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Intractability of Optimal Multi-Robot Path Planning
on Planar Graphs

Jingjin Yu1

Abstract

We study the computational complexity of optimally solving multi-robot path planning problems on planar
graphs. For four common time- and distance-based objectives, we show that the associated path optimization problems
for multiple robots are all NP-complete, even when the underlying graph is planar. Establishing the computational
intractability of optimal multi-robot path planning problems on planar graphs has important practical implications.
In particular, our result suggests the preferred approach toward solving such problems, when the number of robots
is large, is to augment the planar environment to reduce the sharing of paths among robots traveling in opposite
directions on those paths. Indeed, such efficiency boosting structures, such as highways and elevated intersections,
are ubiquitous in robotics and transportation applications.

Index Terms

NP-hardness, multi-robot path planning, planar graphs, transportation networks, boolean satisfiability problems.

I. INTRODUCTION

IN this paper, we establish the computational complexity of optimally solving multi-robot path planning problems
on planar graphs. In such a problem, a set of robots is initially located on the vertices of a connected planar

graph. The task is to move the robots to a different set of vertices (each robot must reach a specific goal) of equal
cardinality, in an optimal manner and collision free. Here, we look at four common optimality objectives with two
focused on time optimality and two focused on distance optimality. For each of these objectives, we prove that the
associated multi-robot optimal path planning problem is NP-hard. Since the decision versions of these problems
are in NP, they are NP-complete.

Motivation and related work. Our study is primarily motivated by the emerging trend in deploying multi-
robot systems to automatically carry out complex tasks Böhringer (2004); Grocholsky et al. (2006); Wurman et al.
(2008); Knepper et al. (2013). In these and many other applications, it is often highly desirable to plan for and
control the robots so that they could optimally reach their respective target locations according to some metric,
such as time- or distance-based measures. For example, for the Kiva Systems’ robots operating in a warehouse
Wurman et al. (2008), the end goal is to put together orders for shipment as quickly as possible. This translates to
a time-optimal travel requirement for the robots. A natural question then arises: can we solve these optimization
problems for large problem instances efficiently, for example in low polynomial time? Knowing the answer to this
question has important practical relevance. If the answer is positive, then the accompanying algorithmic solution
will boost operating efficiency. On the other hand, if the answer is negative, one should perhaps look beyond
algorithmic solutions in solving such problems, especially when the problem instance becomes larger and larger.
For example, engineering the environment (i.e., the underlying graph structure in our problem) has long been applied
in transportation system design, which frequently employs highways and elevated intersections to improve traffic
throughput. Similar effort for simplifying problem solving is also observed in robotics applications Roozbehani and
D’Andrea (2011), in which “highways” are designed to speed up the operation of Kiva Systems’ mobile robots.
As our study establishes a firm “no” answer to this complexity question, our results offer theoretical justification
for adopting environment engineering as a preferred approach for attacking optimal multi-robot path planning and
closely related transportation problems, through the computation angle.

1J. Yu is with the Department of Computer Science, Rutgers University at New Brunswick, Piscataway, New Jersey, USA 08854. E-mail:
jingjin.yu@rutgers.edu. This work is supported by a startup fund from Rutgers Unviersity.
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The study of multi-robot path planning in a graph-theoretic setting originates from the mathematical study of
the 15-puzzle Story (1879); Wilson (1974), popularized by Sam Loyd Loyd (1959). A generalized version of
the problem, called the pebble motion problem, is proposed in Kornhauser et al. (1984), for which a cubic time
algorithm is provided to find a feasible solution. Although only a single robot is allowed to move in a time step
in the formulation given in Kornhauser et al. (1984), it is conceivable that multiple robots could be allowed to
move simultaneously as long as no collision is incurred between any two robots. We denote this version of the
problem, allowing concurrent collision-free robot movements, as MPP, which stands for Multi-robot Path Planning
on graphs.

Given the immediate applicability of MPP to domains such as computer games and robotics, many algorithms
have been proposed to solve it according to some optimality criteria Ryan (2008); Standley and Korf (2011);
Wagner and Choset (2011); Surynek (2012), of which most are time- or distance-based. Whereas great progress
has been made, no algorithm is known to optimally solve these problems in polynomial time. This suggests that
the problem may be computationally intractable. Indeed, the intractability of optimally solving MPP and related
problems has been established Goldreich (1984); Ratner and Warmuth (1990); Surynek (2010); Yu and LaValle
(2013a). However, to the best of our knowledge, no existing work addresses a planar setting while allowing general
concurrent movements from multiple robots, which directly mirrors environments such as warehouses for Kiva’s
robots or road networks for automobiles. We note that, the formulation in Ratner and Warmuth (1990) works with
grids which are planar. However, in Ratner and Warmuth (1990), only a single robot is allowed to move to the
single empty (swap) vertex at each time step (i.e., it works with a restricted MPP formulation); no concurrent robot
movement is permitted. In contrast, we allow synchronous robot motion on graphs containing an arbitrary number
of empty vertices, including the case with no swap vertex.

The computational complexity of multi-robot path planning in two-dimensional continuous domains has also
been extensively studied. The feasibility problem of translating rectangular blocks in a rectangular workspace has
long been established as PSPACE-hard Hopcroft et al. (1984). The problem becomes strongly NP-hard when the
blocks become discs with varying radii residing in a simple polygon Spirakis and Yap (1984). Recently, it is shown
that the problem is PSPACE-hard even for unlabeled squares Solovey and Halperin (2015), the proof of which uses
the non-deterministic constraint logic model Hearn and Demaine (2005). We mention that, the associated hardness
proofs on feasibility from these work do not readily extend to optimal MPP for two reasons: (i) these proofs rely
on geometric arguments, and (ii) the feasibility of graph-based MPP is in P Yu and Rus (2014).

Contributions. Denoting the planar version of the MPP problem as PMPP, the main contribution of our work
is showing rigorously that computing many time- and distance-optimal solutions for PMPP is NP-hard. For time-
optimality, we further prove that such intractability persists even when there are only two groups of robots such
that the robots are indistinguishable within each group. Moreover, due to the obvious NP membership of these
problems, the decision versions of these problems are NP-complete.

From a practical standpoint, because PMPP relates to real world path planning and transportation problems in
which robots or vehicles move on some form of road networks embedded in a two-dimensional plane, our NP-
hardness result convincingly demonstrates that such problems are computationally demanding to optimally solve.
This suggests, for optimally coordinating the movements of a large number of robots (or vehicles) in a planar
setting, environment augmentation should be explored in addition to algorithmic improvements. Indeed, in practice,
we observe that engineered solutions such as highways and elevated intersections are widely adopted, which can
be readily justified with our findings.

Organization. The rest of the paper is organized as follows. We define the PMPP and optimal versions of the
problem In Section II. In Section III, we prove the NP-hardness of the time-optimal formulations and also show
the intractability remains when there are only two groups of robots. In Section IV, we show the intractability of
distance-optimal formulations. We conclude the paper in Section V.

II. MULTI-ROBOT PATH PLANNING ON PLANAR GRAPHS: BASIC AND OPTIMAL FORMULATIONS

A. The multi-robot path planning problem

Let G = (V,E) be a connected, undirected, simple, planar graph, with V = {vi} being the vertex set and
E = {(vi, vj)} the edge set with unit edge length. A graph is planar if its edges can be embedded in the two-
dimensional plane without any two edges crossing each other. Let R = {r1, . . . , rn} be a set of n robots. A robot
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may stay still or move at unit speed along edges of G. A configuration of the robots is an injective map from R
to V . The start and goal configurations of the robots are denoted as xI and xG, respectively.

A scheduled path is a map pi : Z+ → V , in which Z+ := N ∪ {0}. A path set P = {p1, . . . , pn} is feasible
if it takes the robots to their respective goals. More formally, P = {pi} must satisfy the following properties:
1) pi(0) = xI(ri). 2) For each i, there exists a smallest ti ∈ Z+ such that pi(ti) = xG(ri). 3) For any t ≥ ti,
pi(t) ≡ xG(ri). 4) For any 0 ≤ t < ti, (pi(t), pi(t + 1)) ∈ E or pi(t) = pi(t + 1) (if pi(t) = pi(t + 1), robot ri
stays at vertex pi(t) between the time steps t and t+1). We say that two paths pi, pj are in collision if there exists
t ∈ Z+ such that pi(t) = pj(t) (meet-collision) or (pi(t), pi(t+ 1)) = (pj(t+ 1), pj(t)) (head-on-collision)1.

Problem 1 (Planar Multi-Robot Path Planning (PMPP)) Given (G,R, xI , xG), find a feasible path set P =
{p1, . . . , pn} such that no two paths pi, pj ∈ P are in collision.

Remark. We point out that the feasibility of PMPP can be decided in linear time and a feasible PMPP instance
can be solved in polynomial time Yu and Rus (2014). Alternatively, if there is a single robot, optimal path planning
is also in P Dijkstra (1959). 4

B. Optimal Formulations

Let P = {p1, . . . , pn} be an arbitrary feasible solution to a fixed PMPP instance. For a path pi ∈ P , len(pi)
denotes the length of the path pi, which is increased by one each time when the robot ri passes an edge. A
robot, following pi, may visit the same edge multiple times. Recall that ti denotes the arrival time of robot ri. In
optimizing over the solutions to PMPP, we examine four common objectives with two focusing on time optimality
and two focusing on distance optimality. Each objective is stated together with the corresponding decision problem
required for stating NP-completeness results.

Objective 1 (Min Total Time) Compute a path set P that minimizes
n∑

i=1

ti.

MTTPMPP (Min Total Time PMPP)
Instance: An instance of PMPP, and k ∈ Z.
Question: Is there a solution path set P with a total arrival time no more than k?

Objective 2 (Min Makespan) Compute a path set P that minimizes

max
1≤i≤n

ti.

MMPMPP (Min Makespan PMPP)
Instance: An instance of PMPP, and k ∈ Z.
Question: Is there a solution path set P with a makespan no more than k?

Objective 3 (Min Total Distance) Compute a path set P that minimizes
n∑

i=1

len(pi).

MTDPMPP (Min Total Distance PMPP)
Instance: An instance of PMPP, and k ∈ Z.
Question: Is there a solution path set P with a total path distance no more than k?

1We assume that the graph G only allows “meet” or “head-on” collisions. For example, a (arbitrary dimensional) grid with unit edge
distance is such a graph for robots with radii of no more than

√
2/4.
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Objective 4 (Min Max Distance) Compute a path set P that minimizes

max
1≤i≤n

len(pi).

MMDPMPP (Min Max Distance PMPP)
Instance: An instance of PMPP, and k ∈ Z.
Question: Is there a solution path set P in which every path has a distance no more than k?

We illustrate what these objectives achieve using the example shown in Fig. 1. The individual costs incurred

2

1

2

1

3

3

4

4

Fig. 1. An instance of a planar multi-robot path planning problem. The labeled, shaded discs are the start locations of the robots and the
labeled, unshaded discs are the goal locations.

by the robots are listed in Table I. In a minimum total time solution, robots 1, 2, and 3 must sequentially travel
through the bold (blue) vertical edge on the left side of Fig. 1, yielding arrival times of 3, 4, and 5, respectively.
Robot 4 should instead travel through the bold (green) vertical edge on the right, yielding an arrival time of 5.
This solution is also a min-max time solution for this particular example. For distance-optimal solutions, all robots
should go through the bold vertical edge on the left, yielding a per-robot distance of 3. In general, however, an
arbitrary pair of these four objectives creates a Pareto front (see e.g., Yu and LaValle (2013a)). That is, it is not
always possible to simultaneously optimize any two of these four objectives.
Remark. It is important to note the relationship between PMPP and MPP, the non-planar formulation with the only
distinction being that G is not required to be planar. The computational intractability of MPP has been established
in Yu and LaValle (2013a) for several objectives. We note that if an optimal PMPP formulation is NP-hard, then the
corresponding MPP formulation is also NP-hard. This is true because MPP contains PMPP. The NP-hardness of
an optimal MPP problem, however, does not directly imply the NP-hardness of the corresponding PMPP problem
because a non-planar graph cannot be readily turned into a planar graph. 4

TABLE I
MINIMUM REQUIRED TIME AND DISTANCE FOR THE ROBOTS.

Robot 1 2 3 4
Total time / max time 3 4 5 5

Total distance / max distance 3 3 3 3

III. INTRACTABILITY OF TIME-OPTIMAL FORMULATIONS

To show intractability, our general strategy is a reduction from a special 3-SAT problem Garey and Johnson
(1979) called the monotone planar 3-SAT de Berg and Khosravi (2010), which we denote as MP3SAT. Starting
from an arbitrary MP3SAT instance, we construct a corresponding optimal PMPP instance (for each of the four
objectives) in polynomial time. Our PMPP instances are constructed in two phases. In the first phase, we provide a
high-level, skeleton graph structure containing directed paths. In the second phase, we fill in the details on how to
simulate these directed paths in a PMPP instance (as directed paths are not allowed in PMPP). We then show the
MP3SAT instance is satisfiable if and only if the PMPP instance has a certain optimal solution. Because MP3SAT
is NP-hard de Berg and Khosravi (2010), this implies that the various optimal PMPP problems are also NP-hard.
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Our main goal in this section is proving the intractability of computing time-optimal solutions for PMPP, i.e,

Theorem 1 MTTPMPP and MMPMPP are both NP-hard.

As the complete proof of Theorem 1 is involved, we begin with a sketch including the necessary preliminaries.
A more rigorous proof then follows.

A. Reducing MP3SAT to MMPMPP: A Sketch

We first introduce MP3SAT, an instance of which has the following structure. There are n variables, x1, . . . , xn,
and m disjunctive clauses, c1, . . . , cm. Each clause cj contains up to three literals that can either be all non-negated
or all negated. A clause with only non-negated (resp., negated) literals is called a positive (resp., negative) clause.
This is the monotone element of the MP3SAT problem. To describe the planarity element, we construct a graph
based on a monotone 3-SAT instance. Given the monotone instance ({x1, . . . , x5}, {c1 = x1 ∨ x4 ∨ x5, c2 =
x2 ∨ x3, c3 = ¬x1 ∨ ¬x2 ∨ ¬x3, c4 = ¬x3 ∨ ¬x4 ∨ ¬x5}) as an example (see Fig. 2), we do the following:

1) Add a vertex for each variable xi and each clause cj ,
2) Add an edge between two consecutive variable vertices xi and x(i+1) mod n (the blue cycle of variables in

Fig. 2),
3) For a variable xi and a clause cj , if cj has xi or ¬xi as a literal, add an edge between vertex xi and vertex

cj .

1
x 2

x
3
x 4

x
5
x

1
c

2
c

4
c

3
c

Fig. 2. The monotone planar 3-SAT instance ({x1, . . . , x5}, {c1 = x1∨x4∨x5, c2 = x2∨x3, c3 = ¬x1∨¬x2¬x3, c4 = ¬x3∨¬x4¬x5}))
represented as a planar graph.

The planar element of MP3SAT requires that the graph constructed following these rules is planar. In particular,
this implies that the positive clauses and the negative clauses are separated by the circle formed by the edges
between variable vertices. MP3SAT is NP-hard de Berg and Khosravi (2010).

From the planar structure, we assign each clause a nesting level that is defined recursively. In the planar graph
(e.g., Fig. 2), if a clause vertex shares a face (a connected 2D region enclosed by edges) with the edge (xn, x1), then
it is assigned a nesting level of 0. Otherwise, a clause vertex is assigned a nesting level of ` if there is a minimum
of `− 1 faces between the clause vertex and the edge (xn, x1), without crossing any other (xi, xi+1) edge. In our
example, c1, c3, and c4 all have a nesting level of 0 and c2 is at level 1. We say that cj1 is directly nested in cj2
when the nesting level of cj1 and cj2 differ by one, and cj1 is separated from (xn, x1) by edges containing cj2 . In
our example, c2 is directly nested in c1.

After introducing MP3SAT, we construct a MMPMPP instance from a MP3SAT instance, using the MP3SAT
instance from Fig. 2 as an example. Here, we sketch the construction and the associated reduction proof. The
skeleton of the converted MMPMPP instance is given in Fig. 3. The key idea behind the reduction is to create
clause robots and force unidirectional travel of these robots through variable channels (the orange paths between
xi and ¬xi). For a clause cj , we denote the corresponding robot as rcj . In comparison to Fig. 2, each variable
vertex is split into an edge and we delete the edges between consecutive variables (i.e., the edges (xi, x(i+1) mod n)
are removed). The edges between variable vertices and clause vertices are split into “directional paths” that enforce
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Fig. 3. The skeleton of the MMPMPP instance reduced from the MP3SAT instance ({x1, . . . , x5}, {c1 = x1∨x4∨x5, c2 = x2∨x3, c3 =
¬x1 ∨ ¬x2¬x3, c4 = ¬x3 ∨ ¬x4¬x5})), as visualized in Fig. 2.

the motion direction of robots along these paths. We will explain in more detail how such directional paths can
be realized. If some clauses are nested in other clauses in the graph structure (for example, c2 is nested inside c1
due to the planarity requirement), additional paths are created to connect these clauses vertices, pointing from the
inner clause to the outer clause (e.g., the pink (c2, c1) directional path). Finally, we create additional paths leading
to the goals for the clause robots. These goal vertices are marked as cgj in Fig. 3. We connect these paths to all
clause vertices having a nesting level 0 (c1, c3, and c4) on the opposite side (see Fig. 3).

Roughly, the reduction works as follows. If the MP3SAT instance is satisfiable, then each clause robot can find
a variable channel in the middle that will not have other clause robots using it from the opposite direction. This
is true due to the monotone arrangement of the clauses. For example, the clause robot rc2 , starting from vertex
c2, may choose to go to x2, corresponding to setting x2 = true. If x2 = true, then c3 cannot be true by setting
¬x2 = true. Overall, for our example, we may set x1 = x2 = x4 = x5 = true and x3 = false. We can then
let rc1 and rc2 go through variable channels for x1 and x2, respectively, in the downward direction. Similarly, we
can let rc3 and rc4 go through variable channel for x3, in the upward direction. Once these clause robots reach
the other side of the variable channels, they can use the directional paths to reach their respective goals. Note that
these paths are of appropriate lengths to make sure that the robots will not be delayed unnecessarily. For example,
we will make robot rc4 spend a little more time to reach the variable channel for x3 than it does for robot rc3 . On
the other hand, if a satisfiable assignment is not available, either a variable channel must be shared between both
positive and negative clause robots or some clause robots must take a detour and use a variable channel of which
the corresponding variable does not belong to the literals of that clause (e.g., if rc2 goes to c1 first and then x1; x1
does not appear in c2). Both cases result in delays in the arrival of some robots.

B. Reducing Planar 3-SAT to MMPMPP: The Details

We now provide the details leading to a complete proof of Theorem 1, starting from completing the MMPMPP

instance outlined in Fig. 3. The instances is constructed with a particular k = 12m so that the MP3SAT instance
is satisfiable if and only if the corresponding MMPMPP instance has an optimal solution with 12m time steps.
First, we specify the lengths of different types of paths in Fig. 3.

1) Variable channels. A variable channel is a path of length 6m between xi and ¬xi (orange ones in Fig. 3).
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2) Directional path from cj to a variable channel. We call such a path a forward path from cj . For a clause
vertex cj , the forward path from cj to xi or ¬xi (if one exists) has length 2j. For example, the blue path
from c1 to x1, x4, and x5 in Fig. 3 all have length two, whereas the paths from c2 to x2 and x3 are both of
length four.

3) Directional path between clause vertices. If a clause cj1 is directly nested inside cj2 , we add a directional
path from cj1 to cj2 and give it a length of two. These paths allow a clause robot to have a shortest path
to its goal no matter which variable channel it goes through. For example, the pink path from c2 to c1 in
Fig. 3 is such a path, which allows rc3 to go through ¬x2, x2, c2, c1, and cg4 to reach cg3 (in 12m steps, as
we establish shortly).

4) Directional path from a variable channel to cj . We call such a path a backward path to cj . For a clause cj
with a nesting level `, a backward path from xi or ¬xi to cj has a length of 2(m− `). For example, the path
going from x2 to c2 has a length of 2(4− 1) = 6 and the path from x1 to c1 has a length of 2(4− 0) = 8.
This ensures that paths like x1c1 and x2c2c1 have the same length.

5) Goal paths for the clause robots. The paths on which the goals of the clause robots are located (green paths
in Fig. 3) have lengths such that the shortest path from from cj to cgj has a length of 12m, which can always
be realized. Note that such constructions are not unique. However, the construction can be made unique, e.g.,
by minimizing the number of added vertices.

For the example given in Fig. 3, the path lengths are added in Fig 4. It is straightforward to check that all the
clause robots will require a minimum of 12m = 48 steps to reach their respective goal vertices.

3
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x:
1

x:

1
x

2
x

3
x 4

x
5

x

1
c  

2
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4
c 
g

3
c 
g

24 24242424
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8
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3
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4
c 2

c 
g

1
c 
g

8 8

8

8 8
8

6

6 6

8
8 8

12 12

2

Fig. 4. The skeleton of the MMPMPP instance reduced from the MP3SAT instance ({x1, . . . , x5}, {c1 = x1∨x4∨x5, c2 = x2∨x3, c3 =
¬x1 ∨ ¬x2¬x3, c4 = ¬x3 ∨ ¬x4¬x5})), with path lengths added. Possible routes taken by the four clause robots following shortest paths
are marked with red (downward) and black (upward) dotted lines.

The last main missing piece from the MMPMPP instance is how to enforce the directional paths. There are
three types of directional paths: forward paths from clause vertices, backward paths to clause vertices, and paths
connecting two clause vertices. The method for enabling these directional paths are all similar; we do so by
replacing each of these “directional” paths with a two-piece gadget, which is a simple, specialized sub-structure.
We use examples to illustrate the gadget construction for each type of directional paths.

For the forward paths from clause vertices to variable channels, we only want to allow a clause robot to pass
through the path at t = 0. For example, for the forward path from c3 to ¬x1 in Fig. 4, we only want to allow robot
rc3 to pass through at time step t = 0 to time step t = 6. This can be enforced using the path gadget illustrated
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Fig. 5. A gadget to enable unidirectional paths. The paths in the yellow shaded area are added to the path from c3 to ¬x1.

in Fig. 5, which also adds 12m− 1 additional robots. As shown in the figure, we attach a path (p1) to the second
vertex on the path from c3 to ¬x1 (in this case rg12m−1, which is also the goal vertex for robot r12m−1). We then
attach another path (p2) at the same vertex. We put the 12m − 1 robots on p1 and require them to go to p2. We
make it so that each robot on p1 requires 12m steps to reach its goal on p2. The robots are placed on p1 to allow
desired clause robots to pass through. In the case of the path from c3 to ¬x1, no robot on p1 will move to rg12m−1

at t = 1, thus allowing robot rc3 to go to rg12m−1 at t = 1. After t = 1, a continuous stream of robots on p1 will
move through rg12m−1, forbidding any additional clause robots to move through the path connecting c3 and ¬x1.

We are left with two types of directional paths: backward paths to clause vertices and paths connecting two
clause vertices. The gadget for these two types of directional paths are actually identical, since the utility of these
paths is to allow a clause robot to move to its goal after passing through a variable channel. We use the directional
path from c2 to c1 as an example. All we need to do is to forbid the path being used at all before t = 6m, thus
preventing undesirable behaviors such as allowing rc2 to move from c2 to c1. We may do so simply by letting robots
flowing through the path continuously for the first 6m steps (see Fig. 6). After that, the path becomes available for
traversal in both directions. Nevertheless, such a path is effectively unidirectional because no clause robot can use
it from the other direction (i.e., from c1 to c2) when time optimality is enforced: if a robot uses such a path in the
wrong direction after 6m steps, it cannot reach its goal in 12m steps.

2
c 

1
c 

6m 12m { 1 

1
r  

6mr 6mr  g
1
r  g

Fig. 6. A gadget to enable unidirectional path from c2 to c1 that prevents traversing in the first 6m time steps.

Finally, every variable channel is a simple straight line path of length 6m without any additional robot on it. To
tally the number of vertices of the resulting instance, the skeleton graph has O(mn) vertices (e.g., Fig. 4 can be
decomposed into 2n paths between cg3 and cg1, with each such path having length O(m)). Then, there are no more
than O(m) forward and backward paths, and no more than m paths between clause vertices. Since each of these
three types of paths has O(m) vertices, the entire construction has O(mn+m2) vertices and fewer robots, which
can be done in polynomial time. Note that this analysis applies to all constructions in this paper.

Fig. 7. A possible arrangement of forward paths for a clause.
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Remark. It is straightforward to verify that the gadgets used in our construction do not change the planarity of the
graph. Some readers may have concerns on the apparent difference of the edge lengths in the instance construction
process–some edges seem longer than others whereas we assume every edge takes the same amount of time and
distance to traverse. We note that edge lengths can always be made equal by scaling up the path lengths and bending
certain paths. As an illustration, Fig. 7 shows how forward paths for clauses (of length 16 each) may be arranged
while leaving space for backward paths and gadget paths. In general, linear scaling of path lengths creates quadratic
amount of space for the accommodation of path length disparities. 4

PROOF OF THEOREM 1. From the partially constructed MMPMPP instance, we obtain a complete instance by
setting k = 12m. If the MP3SAT instance has a satisfiable assignment, then we can obtain collision free paths for
all robots to simultaneously reach their goals in 12m time steps. To do so, we simply let a positive clause robot
rcj go from cj to some xi that is part of cj and is set to true in the assignment. We do the same for the negative
clause robots, sending rcj′ to some ¬xi′ that makes cj′ true. Because a variable xi will not be set to true and false
simultaneously in a satisfiable assignment, a positive clause robot and a negative clause robot will never reach the
two ends of the same variable channel. All clause robots can then follow the directional paths to reach their goals
in 12m steps. As mentioned earlier, in our example (Fig. 4), we may set all variables but x3 to true. We then let
rc1 go to x1, rc2 go to x2, rc3 and rc4 go to ¬x3 (the paths are illustrated in Fig. 4). All robots will reach their
respective goals at t = 48.

On the other hand, if the constructed PMPP instance has a solution requiring only 12m steps for all robots, then
every single robot must start moving at t = 0, follow a shortest path, and never stop until the goal is reached. In
particular, this means that a positive clause robot and a negative clause robot can never share the same variable
channel. This is true because a positive (resp., negative) clause robot can reach some xi (resp., ¬xi) at 0 < t ≤ 2m.
Since a variable channel has a length of 6m, sharing it by a positive and a negative clause robot means that some
robot must take more than 12m steps to reach its goal since the channel can only be used in one direction at a
time. After it is used in one direction, more than 6m time steps has already passed. We then simply set a variable
xi to be true (resp., false) if the corresponding channel is used by a positive (resp., negative) clause robot. Such
an assignment is a satisfiable one for the original MP3SAT problem. This proves that MMPMPP is NP-hard.

To see that MTTPMPP is NP-hard, we simply reuse the same construction but set k to be 12m multiplied by
the total number of robots. The rest of the proof remains the same. �

Remark. As we know, the problem of planning time optimal trajectories when all robots are interchangeable is
efficiently solvable Yu and LaValle (2013b). By interchangeable, we mean that it is only required that all the goals
are occupied by robots; it does not matter which robot occupies which goal. That is, there is a single group or team
of robots. In the case of PMPP, there are n groups of robots (each group has a single robot). A natural question
then arises: for how many groups of robots will optimal PMPP problems become hard? It turns out two groups of
robots are enough to make such problems computationally intractable. 4

Theorem 2 MTTPMPP and MMPMPP remain NP-hard, even when there are only two groups of robots.

PROOF. In the proof for Theorem 1, we group all positive clause robots and the associated robots on the path
gadgets as one group.The rest of the robots form the other group. That is, referring to Fig. 4, all robots above the
set of variable channels belong to one group and all robots below belong to another. In our example, this means
that rc1 and rc2 may go to either cg1 or cg2. Same is true for robots rc3 and rc4 . It is straightforward to check that
the robots for enforcing the directional paths (Fig. 5 and Fig. 6) cannot be used for other purposes as every robot
must continuously move 12m steps. Otherwise, time optimality will be affected. The proof of Theorem 1 can then
be applied to show that such formulations with two groups of robots remain NP-hard. �

IV. INTRACTABILITY OF DISTANCE-OPTIMAL FORMULATIONS

The intractability of distance-optimal formulations of PMPP is more challenging to prove, owing to to the fact
that it is not necessary to time-synchronize the paths of the robots, thus allowing more combinations of robot
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movements. Nevertheless, we again reduce from MP3SAT and build distance optimal PMPP instances, starting
with MTDPMPP. The skeleton of the constructed MTDPMPP instance is shown in Fig. 8, which has a structure
similar to that of the converted MMPMPP instance from Fig. 4. Like in Fig. 4, the lengths of the paths are given.
The main difference at the skeleton level is that for distance optimality, we want to make sure that the shortest
paths for all clause robots have not only the same length, but also in a sense “parallel” to each other. This is put
in place to force a stronger form of synchronization among the robots. Again, we will show that the MP3SAT
instance is satisfiable if and only if the corresponding MTDPMPP has certain optimal solution cost.
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Fig. 8. The skeleton of the MTDPMPP instance reduced from the same MP3SAT instance ({x1, . . . , x5}, {c1 = x1 ∨ x4 ∨ x5, c2 =
x2 ∨ x3, c3 = ¬x1 ∨ ¬x2¬x3, c4 = ¬x3 ∨ ¬x4¬x5})), with path lengths added.

The path lengths are set as follows:
1) Forward path from cj . All such paths have lengths of 2m. This is 8 in our example.
2) Directional path between clause vertices. If a clause cj1 is directly nested inside a clause vertex cj2 , we add

a path from cj1 to cj2 and make it have length 4.
3) Backward path to cj . Let the nesting level of cj be `j , then such paths have lengths 4(m− `j). For example,

x2c2 has length 16− 4 = 12. This ensures that directional paths from all variable channels to a clause vertex
of nesting level 0 have the same length (e.g., x1c1 and x2c2c1), which is 4m.

4) Variable channels. Each variable channel (orange paths in Fig. 3) has a length of 4m.
5) Goal paths for the clause robots. The length from any goal vertex for a clause robot to the closest clause

vertex with a nesting level of 0 is 2. For example, c1c
g
3 or c3c

g
1. There are no additional structures on these

paths.
Based on these path length settings, each clause robot requires a distance of at least 10m+2 to reach its goal. We

now describe the details needed to specify the full MTDPMPP instance. Since time synchronization is no longer
helpful, gadgets such as those from Fig. 5 and Fig. 6 are no longer useful. Instead, we need a different method of
enforcing directional paths that penalizes robot traveling in an undesirable direction.

For a forward path from a clause vertex, for example from c3 to ¬x1, we construct the gadget illustrated in Fig. 9
to enforce unidirectional traversal. In the figure, the initial and final configurations of the gadget are shown in the
left and the right picture (the shaded regions), respectively. Such a construction allows only clockwise rotation of
the gadget cycle; rotating counterclockwise will incur a large distance penalty. Note that the added robots will incur
more distance penalty if they travel outside the gadget structure.

For backward paths to cj , as well as the directional paths connecting cj1 to cj2 , we let such a path be a simple
straight line path. For example, the path c2c1 is a simple linear path of length 4 with no additional robots in the
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Fig. 9. A gadget to enable (total) distance optimal, unidirectional traversal from c3 to ¬x1. [left] The initial gadget configuration. [right]
The target (goal) gadget configuration.

middle. Note that a clause robot will never use such a path before crossing a variable channel since going through
such a path adds the needed distance. For example, going from c1 to x1 along the forward path requires a distance
of 8 but going along the backward path requires a distance of 16.

Finally, a variable channel has the structure illustrated in Fig. 10. The gadget contains a cycle of 12m vertices,
with 10m additional robots on the cycle. For each of the 10m added robots, we require it to reach the diagonal
location on the cycle. In particular, we marked the goals for robots r1, r2m+1, r2m+2, and r10m in Fig. 10 (the red
nodes). Given such a gadget, for all 10m robots to travel the minimum possible distance (which is 6m for each
robot), the robots must either all rotate clockwise or all counterclockwise along the cycle. Effectively, such a gadget
allows unidirectional traversal along the upper path between x1 and ¬x1, creating a unidirectional variable channel
for clause robots.

1x:

1r  

1x

2m + 1r  2m + 2r  10mr  

2m + 2r  
g

2m + 1r  g1r  
g

10mr  g

Fig. 10. The variable channel gadget for x1 in the total distance optimal case. To ensure the robots on the gadget travel the shortest
possible distance, all these robots may only move either in the same (clockwise or counterclockwise) direction.

We now show that computing distance optimal solution for PMPP problems is also NP-hard.

Theorem 3 MTDPMPP is NP-hard.

PROOF. Given the PMPP instance that has been constructed, we obtain a complete MTDPMPP instance by setting
k to be the sum of the minimum possible distance for all the robots. Assuming the MP3SAT instance has a
satisfiable assignment, we let a clause robot move to a variable channel whose end literal makes that clause true.
In our example, we may again let all variables but x3 be true. We then let rc1 go to x1, rc2 go to x2, and both rc3
and rc4 go to ¬x3. There robots can then pass the variable channel to reach their respective goals. It is clear that all
robots may do so following a shortest possible path. In particular, a variable channel can transfer up to m clause
robots in one direction optimally. Also, we note that the clause robots only need to synchronize their movements
at variable channels. Otherwise, the order of their movements do not affect distance optimality. For example, the
movement of rc1 and rc2 can be mostly decoupled; they only share one edge in their respective shortest paths (the
edge (c3, v) in Fig. 8).

On the other hand, if the MTDPMPP instance has a distance optimal solution of k total steps, each robot must
follow a shortest possible path. For a clause robot rcj to follow a shortest path, it must first travel along a forward
path gadget that go from cj to a variable channel, in 2m steps. Because a variable channel can only be used in one
direction to optimally transfer clause robots, the distance optimal solution partitions the variable channels into two
sets based on the travel direction of the clause robots. Similar to the time-optimal case, based on this partition of
variable channels, a satisfiable assignment for the corresponding MP3SAT instance can then be easily extracted. �
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Theorem 4 MMDPMPP is NP-hard.

PROOF. In our construction of the MTDPMPP instance, there are three different shortest distances for the robots
that are involved. A clause robot needs to travel 10m+ 2 steps, a robot added to a directional path gadget needs
to travel 2m− 2 steps, and a robot added to the variable gadget needs to travel 6m steps. However, we can easily
change the gadgets such that all the involved robots need to travel 10m + 2 steps. For the forward path gadget
pictured in Fig. 9, we may do so by making the lower path of the cycle much larger (e.g., to have about 30m
vertices and robots, see Fig. 11) to again ensure unidirectional traversal through the gadget. For the variable channel

3c 1x:

1r  

30mr  

r  
3c 

r  
3c 

3c 1x:

2m { 2r  

2m { 1r  
8m+3 

1r  

Fig. 11. A gadget to enable distance optimal, unidirectional traversal from c3 to ¬x1 while ensuring the added robots move at least
10m+ 2 steps. [left] The initial gadget configuration. [right] The target (goal) gadget configuration.

gadget, we may simply enlarge the cycle to have 20m+4 vertices, add more robots, and again make all the added
robots go to diagonal locations. After the gadget modifications are complete, we obtain a complete MMDPMPP

instance by setting k = 10m+ 2. The rest of the proof is then identical to that for MTDPMPP. �

V. CONCLUSION AND DISCUSSION

In this paper, we have established the NP-hardness of four common versions of optimal multi-robot path planning
problems on planar graphs. Because these problems are clearly in NP, we may further conclude that they are NP-
complete, i.e.,

Theorem 5 MTTPMPP, MMPMPP, MTDPMPP, and MMDPMPP are all NP-complete problems.

Theorem 5 implies that optimal planning and control of multiple robots in a discrete planar environment, such as
coordinating many automobiles on a planar road network to minimize delay, is a computationally intractable task.
In particular, the difficulty appears to arise when two or more groups of robots want to move in opposite directions
through the same set of channels, thus creating resource contention among the robots. From a practical standpoint,
our observation suggests that the best approach towards solving such problems, as the number of robots becomes
large, is perhaps to engineer the environment carefully to minimize path sharing among the robots. Alternatively,
an equally interesting open question is whether optimal MPP and PMPP problems are APX-hard or they admit
polynomial time approximation schemes (PTAS).
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