
Low Power Mapping of Behavioral Arrays to Multiple Memories

Preeti Ranjan Panda and Nikil D. Dutt

Department of Information and Computer Science

University of California, Irvine, CA 92717-3425, USA

Abstract

Large data arrays in behavioral speci�cations are usu-
ally mapped to o�-chip memories during system synthe-
sis. We address the problem of system power reduction
through transition count minimization on the address
bus during memory accesses, when mapping behavioral
arrays to multiple memory modules drawn from a li-
brary. We formulate the problem as three logical-to-
physical memory mapping subtasks, provide algorithms
for each subtask, and present experiments that demon-
strate the transition count reductions based on our ap-
proach. Our experiments show a transition count re-
duction by a factor of 1.5{6.7 over a straightforward
mapping scheme.

1 Introduction and Related Work

The increasing demand for portable electronic equip-
ment in recent times has led to extensive research in low
power design techniques. Applications such as portable
communications and multimediadrive the trend towards
reduction in power dissipation in VLSI systems. Mini-
mizing memory-related power forms an important task
in system design, since most of these applications in-
volve heavy memory tra�c, which accounts for a sig-
ni�cant fraction (upto 50 %) of the total system power
[10]. Our focus in this paper is the reduction of signal
transition count on the address bus during memory ac-
cesses, based on a static analysis of the behavior. This
reduction leads to power minimization not only by way
of reduced switched capacitance in the o�-chip address
bus drivers in the ASIC (Figure 1), but also in the form
of reduced switching activity in the address bu�ers and
decoders in the memory.

Compiler techniques dealing with reduction in the
number of memory accesses during program execution
[2], are directly applicable to the problem of power min-
imization, since reduction in the number of memory
accesses directly implies a reduction in the number of
switchings of the memory address bus, the data bus, and
the core memory circuitry. [10] presents transformations
on the initial speci�cation into an optimized form for re-
ducing the number of memory accesses. Related work
on exploiting data encoding to reduce transition activ-
ity is presented in [8], where a data-encoding strategy
is used to decrease the number of I/O transitions at the
expense of a moderate increase in on-chip transitions,
by analyzing data streams on I/O pins.

In [6], a technique for minimizing address bus transi-
tions was presented that exploited regularity and spatial
locality in the memory accesses in a behavioral descrip-
tion and determined the mapping of behavioral array
references to physical locations in a single memory. The
impact of di�erent memory address mapping strategies
(row-major, column-major [1], and tile-based) on power
dissipation was investigated by comparing the bit transi-
tion counts on the address bus. The study showed that,
to reduce o�-chip transition count, we can perform some
additional computation on-chip, if required, with negli-
gible area, delay, and power overhead, because o�-chip
load capacitances are three orders of magnitudes larger
than on-chip capacitances [3]. In this paper, we present
a generalization of the array mapping techniques to the
more realistic case where the target architecture consists
of a library of multiple memories of di�erent sizes.

2 Problem De�nition and Approach

We wish to perform the assignment of behavioral ar-
rays to addresses in physical memory, which consists of
single-ported memory modules of di�erent sizes. Fig-
ure 1 shows the model we assume for a typical memory-
intensive system, synthesized into an ASIC (consisting
of datapath and control blocks) and a group of mem-
ory modules. We have a pair of data and address buses
connecting the ASIC to each memory. This con�gura-
tion is common in performance-critical systems where
the required data access rate exceeds the maximum ac-
cess rate possible when only a single memory can be
accessed at any instant of time (i.e., multiple memories
connected to a single data bus).

Specification

Synthesis

ASIC

Memory
Control

Datapath

Address
Generator

Off–chip Drivers

Address

Data

Address

Data

Memory

Figure 1: Synthesis model of a memory-intensive system

The approach we take is summarized in Figure 2. We
�rst analyze the access patterns in the speci�cation to
determine the optimum partitioning of the arrays into
multiple logical array partitions. E.g., in Figure 2, ar-
ray A1 is split into logical array partitions K1 and K2.
We then regroup the logical array partitions into logi-
cal memories based on criteria such as the possibility of

ISLPED 1996 Monterey CA USA
0-7803-3571-8/96/$5.00 1996

interleaving (Section 4). In Figure 2, logical array par-
titions K1 and K3 are merged into logical memory L1.
Finally, we map the logical memories into the available
physical memories. The criterion here is minimization
of the transition count overhead arising from mapping
multiple logical memories to the same physical memory
module. In Figure 2, logical memories L1 and L3 are
assigned to physical memory P1, whereas L2 is assigned
to P2.

Arrays Logical Array
Partitions

Logical
Memories

Physical
Memories

A1

A2

A3

K1

K2

K3

K4

K5

L1

L2

L3 P2

P1

Figure 2: Mapping of Arrays to Multiple Physical Memories

3 Splitting into Logical Array Partitions

A procedure for organizing multi-dimensional arrays
into tiles, based on an analysis of the access patterns
in the behavior is described in [6]. Regularity in be-
havioral access patterns, which is a common feature in
most memory-intensive applications, especially those in
the DSP/Image processing domain, allows us to extract
the dimensions of the tile for arrays accessed in loops.
Figure 3 shows an array u, of dimensions 6 � 4, orga-
nized into four tiles. The tiles could have been derived,
for instance, from an access pattern, in which the inner
loop iteration of the behavior accesses elements (of u)
from TILE1, followed by TILE2, TILE3, and TILE4. If
array u is mapped to a single memory, spatial locality
is improved during execution if the array is organized
into tiles in memory (tile-based mapping), i.e., instead
of the traditional row-major and column-major storage,
elements of TILE1 are stored in consecutive locations,
followed by those of TILE2, TILE3, and TILE4. In the
multiple memories scenario, for each array, we use the
tile thus derived as the starting point and split it into
as many logical array partitions as number of array el-
ements in the tile.

Figure 3 illustrates the splitting of array u whose tile
contour has already been established, into multiple ar-
ray partitions. We have six array partitions correspond-
ing to each element of the tile. There are as many ele-
ments in each array partition, as the number of tiles in
array u. The rationale for this division is that if each
array partition is mapped to a di�erent logical mem-
ory, this ensures optimality in terms of bit-transitions
on the address bus. E.g., if u[0][0] (in TILE1) is ac-
cessed in one loop iteration, we have u[0][2], u[3][0], and
u[3][2] being accessed in subsequent iterations (because
the access pattern remains constant). Note that the par-
titioning in Figure 3 results in all these four elements

being mapped into the same logical partition, thereby
ensuring that consecutive elements of the partition are
accessed in each iteration. If the memory address is con-
verted into Gray code, the address bus for each memory
would have just one bit transitioning between consecu-
tive iterations of the inner loop of the speci�cation.

0 1 2 3

0

1

2

3

4

5

TILE 1 TILE 2

TILE 3 TILE 4

(a) Original array ‘u’ (b) Mapping of Tile 1 into different
 Array partitions of ‘u’

Figure 3: Partitioning of an array into multiple array parti-
tions

4 Merging Logical Array Partitions

After partitioning the arrays in the speci�cation to
multiple logical array partitions, the next task is to
group several array partitions into larger logical mem-
ories. This is because it might be prohibitively expen-
sive to have a separate physical memory for each array
partition. We consider the following properties while
merging the array partitions:

Interleaving { It may be possible to interleave 1 mul-
tiple arrays in the same physical memory without
su�ering any penalty in bit transitions.

Independence { If two arrays are not accessed in the
same loop, they can be stored in the same logical
memory.

Non-overlapping Lifetimes { If two arrays have non-
overlapping lifetimes they can be stored in the
same memory locations, since the same memory
space can be reused for the two arrays, i.e., we
need only one logical array partition for the two
arrays.

Based on the above properties, we construct a com-
patibility graph G in which each vertex represents an
array partition, and the presence of an edge indicates
that the two partitions can be placed in the same physi-
cal memory with no transition count overhead (i.e., they

1When multiple arrays accessed in the inner loop have simi-
lar access patterns, we can interleave their storage to maintain
spatial locality during accesses. Interleaving two arrays a and b

means storing a[i][j] and b[i][j] in consecutive logical memory lo-

cations, followed by a[i][j+1], b[i][j+1], etc. (assuming row-major
mapping).

are compatible). If two arrays are either independent, or
can be interleaved, then we create an edge between the
corresponding vertices.

After constructing the compatibility graph G, we ap-
ply a clique partitioning algorithm to divide the graphs
into sub-graphs of array partitions. A clique is a fully
connected subgraph of the original graph G. The sig-
ni�cance of a clique is that all partitions in the clique
can be placed in the same physical memory. An ex-
act solution of the clique partitioning is known to be
NP-complete, so we employ an existing approximation
algorithm [9] for this purpose. Each subgraph result-
ing from the clique partitioning corresponds to a logical
memory.

for i in 2 to MAX–1 do
for j in 1 to MAX do

x[i][j] = a[i–1][j] * b[i][j] + a[i+1][j] * c[i][j] + a[i][j]
y[i][j] = d[i–1][j] * b[i][j] + d[i+1][j] *c[i][j] + d[i][j]

for i in 2 to MAX–1 do
for j in 1 to MAX do

p[i][j] = p[i–1][j] + p[i+1][j]

a3

b cd3

x y

(a) Behavior with arrays a, b, c, d, x and y

(c) Graph showing compatible array partitions. a1, a2, and a3 are partitions
of array ‘a’. Partitions of array ‘d’ are d1, d2 and d3

p

a2

d2

a1

d1

a3

d3

a2

d2

a1

d1

(d) A possible partition into cliques – each clique represents a logical memory

(b) Tiles for ‘a’ and ‘d’

a d

b c

x y

p

Figure 4: Deriving logical memories from behavior

Figure 4(a) shows an example behavior and Figure 4(c)
shows the corresponding graph for the array partitions.
The tile corresponding to arrays a and d have three ele-
ments each, since 3 elements of each array are accessed
in the inner loop (Fig. 4(b)). This leads to three array
partitions for the two arrays. The array p has edges to
all other array partitions, since it is accessed in a dif-
ferent loop, thus the independence property allows it to
be placed in the same logical memory with any of the
other array partitions. One possible partitioning of this
graph into cliques is shown in Figure 4(d). This leads
to four logical memories, each consisting of clusters of
array partitions.

5 Mapping into Physical Memory

The next step is to map the logical memories to avail-
able physical memory modules. There exists a trade-o�
between memory utilization and address bus transition
count: mapping each logical memory into a separate
physical memorymight be prohibitively expensive, forc-
ing multiple logical memories to be mapped into the
same physical memory. However, this mapping leads to
ine�ciency in terms of transition count, because some
components of two di�erent cliques in the compatibil-

ity graph would be incompatible (otherwise they would
be in the same larger clique). We introduce an addi-
tional user-supplied constraint, a memory packing fac-
tor f, which allows the user to control this trade-o�.
The constraint f, which represents the minimum frac-
tion of each physical memory that needs to be �lled,
can, of course, be set to 1, indicating that all the phys-
ical memories should be full. On the other hand, if the
value of f is relaxed to less than 1, then a better packing
in terms of transition count might be achieved. If f is
set to 0, then the resulting mapping is optimumwith re-
spect to transition count, but could be area-expensive,
as memory space would be wasted.

The algorithm we use for mapping the logical mem-
ories into physical memoriesis a variant of the Best-
Fit Decreasing heuristic for the bin-packing problem [4].
The general strategy we adopt is to consider the logical
memories one at a time, largest �rst and assign it to a
physical memory module based on its own size and the
sizes of the available memory modules. We start with
the largest logical memory (L), since this is a candi-
date that possibly accounts for large transition counts.
If L is larger than all available physical memories, we
implement it with (multiple copies of) the largest avail-
able physical memory module. If there is a remainder of
lesser size, we add it to the list of logical memories and
continue the mapping process. If there is at least one
physical memory module of greater size than that of the
logical memory under consideration, we map the logical
memory into the largest physical memory module that
satis�es the memory packing factor f. If the constraint
f cannot be satis�ed, the mapping is too expensive, and
we need to compromise on transition counts by map-
ping more than one logical memory to the same physical
memory. The details of the algorithm can be found in
[7].

6 Experiments and Results

We conducted experiments for testing the e�cacy
of our approach on several benchmark examples taken
from the Image Processing applications domain [5]. We
used the cumulative count of the bit transitions on the
memory address bus during the execution of the behav-
ior as a power consumption metric. In [6], a heuristic
was presented to select an appropriate array mapping
scheme, and experiments were reported, indicating a
transition count reduction of 27 { 63% over the simple
row-major mapping used by most compilers and syn-
thesis tools. The experiments we report in this section
demonstrate a further signi�cant reduction in the mul-
tiple memories generalization.
Experiment 1 - In our �rst experiment to determine
the impact of multiple memories on transition count,
we used a con�guration of multiple memories in the ex-
amples, where there is one physical memory available
for each logical memory. In other words, this is the
best improvement possible over the single memory case,
since the partitioning into logical memories represents
the ideal mapping, according to our technique. We re-
call, from Section 5, that we try to avoid, as far as
possible, mapping of multiple logical memories to the
same physical memory.

Table 1 shows a comparison of transition counts for
�ve examples, all involving 2-dimensional arrays of di-
mensions (MAX � MAX), of the best mapping in the

Transition Counts
Example Single Multiple Red. Avg.

Memory Memories (1000) Red.
Compress 6518370 999002 6.5 X 6.6 X
GSR 28589669 8897227 3.2 X 2.9 X

Laplace 19653293 3997735 4.9 X 4.4 X
Lowpass 13218670 4993734 2.6 X 2.7 X
SOR 20438794 5997502 3.4 X 3.2 X

Table 1: Transition Count Reduction due to Multiple Mem-
ories

case of a single physical memory, and multiple physical
memories. Columns 2 and 3 show transition counts for
the di�erent examples, with the value of MAX as 1000.
Column 4 shows that the number of times by which
transition counts decreased as a result of using multiple
memories. Column 5 shows the average reduction for
all the di�erent sizes of the arrays that were considered
for each example (MAX was varied from 50 to 1000 in
steps of 10). We observe that transition count could
be reduced by a factor of between 2.7 and 6.6 times if
multiple memories are considered.
Experiment 2 - Experiment 1 demonstrates the pos-
sible transition count reduction in the hypothetical case
of physical memories of the same size as the logical mem-
ories being available. In practice, however, the designer
may be constrained by a speci�c library of physical
memory modules. In the second experiment, we used a
speci�c library of memory modules of sizes 128 KBytes,
256 KBytes, 512 KBytes, 1 MByte and 2 MBytes, with
the assumption that each array element in the arrays
of the examples occupies one byte (data bus is 8 bits
wide). Table 2 shows the transition counts obtained for
the same �ve examples when the mapping is performed
with the above library.

Transition Counts
Example Simple Mapping Our Mapping Red.
Compress 6701381 999002 6.7 X
GSR 19877346 11010165 1.8 X

Laplace 12884093 3997735 3.2 X
Lowpass 14060806 4993734 2.8 X
SOR 14118103 9145590 1.5 X

Table 2: Transition Count Reduction for a Speci�c Library

In Table 2, column 2 shows the transition counts ob-
tained for the case when MAX = 1000 using a simple
algorithm that maps the arrays in the speci�cation (in
order of decreasing size) to the smallest memory that
accommodates them. Column 3 shows the correspond-
ing transition counts using our approach. Comparing
column 3 in Table 1 and Table 2, we note that for three
of the examples (Compress, Laplace and Lowpass), the
transition count in Experiment 2 was the same as the
best case (one physical memory for each logical mem-
ory) transition count in Experiment 1 (i.e., our algo-
rithm performed the optimal mapping). The transition
count reduction factors shown in column 4 indicate a
signi�cant reduction resulting from our approach, rang-

ing from a factor of 1.5 to 6.7.

7 Conclusions

In this paper we formulated and solved the prob-
lem of mapping of arrays in behavioral speci�cations
to memories, in order to achieve address bus transition
count minimization during memory accesses, when the
target architecture includes multiple physical memory
modules of di�erent sizes drawn from a library. We con-
ducted experiments on several image processing bench-
marks exhibiting various (regular) memory access pat-
terns. Our experiments showed that the power dissi-
pation during memory accesses, as measured through
o�-chip signal transition count on the memory address
bus reduced by a factor of 1.5 { 6.7 over a straight-
forward mapping scheme 2. The mapping strategy we
have described, is valid for array references in loops of
the form a[i�k], where i is the index and k is a constant.
The formulation and solution of the problem to handle
multi-dimensional arrays remains exactly the same.

8 Acknowledgment

We thank SRC for partial support of this work under
SRC contract 95-DJ-146. We also thank Prof. Tomas
Lang, Prof. Dan Hirschberg and Prof. Daniel Gajski
for their valuable comments.

References

[1] A. V. Aho, R. Sethi, and J. D. Ullman, \Compilers, Prin-
ciples, Techniques, and Tools," Addison-Wesley, 1986.

[2] D. F. Bacon, S. L. Graham and Oliver J. Sharp, \Compiler

Transformations for High-Performance Computing," ACM
Computing Surveys, Vol. 26, No. 4, December 1994.

[3] H.B. Bakoglu, \Circuits, Interconnections, and Packaging
for VLSI," Addison-Wesley, 1988.

[4] E. G. Co�man, Jr. and G. S. Lueker, \Probabilistic

Analysis of Packing and Partitioning Algorithms," Wiley-
Interscience, 1991.

[5] P. R. Panda and N. D. Dutt, \1995 High Level Synthesis
Design Repository," International Symposium on System

Synthesis, Cannes, September 1995.

[6] P. R. Panda and N. D. Dutt, \ReducingAddress Bus Tran-
sitions for Low Power Memory Mapping," European De-

sign and Test Conference, Paris, March 1996.

[7] P. R. Panda and N. D. Dutt, \Low Power Memory Map-
ping through Reduced Address Bus Activity," Technical
Report #95-32, UC Irvine, November 1995.

[8] M. R. Stan and W. P. Burleson, \Bus-Invert Coding for
low-power I/O," IEEE Transactions on VLSI Systems,

March 1995.

[9] C. Tseng and D. P. Siewiorek, \Automated Synthesis of
Datapaths in Digital Systems," IEEE Transactions on

Computer Aided Design, July 1986.

[10] S. Wuytack, et. al., \Global communication and memory
optimizing transformations for low power systems," IEEE
International Workshop on Low Power Design, Napa, CA,

April 1994.

2In [6], it was shown that the overhead incurred in the address

generator for the mapping schemes, in terms of area, delay, and
power is negligible.

	CD-ROM Home Page
	ISLPED Home Page
	Front Matter
	Table of Contents
	Session index
	Author Index

