task arrival rate λi follows
a uniform distribution in [20, 50], and the task service rate µi

follows a uniform distribution in [1, 5], i ∈ B. The power of
MEC server i is set to be one, i ∈ B. The constant n is set
to be 2 [18]. The cost unit in Figs. 4-6 can be set to cents as
the unit of electricity price is cents/kwh, as shown in Fig. 2.

Figs. 4-6 show the comparison results. We have the fol-
lowing observations. First, in Fig. 4, with the increase of
MEC servers, the total cost grows. This is because the number
of computation tasks increases. Second, in Figs. 5 and 6,
when cGi /c

D
i and the total energy of battery increase, the

total cost decreases. This is because with the increase of
cGi /c

D
i , the gap between the electricity price between the off-

peak and peak periods grows, thus the cost benefit increases
due to using batteries. With the increase of the total energy
of battery, more cheaper energy can be stored and utilized.
Finally, the proposed approach outperforms TOAS and ESA.
The reason is that for TOAS, its sleeping initiator is associated
with only the average arrival rates of tasks and ignores the
impact of electricity price. As a result, a lightly loaded BS
with cheap electricity price may be switched off and a highly
loaded BS with expensive electricity price may be active,
thus generating a higher cost. For ESA, energy loss will
happen during the transmission process, thus reducing energy
utilization efficiency. In addition, ESA ignores the impact of
the battery degradation cost, resulting in a higher degradation
cost as some batteries deeply discharge.

This article has been accepted for publication in IEEE Networking Letters. This is the author's version which has not been fully edited and 
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VI. CONCLUSION

We have proposed a battery-assisted approach for MEC
networks and formulated a price-aware task allocation prob-
lem. By a graph-based reformulation, we have proven that
the global optimum of the problem can be derived in poly-
nomial time. The numerical results manifest that by utilizing
the space-time-varying characteristics of electricity price, the
proposed approach significantly reduces the total cost and
makes the task allocation more cost efficiently.
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