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Abstract — In this paper, we describe the correlation assumptioriaputs to each internal signal and primary output. With the number
made by different power analysis methods and evaluate the impadtcorrelations taken into account, these BDD based techniques re-
on the accuracy of total power dissipation calculation as well as @fuire increasing computational costs. Several approaches [12] - [20]
the power dissipated by individual signals. Industrial circuits angrovide different trade-offs between accounting for correlations and
applications are used. The results show that some assumptions cazm®aputational costs.
inaccuracies of more than 100% for certain circuit types.

1 INTRODUCTION (0] list derstand the limitati f vari lysi th
: ur goal is to understand the limitations of various analysis meth-
1.1 Power Qonsumptlon . . ._ods better so as to weigh these methods in terms of apjitgdbr
In CMOS circuits, power consumption is dominated by chargingnalysis and optimization. For this purpose, we describe the correla-
and discharging of capacitances, when a transition occurs at an {fin assumptions and evaluate the inaccuracies caused by them.
ternal or at an output signal [1]. Short circuit and leakage current g risingly, the inaccuracies caused by the correlation assump-
dissipate additional power but can made small with proper desigp s have hardly been examined yet, although they often dominate
technique. The total capacitive power consumption in a circuit ig,e accuracy of an analysis technique. In [16], the importance of se-
given by 1 5 quential correlations is shown, and [19] considers the effect of spatial
Peircuit = 5Vda_ > Gidi (1) correlations at primary inputs.
signali | . . . .

. . ) .. n this paper, we define the different correlations and map each
whereG; is the total capacitance driven by sighaThe supply volt-  ¢orrelation assumption to the classes of analysis techniques that as-
age is denoted by 34. Leta; be the switching activity of signa]  syme them. Then, we apply industrial circuits and applications to
i.e., the average number of0 or 01 transitions on signalper  gemonstrate which correlation assumption causes a major inaccu-
second. Sinc¥yg andC; are known from the technology library pa- racy on what type of circuit. For the purpose of this evaluation, sev-
rameters, the main problem of power analysis at logic level is theyg| experiments were performed. We describe in detail the obtained
estimation of the switching activities . results. Inaccuracies are examined in terms of both total switching
1.2 Switching Activity Analysis activity and switching activity of each signal. Some of the exam-

' . . ined correlation assumptions cause inaccuracies of more than 100%.
In an early design stage, a designer wants to knowataé power - gy,ch an inaccuracy is unacceptable for low power optimization. A
consumptiorof his design to explore architectural trade-offs and tq gt fynction estimated with this level of inaccuracy will guide the
decide whethecr1 a ceramic or a glastlc paclkaglng will be ”ee‘jeé‘?)timization process to poor results
However, in order to optimize a design for low power using auto- The : : ’ . .
: : : paper is organized as follows. In the next section, correlations
matic methodspower consumption of each signalust be known and correlation assumptions are introduced. Section 3 describes the

accurately since the optimization goal is to minimiz€;a;. Then, ; ; -
a; of each signal is part of the cost function. setup for experiments. In Section 4, the experiments are presented

In early work on power analysis, simulation of application vector?odne;a;:'eg:g\yvﬁriﬁ gtérgtrigﬁrleszed and examined in Section 5. Conclu-
was used to estimate total power or transient behavior [2] - [6]. Eve { :

driven simulation was applied, which yields very high accuracy. The

main problem of this strategy is the large CPU time requirement. 2 OVERVIEW OF CORRELATIONS

In orﬂer to overcome the Iargle CPU timedrequiremﬁnts but togre- Ignorance of certain correlations is a common assumption that is
serve the accuracy, Najm et al. suggested to use the Monte de in power analysis research. In this section, we introduce dif-

techniquein [7] - [L1]. Primary input vectors are randomly generategrent types of correlations and present a survey on which analysis
according to statistical data at primary inputs. During the S'mU|at'0féchniques ignore what type of correlation.

of these pseudo random vectors, the Monte Carlo technique deter-
mines whether the switching activities have already converged and :
thus, whether the simulationgcan be terminated. Wit)r/1 this teghniq .1 Analysis Model
the number of simulated pseudo random vectors is minimum for a Let us first recall the defition of the termssignal probaliity and
certain user-given accuracy value. . . switching activity Signal probability of a signaldenoted byp(i)
Two driving factors made most researchers work in the field ofeflects the fraction of the time that sigridbkes on value 1 as op-
probabilistic computation. Firstly, the CPU time requirements ofosed to value 0. Switching activity of a signalenoted byE(i) is
event driven simulation are too large to compute the costfunction fatie average number of transitions on sign@l to 1 and 1 fo O; per
optimization very often. Since atthe logic-level, circuits are typicallsecond.
optimized step by step, a limit on the number of optimization steps \ost probabilistic approaches assurezo gate delay Thus the
deteriorates the optimization quality. $eclly, computing probal- power dissipation due to glitches is not reflected. For all presented
ties on BDDs is very efficientif all variables in the support are uncoleya|yations, we also consider zero delay and thus neglect inaccura-
related. Most probabilistic techniques use BDDs to propagate stati§es caused by this approximation because of the following reasons.
tical data like signal probability and switching activity from primary Firstly, the contribution of glitch power has already been examined in
several papers [13, 21, 22]. Secondly, the computation of the num-
ber of glitches needaccurate information on the delay caused by
gates and by their interconnects. Logic-level power analysis was de-
veloped to estimate the power consumption at an early design stage.
Typically at this stage, placement and routing has not yet been car-
ried out and even gate delays are not known exactly until technology
mapping has been finished. Thus, it is not possible to account for
glitches correctly.

1.3 Our Goal
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2.2 Correlations pcb | psq | mcs | sap
Correlations were originally described for statistical pro- | Firstordertemp. corr. of Pl X X X X
cesses [23]. Each signalin a logic circuit can be related to a statistica] Sequential correlations ign | app| x | X
process [12]. Assuming zero-delay, correlations characterize signals Spatial corr. of internal signal§ app | app | X X
as described in this section. Spatial corr. of P! app | ign | ign | X
Higher order temp. corr. of PI|| ign | ign | ign X

clk
Table 1: Correlation assumptions vs. analysis techniques
datal [ | [] 17 p=0.5 o=05fg stead of application vectors as input to the simulation. Thus, spatial

and higher order temporal correlations of primary inputs are ignored.
data2 1 T p=0.5 o= 025fg First order temporally correlated pseudo random vectors will be de-

Figure 1: First order temporal correlation finedin the next section. _ )
Temporally uncorrelatedA signali is said to betemporally un- ~In column *pcb”, probabilistic techniques are considered that are
correlatedif its next value is independent of its current and of all itsdeveloped for analysis of combinational circuits, while column “psq
previous values. Because of this independence, the pititpath a considers probabilistic techniques developed for analysis of sequen-

. A e tial circuits. We assume that the most advanced method is applied,
1 to O transition of signal from one clock cycle to the nexp(il)) o he method that has the least number of entries “ign” in Ta%FI)e 1.

is equal top(i)p(i). Similarly, p(ii) equalsp(i)p(i), and we ob- " For combinational circuits, the most advanced technique is the

tainaj = p(ii+ii) fo = (p(i)p(i) + p(i) p(i)) fe- Thus, the signal  technique of [19]. All other techniques do not account for spatial cor-

probability of signali describes its statistical behavior completelyrelations at primary inputs. For sequential circuits, no prdissib

An example for such a signal is signal datal in Figure 1. estimation technique considers spatial correlations at primary inputs.
First order temporal correlationA signali is said to have first or- The only probabilistic technique that considers sequential correla-

der temporal correlation if its next value depends on its current valuns and temporal correlations at primary inputs is [20].

but is independent of all previous values. Signe&n be described  Even these most advanced probabilistic techniques can handle

by a Markov chain. Its statistical behavior is completely determinegpatial and sequential correlations only approximately. Higher order

by the signal probability and the switching activity. An example fotemporal correlations are never taken into account by prtrtid

such a signal is data2 in Figure 1. techniques presented so far.
ok THUUUUUUUL LU 3 EXPERIMENTAL SETUP
nd S UL LSl p=os 3 etrics
2nd order temporal correlation In this section, we define the accuracy measurements that are used
cnt2 | ‘ﬂ ‘ ‘ ‘ ‘ | p=05 later in the paper. These measurements are the relative average error

in terms of total or signal switching activity.

\ 4th order temporal correlation A ) . h i
ent3 Y |~ f—‘ p=05 Thetotal switching activitydenoted byA is the sum of the switch-

Figure 2: Higher order temporal and spatial correlation ing activities of all S|gnaIsA_ z @

Higher order temporal correlatiorA signal is said to have higher signali '

order temporal correlation if its next value depends on its current . . o L
value and on previous values. In Figure 2, bit 1, 2, and 3 of a binary Theaverage relative erroin terms oftotal switching activitys:
counter are shown fallustration. Bit 2 (i.e., signal cnt2) has a sec- Aace— Aign

ond order temporal correlation. The next value of signal cnt2 will be Asce

1if its previous value was 0. Bit 3 has also an fourth order temporglpere subscripg, denotes values, which are measured while ignor-
correlation. . . . __ing the correlation under evaluation, and subsggiftenotes values,
Spatial correlation Two (or more) signals are said to be spatially,nich are measured while accounting for the correlation accurately.
correlated if each value that is taken on by one of these signals is COTheaverage relative errom terms ofsignal switching activitys:
related to the values the other signal(s) take on. In Figure 2, signals '

cntl, cnt2, and cnt3 are spatially correlated. The signal cnt3, e.g.,

makes a transition only when cntl and cnt2 make a transition. Esignals= (o)
Spatial correlation of internal signal€ven if primary inputs are signali I/ace

spatially uncorrelated, internal signals can be spatially correlated dueThe measuremergignais Provides a much more refined assess-

to reconvergent fanouts. A reconvergent node has at least two fanjjsnt of the estimation quality thag. During the computation

that depend on the reconvergent fanout stem. Thus, these fanins gfnetotah over and under estimated S\?vitching aitits compensate

spatially correlated. This correlation is referred to as spatial correlay g this. even if each signal is estimated very inaccuraigly;

tion of internal signals. coL Ve
: ; . . can show reasonable accuracy. For optimization, howey@
Sequential correlationsSpatial or temporal correlations at state 4 P hels

lines that are induced by the cyclic structure of a sequential circn(.;%@r”St be small. Otherwise the optimization process will not be guided

€total =

#signals

are called sequential correlations. Even if primary inputs are unc _cr)]pfrzly and will thus yield poor results. This will be shown in Sec-
related or only first order temporally correlated, the states and st As suggested in [9], internal signals are divided into signals hav-
lines of an FSM can be higher order temporally correlated. An exam- high activi d sianals havina | tivity. For th tit
ple is again the binary counter in Figure 2. A reset signal may be t g high ac |v!ty an glgnag aymg O.W. ac 'V'tf¥;3 ue?]rc € quantity
only input to the counter. In the example, this reset signal is uncofsignais ONly signals with switching activitg; > “f=i=are con-
related and has a very low signal probability. Nevertheless, the statielered. The reason for disregarding low activity signals is that their
lines (which are the signals in Figure 2) are higher order temporallyontribution to the power dissipation is very small but they cause
and spatially correlated. large relative errors: For example, a signal makes 2 transitions dur-

2.3 Survey of Current Analysis Methods ing an 1@ vector simulation although it should only make 1 transi-

. tion; the relative error is 100% but because of the signal’sdgvits
Table 1 presents a survey of the assumptions that are made by ‘géwer dissipation can be neglected.

ious analysis strategies. Symbol “x” (or “app”) is used if a techniqu .
exactly (or approximately) accounts for a certain type of correlatior8.2 ~ Circuits
Symbol “ign” is used if a technique completely ignores a certain type The following circuits were used for the described experiments:
of correlations. Obviously, simulating application vectors (column e Controller
“sap”) accounts for all correlations exactly. - Alarm clock: Alarms can be set and triggered.
The Monte Carlo simulation (column “mcs”) requires pseudoran- - 8-bit Microcontroller
dom vectors, which are only first order temporally correlated, in- - Sort: Bubble sort of integer numbers



¢ Datapath modules are accounted for. Each diamond in the diagram corresponds to one

- Two 8-bit multiplier: wallace tree, carry save signal of the considered 8-bit multiplier. gmoring primary input
- Two implementations of 8-bit carry look ahead adder correlations causes no inaccuracy for a certain signal then the dia-
¢ Mixed circuit (i.e., circuit with control and datapath) mond of this signal hits the dotted line.
- lIR: Infinite Impulse Response Digitallter Low power optimization techniques try to delete or “hide” sig-
. . nals with high activity or assign low capacitances to these signals,
3.3 Stimuli while signals with low switching activities are allowed to be addi-

For each circuit, a VHDL testbench was available representingpnally created or be assigned high capacitances. If power optimiza-
either the application for which the circuit was designed or the fundion is guided by the inaccurate analysis result in Figure 3, the highly
tional test of the application. The vectors generated by these tesirerestimated signal marked with label “a)” is considered to have a
benches are referred to agplication vectorsThese vectors contain higher switching activity than most signals actually having a higher
all correlations of the application. switching activity. For example, the signal with label “b)” would be

For several experiments, we need vectors that are only first aissumed to have a lower switching activity than the signal with label
der temporally correlated but have the same signal probability arid)”, and thus, a power optimization technique may assign a higher
switching activity as the application vectors. For this purpose, a ragapacitance to this signal than to the signal with label “a)”. There-
dom generator was biased such that vectors are generated according, the optimization process will result in a higher instead of a low
to signal probabilities and switching activities of the application. Th@ower implementation.
only correlation these vectors have is a first order temporal correla- ignoring PI correlations
tion. We denote these vectorsgseudo random vectars 1

For each experiment that needs pseudo random vectctsieto

tors were generated and simulated. Simulatinﬁps)audo random 08l |
vectors causes very low inaccuracies as shown in [11, 24]. =

4 DESCRIPTION OFEXPERIMENTAL PROCEDURES 06 a) P i

In this section, we evaluate the inaccuracies caused by each corre- N
lation assumption. In the next section, we will summarize and com-
ment the results of this section. Due to the lack of space, the experi- 0.4 %8 &
mental setups are not shown in detail. Upon request, the authors will o

be glad to provide an extended version of this paper. 02 &%& g o8
L 0% 0. O —

4.1 Inaccuracies Due to Ignoring Sequential Correlations ¢ o5 o
To evaluate the inaccuracies due to ignoring sequential correla- o e ‘ ‘ ‘ ‘
tions, a simulation that accounts for sequential correlations is com- "o 0.2 0.4 0.6 0.8 1

pared to a simulation that does not account for sequential correla- accounting for PI correlations
tions. Sequential correlations are ignored if pseudo random vectors Figure 3: 8-bit multiplier w/ and w/agnoring P! correlations

are assumed at state lines instead of the correlated patters. . - . L o
For the mixed circuit, the error in terms of total switching activity

| | Gotal | Esignals | is 26%. The error in terms of signal switching activity is 56%, which
Datapath moduleg No sequential elements is too high to guide the optimization.
Mixed circuit 3% 8% For the controller type circuits, it is difficult to make a statement
Controller 25% 120% on the impact of the primary input correlations, because the impact

. ; ; : ; : heavily depends on whether the random vectors represent real oper-
Table 2: Inaccuracies due to ignoring sequential correlations ations)./ Wg will illustrate this with an example. In t?]e application?

Table 2 gives the average relative error for this experiment. Thbe reset signal may initially be 1 for four clock cycles and then be

small datapath modules do not contain any sequential element. Thdor all other vectors. So, there was one transition. Now, vectors

inaccuracies for the mixed circuit are very low, lying below 10% forare randomly generated. The signal prabigiand switching activ-

both total and signal switching activity. For the controller type cir4ity of the reset signal are preserved if this signal is O for all vectors

cuits, the error in terms of total switching activity is about 25%. Conand switches to 1 for the four last vectors. The controller, however,

sidering the signal switching activity, the error was typically highemay start in a state, which is unreachable from thgainstate of

than 100%. the application. If this happens, the error for pseudo random vectors

4.2 Inaccuracies Due to Ignoring Spatial and Higher Orderfggrgsee\:]et%g;%%gg!%:}f typically very low if the random vectors

Temporal Correlations at Primary Inputs ) ) .
The activities obtained by a simulation of application vectors ar8-3 ~ Inaccuracy Due to Ignoring Spatial Correlations of In-
compared to a simulation of pseudo random vectors. The results are  ternal Signals and Simultaneous Switching
presented in Table 3. For the small datapath modules, ignoring all we computed the switching activities of the combinational logic
primary input correlations beside of first order temporal correlationgith the probabilistic technique of [12]. This probabilistic technique
causes an error smaller than 10%. Unfortunately, the error in termgcounts for first order temporal correlations accurately. Spatial cor-
of signal switching activities is 30% on average. For the wallace tre@lations at primary inputs and at internal signals are ignored.

multiplier, for example, we obtaineglignas= 39%. This multiplier -
does not contain sequential elements. | I Ctotal | Ssignais |
Datapath modules 10% 15%
| | Botal | Esignals | Mixed Circuit 25% 50%
Datapath modules 8% 30% Controller T0% 20%
E:/leetd ﬁ'rcu't 5y 269 %00 109 o69 01500 Table 4: Inaccuraciesdue to ignoring internal spatial correlations and
ontrofler 0 (... 50%) 0(... %) simultaneous switching

Table 3: Inaccuracies due to ignoring Pl correlations In Table 4, the activities obtained by using this probabilistic tech-
The scattered diagram for this multiplier is shown in Figure 3. Thaique are compared to the activities obtaind by a simulation of
horizontal axis “accounting for PI correlations” shows the switchingpseudo random vectors. For the small datapath modules and for the
activity of a signal if all primary input correlations are taken into ac-controller type circuits, the accuracy in terms of total and the signal
count, i.e., the switching activity obtained by simulating applicatiorswitching activity is sufficient. For the mixed circuit, the accuracy
vectors. The vertical axis “ignoring Pl correlations” gives the switchef the total switching activity may be acceptable, while the signal
ing activity if at primary inputs only first order temporal correlationsswitching activity shows an average relative error of 50%.



4.4 Inaccuracy Due to Ignoring Different Application Vec-

tor Sets

We also performed an experiment to determine the sensitivity
circuits to different applications. This was done to determine wheth
it is possible to assign an invariant power number to a module (e.
a multiplier) in order to characterize it in agdule library.

We applied two different applications to the same circuit, sim:

Monte Carlo simulation can handle sequential correlations and
spatial correlations of internal signals exactly. But spatial correla-
ipns at primary inputs and higher order temporal correlations are

nored. For datapath modules and mixed circuits, ignoring primary
put correlations causes inaccuracies that are too large to guide low
ower optimization.

For power optimization using automatic methods, the only anal-

P is technique that is sufficiently accurate for all circuit types is the
ulated the vector sets of these two applications, and compared S 1e¢ ot ; :

: Pty S ; Y ulation of application vectors. Unfortunately, this technique may
determined switching activities of the internal signals. The vect bquire considerable CPU time.

sets of these two applications had different statistical behavior, i.e=;
6 CONCLUSION

a primary input or state line has different switching atie¢ due to
the different vector sets. In the recent years, many techniques have been presented to ana-

| | Botal [ Gsignals ] lyze switching activities at Signals inside a circuit. To achieve high
Datapath moduleg 35% 150% efficiency, all these techniques are based on correlation assumptions.
Mixed circuit 30% T100% We described which correlation assumptions are made by what kind
Controller 5% 15% of estimation techniques, and we examined the inaccuracies caused

- . - - .. by making these assumptions.
Table 5: Different switching activities due to different applications y,:or totgl power consurr)nption, existing analysis techniques are rea-
Switching activities of datapath edules and mixed circuits de- sonably accurate for most circuit types. However, the accuracy in
pend on the application. In our experiments, the total power diffeterms of signal switching activity suffers significantly due to sev-
by up to 50% and the average relative error in terms of signals wasal sources of inaccuracy. The only existing strategy that covers all
for all experiments larger than 100%. However, the examined coseurces of inaccuracy for all circuit types is the simulation of appli-
trol type circuits tend to be very insensitive to the input vectors agation vectors.
long as these vectors represent useful operations. Even the error for

signal switching activity was only about 15%. ACKNOWLEDGEMENT

The authors would like to thank Ashutosh Mauskar of Synopsys

5 OVERVIEW AND IMPLICATIONS for providing circuits and applications and for his help.

5.1 Summary of All Experimental Results

Table 6 summarizes the main source of inaccuracy for each circult!
type. Let us first consider total power consumption. The accuracy,
appears to be sufficient for estimates to be used at an early design
stage to evaluate different architectures for a module. [3]

| [[ Main Source of Inaccuracy &otal | Esignals | 4]

Datapathm. [[ Ignore PTI corr. 8% 30% (5]
Mixed circuit || Ignore PT corr. 26% | 56%
Ignore internal spatial corr, [6]
& simultaneous switching | 25% | 50%
Controller [gnore sequential Corr. 25% | 120% 7l

Table 6: Main sources of inaccuracy

8

Let us now consider the inaccuracies in terms of signal switchin )
activities. Two observations strike out from Table 6. Firstly, evenld]
the smallest error in Table 6, which has appeared for small datap
modules, can produce a scattered diagram like the one in Figure 3.
Using such analysis data will cause poor low power optimization rgt1]
sults. This indicates that the correlation assumption is unacceptable.
Secondly, each circuit type has a different main source of inacch?!
racy. Therefore, an estimation technique that is useful for all typgss
of circuits must account for all these sources of inaccuracy.

Note that in the tables above, we have presented relative errorlrés
In several papers about switching activity analysis, the absolute er fl
instead of the relative error is given in terms of transition probabilizs)
ties (i.e., switching activity per clock cycle). Obviously, probabilities
are smaller than 1 and our observation is that transition probabiliti%s
are on average significantly smaller than 1. This is also the case fl
the example in Figure 3. The scattered diagram of this example illus-
trates an example of an average relative egpasequal to 39%. [17]
For this example, the average absolute error equals 0.067. Thus, |h|g1
about 6 times smaller than the relative error.

5.2 Implications for Power Analysis and Optimization

Table 1 shows that all analysis techniques beside of simulatifg’!
application vectors cannot account for either sequential correlations
or spatial correlations of primary inputs. Aiddnally, none of these [21]
techniques can handle higher order temporal correlations.

Probabilistic techniques handle spatial and sequential correlatiold!
only approximately as shown in Table 1. Furthermore, a sequential
circuit is represented as a system of equations. The accuracy of {bg
solution of a system of equations is unclear, given that the equations

[19]

are inaccurate due to the correlation approximations. For large dét
quential ISCAS benchmarks, no results of probabilistic techniques
have been presented so far. [25]
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