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Exact Solution of the Full RMSA Problem in
Elastic Optical Networks
Fabio David, José F. de Rezende, Valmir C. Barbosa

Abstract—Exact solutions of the Routing, Modulation, and
Spectrum Allocation (RMSA) problem in Elastic Optical Net-
works (EONs), so that the number of admitted demands is
maximized while those of regenerators and frequency slots used
are minimized, require a complex ILP formulation taking into
account frequency-slot continuity and contiguity. We introduce
the first such formulation, ending a hiatus of some years since
the last ILP formulation for a much simpler RMSA variation
was introduced. By exploiting a number of problem and solver
specificities, we use the NSFNET topology to illustrate the
practicality and importance of obtaining exact solutions.

Index Terms—Elastic optical networks, RMSA problem, con-
tinuity and contiguity constraints, ILP problem.

I. INTRODUCTION

Even though data transmission through optical fibers has
been a reality for a few decades, the constantly growing de-
mand for higher capacity and greater maximum reach has led
research and development in the field to be always evolving.
One of the most promising technologies that emerged in the
last decade or so and is now particularly well poised to play
an important role in the coming years is based on the concept
of an Elastic Optical Network (EON) [1]. Like networks based
on the more mature and still widely used Dense Wavelength
Division Multiplexing (DWDM) technology [2], EONs pro-
vide for the sharing of each link’s spectrum between end-to-
end demands, and also for the use of so-called regenerators at
certain nodes so that a signal nearing its modulation’s maxi-
mum reach can be regenerated and continue on its designated
end-to-end route. In both respects, however, EONs improve
on DWDM networks substantially. First, spectrum sharing in
EONs is based on relatively narrow, fixed-width frequency
slots (FSs) that can be concatenated to provide the demand
with higher, reduced-waste capacity. Second, by employing
modern optical transceivers, the same link can carry demands
using different modulations (hence with different numbers of
FSs if the demands have the same bandwidth). This means
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that an EON regenerator can change the modulation used to
serve a demand and along with it the number of FSs used.

Regenerators are expensive and must therefore be used spar-
ingly. The problem of selecting the nodes at which to install
them in a DWDM network is already a difficult problem in its
own right [3]. In EONs, however, this gets considerably more
complicated by the need to select not only which modulation to
use for each demand going through each regenerator but also
which FSs to allocate to it. In this case, an important concept is
that of a segment, which is a path between two nodes without
a regenerator at any intermediate node. Therefore, a path
containing R regenerators at intermediate nodes comprises
R+1 segments. While traversing any given segment, a demand
uses the same modulation and FSs on all the segment’s links.
Given the network topology and a set of available modulations,
each characterized by a bandwidth and a maximum reach, one
can readily enumerate all possible segments by considering all
paths on the graph. Given a set of demands, deciding how to
route them using these segments, and consequently how many
regenerators to deploy and where, is the NP-hard problem we
deal with in this letter, known as the Routing, Modulation, and
Spectrum Allocation (RMSA) problem [4].

We continue by describing the relevant state of the art and
our contribution in Section II, then in Sections III and IV
introduce two ILP formulations for RMSA that for the first
time consider some of the most relevant objectives in EONs
while abiding by every constraint they impose. We present
computational results and conclude in Section V.

II. STATE OF THE ART AND CONTRIBUTION

In EONs, FS concatenation inside a segment requires that
the FSs be perfectly aligned between successive links and,
on each link, that they be contiguous. These constitute a
continuity and contiguity (CC) criterion that must translate
into constraints in any RMSA formulation. With these and
other constraints in place, ideally multiple objectives should
be pursued, including admitting as many demands as possible
while globally using as few regenerators and FSs as possible.
To the best of our knowledge, the single previous attempt
to provide the RMSA problem with a formulation for exact
solution is the one in [5], which is an ILP formulation without
CC constraints that targets essentially the minimization of the
total number of regenerators to be deployed.

The formulation we introduce, called RMSA-BP to empha-
size the user-centric goal of minimizing the chance that a
demand is blocked, targets all three objectives and includes
CC constraints. We use the NSFNET topology to demonstrate
the practical feasibility of obtaining exact solutions, as well as
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to demonstrate potential benefits in analyzing critical network
properties.

III. RMSA-BP FORMULATION

We represent the network by an undirected graph G of
vertex set N and edge set E, where N is the set of network
nodes and E is the set of network links. Every link has the
same link capacity (LC), given by how many frequency slots
(FSs) it has. We use P to denote the set of segments, with
segment p ∈ P beginning at node sp and ending at node
tp, and Ip to denote the first link on segment p. The set
of demands is denoted by D, with demand d ∈ D being
characterized by its node of origin Sd, its node of destination
Td, and a bandwidth Bd. The number of FSs corresponding
to demand d on segment p is denoted by F d

p and given by
the ratio of Bd to the bandwidth provided by each FS for the
modulation used in p. We use Rmax to denote the maximum
number of regenerators that can be used per demand. Notably,
even though links in E are undirected, each segment in P is
inherently directed. Thus, a link can be traversed by a segment
in either of the link’s two directions.

RMSA-BP is stated in terms of one set of constants,
three sets of variables, and also some shorthands that allow
for a cleaner exposition. We give the full formulation next,
but divide the subsequent discussion into two separate parts,
depending on which variables, shorthands, and constraints
relate to the problem’s CC requirement. We use weights w1 ≫
w2 ≫ w3 in the objective function only to symbolize that the
problem’s three goals are to be prioritized in the following
order: 1) Maximize the number of admitted demands; 2)
Minimize the total number of regenerators used; 3) Minimize
the total number of FSs used. The specific technique we use
to enforce this prioritization is discussed in Section V.

max
∑
d∈D

(w1ad − w2Rd − w3Fd)

s.t.

xd
p ≤ ad ∀d ∈ D, p ∈ P (C1)

Cd
n =


ad if n = Sd

−ad if n = Td

0 otherwise
∀d ∈ D,n ∈ N (C2)

Rd ≤ Rmax ∀d ∈ D (C3)
zed ≤ Xe

d LC ∀d ∈ D, e ∈ E (C4)
zed + F e

d −Xe
d ≤ LC ∀d ∈ D, e ∈ E (C5)

Xe
dY

e
p z

e
d −X

Ip
d Y Ip

p z
Ip
d = 0 ∀d ∈ D, p ∈ P, (C6)

e ∈ p, e ̸= Ip∑
d,d′∈D
d ̸=d′

Oe
d,d′ = 0 ∀e ∈ E (C7)

For each p ∈ P and each e ∈ E, we use Y e
p to indicate

whether link e is part of segment p. In the affirmative case,
the direction of traversal of e by p is given implicitly by
nodes sp and tp. The Y e

p ’s are binary constants whose values
(from {0, 1}) are assigned along with the determination of the
network’s set of segments P (see Section I). The essential

variables for use when the CC requirement is disregarded are
all binary as well and are grouped into two sets: ad, for each
d ∈ D, indicating whether demand d is admitted; and xd

p, for
each d ∈ D and each p ∈ P , indicating whether demand d
uses segment p. These variables are sometimes used directly in
the above formulation, and also sometimes indirectly through
the following shorthands:

Rd =
∑
p∈P

xd
p − ad, F e

d =
∑
p∈P

F d
p x

d
pY

e
p ,

Fd =
∑
e∈E

F e
d , Cd

n =
∑
p∈P
sp=n

xd
p −

∑
p∈P
tp=n

xd
p.

In these equations, Rd is the number of regenerators used by
demand d, F e

d is the number of FSs used by demand d on
link e, Fd is the total number of FSs used by demand d, and
Cd

n is the flow deficit at node n for demand d (that is, the
number of segments used by d that are outgoing from n in
excess of those that are incoming to n). If xd

p = 1 for at most
one segment p, then Cd

n ∈ {−1, 0, 1}.
Only Constraints (C1)–(C3), along with

∑
d∈D F e

d ≤ LC
for each e ∈ E, henceforth called Constraint (Cx) for the
sake of the argument, are needed if CC need not hold. Of
these, Constraints (C1) and (C2) take care of how the ad’s
and the xd

p’s relate to one another, as follows. A blocked
demand d (ad = 0) uses no segments (xd

p = 0 for every
p ∈ P ). An admitted demand d (ad = 1), on the other
hand, must imply a positive-unit flow deficit at its node of
origin (Cd

Sd
= 1), a negative-unit flow deficit at its destination

node (Cd
Td

= −1), and no flow deficit at any other node.
Additionally, Constraints (C3) and (Cx) work, respectively, to
ensure that no demand uses more than Rmax regenerators and
that, taken together, the demands using link e (d such that
xd
pY

e
p = 1 for some p ∈ P ) use no more than the link’s

available capacity (LC).
Contemplating the CC requirements depends on one further

set of variables, now taking values from {0, 1, . . . ,LC}. For
d ∈ D and e ∈ E, the new variable is zed and serves to indicate,
if greater than zero, the index of the first FS used by demand
d on link e. To use these variables more cleanly in the above
formulation, it has once again proven convenient to adopt the
following additional shorthands:

Xe
d = 1 if

∑
p∈P

xd
pY

e
p > 0; 0 otherwise,

Oe
d,d′ = 1 if zed ≤ zed′ ≤ zed + F e

d − 1; 0 otherwise.

Xe
d indicates whether demand d uses link e and Oe

d,d′ indicates
whether at least one of link e’s FSs is used by more than
one demand. Clearly, Xe

d = 0 if and only if F e
d = 0. The

shorthands Xe
d and Oe

d,d′ can be used to constrain the values
of the zed’s so that the CC requirement is enforced.

Constraints (C4)–(C7) are now needed. Constraint (C4) is
used to ensure that zed is not a valid FS index (zed = 0) when
demand d does not use link e (Xe

d = 0). If demand d does use
link e (Xe

d = 1), then Constraint (C5) ensures that the value of
zed is such that the indices of the remaining F e

d −Xe
d = F e

d −1
FSs are no higher than LC. When demand d uses link e ̸= Ip
on segment p (Xe

dY
e
p = X

Ip
d Y

Ip
p = 1), Constraint (C6)
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ensures continuity by enforcing zed = z
Ip
d . Contiguity is

ensured by Constraint (C7), according to which no two distinct
demands d, d′ can be such that zed′ ∈ {zed, . . . , zed + F e

d − 1}
for any link e. Constraints (C4)–(C7) subsume Constraint (Cx),
which is therefore not part of the formulation.

IV. RMSA-BP FORMULATION, REVISITED

The formulation given in Section III is correct in terms
of reflecting our understanding of the problem’s three con-
comitant objectives, and also in terms of laying down the
constraints that guide the assignment of values to its variables.
However, in preliminary experiments it proved excessively
time-consuming even in relatively simple cases, owing mainly
to the need to comply with the CC requirement, that is,
the need to satisfy Constraints (C4)–(C7). In this section
we describe two alterations to the formulation that ended
up making considerable difference in terms of performance.
Together with some fine-tuning of the solver employed, to be
described in Section V, these alterations have made it possible
to enlarge the range of exactly solvable instances quite widely.

The first alteration is to incorporate a preprocessing step
(i.e., a step prior to calling the solver). This step creates,
for each d ∈ D, a set Sd comprising all solutions that
admit demand d while complying with Constraints (C2), (C3),
and (Cx). Each solution s ∈ Sd is therefore an assignment of
values to the xd

p’s that fully comply with the flow-conservation
requirement in Constraint (C2) for ad = 1, as well as with
the upper bounds Rmax and LC imposed by Constraints (C3)
and (Cx), respectively. Such explicit enumeration is in general
out of the question, but in the case at hand it has proven
feasible for many instances of the problem. This is owed
mainly to the pruning effect of Rmax, which as mentioned
in Section I is in practice already assigned a small value.

For s ∈ Sd, we denote the value assigned to each xd
p during

preprocessing by xd
p(s). These values give rise to the following

useful constants:

Rs
d =

∑
p∈P

xd
p(s)− 1,

F s
d =

∑
e∈E

∑
p∈P

F d
p x

d
p(s)Y

e
p ,

Xe,s
d = 1 if

∑
p∈P

xd
p(s)Y

e
p > 0; 0 otherwise.

Rs
d is the number of regenerators used by demand d in solution

s, F s
d is the total number of FSs used by demand d in solution

s, and Xe,s
d indicates whether demand d uses link e in solution

s. The revised RMSA-BP formulation we present uses three
sets of variables: xs

d, a binary variable for each d ∈ D and
each s ∈ Sd, indicating whether demand d uses solution s;
the zed’s already used in Section III; and the binary variables
oe(d,d′) and oe(d′,d), for each unordered pair (d, d′) of distinct
demands from D and each link e ∈ E, used in simplifying the
enforcement of the contiguity part of the CC requirement. We
denote the set of such unordered pairs by D2

u. The formulation
also uses the shorthand

Ad =
∑
s∈Sd

xs
d.

Ad is the number of solutions in Sd that demand d uses and,
provided xs

d = 1 for at most one solution s ∈ Sd, indicates
whether demand d is admitted. The objective function in the
first formulation can thus be rewritten as

φ =
∑
d∈D

(
w1Ad − w2

∑
s∈Sd

Rs
dx

s
d − w3

∑
s∈Sd

F s
dx

s
d

)
.

The revised RMSA-BP formulation is as follows.

max φ

s.t. ∑
s∈Sd

xs
d ≤ 1 ∀d ∈ D (R1)

(Xe,s
d Y e

p z
e
d ∀d ∈ D, p ∈ P, (R2)

−X
Ip,s
d Y Ip

p z
Ip
d )xs

d = 0 e ∈ p, e ̸= Ip,

s ∈ Sd

oe(d,d′) + oe(d′,d) ≤ 1 ∀(d, d′) ∈ D2
u, (R3)

e ∈ E

zed + F e
d ≤ zed′ +Moe(d,d′) ∀(d, d′) ∈ D2

u, (R4)

e ∈ E

zed′ + F e
d′ ≤ zed +Moe(d′,d) ∀(d, d′) ∈ D2

u, (R5)

e ∈ E

Constraint (R1) ensures that no demand d uses more than
one solution from Sd. Constraints (R2)–(R5) target the CC
requirement, with Constraint (R2) ensuring that continuity
holds and the remaining three taking care of contiguity.
Constraints (R3)–(R5) implement the second performance-
oriented alteration mentioned earlier in this section. The
reason why ensuring contiguity has such negative impact
on the performance of the first RMSA-BP formulation is
the roundabout way Constraint (C7) approaches it. A much
more direct way would be to do something in the style of
the M -independent part of Constraints (R4) and (R5), viz.,
zed + F d

e ≤ zed′ and zed′ + F e
d′ ≤ zed for each unordered pair

(d, d′) of demands. These, however, can never be concomi-
tantly satisfied, essentially forcing an a priori choice between
them. This impossibility is what the M -dependent part of the
two constraints helps circumvent. For a sufficiently large value
of M , and given that Constraint (R3) disallows the occurrence
of oe(d,d′) = oe(d′,d) = 1, it is possible, e.g., that Constraint (R4)
ends up enforcing zed + F d

e ≤ zed′ (with oe(d,d′) = 0) while
Constraint (R5) enforces zed′ + F e

d′ ≤ zed + M (oe(d′,d) = 1),
avoiding the superposition of the two demands’ FSs while
opening up the possibility of zed < zed′ . Clearly, to ensure that
the two constraints function in this way it suffices that we have
M > LC, so we use M = LC + 1 throughout. The overall
strategy is known as the bigM approach to handle indicator-
dependent constraints efficiently [6].

V. COMPUTATIONAL RESULTS AND CONCLUSION

Our computational experiments involved solving RMSA-BP,
as formulated in Section IV, on a computer with two AMD
EPYC 7763 64-core processors and 512 GB RAM. We used
the Gurobi 9.5.2 solver along with the NetworkX 3.1 Python
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TABLE I
AVERAGE BLOCKING AND USAGE RESULTS, 30 INSTANCES

|D| Rmax BD TR TFS Rmax BD TR TFS
100 1 1.0 43.4 1 265 2 0.6 42.4 1 263
110 1 4.4 55.1 1 292 2 2.9 59.0 1 283
120 1 7.5 55.7 1 329 2 5.1 64.8 1 319

TABLE II
TIMEOUTS AND EXECUTION TIMES (H:M:S), 30 INSTANCES

|D| Rmax TO Minimum Maximum 80th Percentile
100 1 2 00:03:06 15:48:10 00:50:44
110 1 3 00:04:15 14:03:06 01:28:03
120 1 8 00:14:24 14:24:14 01:57:48
100 2 4 00:07:52 29:39:28 04:42:32
110 2 1 00:03:39 12:27:29 03:51:46
120 2 4 00:08:26 14:03:24 08:34:09

package on the Debian 11 operating system. All the RMSA-
BP instances we considered are relative to a network with
the NSFNET topology and modulation, per-slot efficiency, and
maximum reach as in [5]. The experiment for each instance
consisted in preprocessing for solution enumeration followed
by optimization, and was allowed to run for no more than 30
hours before timeout. Gurobi was allowed no more than 32
parallel threads per instance.

Our use of the Gurobi solver was predicated on the adoption
of three of the features it offers that turned out to be of crucial
importance. First, to address the prioritization symbolized by
weights w1, w2, w3 in our formulation’s objective function,
we used the solver’s multi-objective hierarchical mode, which
allows a priority to be set for each individual objective and
ensures that they are optimized from highest to lowest priority.
Solving for an objective does not affect any solution found
when solving for higher-priority objectives. Second, to ensure
that the problem’s formulation is indeed of the ILP type,
we used the solver’s indicator-type constraints. These are
instrumental in view of the otherwise quadratic nature of
Constraint (R2). Third, we used the solver’s parameter tuning
tool (grbtune) prior to any actual experiment. This tool is
given one or more instances to solve and analyzes them
automatically to fine-tune the solver’s internal parameters.
Relying on the parameter values it outputs is based on the
expectation that they will likewise lead to good performance
on the instances it has not analyzed. We found this to be
generally true.

We used 90 instances for each value of Rmax, 30 of them
with |D| = 100, 30 with |D| = 110, and 30 with |D| = 120.
Each demand d had bandwidth Bd = 100 Gbps, and nodes of
origin Sd and destination Td chosen uniformly at random. We
initially used LC = 160 but this never resulted in any demand
being blocked. We then turned to LC = 80, which made it
possible for links to saturate and more interesting results to
be observed. We report on the LC = 80 cases exclusively.

For Rmax = 1, 2, in Table I we show the average number
of blocked demands (BD ≤ |D|), the average total number
of regenerators used (TR ≤ |D|Rmax), and the average total
number of FSs used per demand (TFS ≤ 21LC = 1680,
since the NSFNET has 21 links). In Table II, we see that the

Fig. 1. Link-usage heat map for |D| = 30 (A), 60 (B), 90 (C), 120 (D).

number of timeouts (TO ≤ 30) was consistently low, however
with considerable variation in execution times for successful
instances. This notwithstanding, for 24 (80%) of the instances
they fell below a small number of hours, though substantially
more for Rmax = 2 than for Rmax = 1. Supplementing the
information in the tables, we note that the average numbers
of CPU cores used were between 20 and 22.

We also conducted one further set of experiments to help
in understanding how network topology influences link usage
as the number of demands increases. The setup is still mostly
the same as in the previous experiments, except that now four
demand sets are used, with |D| = 30, 60, 90, 120. A link’s
usage is the ratio of the number of FSs used on it to LC. A
heat map with averages over each demand set’s 30 instances
is shown in Figure 1. Even though the increase in link usage
does, as expected, grow with |D|, somewhat unexpectedly we
also see that link (8, 9) is always one of the most used in all
cases, while (1, 2) is one of the least used. These seem like
inherent structural properties of the NSFNET topology, which
in principle might not have come up if some heuristic had
been used instead. To conclude, we then note that therein lies
the importance of exact approaches like RMSA-BP, since they
can provide crucial aid in the analysis of network topology
and usage, and through such analysis can influence design
and deployment policies. Further research should concentrate
on generalizing the objective function we have used to meet
other goals, as well as on seeking additional improvement
opportunities to both problem formulation and solver-feature
exploitation, so that larger networks can be handled as well.
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