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Abstract— We present a novel method to compute the approx-
imate global penetration depth (PD) between two non-convex
geometric models. Our approach consists of two phases: offline
precomputation and run-time queries. In the first phase, our
formulation uses a novel sampling algorithm to precompute an
approximation of the high-dimensional contact space between
the pair of models. As compared with prior random sampling
algorithms for contact space approximation, our propagation
sampling considerably speeds up the precomputation and
yields a high quality approximation. At run-time, we perform
a nearest-neighbor query and local projection to efficiently
compute the translational or generalized PD. We demonstrate
the performance of our approach on complex 3D benchmarks
with tens or hundreds of thousands of triangles, and we
observe significant improvement over previous methods in
terms of accuracy, with a modest improvement in the run-time
performance.

I. INTRODUCTION

Accurate and efficient computation of inter-penetration
is important in many areas, including computer graphics,
haptics, and robotics. A common metric that is used to mea-
sure the extent of inter-penetration between two intersecting
objects is penetration depth (PD), which is defined as the
minimum amount of movement or transformation required to
separate two in-collision objects. The resulting motion may
correspond to translational alone (translational PD) or to both
translational and rotational motion PD (generalized PD). PD
computation is frequently used for many applications, such
as physically-based simulation [1], sample-based motion
planning [2], haptics [3], [4], and contact manipulation [5].

Computing the exact PD in 3D is a challenging task
because of the O(m3n3) time complexity involved in trans-
lational PD and the O(m6n6) worst case time complexity
for generalized PD, where m and n are the number of
triangles in two non-convex input models [2]. Given the
high combinatorial complexity of exact PD computation,
many approximate algorithms have been proposed. Some of
the simplest algorithms compute the intersecting features of
these two models and use them to compute local PD that is
based on a measure of separating those overlapping features.
In fact, current game engines such Box2D [6] and Bullet [7]
use local PD computations for collision response. However,
the accuracy of local PD algorithms depends on relative
configuration of two objects [8], [9]. Other techniques are
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based on computing an approximation of the configuration
space boundary [10], [11], [12], but the accuracy of these
techniques can vary for different configurations of two ob-
jects and it is hard to derive tight bounds. There are no
good reliable algorithms for global PD computation between
arbitrary non-convex 3D shapes.
Main Results: In this paper, we present a novel algorithm
to approximate global PDs between rigid objects based
on efficient sampling in the contact space. Our approach
can compute both translational and generalized PD with
high accuracy for non-convex models. We first precompute
an approximation of the contact space of two overlapping
objects by generating samples in the contact space. We
generate our initial samples using random sampling and
use a novel propagation algorithm to generate additional
samples via local search. The use of propagation sampling
considerably speeds up precomputation and results in a
high quality contact space approximation. At run-time, our
algorithm performs a nearest-neighbor query to compute
the PD. We also analyze the properties of our sampling
scheme and highlight its benefits. Compared with prior PD
algorithms, our approach offers the following benefits:

• The overall algorithm is general and directly applicable
to complex non-convex and non-manifold models.It can
compute translational and generalized PDs.

• The use of propagation sampling can considerably ac-
celerate the precomputation and provides a high quality
approximation of the contact space.

• The run-time query is very fast (a few milliseconds) and
can be used for interactive applications.

• The overall algorithm is more accurate as compared to
prior local and global PD computation algorithms.

We highlight the performance of our algorithm on different
models, which contain tens or hundreds of thousands of trian-
gles with sharp features. We also highlight the considerable
improvements in the accuracy of the run-time query com-
pared with recent algorithms based on active learning [10]
and local optimization [13], [4]. In particular, our approach
can considerably reduce the error in PD computations over
these methods. This paper is an extension of our work [14]
and provides additional technical details that were not in-
cluded in [14] due to the space limitations.

The remainder of this paper is organized as follows. In
Section II, we survey the literature related to the configura-
tion space and PD computation. We introduce our notation
and give an overview of the algorithm in Section III. We
present our contact space sampling algorithm in Section IV,
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and we discuss and analyze its performance on many com-
plex benchmarks in Section V and Section VI.

II. RELATED WORK

A. Configuration Space Computation

There is extensive work on configuration space compu-
tations in robotics, geometric computing, and related areas.
In the most general cases, configuration space computations
can be reduced to computing the arrangement of contact
surfaces [15]. However, these approaches are susceptible
to robustness issues. Moreover, the worst-case complexity
of the arrangement computation can be as high as O(nk),
where n is the number of contact surfaces in the arrangement
and k is the dimension of the configuration space [16].
Some techniques for approximating the configuration space
in lower dimensions are based on generating a discrete
number of slices [17]. When the object movement is limited
to translational motion, the resulting configuration space
corresponds to the Minkowski sum of two objects [18], [19].

A substantial amount of work in motion planning involves
approximating the configuration space with sampling tech-
niques. These include various randomized algorithms that
compute roadmaps for collision-free path planning. Some of
these approaches, such as [20], [21], [22], [23], also consider
the problem of sampling in a constrained configuration space
or a manifold, which is similar to the contact space sampling
discussed in this paper. However, these methods are designed
for collision-free motion planning, and hence only require the
generated samples to capture the connectivity of the free part
of the constrained configuration space.

B. PD Computation

Given two convex polytopes, we can compute the exact
translational PD using Minkowski sum computation [24],
[25], [26]. For non-convex polyhedral models, the PD can
be computed using a combination of convex decomposition,
pairwise Minkowski sums, and exact union computation [11].
Different techniques have been proposed to approximate
the boundary of the Minkowski sum [11], [15], but they
are limited to offline and non-interactive applications. Most
practical algorithms for translational PD are based on lo-
cal computations. These local algorithms only consider the
intersecting or overlapping of features such as the vertices,
edges, and faces. Based on pairwise intersections, they tend
to estimate a motion that would separate these intersecting
features [27], [9], [12], [28], [29], [30]. Other techniques
estimate the local intersection volume and its derivative to
perform volume-based repulsion [31]. Local translational PD
computation can also be estimated using distance fields [8].
Point-based Minkowski sum approximation [32] has been
used approximate the translational PD. The exact compu-
tation of generalized PD can be formulated in terms of
computing the arrangement of contact surfaces [2]. However,
no practical algorithms are known for exact computation
due to its high combinatorial complexity. Most practical
algorithms are based on local optimization techniques [33],
[34], [4], [13]. However, due to the high time and storage

complexity, most generalized PD algorithms are based on
local optimization-based techniques [33], [34], [4], [13]. [10]
recently proposed a learning-based approximate penetration
depth computation algorithm that reduces the contact space
problem to robust classification by finding a separating
surface between in-collision and collision-free samples in the
configuration space. However, this algorithm cannot provide
high quality approximation of the contact space of objects
with sharp features, because it represents the contact space
using the SVMs (support vector machines). Recently, Kim et
al. [35] present a hybrid PD computation algorithm that com-
bines this active learning approach with local optimization
based methods to improve its accuracy.

III. BACKGROUND AND OVERVIEW

In this section, we introduce our notation and give an
overview.

A. Contact Space

We denote the configuration space for a pair of triangular
meshes A and B as C-space. Each configuration or point in
the configuration space represents the relative transform (i.e.,
position and orientation) of A with respect to B. In the rest of
this paper, we assume that A is movable and B is fixed. The
configuration space is composed of two parts: collision-free
space represented as Cfree = cl({q : A(q) ∩ B = ∅}), and
in-collision or obstacle space represented as Cobs = int({q :
A(q) ∩ B 6= ∅}), where A(q) corresponds to A located at
the configuration q, and cl(·) and int(·) correspond to set
closure and interior operations, respectively.

The boundary of Cfree is called the contact space and is
denoted as Ccont = ∂Cfree. The contact space corresponds
to the configurations where A and B just touch each other
without any penetration. Moreover, a contact configuration is
classified as a collision-free configuration in our formulation.

B. PD Formulation

The global penetration depth corresponds to the minimum
motion or transformation required to separate two intersect-
ing objects A and B [25], [26]:

PD(A(q0), B) = min
q∈Ccont

dist(q0,q), (1)

where q0 corresponds to an in-collision configuration and
q is a configuration that belongs to the contact space Ccont.
We use the notation dist(·, ·) to represent a distance metric
between two configurations. This includes the Euclidean
metric for translational PD, and many different formulations
can be used for generalized PD computation. We denote qc

as the contact configuration where PD(A,B) achieves its
minimal value: qc = argminq∈Ccont

dist(q0,q).
Different formulations of PD can be defined by appropriate

dist(·, ·) metrics. The metric for the translational motion
(PDt) is simple and is the standard Euclidean distance
metric between vectors corresponding to the configurations.
The metric for the general motion (PDg) can be defined
using different formulations, including the weighted Eu-
clidean distance [3], object norm [36], [4], [13], and a



displacement distance metric [34]. In this paper, we use the
object norm [36], [4], [13] as the PDg metric, which can
be intuitively defined as an average squared length of all
displacement vectors between two objects.

C. Approximate Ccont Computation

In order to construct an approximation of the contact
space, we perform an offline sampling in the configuration
space, as shown in Figure 1. Given two input objects A
and B, our method starts with a random-sample in the
contact space. This random-sample can be generated using
traditional continuous collision checking (CCD) techniques.
These techniques compute the first time of collision or con-
tact between two objects by reducing the problem to finding
roots of polynomial equations corresponding to the triangle
features. Continuous collision detection has been widely used
for physically-based simulation [29] as well as local planning
in robotics. Next, our method performs an iterative local
search around the initial random-sample by sliding object
A over object B’s surface, and generates more samples on
the contact space. We denote the samples generated on the
contact space during the local search as propagate-samples
to distinguish them from random-samples (see Figure 1(h)).
The local search stops when no more propagate-samples
can be generated, and we then restart the iteration with
a new random-sample in the contact space. This iterative
process continues until a sufficient number of samples have
been generated. The random-samples and propagate-samples
computed by our approach make up an approximate sample-
based representation of the contact space Ccont between A
and B, and we denote this approximation as C̃cont.

D. Approximate PD Computation

Given the approximate representation of the contact space,
C̃cont, we compute the approximate global PD by performing
a nearest-neighbor query in Ccont. The definition of approxi-
mate penetration depth is analogous to the exact penetration
depth in Equation 1:

PD(A(q0), B) = min
q∈C̃cont

dist(q0,q), (2)

where the domain for q is restricted to C̃cont. The accuracy
of PD is governed by the accuracy of C̃cont with respect to
Ccont. Given a query configuration q0, we perform a nearest-
neighbor search to find the configuration qc that is closest
to the decision boundary C̃cont. Finally, the distance between
q0 and qc is computed using an appropriate distance metric
dist(·, ·) and the result is an approximation of the exact PD
value. As mentioned in Section III-B, we use the object norm
as the distance metric.

IV. CONTACT SPACE PROPAGATION SAMPLING

In this section, we present our contact space propagation
sampling algorithm that computes an offline approximation
of the contact space. Our sampling algorithm is an iterative
algorithm. During each iteration, we start from a random-
sample in the contact space, and then perform a local

search around this initial sample to generate more propagate-
samples on the contact space. Once the local search stops,
we repeat the iterative step with a new random-sample. This
iterative process continues until a sufficient number of sam-
ples have been generated. The random-sample on the contact
space during each iteration is computed by first generating
two samples in the configuration space, one in collision-free
space and the other in the in-collision space. We join those
samples by a straight line in the configuration space and
find its intersection with the contact space. This reduces to
computing the first time of contact between a collision-free
and an in-collision configuration, which corresponds to a
CCD query. The resulting sample on the contact space is
the random-sample used during this iteration.

Ideally, the local search procedure should run many steps
and generate sufficient numbers of propagate-samples, in
order to cover a large portion of the contact space. This
coverage is important for the efficiency of the sampling al-
gorithm, because the generation of a random-sample requires
the expensive CCD query. This query is more expensive
than the generation of a propagate-sample that only needs
to perform the DCD (discrete collision detection) query. If
the local search can generate a high number of propagate-
samples, it amortizes the computational cost of generating
a random-sample over a high number of propagate-samples,
and improves the efficiency of our precomputation step. Our
main goal is to design a fast and effective local search
algorithm that can compute the propagate-samples quickly.
To that end, we perform a breadth-first propagation on
the contact space, starting from the random-sample. The
breadth-first propagation maintains a queue (we call it the
propagate-queue) of contact samples. During each step of
this propagation, we pop one contact sample q from this
queue, and then slide object A(q) over the surface of object
B in different directions along its boundary. This propagation
step results in a set of new samples {q′} around q, as
shown in Figure 1. Next, we perform collision checking for
these samples {q′}, and only add the collision-free samples
into the propagate-queue. The breadth-first search is repeated
until the queue is empty.

A new sample q′ is propagated from a contact sample
q and is added into the propagate-queue only if it is
collision-free. Otherwise, the sample would be discarded
and the actual execution of the local search’s propagation
may be interrupted, as shown in Figure 2. To overcome
this challenge, we classify the local search process into two
cases: the boundary configuration case when q′ ∈ Ccont,
and the internal configuration case when q′ ∈ Cobs. In
the internal configuration case, we resume the local search
computation according to objects’ contact features (i.e., local
vertices, edges, faces). This formulation greatly improves
the efficiency of the local search. The overall local search
computation algorithm is shown in Algorithm 1.

A. Boundary Configuration Case

In the boundary configuration case, each step of the local
search is a standard propagation step from a contact sample
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Fig. 1. The offline computation pipeline and the run-time phase of our algorithm. Given two input objects in (a), the precomputation algorithm in (b)
performs the propagation sampling to efficiently generate an approximation to the contact space (C̃cont) as the output (c). This approximate contact space
is then used for efficient run-time PD query as shown in (d). (e) shows the shapes of the input objects. (f) and (g) show the relative transform between
two input objects under the configuration q0 randomly generated as the propagation seed and a set of configurations generated from q0 using local-search
based propagation, respectively. (h) is the output C̃cont where red points are the random seed samples and the blue points are the propagate-samples.

q. We first compute the contact pair (pA, pB) between A(q)
and B, where pA and pB are two contact points on objects A
and B. The points pA and pB belong to two different objects
but overlap with each other, just touching at the configuration
q. We also compute the angle θ between the normal vectors
at pA and pB . Next, we slide the object A over the surface
of object B with a distance d, which can be any value less
than the edge length of triangular mesh(since we generate the
samples on the mesh of object). For our case, we we use the
edge lengths of the fixed objects as the sliding step, and thus
the propagate-samples all land in the vertices of object B.
During the sliding movement, the contact point on A remains
unchanged as pA, and the contact point on B moves from pB
to p′B (see Figure 2). Now A and B touch at the new contact
point pair (pA, p′B). We further rotate the object A such that
the angle between the two objects’ contact normals remains
to be θ (as shown in Figure 2). In this way, we compute a
new configuration q′, which can be specified using pA, p′B
and θ for 2D objects. Similar propagation procedure can also
be defined for 3D objects, whose configuration space has 6
dimensions.

We represent the sliding movement from q to q′ as a
transition function (q′, pA, p

′
B , θ) = T (q, pA, pB , θ). The

new generated configuration q′ is pushed into the propagate-
queue for future propagation-sample computations. This slid-
ing procedure is executed along different directions on the
surface of object B around pB , and results in a set of new
configurations {q′} spreading over the neighborhood of q
on the contact space. The collision-free samples in {q′}
are located on the contact space and we add them directly
into the propagate-queue. For in-collision samples in {q′},
we treat them as the internal configuration case and stop
propagation.

In the above description, we restrict all new propagate-
samples {q′} to have the same angle θ between the two ob-
jects’ contact normals. This simple heuristic greatly increases
the probability that a new sample q′ will be collision-free. It
is based on the assumption that the surface curvature around

Algorithm 1: Local search for propagate-samples
input : Two objects A and B, an initial random-sample qr ,

the search step size d
output: A set of propagate-samples S from qr

/* Initialize final result set */
1 S ← ∅ ;

/* Initialize a propagate-queue Q */
2 pA, pB ← contact points of A(qr) and B ;
3 θ ← angles between contact normals ;
4 Q← {(qr, pA, pB , θ)} ;
5 while Q 6= ∅ do
6 (q, pA, pB , θ) ← pop(Q) ;
7 N ← B’s vertices at a step of d away from pB ;
8 for p′B ∈ N do
9 (q′, pA, p

′
B , θ)← T (q, pA, pB , θ) ;

10 if isCollision(q′) then
/* Internal configuration case */

11 Compute the critical qc between q and q′ ;
12 M ← contact pairs other than (pA, ∗) between

A(qc) and B ;
13 for (pcA, p

c
B) ∈M do

14 θc ← angles between contact normals at pcA
and pcB ;
/* Check whether qc is close to

previous samples */
15 if kdTreeTest(S,qc,r) = true then
16 continue ;

17 Q← Q ∪ {(qc, pcA, p
c
B , θ

c)} ;

18 else
/* Boundary configuration case */

19 Q← Q ∪ {(q′, pA, p
′
B , θ)} ;

20 S ← S ∪ {q} ;

the neighborhood of pB is roughly constant. Therefore, a
configuration q′ with the same relative angle as q should
have a high probability to be collision-free after the sliding
movement.

The parameter d in a boundary configuration propagation
step determines the step-size of the propagation. Its value



Fig. 2. An example of the contact sample propagation between an object A
(the yellow tetrahedron) and an object B (the blue polygon). The object A
is initially at configuration q where the contact points between two objects
are pA and pB and the angle between contact normals is θ. During the
propagation, the object A moves along one edge of the object B’s mesh
and finally contacts with object B at p′B , a neighbor vertex of pB . Object
A always has point pA as its contact point.

varies during the local search process. In particular, d is
inversely proportional to the relative scale of A with respect
to B, and it is also related to the surface curvature at pB .

B. Internal Configuration Case

In this case, q is inside Cobs, i.e. inside the C-obstacle
space. This can happen when two objects are very close
in size or the surface of B is ‘bumpy’, i.e., the curvature
changes dramatically over the surface. In this case, the prop-
agation search step usually explores only a few steps because
A and B will collide even when A only slides a small step
over B’s surface. In an extreme situation, every local search
returns no propagation-samples and all samples generated on
the contact surface are random-samples. This will result in
very slow sampling procedure, and these samples cannot be
evenly distributed over the contact space.

Our solution for the internal configuration case exploits
the contact features, and is based on the following property
of the sliding movement:

Theorem 1: Suppose one step of slide moves a contact
sample q0 into an in-collision sample q1. The transition
function is

(q1, pA, p
1
B , θ) = T (q0, pA, p

0
B , θ), (3)

where (pA, p
0
B) is the contact pair at q0, (pA, p

1
B) is the

contact pair at q1, and θ is the angle between contact
boundary configurations. On the resulting sliding trajectory,
there exists one configuration qt such that A(qt) and B are
in contact, but have at least one additional contact point
other than pA. Here we assume the sliding movement is
parameterized by t ∈ [0, 1]. We call the configuration qt

the critical configuration.
Proof: For each p ∈ A, we denote p(q) as its position

corresponding to the configuration q. We further define c =
infp∈A−{pA} infs∈[0,1]{s | p(qs)∩B 6= ∅}, i.e., the first time
that A contacts with B on a point other than pA. Since q0 is
collision-free and q1 is in-collision, we know c ∈ (0, 1). qc

has the property that A(qc) contacts with B, but there is at
least one additional contact point other than pA. Therefore,
the theorem is proved.

Based on this theorem, we resume the propagation at
an in-collision sample q′ by first computing the critical
configuration qc between q and q′. qc has more than one
contact point, and we denote the set of contact points other
than pA as M . For each contact point pcA in M , we continue
the local search step by changing the contact point on A
that remains unchanged during the movement from pA to
pcA. In particular, we compute the contact pair (pcA, p

c
B) and

θc, the angle between the contact boundary configurations
at pcA and pcB . Object A now starts sliding from the con-
tact point pcA and the corresponding transition function is
T (qc, pcA, p

c
B , θ

c). Figure 3 illustrates this process.

Fig. 3. Objects with highly varying curvatures where the sliding
movements can result in in-collision configurations and the early termination
of the propagation procedure. After applying the change of contact points,
the local search can escape from the ‘bumpy’ surface region. In the left
figure, the star shaped object A moves over the surface B, and the red star
denotes the sample configuration corresponding to the internal configuration
case. In the right figure, we compute the critical configuration qc and find
a new contact point pcA.

To avoid generating repeated samples during the internal
configuration case, we use a kd-tree to check the new contact
configuration qc and use it as the new propagation seed only
if it is not close to any existing samples, as shown in the line
15 in Algorithm 1.

C. Run-time PD Queries

In the PD query stage, we use the contact configurations
generated during the precomputation. Given a query config-
uration q ∈ Cobs, we use nearest-neighbor query to find two
contact configurations q0

c and q1
c that are closest to q and

incident to a same triangle on the fixed object. Next, we
compute a configuration qc which is a linear combination of
these two contact configurations, and the line connecting q2

an q is perpendicular to the line connecting q0
c and q1

c :

q2 = (1− ρ)q0
c + ρq1

c ; and (q2 − q) ⊥ (q1
c − q0

c). (4)

We then perform a linear search from q2 along directions
of q − q2 until we find a collision-free configuration q2

c .
The nearest-neighbor query is performed based on the dist()
metrics listed in Section III. Finally, we have to compare the
distance of q2 with those of q0

c , q1
c , and choose the smallest

one as the PD value of q.

V. PERFORMANCE AND COMPARISON

In this section, we highlight the performance of our
propagation sampling based precomputation and the run-time



PD query on a set of challenging 3D benchmarks as shown
in Figure 4. We use PQP query package to perform all the
collision tests used in our framework. For PD query, we
investigate both the translational and generalized PD, using
the distance metric as mentioned in Section III.

We implement our algorithm in C++ on an Intel Core i7
CPU running at 3.30GHz with 16GB of RAM on Window
7 (64-bits) PC. All the performance and timing results are
generated using a single core. Our precomputation algorithm
can be easily parallelized on a multi-core PC because both
the random-samples and the propagate-samples on the con-
tact space can be generated in parallel.

A. Performance

(a) Donut (b) CAD1 (c) CAD2 (d) CAD2
zoomed view

(e) Buddha (f) Dragon (g) Teeth

Fig. 4. The benchmarks we used to investigate the PD performance: (a)
Donut, each with 576 triangles; (b) CAD1 with about 10K triangles each;
(c) CAD2 with about 12K triangles each; (d) a zoomed view of CAD2 is
also provided to show the complexity of this benchmark; (e) Buddha with
1M triangles each; (f) Dragon with with 230K triangles each; (g) Teeth
models with about 40K triangles each.

Time Cost: We now highlight the performance of both the
off-line precomputation and run-time PD queries. Table I and
Table II show the time costs of the precomputation phase for
general PD and translational PD respectively, given different
number of propagation steps. We use at most 100,000 propa-
gation steps, and each step will generate one random-sample
and a set of propagate-samples extended from the random-
sample. We can see that the time cost for a single propagation
step increases while more samples are generated, and this
is due to the fact that while more samples are generated,
it is more difficult to find unrepeated new samples in the
contact space. Table I and Table II also provide the number
of samples generated for each propagation step, which is
averaged over all the 100,000 propagation steps. Table III
provides our method’s run-time cost for a single PD query,
which is computed as the average time cost after computing
1,000 randomly generated in-collision queries.
Convergence: We investigate the convergence of our sam-
pling algorithm by varying the number of samples and
evaluating its benefits in terms of approximating the contact
space. Since it is difficult to obtain the ground truth for the
general PD, the investigation is only for the translational

#propagations 30,000 50,000 80,000 100,000 #samples
Donut 314 551 693 891 79
CAD1 421 569 745 883 411
CAD2 390 581 737 923 323
Teeth 520 892 1,455 1,621 1231

Dragon 590 940 1,401 1,632 2997
Buddha 603 875 1,337 1,501 1820

TABLE I
PERFORMANCE OF THE PRECOMPUTATION COST FOR GENERAL PD ON

DIFFERENT BENCHMARKS. WE VARY THE NUMBER OF PROPAGATION

STEPS (I.E., THE NUMBER OF RANDOM-SAMPLES) FROM 30, 000 TO

100, 000, AND THE CORRESPONDING TIME COSTS (IN SECONDS) ARE

SHOWN IN THE FIRST FOUR COLUMNS. WE ALSO PROVIDE THE

AVERAGE NUMBER OF SAMPLES PER PROPAGATION STEP IN THE

COLUMN #SAMPLES.
#propagations 30,000 50,000 80,000 100,000 #samples

Donut 156 193 344 423 63
CAD1 159 243 387 659 329
CAD2 163 247 401 613 341
Teeth 155 471 912 973 768

Dragon 333 752 941 1,429 667
Buddha 346 771 1,017 1,918 751

TABLE II
PERFORMANCE OF THE PRECOMPUTATION COST FOR TRANSLATIONAL

PD ON DIFFERENT BENCHMARKS. WE VARY THE NUMBER OF

PROPAGATION STEPS (I.E., THE NUMBER OF RANDOM-SAMPLES) FROM

30, 000 TO 100, 000, AND THE CORRESPONDING TIME COSTS (IN

SECONDS) ARE SHOWN IN THE FIRST FOUR COLUMNS. WE ALSO

PROVIDE THE AVERAGE NUMBER OF SAMPLES PER PROPAGATION STEP

IN THE COLUMN #SAMPLES.

PD. We use the result from the Minkowski sum based
approach [32] as the ground truth of the contact space, and
then we compute the error between the PD results from the
ground truth and the PD results provided by our propagation
sampling approach.

As we generate more random-samples and propagate-
samples, our precomputation algorithm provides a better
approximation of the contact space. To evaluate the ap-
proximation quality of the contact space, we measure the
number of vertices in the original models that have been
visited during the propagation as contact points (e.g., pA
and pB in Figure 2). This is due to the fact that the
denser the contact space is sampled, the more vertices should
be visited as contact points during the sampling process.
The measurement result is shown in Figure 5, and we can
observe that for all benchmarks, the propagation procedure
convergence after generating 10 million samples, and a high
quality approximation to the contact space is achieved.

B. Comparison with Prior Methods

We compare the performance of our algorithm with two
recent methods that can compute translational and gener-
alized PD. One is a global approach [10] that uses active
learning to generate the samples in the entire configuration
space, and then computes the contact space approximation as
the surface separating collision-free and in-collision samples.
Its approximation of the contact surface is relatively smooth
due to its leverage of SVMs and hence this method may
not provide accurate PD results for query configurations
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Fig. 5. Convergence analysis of our precomputation algorithm for general
PD. The x-axis corresponds to the number of samples (both random and
propagation). The y-axis corresponds to our method’s error, which decreases
while more samples are generated. In all cases, our algorithm converges
quickly after 10 million samples.

with small penetrations. Overall, this approach provide a
conservative bound on the PD. The second method uses local
optimization [13], [4] to compute translational and general-
ized PD. It starts from a good initial guess to the PD result
and optimizes the computation based on appropriate metric.
Its accuracy depends on the initial guess and it may get stuck
in a local minimum. Unlike our method or the active learning
approach, this method has no precomputation. Therefore this
approach can also be used for PD computation involving
deformable models. Recently, Kim et al. [35] presented a
hybrid approach that combines the global method [10] with
the local method [13] to overcome some of these problems.
Runtime Performance: We compare the performance of
runtime query of our approach with these methods, and
the result is shown in Table III, for both general and
translational PD formulations. We observe that our approach
is significantly faster than other two approaches, because
our method can generate samples more evenly and densely
distributed in the contact space, and thus query configuration
can easily find a nearest-neighbor contact configuration in
fewer iterations.
Accuracy of PD computation: In our experiments, our
method quickly generates more than 1 million samples in
10-12 minutes with less than 5 MB storage. The error of
our online PD query is about 5% of the actual PD value
for both the translational and general PD, while this value
is 15-20% for [10] and 10% for [13], [4]. The main reason
for this improvement is because our method searches over
the entire contact space globally while the local optimiza-
tion methods [13], [4] search along the gradient direction.
The gradient search strategy can only generate suboptimal
results, especially for complex models. Our approach also
outperforms [10], [35] which approximates the contact space
by active learning, because it can provide a more accurate
approximation of the contact space.

We compare the accuracy between our method and the
active learning approach and the local optimization approach
by computing the per-frame error on a set of different
benchmarks (CAD1, Bunny, Lion, Dragon and Donuts). The
result is shown in Figure 6. From the results, we can observe
that the PD error of our method is about 5% for both the

Donut CAD1 CAD2 Dragon Teeth Buddha
Our (PDg) 0.93 0.95 1.03 1.18 0.98 1.31
Our(PDt) 0.81 0.85 1.13 1.06 1.01 1.11
Active [10] 0.95 1.41 1.32 1.43 0.92 1.48
Local [13] 6.56 78.3 54.4 132 111 153

TABLE III
COMPARISON OF THE RUN-TIME COST FOR A SINGLE PD QUERY (IN MS)

BETWEEN OUR METHOD AND TWO PRIOR METHODS: ACTIVE

LEARNING [10] AND LOCAL OPTIMIZATION [13], [4]. OUR METHOD

USES 100, 000 RANDOM-SAMPLES FOR PRECOMPUTATION, AND THE

TIME COST IS AVERAGED OVER 1, 000 RANDOMLY GENERATED

IN-COLLISION QUERIES.

translational and general PD queries. The error is mainly
caused by the resolution of the samples. But as we discussed
in the algorithm, all the samples in our method is located on
the contact space, and thus the result is much more accurate
than that of [10] which fits the contact space by machine
learning method. While both methods use the same number
of samples for general PD computation, the error of [10] is
about 10% - 20%, as shown in the third row of Figure 6,
while our method is about 5% as shown in the fourth row of
Figure 6. For the translational PD, the error of our approach
is about 3%, which is smaller the the corresponding results
in local optimization approaches [13], [4] as shown in the
second row of Figure 6. Local optimization approaches also
search over the objects’ surface, but they do not perform well
for objects with complex shapes. This is because they only
search along the gradient direction and may only obtain sub-
optimal solutions. For instance, they may miss the optimal
results in areas of sharp features. Our method will not miss
these areas in most situations since we can generate 1 million
samples over the contact space, which help our method to
explore the entire contact space. By searching through these
samples, our method can generate more accurate results than
gradient searching method. Overall, our approach is more
accurate than prior PD methods.

VI. ANALYSIS

In this section, we evaluate some properties of the propa-
gation sampling algorithm used in our precomputation phase.
In particular, we discuss 1) the bounds on the time complex-
ity of our precomputation scheme, and 2) why our approach
can generate samples with better distribution in the contact
space than pure random sampling.

A. Time Complexity
For the time complexity analysis, we assume the object

A can only perform translational movements and has m
vertices, and object B is a connected mesh with n vertices,
where m � n. We also denote TDCD and TCCD as
the time costs for one continuous collision checking and
one discrete collision checking respectively. On average,
TCCD ≈ 7.46TDCD in our 10 thousand random tests. Then
we have the following estimation for the precomputation’s
time complexity:

Theorem 2: The precomputation’s time complexity has a
lower bound of TCCD + (n − 1)TDCD, and has an upper
bound of n lg(n)TCCD.
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Fig. 6. Error comparison among our method with previous approaches. For general PD, we compare our method (4th row, blue) and the active learning
approach [10] (2nd row, red). For translational PD, we compare our method (5th row, yellow) and the local optimization approach [13], [4] (3rd row,
cyan). The comparison is performed on five different benchmarks (from left to right: CAD1, Bunny, Lion, Dragon and Donuts). These errors are computed
according to the ground-truth (the first row) computed by a Minkowski sum approach [12]. The x-axis is the frame index and the y-axis is the error
magnitude. We observe a smaller error in our approach than other two approaches: our error is 50-80 times smaller than [13], [4] and [10].

Proof: To obtain a high quality sample-based repre-
sentation for the contact space, one way is to generate all
the n configurations where A contacts with B at one of
B’s vertices. Ideally, we only need to generate one random-
sample, and all the other configurations can be visited in
one iteration of propagation process. The time complexity
for such ideal case is TCCD + (n − 1)TDCD, which is a
lower bound of the propagation sampling’s time complexity.

The upper bound of the propagation sampling can be
achieved by considering the expected time cost of a pure ran-
dom sampling required to visit all the n vertices of object B.
Suppose the sampling process has already visited i vertices
of B, the expected time for the sampling process to find a
new vertex different from the visited i vertices is n

n−iTCCD.
As a result, the expected time cost for the entire sampling
procedure is

∑n−1
i=1

n
n−iTCCD = n lg(n)TCCD, which can



serve as a upper bound of our propagation sampling’s time
complexity.

The two bounds estimated in this theorem are conservative,
but intuitively describes the performance of our precompu-
tation scheme. In practice, the running time of our algorithm
is much lower than the upper bound estimated, because for
each propagation iteration started from a random-sample, we
can generate a large number of propagate-samples due to
our special treatment to the internal configuration cases in
Section IV.

B. Sample Distribution

We next show that our method can generate samples
evenly distributed over the contact space. First, the propa-
gation movement has the following property:

Theorem 3: Commutativity: Suppose the object A slides
along the surface of the object B according to the tran-
sition function (q1, pA, p

1
B , θ) = T (q0, pA, p

0
B , θ), where

the transition function is as described in Equation 3. q0

and q1 are object A’s configurations before and after the
transition, and p0B and p1B are the contact points on the object
B for these two configurations. Then the inverse slide can
be formulated by the transition function (q0, pA, p

0
B , θ) =

T (q1, pA, p
1
B , θ).

Proof: This property is due to the fact according to
our transition rule, the state and goal states of the transition
function have one-to-one correspondence. Intuitively speak-
ing, this means that if the sample q0 is visited first, then it
can extend to q1 using the transition T ; if the sample q1 is
visited first, it can extend to q0 using the same transition.

Next, we show that the samples generated by our propa-
gation scheme will have no duplications:

Theorem 4: Uniqueness: Any two sets of samples gener-
ated by different propagation iterations will have no overlaps.

Proof: We use Figure 7 as an example for the two sets
of sample configurations, where points belonging to different
sets are marked as orange and blue respectively. Each sample
set includes one seed random-sample (point 0 and 7 for this
example), and a set of other samples extended from the seeds.

If the two sample sets indeed overlap with each other, and
we assume the duplicated points are 6 and 10, then according
to Theorem 3, the point 6 (also 10) is able to propagate to 9,
then 7 and 8, and finally 11. This means that all the points
in the second sample set will overlap with some points in
the first set. However, while generating the random-sample
for the second set, we use a Kd-tree to guarantee that its
distance to all points in the first set is large enough and thus
such duplication for the random-sample is impossible.
This theorem explains why our approach will not generate
repeated samples and can result in an efficient precomputa-
tion phase.

Overall, our propagation sampling method has three ben-
efits:
• Efficiency Theorems 3 and 4 imply that no duplicated

samples would be generated during the propagation. As
a result, the algorithm will not waste time on generat-
ing redundant samples, and can make steady progress

Fig. 7. Any two sets of samples generated by different propagation
iterations will have no overlaps.

toward constructing a more precise representation of the
contact space while generating more and more samples.
These properties result in the error reduction shown in
Figure 5. In addition, these two theorems also guarantee
the even distribution of samples over the surface of the
contact space.

• Accuracy Our propagation steps directly slide the mov-
ing object over the surface of the fixed objects. As a
result, every generated sample locates exactly on the
contact space, and this results in the high accuracy of
the PD results.

VII. LIMITATIONS, CONCLUSIONS AND FUTURE WORK

We present a new PD approximation algorithm between
general 3D models. We compute an approximation of contact
space using propagation sampling. The propagation sampling
scheme improves the accuracy of the approximation and is
much faster as compared to only using random samples. We
highlight the performance on many complex 3D models and
highlight the benefits in terms of runtime performance and
accuracy.

Our approach has some limitations. If the contact space
has very narrow components, our sampling approach may
miss them and thereby affect the accuracy of PD compu-
tations. It is possible that propagation sampling may not
find samples during the local search computation. We would
like to investigate the use of narrow-passage algorithms
in sample-based motion planning to improve the perfor-
mance. It would be useful to improve the performance of
propagation-sampling by utilizing the local curvature of the
surface to choose appropriate directions. We would like to
evaluate the performance on complex and articulated models,
and also integrate with dynamics simulation and motion
planning algorithms.
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