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Abstract

Research on synthesis for low power has been done in

all three stages of logic synthesis: technology indepen-

dent optimization, technology mapping, and technology

dependent optimization. This paper presents an inte-

grated method, using remapping and technology depen-

dent optimizations, to minimize the power of a mapped

circuit under the given delay constraints. It produces

24% savings in power.

1 Introduction

Due to a growing market in portable devices, modern

day electronic systems require a high degree of perfor-

mance and portability at a low cost. In the past, logic

synthesis tools have addressed the problem of perfor-

mance and cost by optimizing for area under a given

delay constraint. However, portability requires the sys-

tem to also be energy e�cient. Optimizing for area

does not necessarily reduce the power dissipation, and

increasing performance does not necessarily increase the

power. Hence synthesis tools must now operate in the

3-dimensional, non-linear, non-convex, space of delay,

power, and area.

Synthesis for low power dissipation may be applied at

the three steps in logic synthesis: technology indepen-

dent optimization, technology mapping, and technology

dependent optimization. Technology independent op-

timization consists of applying boolean and algebraic

transformations to the boolean representation of the cir-

cuit. This can be used to reduce the switching activity

of the circuit [3, 11], which can save dynamic power.

The main problem is that technology independent op-

timization may not be reected in the physical circuit,
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Figure 1: Overall ow of resynthesis for low power.

because the former is far removed from the �nal map-

ping of the circuit.

This paper attacks the power optimization problem

at two di�erent stages of synthesis: technology map-

ping and technology dependent optimization. Nothing

excludes this technique from being merged with tech-

nology independent optimization algorithms to produce

a complete logic synthesis package for low power. The

overall methodology is shown in Fig. 1. A circuit is

�rst mapped with an industry standard synthesis tool

to meet delay constraints and optimize area. It is then

remapped and a number of post-mapping optimizations

are applied to minimize the power consumption under

the given delay constraints.

Section 2 discusses the cost models used in the opti-

mization procedures. Section 3 addresses the technology

mapping algorithm. It is an extension of the algorithm

presented in [14] to optimize for low power. This en-

ables us to perform technology mapping for low power

while being able to reconsider some of the decisions that

are normally frozen during the technology independent

stage. Section 4 covers the post-mapping optimization,

which involves gate sizing, phase assignment, bu�ering,

and pin swapping. Experimental results are discussed

in section 5.



2 Cost models

This section discusses the three cost models a logic syn-

thesis has to face: area, power, and delay. Area is the

easiest to model, since the area of each gate is known,

and the routing area can be accurately estimated from

statistical data.

The power dissipated in a gate is:

Ptotal = Pload + Pinternal + Pleakage

The term Pload, the net dynamic power, is due to the

charging and discharging of the output load of the gate.

It depends on the toggle rate (number of transitions per

unit of time) of the output net, and on the output load.

The term Pinternal, the internal gate dynamic power,

depends on the toggle rates and slope of the inputs,

and on the internal loads. The term Pleakage, the static

leakage power, represents the static power dissipation in

CMOS devices due to the leakage current.

Some work [24, 2, 25] has only focused on the term

Pload since it is generally the dominant factor of the to-

tal power dissipation. But reducing the load of a gate

decreases the slope of its outputs, thus increasing the

internal power of its fanout gates. Because of this com-

plex dependency between Pload and Pinternal, we cannot

ignore Pinternal . Moreover, although the leakage power

Pleakage is usually smaller than the dynamic power, i.e.,

Pload+Pinternal, it is a dominant factor in products such

as pagers that remain idle for long periods of time.

The power model we use includes all the three terms

given above1. Hence we take into consideration the com-

plex relationship between power and delay optimization.

The toggle rates can be found by either simulation, or

probabilistic analysis [18]. We use toggle rates com-

puted by the commercial probabilistic/simulation based

power estimation tool DesignPower [7].

To each point v of a network is associated an arrival

time AT (v), which is the time at which the signal is

propagated from the primary inputs to v, and a required

time RT (v), which is the time at which the signal must

arrive to meet point-to-point delay constraints. The

slack is de�ned as RT (v) � AT(v). The set of points

that has the minimal slack value constitute the critical

path of the circuit, i.e., the slowest topological path. If

the smallest slack is non-negative, the delay constraints

are met. Unlike [2], we do not take false paths into

account when calculating the slack because it is too ex-

pensive a process for large circuits. Therefore, the delay

computed will be conservative. The reader is referred

to [8, pp. 225{289] for more details on delay computa-

tion, path sensitization, and false paths.

The time needed for a signal to propagate from an in-

put of a gate to an input of the next gate depends on the

1We neglect power dissipation due to glitching, because mea-

suring the glitching requires event-driven simulations, which are

too costly to run each time one modi�es the circuit.

output load (the output capacitance seen at the output

of the gate) and on the input transition time (the time

needed by the input signal to achieve its transition).

The reader is referred to [1, 27, 19, 16, 22, 17] for the

presentation of some delay models. An extensive study

of di�erent input transition time sensitive delay models

shows that a table lookup approach is more accurate

than most of the multi-coe�cient (linear, polynomial,

or posynomial) approximations [17]. We will use such

a table lookup based approach, which produces results

within 3% of SPICE.

3 Technology Mapping

Technology mapping consists of, given (1) a technol-

ogy independent directed acyclic graph (DAG) of basic

logic functions, (2) a speci�c technology library, and (3)

a cost model, �nding an implementation of the DAG

using the library elements that optimizes the cost. An

e�ective approach [12] amounts to breaking up the DAG

into multiple fanout-free trees, optimizing them inde-

pendently using dynamic programming, and perform-

ing some local optimizations at multiple fanout nodes

to produce the resultant mapped DAG.

Dynamic programming �nds the optimal mapping of

a tree as long as the solution at a node can be con-

structed from the solutions of its sons. This is true

when the cost function is the area or the number of

gates. When the cost function is the delay, the solu-

tion is no longer optimal since the delay of gate g is

not just a function of g and its sons in the tree, but is

also inuenced by the fanout of g. Therefore, a bottom-

up dynamic programming approach is not guaranteed

to be optimal, and more complex approaches must be

used [20]. The same argument holds when the cost func-

tion is the power.

Technology mapping for low power has been proposed

in [24, 25, 26, 15]. But it su�ers from the same prob-

lem as technology mapping for delay, which is that the

circuit is initially decomposed into some �xed structure,

generally a NAND-INV structure, before being mapped.

Therefore, the quality of the mapped circuit is highly

dependent on this structure.

Recently, it has been shown in [14] that it is possi-

ble to simultaneously redecompose and map the circuit,

i.e., previous decomposition decisions can be reconsid-

ering during technology mapping. We use an extension

of [14] to optimize for low power. As mentioned above,

technology mapping is done one tree at a time. So in

the following discussion, the input circuit is always a

tree.
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Figure 3: A mapping graph

3.1 Mapping Graphs

We use the mapping graph data structure introduced

in [14] to reconsider the original logic decomposition

while performing the technology mapping: in addition

with the usual AND2/INV gates, the network is also

described in terms of unode gates. A unode makes use of

two choice gates (a choice gate is denoted as an OR gate

with a `c'). A choice gate is an arti�cial gate that is used

to represent several implementations of the same logical

function in the same graph. Thus the unode, as de�ned

by Fig. 2, denotes several implementations of f and f .

A unode is used to capture several implementations of

a function, and the phase assignment of it. In Fig. 3, a

3-way AND initially implemented as (a � (b � c)) can also

be implemented as (c � (a � b)) or (b � (c � a)).

3.2 Power Updating

Technology mapping is done after the circuit has already

been characterized for toggle rates. However technology

remapping may introduce new nodes into the circuits,

e.g., we might introduce the new node (a � b) or (c � a)

in the example given in Fig. 3. The toggle rates of

these new nodes are needed in order to evaluate their

power implications. The toggle rates only depend on

the logical functions of these new nodes. Thus we only

need to extract the logical functions from the mapping

graph.

To do so, let us consider a unode, and assume that

there is one input in the choice gate which de�nes f (the

case where only f is de�ned is symmetric). Then the

unode is replaced with a simple circuit making use of an

inverter, as shown in Fig. 4. After all unodes have been
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Figure 4: Unode replacement for simulation

translated this way, simulation or probabilistic based

methods can be used to compute the toggle rates needed

to explore the di�erent mappings for the input circuit.

Let us discuss the probabilistic analysis. It is true

that, at the very beginning, the remapping process takes

a tree of gates as input. Hence, if the assumption of in-

dependence among the inputs of the tree is reasonable,

then the computation of the toggle rates of the interior

nodes is simple, since we have no reconvergent paths

within the tree to destroy the independence assump-

tion. However, if the tree contains XOR's or MUX'es,

its expansion into a AND/INV graph yields a DAG, but

not necessarily a tree. Thus, even if one assumes the in-

dependence of the inputs, a straightforward probabilis-

tic propagation of toggle rates in a bottom up manner

does not take into account the functional dependencies

introduced by XOR's or MUX's gates. One can cope

with this problem by using BDDs [18], but it can be too

costly.

As an alternative, we use a direct probabilistic propa-

gation that assumes the independence of the inputs of a

tree, but that uses the following second-order method to

limit the inaccuracies due to the signal reconvergences

produced by XOR and MUX gates. Before computing

the toggle rates for an AND2 gate, we look at its prede-

cessor AND2 gates to detect whether this collection of

gates constitutes a XOR2 or a MUX2. If so, then the

toggle rate computation is performed using equations

that are speci�c to XOR2's and MUX2's, and which

take into account their internal reconvergences.

3.3 Dynamic Programming

Dynamic programming is performed on a mapping

graph (which is a DAG) by considering the choice gates

in topological order starting from the leaves. Our dy-

namic programming method has binning for output

loads [20]; that is, for each choice gate, we keep track of

multiple best solutions that are a function of the output

load that the gate would drive.

When a library gate g can be mapped so that its out-

put is the output of the current choice gate c, we need to

evaluate the cost of the solution. To do this, we recur-

sively build a solution network that uses g. The gates

in this network that drive the inputs of g are chosen by

looking up the previously computed best solutions for

the input nodes of g that match the appropriate out-



put loads. We compute the cost of each such network

driving the variety of output loads that g may drive and

determine the best solution for each load.

In our system, building and evaluating the cost of the

networks dominates the performance of the technology

mapping. Thus it helps to prune the search tree of net-

works considered. For example, we assume that all the

inputs of a multi-input AND gate are symmetric, even

though we use more exact (and non-symmetric) models

when determining the cost. This leads to some loss in

optimality in exchange for huge CPU savings. This loss

in optimality is compensated for in the post-mapping

optimization described in Section 4, which does exam-

ine pin swapping.

3.4 Objective function

Dynamic programming uses an objective function to se-

lect one implementation over other ones. Ideally, in-

stead of just remembering the best solutions at a choice

gate as a function of output load, we should remember

them as a function of both output load and some delay

related cost, such as arrival time (e.g., [24, 25, 26, 15]).

However it is impossible to determine exactly the arrival

time at a node in the subject tree since it depends on

the choice of the gates at the fanin (input slopes) and

fanout (output load) of this node. Thus the best solu-

tions depend also on the input slopes, but remembering

this dependency is too costly.

Since coping with the exact delay constraints is im-

possible, the technology mapping only remembers the

best solutions at a choice gate as a function of output

load. Also, it concentrates on picking up good gains

from trees without tight time constraints. The objective

function is such that slack violations are discouraged the

most, and then power usage is discouraged. This objec-

tive function gives rise to three di�erent behaviors:

� Slack � 0. If a tree is violating its timing con-

straints, the technology mapper concentrates on

optimizing the timing of the circuit.

� Slack � 0. If a tree is in no danger of violating the

slack, then the technology mapper concentrates on

optimizing the power.

� Slack � 0. Near the leaves of the tree, the technol-

ogy mapper focuses on minimizing the power, and

near the root of the tree the technology mapper

concentrates on minimizing the slack. The intuitive

explanation of this heuristic is twofold. First, the

toggle rates are in general higher at the leaves than

the root, giving more opportunities to lower the

dynamic power. Second, speeding up gates close to

the root is likely to speed up the whole tree. Thus,

spending power to gain speed is less expensive close

to the root.

Global Sizing/Phase Assignment

Pin Swapping

Load Buffering

Pin Swapping

Pin Swapping

Global Sizing/Phase Assignment

Figure 5: Post-Mapping Optimization Sequence.

4 Post-Mapping Optimization

Technology dependent optimization for low power has

focused primarily on gate sizing. It consists of replacing

the gates in the mapped circuit with logically equivalent

gates so that a user de�ned cost function is optimized.

Early work on gate sizing can be found in [21, 13]. More

recent work has focused on optimizing area under a de-

lay constraint [9, 10] and on optimizing power [4].

We kept four local technology dependent optimiza-

tions for low power: gate sizing, phase assignment,

bu�ering, and pin swapping. All of them are local

optimizations that do not need costly resimulation to

update the toggle rates (indeed, 1-complementation is

su�cient). These post-mapping optimizations are per-

formed in the sequence shown in Fig. 5. This sequence

has been determined experimentally by comparing dif-

ferent scripts over large benchmarks. It achieves good

power savings within a reasonable CPU time.

Gate sizing consists of replacing a gate with a logically

equivalent one, whose physical parameters decrease the

power consumption without violating any delay con-

straint. Phase assignment takes into consideration that

a function can be represented multiple ways using De-

Morgan's rules. For example, a NAND function can be

mapped to either a NAND gate or a NOT-OR combi-

nation of gates. Some phase assignment is implicitly

performed during technology mapping, but the technol-

ogy mapping algorithm described in Section 3 does not

look at the consequences of di�erent phase assignments

at the multiple fanout nodes.

Some of the previous work in resizing for low power

has focused on sizing after elimination of false paths [2],

and on using linear programming methods to pick opti-

mal gate sizes to reduce power, area, and or delay [23].

Although the algorithm presented in [2] works with ac-

curate delay numbers by eliminating false paths, it is

also forced to resize gates in a greedy manner, from pri-

mary outputs to primary inputs. The solution space

is highly non-linear and non-convex, and the greedy

method has a tendency to get stuck in local minima.

The method proposed in [23] produces a solution as-

suming that the gates can be continuously sized. But



circuit power slack area CPU

g t po tpo pot i t po tpo pot t po tpo pot t po tpo pot

a 490 0:97 0:96 0:95 0:95 14:6 14:3 14:6 14:6 14:3 1:01 0:93 0:94 0:97 261 195 488 439

b 1671 0:90 0:99 0:89 0:90 �0:12 0:12 0:00 0:00 0:03 1:02 0:99 1:00 1:03 1801 2500 5403 4097

c 175 0:93 0:91 0:90 0:89 �0:23 0:00 0:01 0:04 0:07 1:15 1:01 1:12 1:12 141 123 220 239
d 139 0:83 0:99 0:82 0:83 71:2 69:3 71:2 70:2 69:3 1:17 1:03 1:17 1:20 77 32 108 101

e 139 0:79 0:78 0:79 0:77 37:9 38:0 38:0 38:0 38:0 1:12 1:00 1:12 1:10 110 34 125 143

f 259 0:85 0:76 0:73 0:72 �0:35 0:01 0:02 0:04 0:00 1:11 0:98 1:07 1:04 198 141 344 344
g 560 0:80 0:92 0:73 0:71 �0:99 0:00 0:01 0:01 0:01 1:21 1:05 1:09 1:16 519 529 864 959

h 684 0:77 0:76 0:70 0:69 0:10 0:04 0:14 0:00 0:01 1:11 1:14 1:12 1:11 380 1954 1088 2137

i 841 0:41 0:85 0:39 0:24 23:1 24:0 24:5 24:6 22:4 1:35 1:18 1:19 1:34 1125 3448 2980 4367

This table gives the number of gates g of the initial circuits. The power and area are normalized
w.r.t to their values for the initial circuit. The table gives the slack, power, and area of the initial

mapped circuit (i); after technology mapping alone (t); after post-mapping optimization alone (po); after

technology mapping �rst, then post-mapping optimization (tpo); after post-mapping optimization �rst,
then remapping (pot). The CPU time is given in seconds on a 60 MHz SuperSparc (85.4 SpecInt).

Table 1: Some experimental results on combinatorial circuits.

gate sizing is a discrete optimization problem, and a

continuous solution cannot always be easily projected

on a discrete space.

The GS algorithm presented in [5, 6], preliminarily

focused on gate sizing, has been extended to incorpo-

rate phase assignment. This algorithm optimizes the

critical paths and then relaxes the circuit using a ben-

e�t/penalty function that considers how much power

can be saved (by sizing or phase assignment) in regards

of the increase or decrease of the delay (the delay con-

straints are always enforced during the relaxation). The

reader is referred to [5, 6] for a description of the GS al-

gorithm. Although technology remapping for low power

does a certain amount of gate sizing, it does not have

the capability of evaluating the global cost of a decision

since it only optimizes a tree at a time. The GS algo-

rithm is more e�ective at evaluating the global cost of

such local transformations.

Bu�er insertion takes care of nets with large loads.

Inserting one or two bu�ers can help reduce the delay

and/or the power dissipation. It is the case when there

is a large load on a gate due to a large fanout or a large

wire load. A gate driving a large load increases the delay

on this path, and it also increases the power since the

signal being propagated to the next stage has a larger

rise or fall time, and hence a larger internal power dissi-

pation. The bu�er insertion algorithmworks in a greedy

manner, and bu�ers are inserted only if they decrease

the power and do not violate timing constraints.

When a logical gate involves symmetrical input pins

(e.g. AND gate), the input wires can be swapped in such

a way that the power can be decreased. This can happen

by decreasing the load of a net with a high toggle rate.

Experimental results showed that this optimization did

not result in dramatic changes in power dissipation, but

did prove to be useful for getting out of locally minimal

solutions.

5 Experimental Results

We took 92 combinatorial circuits as a benchmark set.

These circuits have between 50 and 1700 gates. The

starting point of our experiment is a circuit optimized

for area under delay constraints. Table 1 summarizes

some results.

Since the power optimization is done after the circuits

have already been optimized for area without regard for

power, any power optimization is likely to increase the

area. But it happens that power saving can be achieved

without any area penalty, e.g., example a.

On average, the technology mapping run alone

yielded a 18% power reduction, the post-mapping opti-

mization run alone yielded a 8% power reduction. Ap-

plying remapping �rst, then post-mapping optimiza-

tion, yields a 21% power saving. Performing post-

mapping optimization �rst, then remapping, yields a

24% power saving. Although the optimization ow is

order sensitive, experimental results show that the two

optimization steps presented in this paper do not over-

lap much.

6 Conclusion

This paper has described a power optimization ow us-

ing remapping and technology dependent post-mapping

optimization. The remapping incorporates the latest

improvements in technology mapping with a power es-

timation of the subject graphs. The post-mapping op-

timization makes use of gate sizing, phase assignment,



bu�ering, and pin swapping. This optimization strategy

achieves a 24% average power saving.
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